1
|
Laatri S, El Khayari S, Qriouet Z. Exploring the molecular aspect and updating evolutionary approaches to the DNA polymerase enzymes for biotechnological needs: A comprehensive review. Int J Biol Macromol 2024; 276:133924. [PMID: 39033894 DOI: 10.1016/j.ijbiomac.2024.133924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
DNA polymerases are essential enzymes that play a key role in living organisms, as they participate in the synthesis and maintenance of the DNA molecule. The intrinsic properties of these enzymes have been widely observed and studied to understand their functions, activities, and behavior, which has allowed their natural power in DNA synthesis to be exploited in modern biotechnology, to the point of making them true pillars of the field. In this context, the laboratory evolution of these enzymes, either by directed evolution or rational design, has led to the generation of a wide range of new DNA polymerases with novel properties, suitable for a variety of biotechnological needs. In this review, we examine DNA polymerases at the molecular level, their biotechnological use, and their evolutionary methods in relation to the novel properties sought, providing a chronological selection of evolved DNA polymerases cited in the literature that we consider to be of great interest. To our knowledge, this work is the first to bring together the molecular, functional and evolutionary aspects of the DNA polymerase enzyme. We believe it will be of great interest to researchers whose aim is to produce new lines of evolved DNA polymerases.
Collapse
Affiliation(s)
- Said Laatri
- Microbiology and Molecular Biology Laboratory, Faculty of Sciences, Mohammed V-Souissi University, Rabat 10100, Morocco.
| | | | - Zidane Qriouet
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V-Souissi University, Rabat 10100, Morocco
| |
Collapse
|
2
|
Lewis JS, van Oijen AM, Spenkelink LM. Embracing Heterogeneity: Challenging the Paradigm of Replisomes as Deterministic Machines. Chem Rev 2023; 123:13419-13440. [PMID: 37971892 PMCID: PMC10790245 DOI: 10.1021/acs.chemrev.3c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
The paradigm of cellular systems as deterministic machines has long guided our understanding of biology. Advancements in technology and methodology, however, have revealed a world of stochasticity, challenging the notion of determinism. Here, we explore the stochastic behavior of multi-protein complexes, using the DNA replication system (replisome) as a prime example. The faithful and timely copying of DNA depends on the simultaneous action of a large set of enzymes and scaffolding factors. This fundamental cellular process is underpinned by dynamic protein-nucleic acid assemblies that must transition between distinct conformations and compositional states. Traditionally viewed as a well-orchestrated molecular machine, recent experimental evidence has unveiled significant variability and heterogeneity in the replication process. In this review, we discuss recent advances in single-molecule approaches and single-particle cryo-EM, which have provided insights into the dynamic processes of DNA replication. We comment on the new challenges faced by structural biologists and biophysicists as they attempt to describe the dynamic cascade of events leading to replisome assembly, activation, and progression. The fundamental principles uncovered and yet to be discovered through the study of DNA replication will inform on similar operating principles for other multi-protein complexes.
Collapse
Affiliation(s)
- Jacob S. Lewis
- Macromolecular
Machines Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Antoine M. van Oijen
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Lisanne M. Spenkelink
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
3
|
Botto MM, Borsellini A, Lamers MH. A four-point molecular handover during Okazaki maturation. Nat Struct Mol Biol 2023; 30:1505-1515. [PMID: 37620586 DOI: 10.1038/s41594-023-01071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 07/17/2023] [Indexed: 08/26/2023]
Abstract
DNA replication introduces thousands of RNA primers into the lagging strand that need to be removed for replication to be completed. In Escherichia coli when the replicative DNA polymerase Pol IIIα terminates at a previously synthesized RNA primer, DNA Pol I takes over and continues DNA synthesis while displacing the downstream RNA primer. The displaced primer is subsequently excised by an endonuclease, followed by the sealing of the nick by a DNA ligase. Yet how the sequential actions of Pol IIIα, Pol I polymerase, Pol I endonuclease and DNA ligase are coordinated is poorly defined. Here we show that each enzymatic activity prepares the DNA substrate for the next activity, creating an efficient four-point molecular handover. The cryogenic-electron microscopy structure of Pol I bound to a DNA substrate with both an upstream and downstream primer reveals how it displaces the primer in a manner analogous to the monomeric helicases. Moreover, we find that in addition to its flap-directed nuclease activity, the endonuclease domain of Pol I also specifically cuts at the RNA-DNA junction, thus marking the end of the RNA primer and creating a 5' end that is a suitable substrate for the ligase activity of LigA once all RNA has been removed.
