1
|
Cornish K, Scott DJ, Xie W, Mau CJD, Zheng YF, Liu XH, Prestwich GD. Unusual subunits are directly involved in binding substrates for natural rubber biosynthesis in multiple plant species. PHYTOCHEMISTRY 2018; 156:55-72. [PMID: 30195165 DOI: 10.1016/j.phytochem.2018.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/31/2018] [Accepted: 08/17/2018] [Indexed: 05/11/2023]
Abstract
Rubber particles from rubber-producing plant species have many different species-specific proteins bound to their external monolayer biomembranes. To date, identification of those proteins directly involved in enzymatic catalysis of rubber polymerization has not been fully accomplished using solubilization, purification or reconstitution approaches. In an alternative approach, we use several tritiated photoaffinity-labeled benzophenone analogs of the allylic pyrophosphate substrates, required by rubber transferase (RT-ase) to initiate the synthesis of new rubber molecules, to identify the proteins involved in catalysis. Enzymatically-active rubber particles were purified from three phylogenetically-distant rubber producing species, Parthenium argentatum Gray, Hevea brasiliensis Muell. Arg, and Ficus elastica Roxb., each representing a different Superorder of the Dicotyledonae. Geranyl pyrophosphate with the benzophenone in the para position (Bz-GPP(p)) was the most active initiator of rubber biosynthesis in all three species. When rubber particles were exposed to ultra-violet radiation, 95% of RT-ase activity was eliminated in the presence of 50 μΜ Bz-GPP(p), compared to only 50% of activity in the absence of this analog. 3H-Bz-GPP(p) then was used to label and identify the proteins involved in substrate binding and these proteins were characterized electrophoretically. In all three species, three distinct proteins were labeled, one very large protein and two very small proteins, as follows: P. argentatum 287,000, 3,990, and 1,790 Da; H. brasiliensis 241,000, 3,650 and 1,600 Da; F. elastica 360,000, 3,900 and 1,800 Da. The isoelectric points of the P. argentatum proteins were 7.6 for the 287,000 Da, 10.4 for the 3,990 Da and 3.5 for the 1,790 Da proteins, and of the F. elastica proteins were 7.7 for the 360,000 Da, 6,0 for the 3,900 Da, and 11.0 for the 1,800 Da proteins. H. brasiliensis protein pI values were not determined. Additional analysis indicated that the three proteins are components of a membrane-bound complex and that the ratio of each small protein to the large one is 3:1, and the large protein exists as a dimer. Also, the large proteins are membrane bound whereas both small proteins are strongly associated with the large proteins, rather than to the rubber particle proteolipid membrane.
Collapse
Affiliation(s)
- Katrina Cornish
- USDA-ARS Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA; Center of Applied Plant Sciences, Institute of Materials Research, Institute of Humanitarian Engineering, Department of Chemistry and Biochemistry, USA.
| | - Deborah J Scott
- USDA-ARS Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
| | - Wenshuang Xie
- USDA-ARS Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
| | - Christopher J D Mau
- USDA-ARS Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
| | - Yi Feng Zheng
- Department of Medicinal Chemistry, The University of Utah, South 2000 East, Rm. 307, Salt Lake City, UT 84112, USA
| | - Xiao-Hui Liu
- Department of Medicinal Chemistry, The University of Utah, South 2000 East, Rm. 307, Salt Lake City, UT 84112, USA
| | - Glenn D Prestwich
- Department of Medicinal Chemistry, The University of Utah, South 2000 East, Rm. 307, Salt Lake City, UT 84112, USA
| |
Collapse
|
2
|
|
3
|
Tong H, Holstein SA, Hohl RJ. Simultaneous determination of farnesyl and geranylgeranyl pyrophosphate levels in cultured cells. Anal Biochem 2005; 336:51-9. [PMID: 15582558 DOI: 10.1016/j.ab.2004.09.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2004] [Indexed: 11/21/2022]
Abstract
A sensitive, nonradioactive analytical method has been developed to simultaneously determine the concentrations of farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) in cultured cells. Following extraction, enzyme assays involving recombinant farnesyl protein transferase or geranylgeranyl protein transferase I are performed to conjugate FPP or GGPP to dansylated peptides. The reaction products are then separated and quantified by high-performance liquid chromatography coupled to a fluorescence detector at the excitation wavelength 335 nm and the emission wavelength 528 nm. The retention times for farnesyl-peptide and geranylgeranyl-peptide are 8.4 and 16.9 min, respectively. The lower limit of detection is 5 pg of FPP or GGPP ( approximately 0.01 pmol). A linear response has been established over a range of 5-1000 pg ( approximately 0.01-2 pmol) with good reproducibility. The method has been used to determine the levels of FPP (0.125+/-0.010 pmol/10(6)cells) and GGPP (0.145+/-0.008 pmol/10(6)cells) in NIH3T3 cells. Furthermore, changes in FPP and GGPP levels following treatment of cells with isoprenoid biosynthetic pathway inhibitors were measured. This method is suitable for the determination of the concentrations of FPP and GGPP in any cell type or tissue.
