1
|
McHenry CS. Life at the replication fork: A scientific and personal journey. J Biol Chem 2024; 300:105658. [PMID: 38219819 PMCID: PMC10850973 DOI: 10.1016/j.jbc.2024.105658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 01/16/2024] Open
Affiliation(s)
- Charles S McHenry
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA.
| |
Collapse
|
2
|
Botto MM, Borsellini A, Lamers MH. A four-point molecular handover during Okazaki maturation. Nat Struct Mol Biol 2023; 30:1505-1515. [PMID: 37620586 DOI: 10.1038/s41594-023-01071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 07/17/2023] [Indexed: 08/26/2023]
Abstract
DNA replication introduces thousands of RNA primers into the lagging strand that need to be removed for replication to be completed. In Escherichia coli when the replicative DNA polymerase Pol IIIα terminates at a previously synthesized RNA primer, DNA Pol I takes over and continues DNA synthesis while displacing the downstream RNA primer. The displaced primer is subsequently excised by an endonuclease, followed by the sealing of the nick by a DNA ligase. Yet how the sequential actions of Pol IIIα, Pol I polymerase, Pol I endonuclease and DNA ligase are coordinated is poorly defined. Here we show that each enzymatic activity prepares the DNA substrate for the next activity, creating an efficient four-point molecular handover. The cryogenic-electron microscopy structure of Pol I bound to a DNA substrate with both an upstream and downstream primer reveals how it displaces the primer in a manner analogous to the monomeric helicases. Moreover, we find that in addition to its flap-directed nuclease activity, the endonuclease domain of Pol I also specifically cuts at the RNA-DNA junction, thus marking the end of the RNA primer and creating a 5' end that is a suitable substrate for the ligase activity of LigA once all RNA has been removed.
Collapse
Affiliation(s)
- Margherita M Botto
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
- Department of Molecular and Cellular Biology, Geneva University, Geneva, Switzerland
| | - Alessandro Borsellini
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
- Department of Structural Biology, Human Technopole, Milan, Italy
| | - Meindert H Lamers
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands.
| |
Collapse
|
3
|
Brüning JG, Marians KJ. Bypass of complex co-directional replication-transcription collisions by replisome skipping. Nucleic Acids Res 2021; 49:9870-9885. [PMID: 34469567 PMCID: PMC8464059 DOI: 10.1093/nar/gkab760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Collisions between the replisome and RNA polymerases [RNAP(s)] are the main obstacle to DNA replication. These collisions can occur either head-on or co-directionally with respect to the direction of translocation of both complexes. Whereas head-on collisions require additional factors to be resolved, co-directional collisions are thought to be overcome by the replisome itself using the mRNA transcript as a primer. We show that mRNA takeover is utilized primarily after collisions with single RNAP complexes with short transcripts. Bypass of more complex transcription complexes requires the synthesis of a new primer downstream of the RNAP for the replisome to resume leading-strand synthesis. In both cases, bypass proceeds with displacement of the RNAP. Rep, Mfd, UvrD and RNase H can process the RNAP block and facilitate replisome bypass by promoting the formation of continuous leading strands. Bypass of co-directional RNAP(s) and/or R-loops is determined largely by the length of the obstacle that the replisome needs to traverse: R-loops are about equally as potent obstacles as RNAP arrays if they occupy the same length of the DNA template.
Collapse
Affiliation(s)
- Jan-Gert Brüning
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Kenneth J Marians
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
4
|
Myka KK, Marians KJ. Two components of DNA replication-dependent LexA cleavage. J Biol Chem 2020; 295:10368-10379. [PMID: 32513870 PMCID: PMC7383369 DOI: 10.1074/jbc.ra120.014224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/04/2020] [Indexed: 12/19/2022] Open
Abstract
Induction of the SOS response, a cellular system triggered by DNA damage in bacteria, depends on DNA replication for the generation of the SOS signal, ssDNA. RecA binds to ssDNA, forming filaments that stimulate proteolytic cleavage of the LexA transcriptional repressor, allowing expression of > 40 gene products involved in DNA repair and cell cycle regulation. Here, using a DNA replication system reconstituted in vitro in tandem with a LexA cleavage assay, we studied LexA cleavage during DNA replication of both undamaged and base-damaged templates. Only a ssDNA-RecA filament supported LexA cleavage. Surprisingly, replication of an undamaged template supported levels of LexA cleavage like that induced by a template carrying two site-specific cyclobutane pyrimidine dimers. We found that two processes generate ssDNA that could support LexA cleavage. 1) During unperturbed replication, single-stranded regions formed because of stochastic uncoupling of the leading-strand DNA polymerase from the replication fork DNA helicase, and 2) on the damaged template, nascent leading-strand gaps were generated by replisome lesion skipping. The two pathways differed in that RecF stimulated LexA cleavage during replication of the damaged template, but not normal replication. RecF appears to facilitate RecA filament formation on the leading-strand ssDNA gaps generated by replisome lesion skipping.
Collapse
Affiliation(s)
- Kamila K Myka
- Molecular Biology Program, Sloan Kettering Institute Memorial Sloan Kettering Cancer Center, New York, New York USA
| | - Kenneth J Marians
- Molecular Biology Program, Sloan Kettering Institute Memorial Sloan Kettering Cancer Center, New York, New York USA
| |
Collapse
|
5
|
Grúz P, Sugiyama KI, Honma M, Nohmi T. Purification and interactions of the MucA' and MucB proteins constituting the DNA polymerase RI. Genes Environ 2019; 41:10. [PMID: 31061684 PMCID: PMC6495647 DOI: 10.1186/s41021-019-0125-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/11/2019] [Indexed: 11/10/2022] Open
Abstract
Background The MucA' and MucB proteins comprise the core of DNA polymerase RI which is a strong mutator utilized in mutagenicity assays such as the standard Ames test. A close relative DNA polymerase V, composed of the homologous UmuD' and UmuC proteins, is considered to be an ortholog of the mammalian DNA polymerase η. The catalytic subunits of these polymerases belong to the Y-family which specializes in the translesion DNA synthesis across various DNA adducts to rescue stalled chromosomal replication at the expense of mutations. Based on genetic evidence, DNA polymerase RI possesses the greatest ability to induce various types of mutations among all so far characterized members of the Y-superfamily. The exceptionally high mutagenic potential of MucA'B has been taken advantage of in numerous bacterial mutagenicity assays incorporating the conjugative plasmid pKM101 carrying the mucAB operon such as the Ames Test. Results We established new procedures for the purification of MucB protein as well as its accessory protein MucA' using the refolding techniques. The purified MucA' protein behaved as a molecular dimer which was fully stable in solution. The soluble monomeric form of MucB protein was obtained after refolding on a gel-filtration column and remained stable in a nondenaturing buffer containing protein aggregation inhibitors. Using the surface plasmon resonance technique, we demonstrated that the purified MucA' and MucB proteins interacted and that MucB protein preferentially bound to single-stranded DNA. In addition, we revealed that MucB protein interacted with the β-subunit of DNA polymerase III holoenzyme of E. coli. Conclusion The MucA' and MucB proteins can be isolated from inclusion bodies and solubilized in vitro. The refolded MucB protein interacts with its MucA' partner as well as with DNA what suggests it retains biological activity. The interaction of MucB with the processivity subunit of DNA polymerase III may imply the role of the subunit as an accessory protein to MucB during the translesion DNA synthesis.