Collapse
Affiliation(s)
- Margherita M Botto
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
- Department of Molecular and Cellular Biology, Geneva University, Geneva, Switzerland
| | - Alessandro Borsellini
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
- Department of Structural Biology, Human Technopole, Milan, Italy
| | - Meindert H Lamers
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands.
| |
Collapse
|
4
|
Raper AT, Reed AJ, Suo Z. Kinetic Mechanism of DNA Polymerases: Contributions of Conformational Dynamics and a Third Divalent Metal Ion. Chem Rev 2018; 118:6000-6025. [DOI: 10.1021/acs.chemrev.7b00685] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Austin T. Raper
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andrew J. Reed
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zucai Suo
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Ravoitytė B, Wellinger RE. Non-Canonical Replication Initiation: You're Fired! Genes (Basel) 2017; 8:genes8020054. [PMID: 28134821 PMCID: PMC5333043 DOI: 10.3390/genes8020054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/19/2017] [Indexed: 12/25/2022] Open
Abstract
The division of prokaryotic and eukaryotic cells produces two cells that inherit a perfect copy of the genetic material originally derived from the mother cell. The initiation of canonical DNA replication must be coordinated to the cell cycle to ensure the accuracy of genome duplication. Controlled replication initiation depends on a complex interplay of cis-acting DNA sequences, the so-called origins of replication (ori), with trans-acting factors involved in the onset of DNA synthesis. The interplay of cis-acting elements and trans-acting factors ensures that cells initiate replication at sequence-specific sites only once, and in a timely order, to avoid chromosomal endoreplication. However, chromosome breakage and excessive RNA:DNA hybrid formation can cause break-induced (BIR) or transcription-initiated replication (TIR), respectively. These non-canonical replication events are expected to affect eukaryotic genome function and maintenance, and could be important for genome evolution and disease development. In this review, we describe the difference between canonical and non-canonical DNA replication, and focus on mechanistic differences and common features between BIR and TIR. Finally, we discuss open issues on the factors and molecular mechanisms involved in TIR.
Collapse
Affiliation(s)
- Bazilė Ravoitytė
- Nature Research Centre, Akademijos g. 2, LT-08412 Vilnius, Lithuania.
| | - Ralf Erik Wellinger
- CABIMER-Universidad de Sevilla, Avd Americo Vespucio sn, 41092 Sevilla, Spain.
| |
Collapse
|
6
|
Sun F, Huang L. Sulfolobus chromatin proteins modulate strand displacement by DNA polymerase B1. Nucleic Acids Res 2013; 41:8182-95. [PMID: 23821667 PMCID: PMC3783171 DOI: 10.1093/nar/gkt588] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Strand displacement by a DNA polymerase serves a key role in Okazaki fragment maturation, which involves displacement of the RNA primer of the preexisting Okazaki fragment into a flap structure, and subsequent flap removal and fragment ligation. We investigated the role of Sulfolobus chromatin proteins Sso7d and Cren7 in strand displacement by DNA polymerase B1 (PolB1) from the hyperthermophilic archaeon Sulfolobus solfataricus. PolB1 showed a robust strand displacement activity and was capable of synthesizing thousands of nucleotides on a DNA-primed 72-nt single-stranded circular DNA template. This activity was inhibited by both Sso7d and Cren7, which limited the flap length to 3–4 nt at saturating concentrations. However, neither protein inhibited RNA displacement on an RNA-primed single-stranded DNA minicircle by PolB1. Strand displacement remained sensitive to modulation by the chromatin proteins when PolB1 was in association with proliferating cell nuclear antigen. Inhibition of DNA instead of RNA strand displacement by the chromatin proteins is consistent with the finding that double-stranded DNA was more efficiently bound and stabilized than an RNA:DNA duplex by these proteins. Our results suggest that Sulfolobus chromatin proteins modulate strand displacement by PolB1, permitting efficient removal of the RNA primer while inhibiting excessive displacement of the newly synthesized DNA strand during Okazaki fragment maturation.