Collapse
Affiliation(s)
- Huaxiang Tong
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
4
|
Prenylation of CaaX-type proteins: Basic principles through clinical applications. CURRENT TOPICS IN MEMBRANES 2002. [DOI: 10.1016/s1063-5823(02)52021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
5
|
Solomon CS, Goalstone ML. Dominant negative farnesyltransferase alpha-subunit inhibits insulin mitogenic effects. Biochem Biophys Res Commun 2001; 285:161-6. [PMID: 11444820 DOI: 10.1006/bbrc.2001.5142] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Farnesylation of p21Ras is required for translocation to the plasma membrane and subsequent activation by growth factors. Previously we demonstrated that insulin stimulates the phosphorylation of farnesyltransferase (FTase) and its activity, whereby the amount of farnesylated p21Ras anchored at the plasma membrane is increased. Herein we report that substitution of alanine for two serine residues (S60A)(S62A) of the alpha-subunit of FTase creates a dominant negative (DN) mutant. VSMC expressing the FTase alpha-subunit (S60A)(S62A) clone showed a 30% decreased basal FTase activity concurrent with a 15% decrease in the amount of farnesylated p21Ras compared to controls. Expression of alpha-subunit (S60A,S62A) blunted FTase phosphorylation and activity in the presence of hyperinsulinemia, and inhibited insulin-stimulated increases in farnesylated p21Ras. Insulin-stimulated VSMC expressing the FTase alpha-subunit (S60A,S62A) showed decreased (i) phosphorylation of FTase, (ii) FTase activity, (iii) amounts of farnesylated p21Ras, (iv) DNA synthesis, and (v) migration. Thus, down-regulation of FTase activity appears to mitigate the potentially detrimental mitogenic effects of hyperinsulinemia on VSMC.
Collapse
Affiliation(s)
- C S Solomon
- Research Service, Denver VA Medical Center, 1055 Clermont Street, Denver, CO 80220, USA
| | | |
Collapse
|
6
|
Turek TC, Gaon I, Distefano MD, Strickland CL. Synthesis of Farnesyl Diphosphate Analogues Containing Ether-Linked Photoactive Benzophenones and Their Application in Studies of Protein Prenyltransferases. J Org Chem 2001; 66:3253-64. [PMID: 11348105 DOI: 10.1021/jo991130x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein prenylation is a posttranslational lipid modification in which C(15) and C(20) isoprenoid units are linked to specific protein-derived cysteine residues through a thioether linkage. This process is catalyzed by a class of enzymes called prenyltransferases that are being intensively studied due to the finding that Ras protein is farnesylated coupled with the observation that mutant forms of Ras are implicated in a variety of human cancers. Inhibition of this posttranslational modification may serve as a possible cancer chemotherapy. Here, the syntheses of two new farnesyl diphosphate (FPP) analogues containing photoactive benzophenone groups are described. Each of these compounds was prepared in six steps from dimethylallyl alcohol. Substrate studies, inhibition kinetics, photoinactivation studies, and photolabeling experiments are also included; these experiments were performed with a number of protein prenyltransferases from different sources. A X-ray crystal structure of one of these analogues bound to rat farnesyltransferase illustrates that they are good substrate mimics. Of particular importance, these new analogues can be enzymatically incorporated into Ras-based peptide substrates allowing the preparation of molecules with photoactive isoprenoids that may serve as valuable probes for the study of prenylation function. Photoaffinity labeling of human protein geranylgeranyltransferase with (32)P-labeled forms of these analogues suggests that the C-10 locus of bound geranylgeranyl diphosphate (GGPP) is in close proximity to residues from the beta-subunit of this enzyme. These results clearly demonstrate the utility of these compounds as photoaffinity labeling analogues for the study of a variety of protein prenyltransferases and other enzymes that employ FPP or GGPP as their substrates.