Collapse
Affiliation(s)
- Petr Grúz
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501 Japan
| | - Kei-Ichi Sugiyama
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501 Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501 Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501 Japan
| |
Collapse
|
6
|
Pandey P, Tarique KF, Mazumder M, Rehman SAA, Kumari N, Gourinath S. Structural insight into β-Clamp and its interaction with DNA Ligase in Helicobacter pylori. Sci Rep 2016; 6:31181. [PMID: 27499105 PMCID: PMC4976356 DOI: 10.1038/srep31181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/14/2016] [Indexed: 12/30/2022] Open
Abstract
Helicobacter pylori, a gram-negative and microaerophilic bacterium, is the major cause of chronic gastritis, gastric ulcers and gastric cancer. Owing to its central role, DNA replication machinery has emerged as a prime target for the development of antimicrobial drugs. Here, we report 2Å structure of β-clamp from H. pylori (Hpβ-clamp), which is one of the critical components of DNA polymerase III. Despite of similarity in the overall fold of eubacterial β-clamp structures, some distinct features in DNA interacting loops exists that have not been reported previously. The in silico prediction identified the potential binders of β-clamp such as alpha subunit of DNA pol III and DNA ligase with identification of β-clamp binding regions in them and validated by SPR studies. Hpβ-clamp interacts with DNA ligase in micromolar binding affinity. Moreover, we have successfully determined the co-crystal structure of β-clamp with peptide from DNA ligase (not reported earlier in prokaryotes) revealing the region from ligase that interacts with β-clamp.
Collapse
Affiliation(s)
- Preeti Pandey
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,Department of Bioscience and Biotechnology, Banasthali University, Rajasthan, India
| | | | - Mohit Mazumder
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Nilima Kumari
- Department of Bioscience and Biotechnology, Banasthali University, Rajasthan, India
| | | |
Collapse
|
7
|
Abstract
This review describes the components of the Escherichia coli replisome and the dynamic process in which they function and interact under normal conditions. It also briefly describes the behavior of the replisome during situations in which normal replication fork movement is disturbed, such as when the replication fork collides with sites of DNA damage. E. coli DNA Pol III was isolated first from a polA mutant E. coli strain that lacked the relatively abundant DNA Pol I activity. Further biochemical studies, and the use of double mutant strains, revealed Pol III to be the replicative DNA polymerase essential to cell viability. In a replisome, DnaG primase must interact with DnaB for activity, and this constraint ensures that new RNA primers localize to the replication fork. The leading strand polymerase continually synthesizes DNA in the direction of the replication fork, whereas the lagging-strand polymerase synthesizes short, discontinuous Okazaki fragments in the opposite direction. Discontinuous lagging-strand synthesis requires that the polymerase rapidly dissociate from each new completed Okazaki fragment in order to begin the extension of a new RNA primer. Lesion bypass can be thought of as a two-step reaction that starts with the incorporation of a nucleotide opposite the lesion, followed by the extension of the resulting distorted primer terminus. A remarkable property of E. coli, and many other eubacterial organisms, is the speed at which it propagates. Rapid cell division requires the presence of an extremely efficient replication machinery for the rapid and faithful duplication of the genome.
Collapse
|
8
|
Long-Range PCR Amplification of DNA by DNA Polymerase III Holoenzyme from Thermus thermophilus. Enzyme Res 2015; 2015:837842. [PMID: 25688300 PMCID: PMC4320859 DOI: 10.1155/2015/837842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 12/12/2014] [Accepted: 12/18/2014] [Indexed: 11/28/2022] Open
Abstract
DNA replication in bacteria is accomplished by a multicomponent replicase, the DNA polymerase III holoenzyme (pol III HE). The three essential components of the pol III HE are the α polymerase, the β sliding clamp processivity factor, and the DnaX clamp-loader complex. We report here the assembly of the functional holoenzyme from Thermus thermophilus (Tth), an extreme thermophile. The minimal holoenzyme capable of DNA synthesis consists of α, β and DnaX (τ and γ), δ and δ′ components of the clamp-loader complex. The proteins were each cloned and expressed in a native form. Each component of the system was purified extensively. The minimum holoenzyme from these five purified subunits reassembled is sufficient for rapid and processive DNA synthesis. In an isolated form the α polymerase was found to be unstable at temperatures above 65°C. We were able to increase the thermostability of the pol III HE to 98°C by addition and optimization of various buffers and cosolvents. In the optimized buffer system we show that a replicative polymerase apparatus, Tth pol III HE, is capable of rapid amplification of regions of DNA up to 15,000 base pairs in PCR reactions.
Collapse
|
9
|
Cho WK, Jergic S, Kim D, Dixon NE, Lee JB. Loading dynamics of a sliding DNA clamp. Angew Chem Int Ed Engl 2014; 53:6768-71. [PMID: 24854225 PMCID: PMC4320747 DOI: 10.1002/anie.201403063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Indexed: 11/17/2022]
Abstract
Sliding DNA clamps are loaded at a ss/dsDNA junction by a clamp loader that depends on ATP binding for clamp opening. Sequential ATP hydrolysis results in closure of the clamp so that it completely encircles and diffuses on dsDNA. We followed events during loading of an E. coli β clamp in real time by using single-molecule FRET (smFRET). Three successive FRET states were retained for 0.3 s, 0.7 s, and 9 min: Hydrolysis of the first ATP molecule by the γ clamp loader resulted in closure of the clamp in 0.3 s, and after 0.7 s in the closed conformation, the clamp was released to diffuse on the dsDNA for at least 9 min. An additional single-molecule polarization study revealed that the interfacial domain of the clamp rotated in plane by approximately 8° during clamp closure. The single-molecule polarization and FRET studies thus revealed the real-time dynamics of the ATP-hydrolysis-dependent 3D conformational change of the β clamp during loading at a ss/dsDNA junction.