Collapse
Affiliation(s)
- Fei Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
7
|
Kurth I, Georgescu RE, O'Donnell ME. A solution to release twisted DNA during chromosome replication by coupled DNA polymerases. Nature 2013; 496:119-22. [PMID: 23535600 PMCID: PMC3618558 DOI: 10.1038/nature11988] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 02/07/2013] [Indexed: 11/18/2022]
Abstract
Chromosomal replication machines contain coupled DNA polymerases that simultaneously replicate the leading and lagging strands1. However, coupled replication presents a largely unrecognized topological problem. Since DNA polymerase must travel a helical path during synthesis, the physical connection between leading and lagging strand polymerases causes the daughter strands to entwine, or produces extensive buildup of negative supercoils in the newly synthesized DNA2–4. How DNA polymerases maintain their connection during coupled replication despite these topological challenges is a mystery. Here, we examine the dynamics of the E. coli replisome, by ensemble and single-molecule methods that may solve this topological problem independent of topoisomerases. We find that the lagging strand polymerase frequently releases from an Okazaki fragment before completion, leaving single-strand gaps behind. Dissociation of the polymerase does not result in loss from the replisome due to its contact with the leading-strand polymerase. This behavior, referred to as “signal release”, had been thought to require a protein, possibly primase, to pry polymerase from incompletely extended DNA fragments5–7. However, we observe that signal release is independent of primase and does not appear to require a protein trigger at all. Instead, the lagging-strand polymerase is simply less processive in the context of a replisome. Interestingly, when the lagging-strand polymerase is supplied with primed DNA in trans, uncoupling it from the fork, high processivity is restored. Hence, we propose that coupled polymerases introduce topological changes, possibly by accumulation of superhelical tension in the newly synthesized DNA, that cause lower processivity and transient lagging-strand polymerase dissociation from DNA.
Collapse
Affiliation(s)
- Isabel Kurth
- The Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10065, USA
| | | | | |
Collapse
|
8
|
Abstract
Bacterial replicases are complex, tripartite replicative machines. They contain a polymerase, polymerase III (Pol III), a β₂ processivity factor, and a DnaX complex ATPase that loads β₂ onto DNA and chaperones Pol III onto the newly loaded β₂. Bacterial replicases are highly processive, yet cycle rapidly during Okazaki fragment synthesis in a regulated way. Many bacteria encode both a full-length τ and a shorter γ form of DnaX by a variety of mechanisms. γ appears to be uniquely placed in a single position relative to two τ protomers in a pentameric ring. The polymerase catalytic subunit of Pol III, α, contains a PHP domain that not only binds to a prototypical ε Mg²⁺-dependent exonuclease, but also contains a second Zn²⁺-dependent proofreading exonuclease, at least in some bacteria. This review focuses on a critical evaluation of recent literature and concepts pertaining to the above issues and suggests specific areas that require further investigation.
Collapse
Affiliation(s)
- Charles S McHenry
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA.
| |
Collapse
|
9
|
Fang J, Engen JR, Beuning PJ. Escherichia coli processivity clamp β from DNA polymerase III is dynamic in solution. Biochemistry 2011; 50:5958-68. [PMID: 21657794 DOI: 10.1021/bi200580b] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Escherichia coli DNA polymerase III is a highly processive replicase because of the presence of the β clamp protein that tethers DNA polymerases to DNA. The β clamp is a head-to-tail ring-shaped homodimer, in which each protomer contains three structurally similar domains. Although multiple studies have probed the functions of the β clamp, a detailed understanding of the conformational dynamics of the β clamp in solution is lacking. Here we used hydrogen exchange mass spectrometry to characterize the conformation and dynamics of the intact dimer β clamp and a variant form (I272A/L273A) with a weakened ability to dimerize in solution. Our data indicate that the β clamp is not a static closed ring but rather is dynamic in solution. The three domains exhibited different dynamics, though they share a highly similar tertiary structure. Domain I, which controls the opening of the clamp by dissociating from domain III, contained several highly flexible peptides that underwent partial cooperative unfolding (EX1 kinetics) with a half-life of ~4 h. The comparison between the β monomer variant and the wild-type β clamp showed that the β monomer was more dynamic. In the monomer, partial unfolding was much faster and additional regions of domain III also underwent partial unfolding with a half-life of ~1 h. Our results suggest that the δ subunit of the clamp loader may function as a "ring holder" to stabilize the transient opening of the β clamp, rather than as a "ring opener".