Collapse
Affiliation(s)
- T C Turek
- Department of Structural Chemistry, Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA
| | | | | | | |
Collapse
|
7
|
Crul M, de Klerk GJ, Beijnen JH, Schellens JH. Ras biochemistry and farnesyl transferase inhibitors: a literature survey. Anticancer Drugs 2001; 12:163-84. [PMID: 11290863 DOI: 10.1097/00001813-200103000-00001] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the last decades, knowledge on the genetic defects involved in tumor formation and growth has increased rapidly. This has launched the development of novel anticancer agents, interfering with the proteins encoded by the identified mutated genes. One gene of particular interest is ras, which is found mutated at high frequency in a number of malignancies. The Ras protein is involved in signal transduction: it passes on stimuli from extracellular factors to the cell nucleus, thereby changing the expression of a number of growth regulating genes. Mutated Ras proteins remain longer in their active form than normal Ras proteins, resulting in an overstimulation of the proliferative pathway. In order to function, Ras proteins must undergo a series of post-translational modifications, the most important of which is farnesylation. Inhibition of Ras can be accomplished through inhibition of farnesyl transferase, the enzyme responsible for this modification. With this aim, a number of agents, designated farnesyl transferase inhibitors (FTIs), have been developed that possess antineoplastic activity. Several of them have recently entered clinical trials. Even though clinical testing is still at an early stage, antitumor activity has been observed. At the same time, knowledge on the biochemical mechanisms through which these drugs exert their activity is expanding. Apart from Ras, they also target other cellular proteins that require farnesylation to become activated, e.g. RhoB. Inhibition of the farnesylation of RhoB results in growth blockade of the exposed tumor cells as well as an increase in the rate of apoptosis. In conclusion, FTIs present a promising class of anticancer agents, acting through biochemical modulation of the tumor cells.
Collapse
Affiliation(s)
- M Crul
- The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
8
|
Kotharé MA, Ohkanda J, Lockman JW, Qian Y, Blaskovich MA, Sebti SM, Hamilton AD. Development of a Tripeptide Mimetic Strategy for the Inhibition of Protein Farnesyltransferase. Tetrahedron 2000. [DOI: 10.1016/s0040-4020(00)00890-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
|
10
|
Abstract
The currently understood function for Ras in signal transduction is in mediating the transmission of signals from external growth factors to the cell nucleus. Mutated forms of this GTP-binding protein are found in 30% of human cancers with particularly high prevalence in colon and pancreatic carcinomas. These mutations destroy the GTPase activity of Ras and cause the protein to be locked in its active, GTP bound form. As a result, the signaling pathways are activated, leading to uncontrolled tumor growth. Ras function in signaling requires its association with the plasma membrane. This is achieved by posttranslational farnesylation of a cysteine residue present as part of the CA1A2X carboxyl terminal tetrapeptide of all Ras proteins. The enzyme that recognizes and farnesylates the CA1A2X sequence, Ras farnesyltransferase (FTase), has become an important target for the design of inhibitors that might be interesting as antitumor agents. Several approaches have been taken in the search for in vivo active inhibitors of farnesyltransferase. These include the identification of natural products such as the chaetomellic and zaragozic acids that mimic farnesylpyrophosphate, bisubstrate transition state analogs combining elements of the farnesyl and tetrapeptide substrates and peptidomimetics that reproduce features of the carboxyl terminal tetrapeptide CA1A2X sequence. This last group of compounds has been most successful in showing highly potent inhibition of FTase and selective blocking of Ras processing in a range of Ras transformed tumor cell lines at concentrations as low as 10 nM. Certain peptidomimetics will also block tumor growth in various mouse models, with apparently few toxic side effects. These results suggest that farnesyltransferase inhibitors hold considerable promise as anticancer drugs in the clinic.