Collapse
Affiliation(s)
- Won-Ki Cho
- Department of Physics, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH)Pohang (Korea)
| | - Slobodan Jergic
- Centre for Medical and Molecular Bioscience, School of Chemistry, University of WollongongWollongong, N.S.W. 2522 (Australia)
| | - Daehyung Kim
- Department of Physics, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH)Pohang (Korea)
| | - Nicholas E Dixon
- Centre for Medical and Molecular Bioscience, School of Chemistry, University of WollongongWollongong, N.S.W. 2522 (Australia)
| | - Jong-Bong Lee
- Department of Physics, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH)Pohang (Korea)
| |
Collapse
|
10
|
Cho WK, Jergic S, Kim D, Dixon NE, Lee JB. Loading Dynamics of a Sliding DNA Clamp. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Architecture of the Pol III-clamp-exonuclease complex reveals key roles of the exonuclease subunit in processive DNA synthesis and repair. EMBO J 2013; 32:1334-43. [PMID: 23549287 PMCID: PMC3642679 DOI: 10.1038/emboj.2013.68] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 02/27/2013] [Indexed: 11/08/2022] Open
Abstract
DNA polymerase III (Pol III) is the catalytic α subunit of the bacterial DNA Polymerase III holoenzyme. To reach maximum activity, Pol III binds to the DNA sliding clamp β and the exonuclease ε that provide processivity and proofreading, respectively. Here, we characterize the architecture of the Pol III-clamp-exonuclease complex by chemical crosslinking combined with mass spectrometry and biochemical methods, providing the first structural view of the trimeric complex. Our analysis reveals that the exonuclease is sandwiched between the polymerase and clamp and enhances the binding between the two proteins by providing a second, indirect, interaction between the polymerase and clamp. In addition, we show that the exonuclease binds the clamp via the canonical binding pocket and thus prevents binding of the translesion DNA polymerase IV to the clamp, providing a novel insight into the mechanism by which the replication machinery can switch between replication, proofreading, and translesion synthesis.
Collapse
|
12
|
Abstract
Bacterial replicases are complex, tripartite replicative machines. They contain a polymerase, polymerase III (Pol III), a β₂ processivity factor, and a DnaX complex ATPase that loads β₂ onto DNA and chaperones Pol III onto the newly loaded β₂. Bacterial replicases are highly processive, yet cycle rapidly during Okazaki fragment synthesis in a regulated way. Many bacteria encode both a full-length τ and a shorter γ form of DnaX by a variety of mechanisms. γ appears to be uniquely placed in a single position relative to two τ protomers in a pentameric ring. The polymerase catalytic subunit of Pol III, α, contains a PHP domain that not only binds to a prototypical ε Mg²⁺-dependent exonuclease, but also contains a second Zn²⁺-dependent proofreading exonuclease, at least in some bacteria. This review focuses on a critical evaluation of recent literature and concepts pertaining to the above issues and suggests specific areas that require further investigation.
Collapse
Affiliation(s)
- Charles S McHenry
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA.
| |
Collapse
|
13
|
Downey CD, Crooke E, McHenry CS. Polymerase chaperoning and multiple ATPase sites enable the E. coli DNA polymerase III holoenzyme to rapidly form initiation complexes. J Mol Biol 2011; 412:340-53. [PMID: 21820444 DOI: 10.1016/j.jmb.2011.07.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 10/17/2022]
Abstract
Cellular replicases include three subassemblies: a DNA polymerase, a sliding clamp processivity factor, and a clamp loader complex. The Escherichia coli clamp loader is the DnaX complex (DnaX(3)δδ'χψ), where DnaX occurs either as τ or as the shorter γ that arises by translational frameshifting. Complexes composed of either form of DnaX are fully active clamp loaders, but τ confers important replicase functions including chaperoning the polymerase to the newly loaded clamp to form an initiation complex for processive replication. The kinetics of initiation complex formation were explored for DnaX complexes reconstituted with varying τ and γ stoichiometries, revealing that τ-mediated polymerase chaperoning accelerates initiation complex formation by 100-fold. Analyzing DnaX complexes containing one or more K51E variant DnaX subunits demonstrated that only one active ATP binding site is required to form initiation complexes, but the two additional sites increase the rate by ca 1000-fold. For τ-containing complexes, the ATP analogue ATPγS was found to support initiation complex formation at 1/1000th the rate with ATP. In contrast to previous models that proposed ATPγS drives hydrolysis-independent initiation complex formation by τ-containing complexes, the rate and stoichiometry of ATPγS hydrolysis coincide with those for initiation complex formation. These results show that although one ATPase site is sufficient for initiation complex formation, the combination of polymerase chaperoning and the binding and hydrolysis of three ATPs dramatically accelerates initiation complex formation to a rate constant (25-50 s(-1)) compatible with double-stranded DNA replication.
Collapse
Affiliation(s)
- Christopher D Downey
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | | | | |
Collapse
|
14
|
Downey CD, McHenry CS. Chaperoning of a replicative polymerase onto a newly assembled DNA-bound sliding clamp by the clamp loader. Mol Cell 2010; 37:481-91. [PMID: 20188667 DOI: 10.1016/j.molcel.2010.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/03/2009] [Accepted: 11/12/2009] [Indexed: 11/29/2022]
Abstract
Cellular replicases contain multiprotein ATPases that load sliding clamp processivity factors onto DNA. We reveal an additional role for the DnaX clamp loader: chaperoning of the replicative polymerase onto a clamp newly bound to DNA. We show that chaperoning confers distinct advantages, including marked acceleration of initiation complex formation. We reveal a requirement for the tau form of DnaX complex to relieve inhibition by single-stranded DNA binding protein during initiation complex formation. We propose that, after loading beta(2), DnaX complex preserves an SSB-free segment of DNA immediately downstream of the primer terminus and chaperones Pol III into that position, preventing competition by SSB. The C-terminal tail of SSB stimulates reactions catalyzed by tau-containing DnaX complexes through a contact distinct from the contact involving the chi subunit. Chaperoning of Pol III by the DnaX complex provides a molecular explanation for how initiation complexes form when supported by the nonhydrolyzed analog ATPgammaS.
Collapse
Affiliation(s)
- Christopher D Downey
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | | |
Collapse
|
15
|
Yuan Q, McHenry CS. Strand displacement by DNA polymerase III occurs through a tau-psi-chi link to single-stranded DNA-binding protein coating the lagging strand template. J Biol Chem 2009; 284:31672-9. [PMID: 19749191 DOI: 10.1074/jbc.m109.050740] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In addition to the well characterized processive replication reaction catalyzed by the DNA polymerase III holoenzyme on single-stranded DNA templates, the enzyme possesses an intrinsic strand displacement activity on flapped templates. The strand displacement activity is distinguished from the single-stranded DNA-templated reaction by a high dependence upon single-stranded DNA binding protein and an inability of gamma-complex to support the reaction in the absence of tau. However, if gamma-complex is present to load beta(2), a truncated tau protein containing only domains III-V will suffice. This truncated protein is sufficient to bind both the alpha subunit of DNA polymerase (Pol) III and chipsi. This is reminiscent of the minimal requirements for Pol III to replicate short single-stranded DNA-binding protein (SSB)-coated templates where tau is only required to serve as a scaffold to hold Pol III and chi in the same complex (Glover, B., and McHenry, C. (1998) J. Biol. Chem. 273, 23476-23484). We propose a model in which strand displacement by DNA polymerase III holoenzyme depends upon a Pol III-tau-psi-chi-SSB binding network, where SSB is bound to the displaced strand, stabilizing the Pol III-template interaction. The same interaction network is probably important for stabilizing the leading strand polymerase interactions with authentic replication forks. The specificity constant (k(cat)/K(m)) for the strand displacement reaction is approximately 300-fold less favorable than reactions on single-stranded templates and proceeds with a slower rate (150 nucleotides/s) and only moderate processivity (approximately 300 nucleotides). PriA, the initiator of replication restart on collapsed or misassembled replication forks, blocks the strand displacement reaction, even if added to an ongoing reaction.