Collapse
Affiliation(s)
- Jing Fang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | | | | |
Collapse
|
10
|
Yuan Q, McHenry CS. Strand displacement by DNA polymerase III occurs through a tau-psi-chi link to single-stranded DNA-binding protein coating the lagging strand template. J Biol Chem 2009; 284:31672-9. [PMID: 19749191 DOI: 10.1074/jbc.m109.050740] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In addition to the well characterized processive replication reaction catalyzed by the DNA polymerase III holoenzyme on single-stranded DNA templates, the enzyme possesses an intrinsic strand displacement activity on flapped templates. The strand displacement activity is distinguished from the single-stranded DNA-templated reaction by a high dependence upon single-stranded DNA binding protein and an inability of gamma-complex to support the reaction in the absence of tau. However, if gamma-complex is present to load beta(2), a truncated tau protein containing only domains III-V will suffice. This truncated protein is sufficient to bind both the alpha subunit of DNA polymerase (Pol) III and chipsi. This is reminiscent of the minimal requirements for Pol III to replicate short single-stranded DNA-binding protein (SSB)-coated templates where tau is only required to serve as a scaffold to hold Pol III and chi in the same complex (Glover, B., and McHenry, C. (1998) J. Biol. Chem. 273, 23476-23484). We propose a model in which strand displacement by DNA polymerase III holoenzyme depends upon a Pol III-tau-psi-chi-SSB binding network, where SSB is bound to the displaced strand, stabilizing the Pol III-template interaction. The same interaction network is probably important for stabilizing the leading strand polymerase interactions with authentic replication forks. The specificity constant (k(cat)/K(m)) for the strand displacement reaction is approximately 300-fold less favorable than reactions on single-stranded templates and proceeds with a slower rate (150 nucleotides/s) and only moderate processivity (approximately 300 nucleotides). PriA, the initiator of replication restart on collapsed or misassembled replication forks, blocks the strand displacement reaction, even if added to an ongoing reaction.
Collapse
Affiliation(s)
- Quan Yuan
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | | |
Collapse
|
11
|
Tanner NA, Loparo JJ, Hamdan SM, Jergic S, Dixon NE, van Oijen AM. Real-time single-molecule observation of rolling-circle DNA replication. Nucleic Acids Res 2009; 37:e27. [PMID: 19155275 PMCID: PMC2651787 DOI: 10.1093/nar/gkp006] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We present a simple technique for visualizing replication of individual DNA molecules in real time. By attaching a rolling-circle substrate to a TIRF microscope-mounted flow chamber, we are able to monitor the progression of single-DNA synthesis events and accurately measure rates and processivities of single T7 and Escherichia coli replisomes as they replicate DNA. This method allows for rapid and precise characterization of the kinetics of DNA synthesis and the effects of replication inhibitors.
Collapse
Affiliation(s)
- Nathan A Tanner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
12
|
Lu S, Li Z, Wang Z, Ma X, Sheng D, Ni J, Shen Y. Spatial subunit distribution and in vitro functions of the novel trimeric PCNA complex from Sulfolobus tokodaii. Biochem Biophys Res Commun 2008; 376:369-74. [DOI: 10.1016/j.bbrc.2008.08.150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 08/29/2008] [Indexed: 10/21/2022]
|
13
|
Langston LD, O'Donnell M. DNA polymerase delta is highly processive with proliferating cell nuclear antigen and undergoes collision release upon completing DNA. J Biol Chem 2008; 283:29522-31. [PMID: 18635534 DOI: 10.1074/jbc.m804488200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In most cells, 100-1000 Okazaki fragments are produced for each replicative DNA polymerase present in the cell. For fast-growing cells, this necessitates rapid recycling of DNA polymerase on the lagging strand. Bacteria produce long Okazaki fragments (1-2 kb) and utilize a highly processive DNA polymerase III (pol III), which is held to DNA by a circular sliding clamp. In contrast, Okazaki fragments in eukaryotes are quite short, 100-250 bp, and thus the eukaryotic lagging strand polymerase does not require a high degree of processivity. The lagging strand polymerase in eukaryotes, polymerase delta (pol delta), functions with the proliferating cell nuclear antigen (PCNA) sliding clamp. In this report, Saccharomyces cerevisiae pol delta is examined on model substrates to gain insight into the mechanism of lagging strand replication in eukaryotes. Surprisingly, we find pol delta is highly processive with PCNA, over at least 5 kb, on Replication Protein A (RPA)-coated primed single strand DNA. The high processivity of pol delta observed in this report contrasts with its role in synthesis of short lagging strand fragments, which require it to rapidly dissociate from DNA at the end of each Okazaki fragment. We find that this dilemma is solved by a "collision release" process in which pol delta ejects from PCNA upon extending a DNA template to completion and running into the downstream duplex. The released pol delta transfers to a new primed site, provided the new site contains a PCNA clamp. Additional results indicate that the collision release mechanism is intrinsic to the pol3/pol31 subunits of the pol delta heterotrimer.
