1
|
Satagopan S, North JA, Arbing MA, Varaljay VA, Haines SN, Wildenthal JA, Byerly KM, Shin A, Tabita FR. Structural Perturbations of Rhodopseudomonas palustris Form II RuBisCO Mutant Enzymes That Affect CO2 Fixation. Biochemistry 2019; 58:3880-3892. [DOI: 10.1021/acs.biochem.9b00617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sriram Satagopan
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Justin A. North
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mark A. Arbing
- UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Vanessa A. Varaljay
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sidney N. Haines
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - John A. Wildenthal
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kathryn M. Byerly
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Annie Shin
- UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - F. Robert Tabita
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Abstract
Carbamate bonds occur following the nucleophilic attack of CO2 on to an amine. In proteins, this can occur at lysine side chains or at the N-terminus. For CO2 binding to occur an amine must be present in the NH2 form and consequently carbamates represent a site-specific post-translational modification, occurring only in environments of reduced hydration. Due to the specific nature of these interactions, coupled with the inability of these bonds to survive protein preparation methods, carbamate reactions appear rare. However, more biologically important examples continue to emerge that use carbamates as key parts of their mechanisms. In this review, we discuss specific examples of carbamate bond formation and their biological consequences with an aim to highlight this important, and often forgotten, biochemical group.
Collapse
|
3
|
Hartman FC, Harpel MR. Chemical and genetic probes of the active site of D-ribulose-1,5-bisphosphate carboxylase/oxygenase: a retrospective based on the three-dimensional structure. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 67:1-75. [PMID: 8322615 DOI: 10.1002/9780470123133.ch1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- F C Hartman
- Biology Division, Oak Ridge National Laboratory, TN
| | | |
Collapse
|
4
|
Pearson MA, Schaller RA, Michel LO, Karplus PA, Hausinger RP. Chemical rescue of Klebsiella aerogenes urease variants lacking the carbamylated-lysine nickel ligand. Biochemistry 1998; 37:6214-20. [PMID: 9558361 DOI: 10.1021/bi980021u] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Klebsiella aerogenes urease possesses a dinuclear metallocenter in which two nickel atoms are bridged by carbamylated Lys217. To assess whether carbamate-specific chemistry is required for urease activity, site-directed mutagenesis and chemical rescue strategies were combined in efforts to place a carboxylate group at the location of this metal ligand. Urease variants with Lys217 replaced by Glu, Cys, and Ala (K217E, K217C/C319A, and K217A proteins) were purified, shown to be activated by incubation with small organic acids plus Ni(II), and structurally characterized. K217C/C319A urease possessed a second change in which Cys319 was replaced by Ala in order to facilitate efforts to chemically modify Cys217; however, this covalent modification approach did not produce active urease. Chemical rescue of the K217E, K217C/C319A, and K217A variants required 2, 2, and 10 h, respectively, to reach maximal activity levels. The highest activity generated [224 micromol of urea degraded.min-1.(mg of protein)-1, for K217C/C319A urease incubated with 500 mM formic acid and 10 mM Ni at pH 6.5] corresponded to 56% of that measured for in vitro activation of the wild-type apoprotein. While the K217E apoprotein showed minimal structural perturbations, the K217C/C319A apoprotein showed a disordering of some active site residues, and the K217A apoprotein revealed a repositioning of His219 to allow the formation of a hydrogen bond with Thr169, thus replacing the hydrogen bond between the amino group of Lys217 and Thr169 in the native enzyme. Importantly, these structures allow rationalization of the relative rates and yields of chemical rescue experiments. The crystal structures of chemically rescued K217A and K217C/C319A ureases revealed a return of the active site residues to their wild-type positions. In both cases, noncovalently bound formate was structurally equivalent to the Lys-carbamate as the bridging metallocenter ligand. We conclude that carbamate-specific chemistry is not required for urease catalysis.