Collapse
Affiliation(s)
- Quan Yuan
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | | |
Collapse
|
16
|
Insights into the replisome from the structure of a ternary complex of the DNA polymerase III alpha-subunit. J Mol Biol 2008; 382:859-69. [PMID: 18691598 PMCID: PMC2614274 DOI: 10.1016/j.jmb.2008.07.058] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 07/22/2008] [Indexed: 01/07/2023]
Abstract
The crystal structure of the catalytic alpha-subunit of the DNA polymerase III (Pol IIIalpha) holoenzyme bound to primer-template DNA and an incoming deoxy-nucleoside 5'-triphosphate has been determined at 4.6-A resolution. The polymerase interacts with the sugar-phosphate backbone of the DNA across its minor groove, which is made possible by significant movements of the thumb, finger, and beta-binding domains relative to their orientations in the unliganded polymerase structure. Additionally, the DNA and incoming nucleotide are bound to the active site of Pol IIIalpha nearly identically as they are in their complex with DNA polymerase beta, thereby proving that the eubacterial replicating polymerase, but not the eukaryotic replicating polymerase, is homologous to DNA polymerase beta. Finally, superimposing a recent structure of the clamp bound to DNA on this Pol IIIalpha complex with DNA places a loop of the beta-binding domain into the appropriate clamp cleft and supports a mechanism of polymerase switching.
Collapse
|
17
|
Al Mamun AAM. Elevated expression of DNA polymerase II increases spontaneous mutagenesis in Escherichia coli. Mutat Res 2007; 625:29-39. [PMID: 17586534 DOI: 10.1016/j.mrfmmm.2007.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 04/26/2007] [Accepted: 05/08/2007] [Indexed: 11/17/2022]
Abstract
Escherichia coli DNA polymerase II (Pol-II), encoded by the SOS-regulated polB gene, belongs to the highly conserved group B (alpha-like) family of "high-fidelity" DNA polymerases. Elevated expression of polB gene was recently shown to result in a significant elevation of translesion DNA synthesis at 3, N(4)-ethenocytosine lesion with concomitant increase in mutagenesis. Here, I show that elevated expression of Pol-II leads to an approximately 100-fold increase in spontaneous mutagenesis in a manner that is independent of SOS, umuDC, dinB, recA, uvrA and mutS functions. Cells grow slowly and filament with elevated expression of Pol-II. Introduction of carboxy terminus ("beta interaction domain") mutations in polB eliminates elevated spontaneous mutagenesis, as well as defects in cell growth and morphology, suggesting that these abilities require the interaction of Pol-II with the beta processivity subunit of DNA polymerase III. Introduction of a mutation in the proofreading exo motif of polB elevates mutagenesis by a further 180-fold, suggesting that Pol-II can effectively compete with DNA polymerase III for DNA synthesis. Thus, Pol-II can contribute to spontaneous mutagenesis when its expression is elevated.
Collapse
Affiliation(s)
- Abu Amar M Al Mamun
- University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Department of Microbiology and Molecular Genetics, International Center for Public Health, 225 Warren Street, Newark, NJ 07101-1709, United States.
| |
Collapse
|
18
|
Jarvis TC, Beaudry AA, Bullard JM, Ochsner U, Dallmann HG, McHenry CS. Discovery and characterization of the cryptic psi subunit of the pseudomonad DNA replicase. J Biol Chem 2005; 280:40465-73. [PMID: 16210315 DOI: 10.1074/jbc.m508310200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reconstituted a minimal DNA replicase from Pseudomonas aeruginosa consisting of alpha and epsilon (polymerase and editing nuclease), beta (processivity factor), and the essential tau, delta, and delta' components of the clamp loader complex (Jarvis, T., Beaudry, A., Bullard, J., Janjic, N., and McHenry, C. (2005) J. Biol. Chem. 280, 7890-7900). In Escherichia coli DNA polymerase III holoenzyme, chi and Psi are tightly associated clamp loader accessory subunits. The addition of E. coli chiPsi to the minimal P. aeruginosa replicase stimulated its activity, suggesting the existence of chi and Psi counterparts in P. aeruginosa. The P. aeruginosa chi subunit was recognizable from sequence similarity, but Psi was not. Here we report purification of an endogenous replication complex from P. aeruginosa. Identification of the components led to the discovery of the cryptic Psi subunit, encoded by holD. P. aeruginosa chi and Psi were co-expressed and purified as a 1:1 complex. P. aeruginosa chiPsi increased the specific activity of tau(3)deltadelta' 25-fold and enabled the holoenzyme to function under physiological salt conditions. A synergistic effect between chiPsi and single-stranded DNA binding protein was observed. Sequence similarity to P. aeruginosa Psi allowed us to identify Psi subunits from several other Pseudomonads and to predict probable translational start sites for this protein family. This represents the first identification of a highly divergent branch of the Psi family and confirms the existence of Psi in several organisms in which Psi was not identifiable based on sequence similarity alone.
Collapse
|
19
|
Abstract
DNA replicases are multicomponent machines that have evolved clever strategies to perform their function. Although the structure of DNA is elegant in its simplicity, the job of duplicating it is far from simple. At the heart of the replicase machinery is a heteropentameric AAA+ clamp-loading machine that couples ATP hydrolysis to load circular clamp proteins onto DNA. The clamps encircle DNA and hold polymerases to the template for processive action. Clamp-loader and sliding clamp structures have been solved in both prokaryotic and eukaryotic systems. The heteropentameric clamp loaders are circular oligomers, reflecting the circular shape of their respective clamp substrates. Clamps and clamp loaders also function in other DNA metabolic processes, including repair, checkpoint mechanisms, and cell cycle progression. Twin polymerases and clamps coordinate their actions with a clamp loader and yet other proteins to form a replisome machine that advances the replication fork.
Collapse
Affiliation(s)
- Aaron Johnson
- Howard Hughes Medical Institute, New York City, New York 10021-6399, USA.