Collapse
Affiliation(s)
- Lance D Langston
- Howard Hughes Medical Institute, Rockefeller University, New York, New York 10065, USA
| | | |
Collapse
|
14
|
Laurence TA, Kwon Y, Johnson A, Hollars CW, O'Donnell M, Camarero JA, Barsky D. Motion of a DNA sliding clamp observed by single molecule fluorescence spectroscopy. J Biol Chem 2008; 283:22895-906. [PMID: 18556658 DOI: 10.1074/jbc.m800174200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA sliding clamps attach to polymerases and slide along DNA to allow rapid, processive replication of DNA. These clamps contain many positively charged residues that could curtail the sliding due to attractive interactions with the negatively charged DNA. By single-molecule spectroscopy we have observed a fluorescently labeled sliding clamp (polymerase III beta subunit or beta clamp) loaded onto freely diffusing, single-stranded M13 circular DNA annealed with fluorescently labeled DNA oligomers of up to 90 bases. We find that the diffusion constant for the beta clamp diffusing along DNA is on the order of 10(-14) m(2)/s, at least 3 orders of magnitude less than that for diffusion through water alone. We also find evidence that the beta clamp remains at the 3' end in the presence of Escherichia coli single-stranded-binding protein. These results may imply that the clamp not only acts to hold the polymerase on the DNA but also prevents excessive drifting along the DNA.
Collapse
Affiliation(s)
- Ted A Laurence
- Lawrence Livermore National Laboratory, California 94550, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Xu L, Marians KJ. A dynamic RecA filament permits DNA polymerase-catalyzed extension of the invading strand in recombination intermediates. J Biol Chem 2002; 277:14321-8. [PMID: 11832493 DOI: 10.1074/jbc.m112418200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recombination-dependent replication is an essential housekeeping function in prokaryotes and eukaryotes, serving, for example, to restart DNA replication after the repair of a double-strand break. Little is known about the interplay between the recombination and replication machinery when recombination intermediates are used as substrates for DNA replication. We show here that recombination intermediates formed between linear duplex and supercoiled plasmid DNAs are substrates for a generalized strand displacement DNA synthesis reaction in which the 3'-OH of the invading strand in the recombination intermediate is used as a primer. DNA synthesis is driven by negative superhelicity and is inhibited if disassembly of the RecA filament is prevented. Thus, assembly and disassembly of RecA filaments in the same direction facilitates filament clearance from the 3'-end of the invading strand, allowing DNA synthesis to occur from recombination intermediates.
Collapse
Affiliation(s)
- Liewei Xu
- Graduate Program in Biochemistry and Structural Biology, Graduate School of Medical Sciences of the Weill College of Medicine of Cornell University and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | |
Collapse
|
16
|
Sugaya Y, Ihara K, Masuda Y, Ohtsubo E, Maki H. Hyper-processive and slower DNA chain elongation catalysed by DNA polymerase III holoenzyme purified from the dnaE173 mutator mutant of Escherichia coli. Genes Cells 2002; 7:385-99. [PMID: 11952835 DOI: 10.1046/j.1365-2443.2002.00527.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND A strong mutator mutation, dnaE173, leads to a Glu612 --> Lys amino acid change in the alpha subunit of Escherichia coli DNA polymerase III (PolIII) holoenzyme and abolishes the proofreading function of the replicative enzyme without affecting the 3' --> 5' exonuclease activity of the epsilon subunit. The dnaE173 mutator is unique in its ability to induce sequence-substitution mutations, suggesting that an unknown function of the alpha subunit is hampered by the dnaE173 mutation. RESULTS A PolIII holoenzyme reconstituted from dnaE173 PolIII* (DNA polymerase III holoenzyme lacking the beta clamp subunit) and the beta subunit showed a strong resistance to replication-pausing on the template DNA and readily promoted strand-displacement DNA synthesis. Unlike wild-type PolIII*, dnaE173 PolIII* was able to catalyse highly processive DNA synthesis without the aid of the beta-clamp subunit. The rate of chain elongation by the dnaE173 holoenzyme was reduced to one-third of that determined for the wild-type enzyme. In contrast, an exonuclease-deficient PolIII holoenzyme was vastly prone to pausing, but had the same rate of chain elongation as the wild-type. CONCLUSIONS The hyper-processivity and slower DNA chain elongation rate of the dnaE173 holoenzyme are distinct effects caused by the dnaE173 mutation and are likely to be involved in the sequence-substitution mutagenesis. A link between the proofreading and chain elongation processes was suggested.