Collapse
Affiliation(s)
- Y Qian
- Department of Chemistry and Pharmacology, University of Pittsburgh, PA 15215, USA
| | | | | |
Collapse
|
11
|
Long SB, Casey PJ, Beese LS. The basis for K-Ras4B binding specificity to protein farnesyltransferase revealed by 2 A resolution ternary complex structures. Structure 2000; 8:209-22. [PMID: 10673434 DOI: 10.1016/s0969-2126(00)00096-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND The protein farnesyltransferase (FTase) catalyzes addition of the hydrophobic farnesyl isoprenoid to a cysteine residue fourth from the C terminus of several protein acceptors that are essential for cellular signal transduction such as Ras and Rho. This addition is necessary for the biological function of the modified proteins. The majority of Ras-related human cancers are associated with oncogenic variants of K-RasB, which is the highest affinity natural substrate of FTase. Inhibition of FTase causes regression of Ras-mediated tumors in animal models. RESULTS We present four ternary complexes of rat FTase co-crystallized with farnesyl diphosphate analogs and K-Ras4B peptide substrates. The Ca(1)a(2)X portion of the peptide substrate binds in an extended conformation in the hydrophobic cavity of FTase and coordinates the active site zinc ion. These complexes offer the first view of the polybasic region of the K-Ras4B peptide substrate, which confers the major enhancement of affinity of this substrate. The polybasic region forms a type I beta turn and binds along the rim of the hydrophobic cavity. Removal of the catalytically essential zinc ion results in a dramatically different peptide conformation in which the Ca(1)a(2)X motif adopts a beta turn. A manganese ion binds to the diphosphate mimic of the farnesyl diphosphate analog. CONCLUSIONS These ternary complexes provide new insight into the molecular basis of peptide substrate specificity, and further define the roles of zinc and magnesium in the prenyltransferase reaction. Zinc is essential for productive Ca(1)a(2)X peptide binding, suggesting that the beta-turn conformation identified in previous nuclear magnetic resonance (NMR) studies reflects a state in which the cysteine is not coordinated to the zinc ion. The structural information presented here should facilitate structure-based design and optimization of inhibitors of Ca(1)a(2)X protein prenyltransferases.
Collapse
Affiliation(s)
- S B Long
- Department of Biochemistry, PO Box 3711, Duke University Medical Center, Durham, 27710, USA
| | | | | |
Collapse
|
12
|
Farnesyl transferase inhibitors. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1067-5698(99)80008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
13
|
Long SB, Casey PJ, Beese LS. Cocrystal structure of protein farnesyltransferase complexed with a farnesyl diphosphate substrate. Biochemistry 1998; 37:9612-8. [PMID: 9657673 DOI: 10.1021/bi980708e] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein farnesyltransferase (FTase) catalyzes the transfer of the hydrophobic farnesyl group from farnesyl diphosphate (FPP) to cellular proteins such as Ras at a cysteine residue near their carboxy-terminus. This process is necessary for the subcellular localization of these proteins to the plasma membrane and is required for the transforming activity of oncogenic variants of Ras, making FTase a prime target for anticancer therapeutics. The high-resolution crystal structure of rat FTase was recently determined, and we present here the X-ray crystal structure of the first complex of FTase with a FPP substrate bound at the active site. The isoprenoid moiety of FPP binds in an extended conformation in a hydrophobic cavity of the beta subunit of the FTase enzyme, and the diphosphate moiety binds to a positively charged cleft at the top of this cavity near the subunit interface. The observed location of the FPP molecule is consistent with mutagenesis data. This binary complex of FTase with FPP leads us to suggest a "molecular ruler" hypothesis for isoprenoid substrate specificity, where the depth of the hydrophobic binding cavity acts as a ruler discriminating between isoprenoids of differing lengths. Although other length isoprenoids may bind in the cavity, only the 15-carbon farnesyl moiety binds with its C1 atom in register with a catalytic zinc ion as required for efficient transfer to the Ras substrate.
Collapse
Affiliation(s)
- S B Long
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
14
|
Abstract
The Ras pathway lies in the center of signalling cascades of numerous growth-promoting factors. The Ras pathway appears to connect signalling events that begin at the plasma membrane with nuclear events. Insulin is one of the major stimulants of the Ras signalling pathway. The influence of insulin on this pathway consists of five important events: (1) p21Ras activation is promoted by insulin stimulation of the guanine nucleotide exchange factor, Sos, resulting in increased GTP-loading of p21Ras; (2) p21Ras deactivation involves the hyperphosphorylation of Sos; (3) insulin increases farnesyltransferase (FTase) activity that farnesylates p21Ras; (4) increased amounts of farnesylated p21Ras translocate to the plasma membrane where they can be activated by other growth-promoting agents; and (5) cellular responses to other growth factors are potentiated by insulin-stimulated pre-loading of the plasma membrane with farnesylated p21Ras.