| | | |
Collapse
|
20
|
Dohrmann PR, McHenry CS. A bipartite polymerase-processivity factor interaction: only the internal beta binding site of the alpha subunit is required for processive replication by the DNA polymerase III holoenzyme. J Mol Biol 2005; 350:228-39. [PMID: 15923012 DOI: 10.1016/j.jmb.2005.04.065] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 04/25/2005] [Accepted: 04/26/2005] [Indexed: 11/30/2022]
Abstract
Previously, we localized the beta2 interacting portion of the catalytic subunit (alpha) of DNA polymerase III to the C-terminal half, downstream of the polymerase active site. Since then, two different beta2 binding sites within this region have been proposed. An internal site includes amino acid residues 920-924 (QADMF) and an extreme C-terminal site includes amino acid residues 1154-1159 (QVELEF). To permit determination of their relative contributions, we made mutations in both sites and evaluated the biochemical, genetic, and protein binding properties of the mutant alpha subunits. All purified mutant alpha subunits retained near wild-type polymerase function, which was measured in non-processive gap-filling assays. Mutations in the internal site abolished the ability of mutant alpha subunits to participate in processive synthesis. Replacement of the five-residue internal sequence with AAAKK eliminated detectable binding to beta2. In addition, mutation of residues required for beta2 binding abolished the ability of the resulting polymerase to participate in chromosomal replication in vivo. In contrast, mutations in the C-terminal site exhibited near wild-type phenotypes. alpha Subunits with the C-terminal site completely removed could participate in processive DNA replication, could bind beta2, and, if induced to high level expression, could complement a temperature-sensitive conditional lethal dnaE mutation. C-terminal defects that only partially complemented correlated with a defect in binding to tau, not beta2. A C-terminal deletion only reduced beta2 binding fourfold; tau binding was decreased ca 400-fold. The context in which the beta2 binding site was presented made an enormous difference. Replacement of the internal site with a consensus beta2 binding sequence increased the affinity of the resulting alpha for beta2 over 100-fold, whereas the same modification at the C-terminal site did not significantly increase binding. The implications of multiple interactions between a replicase and its processivity factor, including applications to polymerase cycling and interchange with other polymerases and factors at the replication fork, are discussed.
Collapse
Affiliation(s)
- Paul R Dohrmann
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, 4200 E. Ninth Ave, B-121, Denver, CO 80262, USA
| | | |
Collapse
|
21
|
Jarvis TC, Beaudry AA, Bullard JM, Janjic N, McHenry CS. Reconstitution of a minimal DNA replicase from Pseudomonas aeruginosa and stimulation by non-cognate auxiliary factors. J Biol Chem 2004; 280:7890-900. [PMID: 15611049 DOI: 10.1074/jbc.m412263200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase III holoenzyme is responsible for chromosomal replication in bacteria. The components and functions of Escherichia coli DNA polymerase III holoenzyme have been studied extensively. Here, we report the reconstitution of replicase activity by essential components of DNA polymerase holoenzyme from the pathogen Pseudomonas aeruginosa. We have expressed and purified the processivity factor (beta), single-stranded DNA-binding protein, a complex containing the polymerase (alpha) and exonuclease (epsilon) subunits, and the essential components of the DnaX complex (tau(3)deltadelta'). Efficient primer elongation requires the presence of alphaepsilon, beta, and tau(3)deltadelta'. Pseudomonas aeruginosa alphaepsilon can substitute completely for E. coli polymerase III in E. coli holoenzyme reconstitution assays. Pseudomonas beta and tau(3)deltadelta' exhibit a 10-fold lower activity relative to their E. coli counterparts in E. coli holoenzyme reconstitution assays. Although the Pseudomonas counterpart to the E. coli psi subunit was not apparent in sequence similarity searches, addition of purified E. coli chi and psi (components of the DnaX complex) increases the apparent specific activity of the Pseudomonas tau(3)deltadelta' complex approximately 10-fold and enables the reconstituted enzyme to function better under physiological salt conditions.
Collapse
|
22
|
Al Mamun AAM, Marians KJ, Humayun MZ. DNA polymerase III from Escherichia coli cells expressing mutA mistranslator tRNA is error-prone. J Biol Chem 2002; 277:46319-27. [PMID: 12324458 DOI: 10.1074/jbc.m206856200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Translational stress-induced mutagenesis (TSM) refers to the elevated mutagenesis observed in Escherichia coli cells in which mistranslation has been increased as a result of mutations in tRNA genes (such as mutA) or by exposure to streptomycin. TSM does not require lexA-regulated SOS functions but is suppressed in cells defective for homologous recombination genes. Crude cell-free extracts from TSM-induced E. coli strains express an error-prone DNA polymerase. To determine whether DNA polymerase III is involved in the TSM phenotype, we first asked if the phenotype is expressed in cells defective for all four of the non-replicative DNA polymerases, namely polymerase I, II, IV, and V. By using a colony papillation assay based on the reversion of a lacZ mutant, we show that the TSM phenotype is expressed in such cells. Second, we asked if pol III from TSM-induced cells is error-prone. By purifying DNA polymerase III* from TSM-induced and control cells, and by testing its fidelity on templates bearing 3,N(4)-ethenocytosine (a mutagenic DNA lesion), as well as on undamaged DNA templates, we show here that polymerase III* purified from mutA cells is error-prone as compared with that from control cells. These findings suggest that DNA polymerase III is modified in TSM-induced cells.
Collapse
Affiliation(s)
- Abu Amar M Al Mamun
- University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Department of Microbiology and Molecular Genetics, International Center for Public Health, Newark, New Jersey 07101-1709, USA
| | | | | |
Collapse
|
23
|
Kongsuwan K, Dalrymple BP, Wijffels G, Jennings PA. Cellular localisation of the clamp protein during DNA replication. FEMS Microbiol Lett 2002; 216:255-62. [PMID: 12435511 DOI: 10.1111/j.1574-6968.2002.tb11444.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The beta subunit of Escherichia coli DNA polymerase III holoenzyme was fused to the green fluorescent protein GFP. The gene fusion under the control of the heterologous lac promoter was used to replace the wild-type allele in the chromosome. The formation of GFP-beta fluorescent foci in GFP-beta expressing cells required DNA replication and their number per cell was dependent on cell growth. Examination of GFP-beta foci in a synchronous round of replication suggested that DNA replication was accompanied by the recruitment of GFP-beta foci near the midcell, followed by the rapid migration of the foci in opposite directions to the 1/4 and 3/4 positions during DNA replication.
Collapse
Affiliation(s)
- Kritaya Kongsuwan
- CSIRO Division of Livestock Industries, 120 Meiers Road, 4068, Indooroopilly, Qld, Australia.
| | | | | | | |
Collapse
|
24
|
Bullard JM, Williams JC, Acker WK, Jacobi C, Janjic N, McHenry CS. DNA polymerase III holoenzyme from Thermus thermophilus identification, expression, purification of components, and use to reconstitute a processive replicase. J Biol Chem 2002; 277:13401-8. [PMID: 11823461 DOI: 10.1074/jbc.m110833200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA replication in bacteria is performed by a specialized multicomponent replicase, the DNA polymerase III holoenzyme, that consist of three essential components: a polymerase, the beta sliding clamp processivity factor, and the DnaX complex clamp-loader. We report here the assembly of the minimal functional holoenzyme from Thermus thermophilus (Tth), an extreme thermophile. The minimal holoenzyme consists of alpha (pol III catalytic subunit), beta (sliding clamp processivity factor), and the essential DnaX (tau/gamma), delta and delta' components of the DnaX complex. We show with purified recombinant proteins that these five components are required for rapid and processive DNA synthesis on long single-stranded DNA templates. Subunit interactions known to occur in DNA polymerase III holoenzyme from mesophilic bacteria including delta-delta' interaction, deltadelta'-tau/gamma complex formation, and alpha-tau interaction, also occur within the Tth enzyme. As in mesophilic holoenzymes, in the presence of a primed DNA template, these subunits assemble into a stable initiation complex in an ATP-dependent manner. However, in contrast to replicative polymerases from mesophilic bacteria, Tth holoenzyme is efficient only at temperatures above 50 degrees C, both with regard to initiation complex formation and processive DNA synthesis. The minimal Tth DNA polymerase III holoenzyme displays an elongation rate of 350 bp/s at 72 degrees C and a processivity of greater than 8.6 kilobases, the length of the template that is fully replicated after a single association event.