Collapse
Affiliation(s)
- Yutaka Sugaya
- Department of Molecular Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
17
|
Abstract
The elaborate process of genomic replication requires a large collection of proteins properly assembled at a DNA replication fork. Several decades of research on the bacterium Escherichia coli and its bacteriophages T4 and T7 have defined the roles of many proteins central to DNA replication. These three different prokaryotic replication systems use the same fundamental components for synthesis at a moving DNA replication fork even though the number and nature of some individual proteins are different and many lack extensive sequence homology. The components of the replication complex can be grouped into functional categories as follows: DNA polymerase, helix destabilizing protein, polymerase accessory factors, and primosome (DNA helicase and DNA primase activities). The replication of DNA derives from a multistep enzymatic pathway that features the assembly of accessory factors and polymerases into a functional holoenzyme; the separation of the double-stranded template DNA by helicase activity and its coupling to the primase synthesis of RNA primers to initiate Okazaki fragment synthesis; and the continuous and discontinuous synthesis of the leading and lagging daughter strands by the polymerases. This review summarizes and compares and contrasts for these three systems the types, timing, and mechanism of reactions and of protein-protein interactions required to initiate, control, and coordinate the synthesis of the leading and lagging strands at a DNA replication fork and comments on their generality.
Collapse
Affiliation(s)
- S J Benkovic
- Pennsylvania State University, Department of Chemistry, 414 Wartik Laboratory, University Park, Pennsylvania 16802, USA.
| | | | | |
Collapse
|
18
|
Bellizzi D, Losso MA, Sgaramella V. A model for the involvement of Okazaki fragments maturation in the expansion of short tandem repeats. Gene 2001; 276:153-9. [PMID: 11591482 DOI: 10.1016/s0378-1119(01)00642-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We propose a model for the expansion of short tandem repeats (ESTR), a phenomenon which has been found to occur in human DNA and is associated with a dozen of neuromuscular diseases. The model is based mainly on theoretical considerations and recovers experimental data from the literature; it also finds support in preliminary results obtained by us in multiprimed polymerase chain reactions designed to assess the effects of a downstream primer on the fidelity of the elongation of an upstream one. The model links the occurrence of the ESTR to a defective maturation of the Okazaki fragments (OF), and in particular to an improper processing of their 3' termini. This may occur when the last OF approaches the 5' terminus of the previous one in a susceptible region of the template. It is postulated here that when a growing OF has progressed past the priming region and its main portion has been synthesized, upon approaching its conclusion, the final elongation may take place in a region of the template where certain triplets are repeated: in that case a series of aberrations on the elongation mechanism may occur. These aberrations could involve (a) the displacement of the 5' terminus of the penultimate, properly matured OF, enacted by the incoming 3' terminus of the last OF, (b) the switch of the latter to the displaced strand of the former as template, (c) the fold-back on itself of the growing 3' terminus of the last OF, (d) its assumption of an unusual structure because of the repetition, and (e) some impairment of its removal by structure-specific exo-endonuclease(s). Derangements of this last part of the process may trigger the ESTR.
Collapse
|
19
|
Astolfi P, Bellizzi D, Losso MA, Sgaramella V. Triplet repeats, over-expanded in neuromuscular diseases, are under-represented in mammalian DNA: a survey of models. Brain Res Bull 2001; 56:265-71. [PMID: 11719260 DOI: 10.1016/s0361-9230(01)00581-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Simple tandem repeats represent more than 1% of the human genome: occasionally they exhibit intergenerational expansibility and are associated with neuromuscular diseases. In transgenic mice the same sequences elicit similar symptoms, but do not expand. We have searched for di-, tri-, and tetra-repeats in the published DNA sequences of chromosomes 21 and 22 of Homo sapiens, as well as in more than five megabases of Mus musculus DNA. Human and murine DNA sequences show a shortage in frequency and base coverage of tri-repeats as compared to di- and tetra-repeats. In murine sequences the cumulative frequency of di-, tri-, and tetra-repeats and their overall base coverage are about threefold higher than in human. Models for both the shortage of tri-repeats found in man and mouse and for their dynamic expansions are discussed. We propose that some of the 10 possible tri-repeats may be more prone than others to assume unusual structures capable of interfering with DNA synthesis: hence the shortage of tri-repeats. If such repeats are located at the 3'end of a chain growing and thus approaching another chain annealed to the same template, as Okazaki fragments do during discontinuous and encumbered replication, a combination of strand displacement, template switch, and branch migration may produce structures resistant to removal, hence the expansion of tri-repeats.