Collapse
Affiliation(s)
- M L Goalstone
- Department of Medicine, Denver Veterans Affairs Medical Center, University of Colorado Health Sciences Center, 80220, USA
| | | |
Collapse
|
15
|
Caplin BE, Ohya Y, Marshall MS. Amino acid residues that define both the isoprenoid and CAAX preferences of the Saccharomyces cerevisiae protein farnesyltransferase. Creating the perfect farnesyltransferase. J Biol Chem 1998; 273:9472-9. [PMID: 9545274 DOI: 10.1074/jbc.273.16.9472] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies of the yeast protein farnesyltransferase (FTase) have shown that the enzyme preferentially farnesylates proteins ending in CAAX (C = cysteine, A = aliphatic residue, X = cysteine, serine, methionine, alanine) and to a lesser degree CAAL. Furthermore, like the type I protein geranylgeranyltransferase (GGTase-I), FTase can also geranylgeranylate methionine- and leucine-ending substrates both in vitro and in vivo. Substrate overlap of FTase and GGTase I has not been determined to be biologically significant. In this study, specific residues that influence the substrate preferences of FTase have been identified using site-directed mutagenesis. Three of the mutations altered the substrate preferences of the wild type enzyme significantly. The ram1p-74D FTase farnesylated only Ras-CIIS and not Ras-CII(M,L), and it geranylgeranylated all three substrates as well or better than wild type. The ram1p-206DDLF FTase farnesylated Ras-CII(S,M,L) at wild type levels but could no longer geranylgeranylate the Ras-CII(M,L) substrates. The ram1p-351FSKN FTase farnesylated Ras-CIIS and Ras-CIIM but not Ras-CIIL. The ram1p-351FSKN FTase was not capable of geranylgeranylating the Ras-CII(M,L) substrates, giving this mutant the attributes of the dogmatic FTase that only farnesylates non-leucine-ending CAAX substrates and does not geranylgeranylate any substrate. These results suggest that the isoprenoid and protein substrate specificities of FTase are interrelated. The availability of a mutant FTase that lacked substrate overlap with the protein GGTase-I made possible an analysis of the role of substrate overlap in normal cellular processes of yeast, such as mating and growth at elevated temperatures. Our findings suggest that neither farnesylation of leucine-ending CAAX substrates nor geranylgeranylation by the FTase is necessary for these cellular processes.
Collapse
Affiliation(s)
- B E Caplin
- Walther Oncology Institute, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
16
|
Abstract
In the past year, the crystal structure of alpha beta heterodimeric protein farnesyltransferase from rat was reported to a resolution of 2.25 A. Farnesyltransferase catalyzes the essential post-translational lipidation of Ras and several other cellular signal transduction proteins. The structure provides a foundation for understanding the specificity and mechanism of protein prenylation and may aid in the design of new anticancer therapeutics.
Collapse
Affiliation(s)
- H W Park
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
17
|
Tsao KL, Waugh DS. Balancing the production of two recombinant proteins in Escherichia coli by manipulating plasmid copy number: high-level expression of heterodimeric Ras farnesyltransferase. Protein Expr Purif 1997; 11:233-40. [PMID: 9425626 DOI: 10.1006/prep.1997.0794] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The native Ras farnesyltransferase heterodimer (alpha beta) and a heterodimer with a truncated alpha subunit (alpha' beta) were overproduced at a high level and in a soluble form in Escherichia coli. The alpha, alpha', and beta subunits were synthesized from individual plasmid vectors under the control of bacteriophage T7 promoters. Although each subunit could be expressed at a high level by itself, when either the alpha or alpha' and the beta plasmid were present in cells at the same time, the alpha and alpha' subunits were preferentially expressed to such a degree that little or none of the beta subunit accumulated. A satisfactory balance between both combinations of subunits (alpha beta and alpha' beta) was achieved by making incremental adjustments in the copy number of the beta-encoding plasmid. As the copy number of the beta plasmid increased, so did the ratio of beta:alpha or beta:alpha', but there was little difference in the total amount of recombinant protein (alpha + beta or alpha' + beta) that was produced. This may be a generally useful method for balancing the production of two recombinant polypeptides in E. coli. A noteworthy advantage of this approach is that it can be undertaken without first determining the cause of the imbalance.