Collapse
|
25
|
Organization, Replication, Transposition, and Repair of DNA. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Dallmann HG, Kim S, Pritchard AE, Marians KJ, McHenry CS. Characterization of the unique C terminus of the Escherichia coli tau DnaX protein. Monomeric C-tau binds alpha AND DnaB and can partially replace tau in reconstituted replication forks. J Biol Chem 2000; 275:15512-9. [PMID: 10748120 DOI: 10.1074/jbc.m909257199] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A contact between the dimeric tau subunit within the DNA polymerase III holoenzyme and the DnaB helicase is required for replication fork propagation at physiologically-relevant rates (Kim, S., Dallmann, H. G., McHenry, C. S., and Marians, K. J. (1996) Cell 84, 643-650). In this report, we exploit the OmpT protease to generate C-tau, a protein containing only the unique C-terminal sequences of tau, free of the sequences shared with the alternative gamma frameshifting product of dnaX. We have established that C-tau is a monomer by sedimentation equilibrium and sedimentation velocity ultracentrifugation. Monomeric C-tau binds the alpha catalytic subunit of DNA polymerase III with a 1:1 stoichiometry. C-tau also binds DnaB, revealed by a coupled immunoblotting method. C-tau restores the rapid replication rate of inefficient forks reconstituted with only the gamma dnaX gene product. The acceleration of the DnaB helicase can be observed in the absence of primase, when only leading-strand replication occurs. This indicates that C-tau, bound only to the leading-strand polymerase, can trigger the conformational change necessary for DnaB to assume the fast, physiologically relevant form.
Collapse
Affiliation(s)
- H G Dallmann
- Department of Biochemistry and Molecular Genetics and Molecular Biology Program, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
27
|
Yao N, Hurwitz J, O'Donnell M. Dynamics of beta and proliferating cell nuclear antigen sliding clamps in traversing DNA secondary structure. J Biol Chem 2000; 275:1421-32. [PMID: 10625694 DOI: 10.1074/jbc.275.2.1421] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromosomal replicases of cellular organisms utilize a ring shaped protein that encircles DNA as a mobile tether for high processivity in DNA synthesis. These "sliding clamps" have sufficiently large linear diameters to encircle duplex DNA and are perhaps even large enough to slide over certain DNA secondary structural elements. This report examines the Escherichia coli beta and human proliferating cell nuclear antigen clamps for their ability to slide over various DNA secondary structures. The results show that these clamps are capable of traversing a 13-nucleotide ssDNA loop, a 4-base pair stem-loop, a 4-nucleotide 5' tail, and a 15-mer bubble within the duplex. However, upon increasing the size of these structures (20-nucleotide loop, 12-base pair stem-loop, 28-nucleotide 5' tail, and 20-nucleotide bubble) the sliding motion of the beta and proliferating cell nuclear antigen over these elements is halted. Studies of the E. coli replicase, DNA polymerase III holoenzyme, in chain elongation with the beta clamp demonstrate that upon encounter with an oligonucleotide annealed in its path, it traverses the duplex and resumes synthesis on the 3' terminus of the oligonucleotide. This sliding and resumption of synthesis occurs even when the oligonucleotide contains a secondary structure element, provided the beta clamp can traverse the structure. However, upon encounter with a downstream oligonucleotide containing a large internal secondary structure, the holoenzyme clears the obstacle by strand displacing the oligonucleotide from the template. Implications of these protein dynamics to DNA transactions are discussed.
Collapse
Affiliation(s)
- N Yao
- Joan and Sanford I. Weill Graduate School of Medical Sciences of Cornell University, Microbiology Department, New York, New York 10021, USA
| | | | | |
Collapse
|
28
|
Pritchard AE, McHenry CS. Identification of the acidic residues in the active site of DNA polymerase III. J Mol Biol 1999; 285:1067-80. [PMID: 9887268 DOI: 10.1006/jmbi.1998.2352] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism of nucleotide addition by DNA polymerases involves two metal ions that are coordinated in the active site by conserved acidic residues. The three acidic residues that chelate Mg2+ in the active site of Escherichia coli DNA polymerase III have been identified as Asp401, Asp403, and Asp555 by site-directed mutagenesis. Candidates for mutagenesis were initially chosen based on absolute conservation of acidic residues in an alignment of more than 20 diverse DnaE sequences. Conservative Asp to Glu mutations at positions 401 and 403 reduced the activities of the mutant polymerases 2000 and 333-fold, respectively, from that of the wild-type. The third carboxylate was identified by a series of mutations for each critical candidate. With the exception of Glu, all of the mutations at Asp555 led to severely diminished polymerase activity, while each of the other candidates exhibited several relatively active mutant polymerases. Moreover, only the identified active site mutant polymerases displayed a significant enhancement of activity in Mn2+ compared with Mg2+. These data suggest a direct involvement of the mutated amino acid in metal ion binding.
Collapse
Affiliation(s)
- A E Pritchard
- Department of Biochemistry and Molecular Genetics B-121, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO, 80262, USA
| | | |
Collapse
|
29
|
Pham PT, Olson MW, McHenry CS, Schaaper RM. The base substitution and frameshift fidelity of Escherichia coli DNA polymerase III holoenzyme in vitro. J Biol Chem 1998; 273:23575-84. [PMID: 9722597 DOI: 10.1074/jbc.273.36.23575] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the in vitro fidelity of Escherichia coli DNA polymerase III holoenzyme from a wild-type and a proofreading-impaired mutD5 strain. Exonuclease assays showed the mutD5 holoenzyme to have a 30-50-fold reduced 3'-->5'-exonuclease activity. Fidelity was assayed during gap-filling synthesis across the lacId forward mutational target. The error rate for both enzymes was lowest at low dNTP concentrations (10-50 microM) and highest at high dNTP concentration (1000 microM). The mutD5 proofreading defect increased the error rate by only 3-5-fold. Both enzymes produced a high level of (-1)-frameshift mutations in addition to base substitutions. The base substitutions were mainly C-->T, G-->T, and G-->C, but dNTP pool imbalances suggested that these may reflect misincorporations opposite damaged template bases and that, instead, T-->C, G-->A, and C-->T transitions represent the normal polymerase III-mediated base.base mispairs. The frequent (-1)-frameshift mutations do not result from direct slippage but may be generated via a mechanism involving "misincorporation plus slippage." Measurements of the fidelity of wild-type and mutD5 holoenzyme during M13 in vivo replication revealed significant differences between the in vivo and in vitro fidelity with regard to both the frequency of frameshift errors and the extent of proofreading.