Collapse
Affiliation(s)
- M A Pearson
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
5
|
Chène P, Day AG, Fersht AR. Role of isoleucine-164 at the active site of rubisco from Rhodospirillum rubrum. Biochem Biophys Res Commun 1997; 232:482-6. [PMID: 9125206 DOI: 10.1006/bbrc.1997.6318] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Isoleucine-164 is in Van der Waals contact with two ligands (lysine-191 and aspartate-193) of the activator magnesium ion at the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum. To observe the effect of mutations in the second sphere of coordination of the metal ion, isoleucine-164 was replaced by threonine, asparagine, and aspartate. All the mutant enzymes obtained exhibit a low carboxylase activity. Ile164Asp has less than 0.1% of the wild-type carboxylase activity, Ile164Thr and Ile164Asn 6 and 1%, respectively. The mutations increase the Km(RuBP) and decrease the Kcat of the mutated enzymes. The Kcat/Km(RuBP) of Ile164Thr and Ile164Asn are 40- and 900-fold lower than wild-type, respectively. The alteration of the hydrophobic contacts between isoleucine-164 and the metal ion ligands modifies the binding of the magnesium ion and the stabilization of the 2-carboxy-arabinitol 1,5-bisphosphate and decreases the specificity factor, tau.
Collapse
Affiliation(s)
- P Chène
- Genencor International, South San Francisco, California 94127, USA
| | | | | |
Collapse
|
6
|
Thow G, Zhu G, Spreitzer RJ. Complementing substitutions within loop regions 2 and 3 of the alpha/beta-barrel active site influence the CO2/O2 specificity of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase. Biochemistry 1994; 33:5109-14. [PMID: 8172885 DOI: 10.1021/bi00183a014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An acetate-requiring mutant of the green alga Chlamydomonas reinhardtii, named 28-7J, has been recovered using chemical mutagenesis. It lacks ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) holoenzyme, and accumulates only a small amount of the chloroplast-encoded large subunit. Pulse/chase experiments revealed that large subunits and nuclear-encoded small subunits are synthesized at normal rates. Because the mutant strain displayed uniparental inheritance and failed to complement a known chloroplast rbcL gene mutant strain, the 28-7J rbcL gene was cloned and sequenced to identify the new mutation. A single base change was found that causes large-subunit arginine-217 to be replaced by serine. This substitution occurs within alpha-helix 2 of the alpha/beta-barrel active site. When photosynthesis-competent revertants were selected from mutant 28-7J, revertant R14-A was found to contain a second mutation within the rbcL gene. This intragenic suppressor mutation, named S14-A, causes alanine-242 to be replaced by valine within beta-strand 3. Holoenzyme from the R14-A double-mutant strain was found to have a 51% reduction in the CO2/O2 specificity factor, primarily due to a 91% decrease in the Vmax of carboxylation. The Km for ribulose 1,5-bisphosphate was increased 2-fold. Although the mutant substitutions are separated by 24 residues within the primary structure, they are close to each other in the tertiary structure. In fact, the substituted residues are also close to lysine-201, which must be carbamylated and coordinated with Mg2+ to activate the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G Thow
- Department of Biochemistry, University of Nebraska, Lincoln 68583-0718
| | | | | |
Collapse
|
7
|
Zhang KY, Cascio D, Eisenberg D. Crystal structure of the unactivated ribulose 1,5-bisphosphate carboxylase/oxygenase complexed with a transition state analog, 2-carboxy-D-arabinitol 1,5-bisphosphate. Protein Sci 1994; 3:64-9. [PMID: 8142899 PMCID: PMC2142487 DOI: 10.1002/pro.5560030109] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The crystal structure of unactivated ribulose 1,5-bisphosphate carboxylase/oxygenase from Nicotiana tabacum complexed with a transition state analog, 2-carboxy-D-arabinitol 1,5-bisphosphate, was determined to 2.7 A resolution by X-ray crystallography. The transition state analog binds at the active site in an extended conformation. As compared to the binding of the same analog in the activated enzyme, the analog binds in a reverse orientation. The active site Lys 201 is within hydrogen bonding distance of the carboxyl oxygen of the analog. Loop 6 (residues 330-339) remains open and flexible upon binding of the analog in the unactivated enzyme, in contrast to the closed and ordered loop 6 in the activated enzyme complex. The transition state analog is exposed to solvent due to the open conformation of loop 6.