Collapse
Affiliation(s)
- K L Tsao
- Department of Physical Chemistry, Roche Research Center, Hoffmann-La Roche, Inc., Nutley, New Jersey 07110, USA
| | | |
Collapse
|
18
|
Kral AM, Diehl RE, deSolms SJ, Williams TM, Kohl NE, Omer CA. Mutational analysis of conserved residues of the beta-subunit of human farnesyl:protein transferase. J Biol Chem 1997; 272:27319-23. [PMID: 9341181 DOI: 10.1074/jbc.272.43.27319] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The roles of 11 conserved amino acids of the beta-subunit of human farnesyl:protein transferase (FTase) were examined by performing kinetic and biochemical analyses of site-directed mutants. This biochemical information along with the x-ray crystal structure of rat FTase indicates that residues His-248, Arg-291, Lys-294, and Trp-303 are involved with binding and utilization of the substrate farnesyl diphosphate. Our data confirm structural evidence that amino acids Cys-299, Asp-297, and His-362 are ligands for the essential Zn2+ ion and suggest that Asp-359 may also play a role in Zn2+ binding. Additionally, we demonstrate that Arg-202 is important for binding the essential C-terminal carboxylate of the protein substrate.
Collapse
Affiliation(s)
- A M Kral
- Department of Cancer Research, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | | | | | | | | | |
Collapse
|
19
|
Trueblood CE, Boyartchuk VL, Rine J. Substrate specificity determinants in the farnesyltransferase beta-subunit. Proc Natl Acad Sci U S A 1997; 94:10774-9. [PMID: 9380709 PMCID: PMC23482 DOI: 10.1073/pnas.94.20.10774] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Protein prenyltransferases catalyze the covalent attachment of isoprenoid lipids (farnesyl or geranylgeranyl) to a cysteine near the C terminus of their substrates. This study explored the specificity determinants for interactions between the farnesyltransferase of Saccharomyces cerevisiae and its protein substrates. A series of substitutions at amino acid 149 of the farnesyltransferase beta-subunit were tested in combination with a series of substitutions at the C-terminal amino acid of CaaX protein substrates Ras2p and a-factor. Efficient prenylation was observed when oppositely charged amino acids were present at amino acid 149 of the yeast farnesyltransferase beta-subunit and the C-terminal amino acid of the CaaX protein substrate, but not when like charges were present at these positions. This evidence for electrostatic interaction between amino acid 149 and the C-terminal amino acid of CaaX protein substrates leads to the prediction that the C-terminal amino acid of the protein substrate binds near amino acid 149 of the yeast farnesyltransferase beta-subunit.
Collapse
Affiliation(s)
- C E Trueblood
- Division of Genetics, Department of Molecular and Cell Biology, 401 Barker Hall, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
20
|
Edelstein RL, Distefano MD. Photoaffinity labeling of yeast farnesyl protein transferase and enzymatic synthesis of a Ras protein incorporating a photoactive isoprenoid. Biochem Biophys Res Commun 1997; 235:377-82. [PMID: 9199201 DOI: 10.1006/bbrc.1997.6792] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Farnesyl protein transferase (FPTase) catalyzes the covalent attachment of a farnesyl (C15) group from farnesyl pyrophosphate (FPP) to a specific cysteine residue of Ras and several other proteins. In this report, photoactive farnesyl and geranylgeranyl pyrophosphate analogs 2-diazo-3,3,3-trifluoropropionyloxy-geranyl pyrophosphate (DATFP-GPP) and 2-diazo-3,3,3-trifluoropropionyloxy-farnesyl pyrophosphate (DATFP-FPP) were used to study the active site of Saccharomyces cerevisiae FPTase. Both analogs are substrates for the enzyme, and upon irradiation, DATFP-GPP inhibits FPTase activity in a time-dependent manner. Photoinactivation by DATFP-GPP is prevented by the presence of the natural substrate FPP. Photolysis of radiolabeled DATFP-GPP results in preferential labeling of the beta subunit of FPTase, suggesting that this subunit is involved in recognition of FPP. Of particular importance, DATFP-GPP and DATFP-FPP were used to enzymatically transfer the photoactive isoprenoid moieties to peptides and to Ras; such molecules should be useful for identifying cellular components which specifically recognize farnesylated Ras and other prenylated proteins.