Collapse
Affiliation(s)
- P T Pham
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
30
|
Kim DR, Pritchard AE, McHenry CS. Localization of the active site of the alpha subunit of the Escherichia coli DNA polymerase III holoenzyme. J Bacteriol 1997; 179:6721-8. [PMID: 9352922 PMCID: PMC179601 DOI: 10.1128/jb.179.21.6721-6728.1997] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Using a deletion approach on the alpha subunit of DNA polymerase III from Escherichia coli, we show that there is an N-proximal polymerase domain which is distinct from a more C-proximal tau and beta binding domain. Although deletion of 60 residues from the alpha N terminus abolishes polymerase activity, deletions of 48, 169, and 342 amino acids from the C terminus progressively impair its catalytic efficiency but preserve an active site. Deletion of 342 C-terminal residues reduces k(cat) 46-fold, increases the Km for gapped DNA 5.5-fold, and increases the Km for deoxynucleoside triphosphates (dNTPs) twofold. The 818-residue protein with polymerase activity displays typical Michaelis-Menten behavior, catalyzing a polymerase reaction that is saturable with substrate and linear with time. With the aid of newly acquired sequences of the polymerase III alpha subunit from a variety of organisms, candidates for two key aspartate residues in the active site are identified at amino acids 401 and 403 of the E. coli sequence by inspection of conserved acidic amino acids. The motif Pro-Asp-X-Asp, where X is a hydrophobic amino acid, is shown to be conserved among all known DnaE proteins, including those from Bacillaceae, cyanobacteria, Mycoplasma, and mycobacteria. The E. coli DnaE deletion protein with only the N-terminal 366 amino acids does not have polymerase activity, consistent with the proposed position of the active-site residues.
Collapse
Affiliation(s)
- D R Kim
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | |
Collapse
|
31
|
McHenry CS, Seville M, Cull MG. A DNA polymerase III holoenzyme-like subassembly from an extreme thermophilic eubacterium. J Mol Biol 1997; 272:178-89. [PMID: 9299346 DOI: 10.1006/jmbi.1997.1238] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have purified a novel DNA polymerase from Thermus thermophilus. This was enabled by use of general gap filling assays to monitor polymerase activity and cross-reactive monoclonal antibodies against the alpha catalytic subunit of E. coli DNA polymerase III holoenzyme to distinguish a novel polymerase from the well characterized DNA polymerase I-like Thermus thermophilus DNA polymerase. Two proteins migrating with the polymerase after three chromatographic steps were isolated and subjected to partial amino acid sequencing. The amino termini of both were homologous to the two products of the E. coli dnaX gene, the gamma and tau subunits of the DNA polymerase III holoenzyme. Using this information and sequences conserved among dnaX-like genes, we isolated a gene fragment by PCR and used it as a probe to isolate the full length Thermus thermophilus dnaX gene. The deduced amino acid sequence is highly homologous to the DnaX proteins of other bacteria. Examination of the sequence permitted identification of a frameshift site similar to the one used in E. coli to direct the synthesis of the shorter gamma DnaX-gene product. Based on this information, we conclude that a conventional replicase exists in extreme thermophilic eubacteria. The general biological and practical technological implications of this finding are discussed.
Collapse
Affiliation(s)
- C S McHenry
- Department of Biochemistry and Molecular Genetics and the Molecular Biology Program, University of Colorado Health Sciences Center, Denver CO 80262, USA
| | | | | |
Collapse
|
32
|
Kim DR, McHenry CS. Identification of the beta-binding domain of the alpha subunit of Escherichia coli polymerase III holoenzyme. J Biol Chem 1996; 271:20699-704. [PMID: 8702820 DOI: 10.1074/jbc.271.34.20699] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Rapid and processive DNA synthesis by Escherichia coli DNA polymerase III holoenzyme is achieved by the direct interaction between the alpha subunit of DNA polymerase III core and the beta sliding clamp (LaDuca, R. J., Crute, J. J., McHenry, C. S., and Bambara, R. A. (1986) J. Biol. Chem. 261, 7550-7557; Stukenberg, T. P., Studwell-Vaughan, P. S., and O'Donnell, M. (1991) J. Biol. Chem. 266, 11328-11334). In this study, we localized the beta-binding domain of alpha to a carboxyl-terminal region by quantifying the interaction of beta with a series of alpha deletion proteins. Purification and binding analysis was facilitated by insertion of hexahistidine and short biotinylation sequences on the deletion terminus of alpha. Interaction of beta with alpha deletion proteins was studied by gel filtration and surface plasmon resonance. alpha lacking 169 COOH-terminal residues still possessed beta-binding activity; whereas deletion of 342 amino acids from the COOH terminus abolished beta binding. Deletion of 542 amino acids from the NH2 terminus of the 1160 residue alpha subunit resulted in a protein that bound beta 10-20-fold more strongly than native alpha. Hence, portions of alpha between residues 542 and 991 are involved in beta binding. DNA binding to alpha apparently triggers an increased affinity for beta (Naktinis, V., Turner, J., and O'Donnell, M. (1996) Cell 84, 137-145). Our findings extend this observation by implicating the amino-terminal polymerase domain in inducing a low affinity taut conformation in the carboxyl-terminal beta-binding domain. Deletion of the polymerase domain (or, presumably, its occupancy by DNA) relaxes the COOH-terminal domain, permitting it to assume a conformation with high affinity for beta.
Collapse
Affiliation(s)
- D R Kim
- Department of Biochemistry, Biophysics and Genetics University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
33
|
Kim DR, McHenry CS. In vivo assembly of overproduced DNA polymerase III. Overproduction, purification, and characterization of the alpha, alpha-epsilon, and alpha-epsilon-theta subunits. J Biol Chem 1996; 271:20681-9. [PMID: 8702818 DOI: 10.1074/jbc.271.34.20681] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The genes for the polymerase core (alphaepsilontheta) of the DNA polymerase III holoenzyme map to widely separated loci on the Escherichia coli chromosome. To enable efficient overproduction and in vivo assembly of DNA polymerase III core, artificial operons containing the three structural genes, dnaE, dnaQ, and holE, were placed in an expression plasmid. The proteins alpha, alphaepsilon and alphaepsilontheta were overexpressed and assembled in E. coli and purified to homogeneity. The three purified polymerases had a similar specific activity of about 6.0 x 10(6) units/mg in a gap-filling assay. Kinetics studies showed that neither epsilon nor theta influenced the Km of alpha for deoxynucleotide triphosphate and only slightly decreased the Km of alpha for DNA, although epsilon was absolutely required for maximal DNA synthesis. The rate of DNA synthesis by alpha-reconstituted holoenzyme using tau complex was about 5-fold less than that of alphaepsilon or alphaepsilontheta-reconstituted holoenzyme as determined by a gel analysis. The processivity of alpha-reconstituted holoenzyme was very similar to that of alphaepsilontheta-reconstituted holoenzyme when tau complex was used as a clamp loader.