Collapse
Affiliation(s)
- K Y Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024-1570
| | | | | |
Collapse
|
8
|
Newman J, Gutteridge S. The X-ray structure of Synechococcus ribulose-bisphosphate carboxylase/oxygenase-activated quaternary complex at 2.2-A resolution. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74469-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
9
|
Crystal structure of the unactivated form of ribulose-1,5-bisphosphate carboxylase/oxygenase from tobacco refined at 2.0-A resolution. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41881-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
10
|
Söderlind E, Schneider G, Gutteridge S. Substitution of ASP193 to ASN at the active site of ribulose-1,5-bisphosphate carboxylase results in conformational changes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 206:729-35. [PMID: 1606957 DOI: 10.1111/j.1432-1033.1992.tb16979.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The crystal structure of a mutant of ribulose bisphosphate carboxylase/oxygenase from Rhodospirillium rubrum, where Asp193, one of the ligands of the magnesium ion at the activator site, is replaced by Asn, has been determined to a nominal resolution of 0.26 nm. The mutation of Asp to Asn induces both local and global conformation changes as follows. The side chain of Asn193 moves away from the active site and interacts with main-chain oxygen of residue 165, located in the neighbouring strand beta 1 of the alpha/beta barrel. The side chain of Lys166, which forms a salt bridge with Asp193 in the wild-type enzyme, interacts with Asn54 from the second subunit and creates a new subunit-subunit interaction. Another new subunit-subunit interaction is formed, more than 1.2 nm away from the site of the mutation. In the mutant enzyme, the side chain of Asp263 interacts with the side chain of Thr106 from the second subunit. Asp193 is not part of a subunit-subunit interface area or an allosteric regulatory site. Nevertheless, replacement of this residue by Asn results, unexpectedly, in a difference in the packing of the two subunits, which can be described as a slight rotation of one of the subunits relative to the second. The observed structural changes at the active site of the enzyme provide a molecular explanation for the differing behaviour of the Asp193----Asn mutant with respect to activation.
Collapse
Affiliation(s)
- E Söderlind
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala Biomedical Center, Sweden
| | | | | |
Collapse
|
11
|
Kusano T, Takeshima T, Inoue C, Sugawara K. Evidence for two sets of structural genes coding for ribulose bisphosphate carboxylase in Thiobacillus ferrooxidans. J Bacteriol 1991; 173:7313-23. [PMID: 1718945 PMCID: PMC209239 DOI: 10.1128/jb.173.22.7313-7323.1991] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Previously, we reported the cloning of the ribulose-1,5-bisphosphate carboxylase genes (rbcL1-rbcS1) of Thiobacillus ferrooxidans Fe1 (T. Kusano, K. Sugawara, C. Inoue, and N. Suzuki, Curr. Microbiol. 22:35-41, 1991). With these genes as probes, a second set of ribulose-1,5-bisphosphate carboxylase genes (rbcL2-rbcS2) was identified in the same strain and cloned. rbcL1 and rbcL2 encode the large subunits, and rbcS1 and rbcS2 encode the small subunits. Similar restriction patterns between these gene sets suggested a high level of sequence homology. In fact, sequence analysis showed that a 2.2-kb region, including the entire large and small subunit structural genes, was totally conserved in rbcL1-rbcS1 and rbcL2-rbcS2. The rbcL1 (rbcL2) and rbcS1 (rbcS2) genes were 1,422 and 333 bp in length and encoded 473- and 110-amino-acid proteins, respectively. The genes were separated by a 90-bp spacer sequence and were preceded by possible ribosome-binding sites. The N-terminal amino acid sequences of the subunit proteins, synthesized in Escherichia coli, were determined by Edman degradation and found to agree with the deduced amino acid sequences, except for the N-terminal methionine residue. The transcriptional start site of the rbc genes was determined by primer extension, and the size of the rbc transcript was estimated to be about 2.1 kb, suggestive of the cotranscription of rbcL1-rbcS1 and/or rbcL2-rbcS2 mRNAs. Comparisons of amino acid sequences of both subunits with those of other organisms revealed that the ribulose-1,5-bisphosphate carboxylase of T. ferrooxidans, a chemoautotrophic bacterium, is phylogenetically closer to the photosynthetic bacterium Chromatium vinosum than to another chemoautotrophic bacterium, Alcaligenes eutrophus.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- Escherichia coli/genetics