Collapse
Affiliation(s)
- P Astolfi
- Department of Genetics and Microbiology, University of Pavia, Pavia, Italy.
| | | | | | | |
Collapse
|
20
|
Organization, Replication, Transposition, and Repair of DNA. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Stephens KM, McMacken R. Functional properties of replication fork assemblies established by the bacteriophage lambda O and P replication proteins. J Biol Chem 1997; 272:28800-13. [PMID: 9353352 DOI: 10.1074/jbc.272.45.28800] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have used a set of bacteriophage lambda and Escherichia coli replication proteins to establish rolling circle DNA replication in vitro to permit characterization of the functional properties of lambda replication forks. We demonstrate that the lambda replication fork assembly synthesizes leading strand DNA chains at a physiological rate of 650-750 nucleotides/s at 30 degrees C. This rate is identical to the fork movement rate we obtained using a minimal protein system, composed solely of E. coli DnaB helicase and DNA polymerase III holoenzyme. Our data are consistent with the conclusion that these two key bacterial replication proteins constitute the basic functional unit of a lambda replication fork. A comparison of rolling circle DNA replication in the minimal and lambda replication systems indicated that DNA synthesis proceeded for more extensive periods in the lambda system and produced longer DNA chains, which averaged nearly 200 kilobases in length. The higher potency of the lambda replication system is believed to result from its capacity to mediate efficient reloading of DnaB helicase onto rolling circle replication products, thereby permitting reinitiation of DNA chain elongation following spontaneous termination events. E. coli single-stranded DNA-binding protein and primase individually stimulated rolling circle DNA replication, but they apparently act indirectly by blocking accumulation of inhibitory free single-stranded DNA product. Finally, in the course of this work, we discovered that E. coli DNA polymerase III holoenzyme is itself capable of carrying out significant strand displacement DNA synthesis at about 50 nucleotides/s when it is supplemented with E. coli single-stranded DNA-binding protein.
Collapse
Affiliation(s)
- K M Stephens
- Department of Biochemistry, School of Hygiene and Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
22
|
Tsurumi T, Yamada H, Daikoku T, Yamashita Y, Nishiyama Y. Strand displacement associated DNA synthesis catalyzed by the Epstein-Barr virus DNA polymerase. Biochem Biophys Res Commun 1997; 238:33-8. [PMID: 9299446 DOI: 10.1006/bbrc.1997.7234] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Epstein-Barr virus (EBV) DNA polymerase (Pol) holoenzyme is an essential enzyme required for ori-Lyt dependent EBV DNA replication. Using singly primed M13ssDNA circles as template, the EBV DNA Pol holoenzyme synthesized DNA chains greater than the unit length of M13 ssDNA in addition to full length products even at a low ratio of polymerase molecule per templates. The long replication products consisted of circular double-stranded DNA with single-stranded tails that were sensitive to mung bean nuclease. Reconstitution of the EBV Pol holoenzyme by preincubation of BALF5 Pol catalytic subunit and BMRF1 Pol accessory subunit in vitro resulted in reproduction of the strand displacement DNA synthesis. Thus, the EBV DNA Pol holoenzyme by itself is able to produce strand displacement coupled to the polymerization process in a highly processive way in the absence of any other protein.
Collapse
Affiliation(s)
- T Tsurumi
- Laboratory of Viral Oncology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | | | | | | |
Collapse
|
23
|
Kong XP, Onrust R, O'Donnell M, Kuriyan J. Three-dimensional structure of the beta subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 1992; 69:425-37. [PMID: 1349852 DOI: 10.1016/0092-8674(92)90445-i] [Citation(s) in RCA: 618] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The crystal structure of the beta subunit (processivity factor) of DNA polymerase III holoenzyme has been determined at 2.5 A resolution. A dimer of the beta subunit (M(r) = 2 x 40.6 kd, 2 x 366 amino acid residues) forms a ring-shaped structure lined by 12 alpha helices that can encircle duplex DNA. The structure is highly symmetrical, with each monomer containing three domains of identical topology. The charge distribution and orientation of the helices indicate that the molecule functions by forming a tight clamp that can slide on DNA, as shown biochemically. A potential structural relationship is suggested between the beta subunit and proliferating cell nuclear antigen (PCNA, the eukaryotic polymerase delta [and epsilon] processivity factor), and the gene 45 protein of the bacteriophage T4 DNA polymerase.
Collapse
Affiliation(s)
- X P Kong
- Laboratory of Molecular Biophysics, Rockefeller University, New York, New York 10021
| | | | | | | |
Collapse
|
24
|
Lee E, Kornberg A. Features of replication fork blockage by the Escherichia coli terminus-binding protein. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50346-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
25
|
Wu C, Zechner E, Reems J, McHenry C, Marians K. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. V. Primase action regulates the cycle of Okazaki fragment synthesis. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50632-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Abstract
DNA polymerases which duplicate cellular chromosomes are multiprotein complexes. The individual functions of the many proteins required to duplicate a chromosome are not fully understood. The multiprotein complex which duplicates the Escherichia coli chromosome, DNA polymerase III holoenzyme (holoenzyme), contains a DNA polymerase subunit and nine accessory proteins. This report summarizes our current understanding of the individual functions of the accessory proteins within the holoenzyme, lending insight into why a chromosomal replicase needs such a complex structure.