Collapse
Affiliation(s)
- D R Kim
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
34
|
Kim DR, McHenry CS. Biotin tagging deletion analysis of domain limits involved in protein-macromolecular interactions. Mapping the tau binding domain of the DNA polymerase III alpha subunit. J Biol Chem 1996; 271:20690-8. [PMID: 8702819 DOI: 10.1074/jbc.271.34.20690] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The tau subunit dimerizes DNA polymerase III via interaction with the alpha subunit, allowing DNA polymerase III holoenzyme to synthesize both leading and lagging strands simultaneously at the DNA replication fork. Here, we report a general method to map the limits of domains required for heterologous protein-protein interactions using surface plasmon resonance. The method employs fusion of a short biotinylation sequence at either the NH2 or COOH terminus of the protein to be immobilized on streptavidin-derivatized biosensor chips. Inclusion of a hexahistidine sequence permits rapid purification and separation of the fusion protein from the endogenous Escherichia coli biotin carboxyl carrier protein. Ten deletions of the alpha subunit were constructed and purified by Ni2+-nitrilotriacetic acid chromatography and, when required, monomeric avidin chromatography. Each alpha deletion protein was captured by streptavidin immobilized on a Pharmacia Biosensor BIAcore chip, and the tau binding activity of each alpha deletion was analyzed using surface plasmon resonance. The tau subunit bound very tightly to a full-length amino-terminal fusion of the biotinylation sequence with alpha (KD approximately 70 pm). Four additional NH2-terminal alpha deletion proteins (60, 240, 360, and 542 residues deleted) retained strong binding activity to the tau subunit (KD = 0.19-0.39 nM), whereas deletion of 705 residues or more from the NH2 terminus of the alpha subunit abolished tau binding activity. Full-length alpha that contained a carboxyl-terminal fusion with the biotinylation sequence bound tau strongly (KD = 0.37 nM). However, deletion of 48 amino acids from the COOH terminus totally eliminated tau binding. These results indicate that the COOH-terminal half of the alpha subunit is involved in tau interaction.
Collapse
Affiliation(s)
- D R Kim
- Department of Biochemistry, Biophysics, and Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
35
|
Dallmann HG, Thimmig RL, McHenry CS. DnaX Complex of Escherichia coli DNA Polymerase III Holoenzyme. J Biol Chem 1995. [DOI: 10.1074/jbc.270.49.29555] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
36
|
Olson MW, Dallmann HG, McHenry CS. DnaX Complex of Escherichia coli DNA Polymerase III Holoenzyme THE χ·ψ. J Biol Chem 1995. [DOI: 10.1074/jbc.270.49.29570] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
37
|
The slow dissociation of the T4 DNA polymerase holoenzyme when stalled by nucleotide omission. An indication of a highly processive enzyme. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51070-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
38
|
Burgers P, Yoder B. ATP-independent loading of the proliferating cell nuclear antigen requires DNA ends. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80673-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Griep M, McHenry C. Fluorescence energy transfer between the primer and the beta subunit of the DNA polymerase III holoenzyme. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50693-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
40
|
Abstract
DNA polymerases which duplicate cellular chromosomes are multiprotein complexes. The individual functions of the many proteins required to duplicate a chromosome are not fully understood. The multiprotein complex which duplicates the Escherichia coli chromosome, DNA polymerase III holoenzyme (holoenzyme), contains a DNA polymerase subunit and nine accessory proteins. This report summarizes our current understanding of the individual functions of the accessory proteins within the holoenzyme, lending insight into why a chromosomal replicase needs such a complex structure.
Collapse
Affiliation(s)
- M O'Donnell
- Howard Hughes Medical Institute, Microbiology Department, Cornell University Medical College, NY 10021
| |
Collapse
|
41
|
Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. IV. Reconstitution of an asymmetric, dimeric DNA polymerase III holoenzyme. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50631-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
42
|
Yoder B, Burgers P. Saccharomyces cerevisiae replication factor C. I. Purification and characterization of its ATPase activity. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54624-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
43
|
McHenry C. DNA polymerase III holoenzyme. Components, structure, and mechanism of a true replicative complex. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54967-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
|
45
|
Hughes AJ, Bryan SK, Chen H, Moses RE, McHenry CS. Escherichia coli DNA polymerase II is stimulated by DNA polymerase III holoenzyme auxiliary subunits. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(20)64360-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
46
|
|
47
|
Abstract
The single-stranded DNA-binding protein (SSB) of Escherichia coli is involved in all aspects of DNA metabolism: replication, repair, and recombination. In solution, the protein exists as a homotetramer of 18,843-kilodalton subunits. As it binds tightly and cooperatively to single-stranded DNA, it has become a prototypic model protein for studying protein-nucleic acid interactions. The sequences of the gene and protein are known, and the functional domains of subunit interaction, DNA binding, and protein-protein interactions have been probed by structure-function analyses of various mutations. The ssb gene has three promoters, one of which is inducible because it lies only two nucleotides from the LexA-binding site of the adjacent uvrA gene. Induction of the SOS response, however, does not lead to significant increases in SSB levels. The binding protein has several functions in DNA replication, including enhancement of helix destabilization by DNA helicases, prevention of reannealing of the single strands and protection from nuclease digestion, organization and stabilization of replication origins, primosome assembly, priming specificity, enhancement of replication fidelity, enhancement of polymerase processivity, and promotion of polymerase binding to the template. E. coli SSB is required for methyl-directed mismatch repair, induction of the SOS response, and recombinational repair. During recombination, SSB interacts with the RecBCD enzyme to find Chi sites, promotes binding of RecA protein, and promotes strand uptake.
Collapse
Affiliation(s)
- R R Meyer
- Department of Biological Sciences, University of Cincinnati, Ohio 45221
| | | |
Collapse
|
48
|
Hernandez TR, Lehman IR. Functional interaction between the herpes simplex-1 DNA polymerase and UL42 protein. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38580-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
Talanian RV, Brown NC, McKenna CE, Ye TG, Levy JN, Wright GE. Carbonyldiphosphonate, a selective inhibitor of mammalian DNA polymerase delta. Biochemistry 1989; 28:8270-4. [PMID: 2557899 DOI: 10.1021/bi00447a002] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Twenty-three pyrophosphate analogues were screened as inhibitors of proliferating cell nuclear antigen independent DNA polymerase delta (pol delta) derived from calf thymus. Carbonyldiphosphonate (COMDP), also known as alpha-oxomethylenediphosphonate, inhibited pol delta with a potency (Ki = 1.8 microM) 20 times greater than that displayed for DNA polymerase alpha (pol alpha) derived from the same tissue. Characterization of the mechanism of inhibition of pol delta indicated that COMDP competed with the dNTP specified by the template and was not competitive with the template-primer. In the case of pol alpha, COMDP did not compete with either the dNTP or the polynucleotide substrate. COMDP inhibited the 3'----5' exonuclease activity of pol delta weakly, displaying an IC50 greater than 1 mM.
Collapse
Affiliation(s)
- R V Talanian
- Department of Pharmacology, University of Massachusetts Medical School, Worcester 01655
| | | | | | | | | | | |
Collapse
|
50
|
Griep MA, McHenry CS. Glutamate Overcomes the Salt Inhibition of DNA Polymerase III Holoenzyme. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)60463-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|