- Genes, Bacterial
- Isoenzymes/genetics
- Macromolecular Substances
- Molecular Sequence Data
- Multigene Family
- Oligodeoxyribonucleotides
- Plasmids
- RNA, Bacterial/genetics
- RNA, Bacterial/isolation & purification
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- Restriction Mapping
- Ribulose-Bisphosphate Carboxylase/genetics
- Sequence Homology, Nucleic Acid
- Thiobacillus/enzymology
- Thiobacillus/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- T Kusano
- Laboratory of Plant Genetic Engineering, Akita Prefectural College of Agriculture, Japan
| | | | | | | |
Collapse
|
12
|
Hwang SR, Tabita FR. Cotranscription, deduced primary structure, and expression of the chloroplast-encoded rbcL and rbcS genes of the marine diatom Cylindrotheca sp. strain N1. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)38114-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Schneider G, Lindqvist Y, Lundqvist T. Crystallographic refinement and structure of ribulose-1,5-bisphosphate carboxylase from Rhodospirillum rubrum at 1.7 A resolution. J Mol Biol 1990; 211:989-1008. [PMID: 2107319 DOI: 10.1016/0022-2836(90)90088-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The amino acid sequence of ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum has been fitted to the electron density maps. The resulting protein model has been refined to a nominal resolution of 1.7 A using the constrained-restrained least-squares refinement program of Sussman and the restrained least-squares refinement program of Hendrickson & Konnert. The crystallographic refinement, based on 76,452 reflections with F greater than sigma (F) in the resolution range 5.5 to 1.7 A resulted in a crystallographic R-factor of 18.0%. The asymmetric unit contains one dimeric ribulose-1,5-biphosphate carboxylase molecule, consisting of 869 amino acid residues and 736 water molecules. The geometry of the refined model is close to ideal, with root-mean-square deviations of 0.018 A in bond lengths and 2.7 degrees in bond angles. Two loop regions, comprising residues 54 to 63 and 324 to 335, and the last ten amino acid residues at the C terminus are disordered in our crystals. The expected trimodal distribution is obtained for the side-chain chi 1-angles with a marked preference for staggered conformation. The hydrogen-bonding pattern in the N-terminal beta-sheet and the parallel sheet in the beta/alpha-barrel is described. A number of hydrogen bonds and salt bridges are involved in domain-domain and subunit-subunit interactions. The subunit-subunit interface in the dimer covers an area of 2800 A2. Considerable deviations from the local 2-fold symmetry are found at both the N terminus (residues 2 to 5) and the C terminus (residues 422 to 457). Furthermore, loop 8 in the beta/alpha-barrel domain has a different conformation in the two subunits. A number of amino acid side-chains have different conformations in the two subunits. Most of these residues are located at the surface of the protein. An analysis of the individual temperature factors indicates a high mobility of the C-terminal region and for some of the loops at the active site. The positions and B-factors for 736 solvent sites have been refined (average B: 45.9 A2). Most of the solvent molecules are bound as clusters to the protein. The active site of the enzyme, especially the environment of the activator Lys191 in the non-activated enzyme is described. Crystallographic refinement at 1.7 A resolution clearly revealed the presence of a cis-proline at the active site. This residue is part of the highly conserved region Lys166-Pro167-Lys168.