Collapse
Affiliation(s)
- M O'Donnell
- Howard Hughes Medical Institute, Microbiology Department, Cornell University Medical College, NY 10021
| |
Collapse
|
27
|
Hughes AJ, Bryan SK, Chen H, Moses RE, McHenry CS. Escherichia coli DNA polymerase II is stimulated by DNA polymerase III holoenzyme auxiliary subunits. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(20)64360-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
28
|
Devlin C, Ballou CE. Identification and characterization of a gene and protein required for glycosylation in the yeast Golgi. Mol Microbiol 1990; 4:1993-2001. [PMID: 2082155 DOI: 10.1111/j.1365-2958.1990.tb02049.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The MNN2 gene of Saccharomyces cerevisiae has been cloned by complementation of the mnn2 mutant phenotype scored by a change in cell surface carbohydrate structure resulting from a lack of alpha 1----2-mannose branching in the outer chain. The gene was subcloned as a 3 kb DNA fragment that integrated at the MNN2 locus, and a gene disruption yielded the mnn2 phenotype. A lacZ-MNN2 gene fusion protein, produced in Escherichia coli, was used to raise a specific antiserum that recognized a 65 kD wild-type yeast protein. This MNN2 gene product lacks N-linked carbohydrate but appears to be an integral membrane protein. Overproduction of MNN2p does not enhance the alpha 1----2-mannosyltransferase activity of yeast cells. The results suggest that MNN2p is a Golgi-associated protein that is involved in mannoprotein sorting rather than glycosylation.
Collapse
Affiliation(s)
- C Devlin
- Department of Biochemistry, University of California, Berkeley 94720
| | | |
Collapse
|
29
|
Processive replication is contingent on the exonuclease subunit of DNA polymerase III holoenzyme. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40174-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
30
|
Wahle E, Lasken RS, Kornberg A. The dnaB-dnaC replication protein complex of Escherichia coli. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)81637-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
31
|
Construction of a recombinase-deficient mutant recA protein that retains single-stranded DNA-dependent ATPase activity. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68364-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
32
|
DNA polymerase III holoenzyme of Escherichia coli. III. Distinctive processive polymerases reconstituted from purified subunits. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68678-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
33
|
Abstract
Escherichia coli DNA polymerase III holoenzyme was used to synthesize double-stranded DNA from M13 single-stranded DNA hybridized to a phosphorylated synthetic oligodeoxynucleotide containing a nucleotide substitution. The resulting DNA was transfected into E. coli JM101 without further treatment. Sequence analysis of randomly chosen phage clones revealed that the efficiency of mutagenesis was nearly 50%, which is the theoretical maximum. Treatment with DNA ligase after DNA synthesis was not necessary to obtain high efficiency of mutagenesis. Thus, use of DNA polymerase III holoenzyme provides a simple and efficient procedure for site-directed mutagenesis.
Collapse
Affiliation(s)
- N Tsurushita
- Department of Genetics, Stanford University School of Medicine, CA 94305
| | | | | |
Collapse
|
34
|
O'Donnell ME. Accessory proteins bind a primed template and mediate rapid cycling of DNA polymerase III holoenzyme from Escherichia coli. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)49292-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
35
|
Shwartz H, Livneh Z. Dynamics of termination during in vitro replication of ultraviolet-irradiated DNA with DNA polymerase III holoenzyme of Escherichia coli. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)60992-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
36
|
Kwon-Shin O, Bodner J, McHenry C, Bambara R. Properties of initiation complexes formed between Escherichia coli DNA polymerase III holoenzyme and primed DNA in the absence of ATP. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61626-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
37
|
|
38
|
Escherichia coli topoisomerase I can segregate replicating pBR322 daughter DNA molecules in vitro. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67327-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
39
|
Complete enzymatic replication of plasmids containing the origin of the Escherichia coli chromosome. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)57259-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
40
|
Marians KJ, Minden JS, Parada C. Replication of superhelical DNAs in vitro. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1986; 33:111-40. [PMID: 3541040 DOI: 10.1016/s0079-6603(08)60021-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
41
|
Dynamics of DNA polymerase III holoenzyme of Escherichia coli in replication of a multiprimed template. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)38959-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|