Collapse
Affiliation(s)
- G Schneider
- Swedish University of Agricultural Sciences, Uppsala Biomedical Centre, Department of Molecular Biology
| | | | | |
Collapse
|
14
|
Limitations of the primary events of CO2 fixation in photosynthetic organisms: the structure and mechanism of rubisco. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1990. [DOI: 10.1016/0005-2728(90)90210-u] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Crystal Structure of the Complex of Ribulose-1,5-bisphosphate Carboxylase and a Transition State Analogue, 2-Carboxy-D-arabinitol 1,5-Bisphosphate. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83543-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Holzenburg A, Mayer F. D-ribulose-1,5-bisphosphate carboxylase/oxygenase: function-dependent structural changes. ELECTRON MICROSCOPY REVIEWS 1989; 2:139-69. [PMID: 2491339 DOI: 10.1016/0892-0354(89)90014-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The key carboxylating enzyme of the reductive pentose phosphate cycle, D-ribulose-1,5-bisphosphate carboxylase/oxygenase [RuBisCO] isolated from the chemolithoautotrophic, H2-oxidizing bacterium Alcaligenes eutrophus H16 has been analyzed by several different techniques that allow conclusions about structure and function-dependent structural changes. The techniques include a novel approach in which the enzyme was induced to form 2D-crystals suitable for electron microscopy in each of its three stable functional states: as active enzyme [Ea] (in the presence of Mg2+ and HCO3-); as inactivated enzyme [Eia] (in the absence of Mg2+ and HCO3-) and as enzyme locked in an in vitro transition state [CABP-E] (Ea fully saturated with the transition state analogue 2-carboxy-D-arabinitol-1,5-bisphosphate [CABP-E]). In conjunction with X-ray crystallography, X-ray small angle scattering and other biophysical and biochemical data, the results obtained by electron microscopy support the idea that drastic configurational changes occur. Upon transition from Ea to the CABP-E the upper and lower L4S4 halves of the molecule consisting of eight large and eight small subunits (L8S8; MW = 536,000 Da) are assumed to be laterally shifted by as much as 3.6 nm relative to one another while the location of the small subunits on top of the large subunits, and relative to them, remains the same. For the Eia a similar sliding-layer configurational change in the range of 2-2.5 nm is proposed and in addition it is suggested that other configurational/conformational changes take place. The proposed structural changes are discussed with respect to the current model for the tobacco enzyme and correlated with data obtained for various other plant and (cyano) bacterial L8S8 RuBisCOs leading to speculations about structure-function relationships.
Collapse
Affiliation(s)
- A Holzenburg
- Institut für Mikrobiologie der Georg-August-Universität Göttingen, F.R.G
| | | |
Collapse
|
17
|
|
18
|
McFadden BA, Small CL. Cloning, expression and directed mutagenesis of the genes for ribulose bisphosphate carboxylase/oxygenase. PHOTOSYNTHESIS RESEARCH 1988; 18:245-260. [PMID: 24425168 DOI: 10.1007/bf00042987] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/1987] [Accepted: 12/21/1987] [Indexed: 06/03/2023]
Abstract
The dominant natural form of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is composed of large (L) 55-kDa and small (S) 15-kDa subunits. This enzyme (as the L8S8 form) is widely distributed among oxygenic photosynthetic species and among chemosynthetic bacteria. Another form lacking small subunits is found as an L2 dimer in Rhodospirillum rubrum or an L oligomer of uncertain aggregation state from Rhodopseudomonas spharoides. The present article reviews two basically different approaches in cloning the R. rubrum gene for RuBisCO. One results in high level expression of this gene product fused with a limited aminoterminal stretch of β-galactosidase and the other results in expression of wild-type enzyme in Escherichia coli. Also reviewed are a number of reports of cloning and assembly of the L8S8 enzyme in using E. coli L and S subunit genes from Anacystis nidulans, Anabaena 7120, Chromatium vinosum and Rps. sphaeroides.In vitro oligonucleotide-directed mutagenesis has been applied to the gene for RuBisCO from R. rubrum. In terms of contributing new information to our understanding of the catalytic mechanism for RuBisCO, the most significant replacement has been of lys 166 by a number of neutral amino acids or by arg or his. Results establish that lys 166 is a catalytically essential residue and illustrate the power of directed mutagenesis in understanding structure-function correlates for RuBisCO.Oligonucleotide-directed mutagenesis has also been applied to the first and second conserved regions of the S subunit gene for RuBisCO from A. nidulans. In the latter region, corresponding amino acid changes of trp 55 and trp 58 to phe, singly or together, had little or no effect upon enzyme activity. In contrast, mutagenesis in the first conserved region leading to the following pairs of substitutions: arg10 arg 11 to gly 10 gly11; thr14 phe 15 ser 16 to ala 14 phe 15 ala 16; ser 16 tyr 17 to ala 16 asp 17; or pro 19 pro 20 to ala 19 ala 20, are all deleterious.Advances are anticpated in the introduction and expression of interesting modifications of S (and L) subunit genes in plants. A new method of introducing and expressing foreign genes in isolated etiochloroplasts is identified.
Collapse
Affiliation(s)
- B A McFadden
- Biochemistry/Biophysics Program, Washington State University, 99164-4660, Pullman, WA, USA
| | | |
Collapse
|
19
|
Wagner SJ, Edward Stevens S, Tracey Nixon B, Lambert DH, Quivey RG, Robert Tabita F. Nucleotide and deduced amino acid sequence of theRhodobacter sphaeroidesgene encoding form II ribulose-1,5-bisphosphate carboxylase/oxygenase and comparison with other deduced form I and II sequences. FEMS Microbiol Lett 1988. [DOI: 10.1111/j.1574-6968.1988.tb13937.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
20
|
Smith HB, Larimer FW, Hartman FC. Subtle alteration of the active site of ribulose bisphosphate carboxylase/oxygenase by concerted site-directed mutagenesis and chemical modification. Biochem Biophys Res Commun 1988; 152:579-84. [PMID: 2896501 DOI: 10.1016/s0006-291x(88)80077-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Both activities of ribulose bisphosphate carboxylase/oxygenase are dependent on carbamylation by CO2 of a specific lysyl epsilon-amino group (Lys-191 of the enzyme from Rhodospirillum rubrum). To examine the stringency of the requirement for this lysyl side chain, Lys-191 was converted to an aminoethylcysteinyl residue (net replacement of a gamma-methylene group by a sulfur atom) by a combination of site-directed mutagenesis and subsequent chemical modification. The purified Cys-191 mutant was totally devoid of both carboxylase and oxygenase activities. However, this mutant protein exhibited tight-binding of the transition-state analogue, 2-carboxyarabinitol bisphosphate, a property heretofore ascribed solely to the carbamylated form of the carboxylase. Treatment of the mutant protein with ethylene imine restored catalytic activity to 4-7% of the wild-type level. The carboxylase:oxygenase activity ratio of the aminoethylated protein was unperturbed relative to that of wild-type enzyme.
Collapse
Affiliation(s)
- H B Smith
- Protein Engineering and Molecular Mutagenesis Program, Oak Ridge National Laboratory, Tennessee
| | | | | |
Collapse
|
21
|
Andersen K, Caton J. Sequence analysis of the Alcaligenes eutrophus chromosomally encoded ribulose bisphosphate carboxylase large and small subunit genes and their gene products. J Bacteriol 1987; 169:4547-58. [PMID: 2820933 PMCID: PMC213820 DOI: 10.1128/jb.169.10.4547-4558.1987] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The nucleotide sequence of the chromosomally encoded ribulose bisphosphate carboxylase/oxygenase (RuBPCase) large (rbcL) and small (rbcS) subunit genes of the hydrogen bacterium Alcaligenes eutrophus ATCC 17707 was determined. We found that the two coding regions are separated by a 47-base-pair intergenic region, and both genes are preceded by plausible ribosome-binding sites. Cotranscription of the rbcL and rbcS genes has been demonstrated previously. The rbcL and rbcS genes encode polypeptides of 487 and 135 amino acids, respectively. Both genes exhibited similar codon usage which was highly biased and different from that of other organisms. The N-terminal amino acid sequence of both subunit proteins was determined by Edman degradation. No processing of the rbcS protein was detected, while the rbcL protein underwent a posttranslational loss of formylmethionyl. The A. eutrophus rbcL and rbcS proteins exhibited 56.8 to 58.3% and 35.6 to 38.5% amino acid sequence homology, respectively, with the corresponding proteins from cyanobacteria, eucaryotic algae, and plants. The A. eutrophus and Rhodospirillum rubrum rbcL proteins were only about 32% homologous. The N- and C-terminal sequences of both the rbcL and the rbcS proteins were among the most divergent regions. Known or proposed active site residues in other rbcL proteins, including Lys, His, Arg, and Asp residues, were conserved in the A. eutrophus enzyme. The A. eutrophus rbcS protein, like those of cyanobacteria, lacks a 12-residue internal sequence that is found in plant RuBPCase. Comparison of hydropathy profiles and secondary structure predictions by the method described by Chou and Fasman (P. Y. Chou and G. D. Fasman, Adv. Enzymol. 47:45-148, 1978) revealed striking similarities between A. eutrophus RuBPCase and other hexadecameric enzymes. This suggests that folding of the polypeptide chains is similar. The observed sequence homologies were consistent with the notion that both the rbcL and rbcS genes of the chemoautotroph A. eutrophus and the thus far characterized rbc genes of photosynthetic organisms have a common origin. This suggests that both subunit genes have a very ancient origin. The role of quaternary structure as a determinant of the rate of accepted amino acid substitution was examined. It is proposed that the sequence of the dimeric R. rubrum RuBPCase may be less conserved because there are fewer structural constraints for this RuBPCase than there are for hexadecameric enzymes.
Collapse
|
22
|
Suzuki A. Ribulose 1,5-bisphosphate carboxylase-oxygenase. I. Structural, immunochemical and catalytic properties. Biochimie 1987; 69:723-34. [PMID: 3120806 DOI: 10.1016/0300-9084(87)90193-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Some structural, immunochemical and catalytic properties are examined for ribulose 1,5-bisphosphate carboxylase-oxygenase from various cellular organisms including bacteria, cyanobacteria, algae and higher plants. The native enzyme molecular masses and the subunit polypeptide compositions vary according to enzyme sources. The molecular masses of the large and small subunits from different cellular organisms, on the other hand, show a relatively high homology due to their well-conserved primary amino acid sequence, especially that of the large subunit. In higher plants, the native enzyme and the large subunit are recognized by the antibodies raised against either the native or large subunit, whereas the small subunit apparently cross-reacts only with the antibodies directed against itself. A wide diversity exists, however, in the serological response of the native enzyme and its subunits with antibodies directed against the native enzyme or its subunits from different cellular organisms. According to numerous kinetic studies, the carboxylase and oxygenase reactions of the enzyme with ribulose 1,5-bisphosphate and carbon dioxide or oxygen require activation by carbon dioxide and magnesium prior to catalysis with ribulose 1,5-bisphosphate and carbon dioxide or oxygen. The activation and catalysis are also under the regulation of other metal ions and a number of chloroplastic metabolites. Recent double-labeling experiments using radioactive ribulose 1,5-bisphosphate and 14CO2 have elucidated the carboxylase/oxygenase ratios of the enzymes from different organisms. Another approach, i.e., genetic experiments, has also been used to examine the modification of the carboxylase/oxygenase ratio.
Collapse
Affiliation(s)
- A Suzuki
- Laboratoire du Métabolisme et de la Nutrition des Plantes, INRA, Versailles, France
| |
Collapse
|
23
|
Andersen K, Wilke-Douglas M. Genetic and physical mapping and expression in Pseudomonas aeruginosa of the chromosomally encoded ribulose bisphosphate carboxylase genes of Alcaligenes eutrophus. J Bacteriol 1987; 169:1997-2004. [PMID: 3106327 PMCID: PMC212071 DOI: 10.1128/jb.169.5.1997-2004.1987] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We have previously shown that functional ribulose bisphosphate carboxylase (RuBPCase, rbc) genes in Alcaligenes eutrophus ATCC 17707 are present both on the chromosome and on the indigenous plasmid pAE7. Here we demonstrate that the chromosomal rbc locus encodes both a large (rbcL)- and a small (rbcS)-subunit gene. A 2.3-kilobase DNA fragment containing both subunit genes was subcloned into the broad-host-range vector pRK310 to yield plasmid pAE312. This plasmid was transferred into Pseudomonas aeruginosa in which expression of both the rbcL and rbcS genes took place, as demonstrated by Western blot analysis. A high level of RuBPCase activity was observed for P. aeruginosa(pAE312), suggesting that assembly of the subunits took place. Plasmid pAE312 was mutagenized with Tn5 in Escherichia coli. Complementation of A. eutrophus RuBPCase structural gene mutants with pAE312 containing mapped Tn5 insertions allowed functional analysis of the rbc gene region. The polar effect of the Tn5 insertions suggested that the two subunit genes were cotranscribed in A. eutrophus, with rbcL located promoter proximal. Northern blot analysis of total RNA from P. aeruginosa(pAE312) confirmed cotranscription of the two subunit genes. DNA probes containing both the rbcL and rbcS genes, or fragments of each gene, all hybridized to a predominant transcript about 2.1-kilobases long. These observations indicate that the chromosomally encoded rbcL and rbcS genes of A. eutrophus constitute an operon.
Collapse
|
24
|
Voordouw G, De Vries PA, Van den Berg WA, De Clerck EP. Site-directed mutagenesis of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from Anacystis nidulans. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 163:591-8. [PMID: 3030746 DOI: 10.1111/j.1432-1033.1987.tb10908.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Using oligonucleotide-directed mutagenesis of the gene encoding the small subunit (rbcS) from Anacystis nidulans mutant enzymes have been generated with either Trp-54 of the small subunit replaced by a Phe residue, or with Trp-57 replaced by a Phe residue, whereas both Trp-54 and Trp-57 have been replaced by Phe residues in a double mutant. Trp-54 and Trp-57 are conserved in all amino acid sequences or the small subunit (S) that are known at present. The wild-type and mutant forms of Rubisco have all been purified to homogeneity. The wild-type enzyme, purified from Escherichia coli is indistinguishable from enzyme similarly purified from A. nidulans in subunit composition, subunit molecular mass and kinetic parameters (Vmax CO2 = 2.9 U/mg, Km CO2 = 155 microM). The single Trp mutants are indistinguishable from the wild-type enzyme by criteria (a) and (b). However, whereas, Km CO2 is also unchanged, Vmax CO2 is 2.5-fold smaller than the value for the wild-type enzyme for both mutants, demonstrating for the first time that single amino acid replacements in the non-catalytic small subunit influence the catalytic rate of the enzyme. The specificity factor tau, which measures the partitioning of the active site between the carboxylase and oxygenase reactions, was found to be invariant. Since tau is not affected by these mutations we conclude that S is an activating not a regulating subunit.
Collapse
|
25
|
|
26
|
Linhardt RJ. Protein engineering and site-directed mutagenesis. Patents and literature. Appl Biochem Biotechnol 1986; 13:75-83. [PMID: 3535672 DOI: 10.1007/bf02798438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Nonessentiality of histidine 291 of Rhodospirillum rubrum ribulose-bisphosphate carboxylase/oxygenase as determined by site-directed mutagenesis. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67494-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|