Collapse
Affiliation(s)
- R L Edelstein
- Department of Chemistry, University of Minnesota, Minneapolis 55455, USA
| | | |
Collapse
|
21
|
Tschantz WR, Furfine ES, Casey PJ. Substrate binding is required for release of product from mammalian protein farnesyltransferase. J Biol Chem 1997; 272:9989-93. [PMID: 9092540 DOI: 10.1074/jbc.272.15.9989] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Protein farnesyltransferase (FTase) catalyzes the modification by a farnesyl lipid of Ras and several other key proteins involved in cellular regulation. Previous studies on this important enzyme have indicated that product dissociation is the rate-limiting step in catalysis. A detailed examination of this has now been performed, and the results provide surprising insights into the mechanism of the enzyme. Examination of the binding of a farnesylated peptide product to free enzyme revealed a binding affinity of approximately 1 microM. However, analysis of the product release step under single turnover conditions led to the surprising observation that the peptide product did not dissociate from the enzyme unless additional substrate was provided. Once additional substrate was provided, the enzyme released the farnesylated peptide product with rates comparable with that of overall catalysis by FTase. Additionally, stable FTase-farnesylated product complexes were formed using Ras proteins as substrates, and these complexes also require additional substrate for product release. These data have major implications in both our understanding of overall mechanism of this enzyme and in design of inhibitors against this therapeutic target.
Collapse
Affiliation(s)
- W R Tschantz
- Department of Molecular Cancer Biology and Biochemistry, Duke University Medical Center, Durham, North Carolina 27710-3686, USA
| | | | | |
Collapse
|
22
|
Park HW, Boduluri SR, Moomaw JF, Casey PJ, Beese LS. Crystal structure of protein farnesyltransferase at 2.25 angstrom resolution. Science 1997; 275:1800-4. [PMID: 9065406 DOI: 10.1126/science.275.5307.1800] [Citation(s) in RCA: 236] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Protein farnesyltransferase (FTase) catalyzes the carboxyl-terminal lipidation of Ras and several other cellular signal transduction proteins. The essential nature of this modification for proper function of these proteins has led to the emergence of FTase as a target for the development of new anticancer therapy. Inhibition of this enzyme suppresses the transformed phenotype in cultured cells and causes tumor regression in animal models. The crystal structure of heterodimeric mammalian FTase was determined at 2.25 angstrom resolution. The structure shows a combination of two unusual domains: a crescent-shaped seven-helical hairpin domain and an alpha-alpha barrel domain. The active site is formed by two clefts that intersect at a bound zinc ion. One cleft contains a nine-residue peptide that may mimic the binding of the Ras substrate; the other cleft is lined with highly conserved aromatic residues appropriate for binding the farnesyl isoprenoid with required specificity.
Collapse
Affiliation(s)
- H W Park
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
23
|
Yokoyama K, Zimmerman K, Scholten J, Gelb MH. Differential prenyl pyrophosphate binding to mammalian protein geranylgeranyltransferase-I and protein farnesyltransferase and its consequence on the specificity of protein prenylation. J Biol Chem 1997; 272:3944-52. [PMID: 9020098 DOI: 10.1074/jbc.272.7.3944] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Protein geranylgeranyltransferase-I (PGGT-I) and protein farnesyltransferase (PFT) attach geranylgeranyl and farnesyl groups, respectively, to the C termini of eukaryotic cell proteins. In vitro, PGGT-I and PFT can transfer both geranylgeranyl and farnesyl groups from geranylgeranyl pyrophosphate (GGPP) and farnesyl pyrophosphate (FPP) to their protein or peptide prenyl acceptor substrates. In the present study it is shown that PGGT-I binds GGPP 330-fold tighter than FPP and that PFT binds FPP 15-fold tighter than GGPP. Therefore, in vivo, where both GGPP and FPP compete for the binding to prenyltransferases, PGGT-I and PFT will likely be bound predominantly to GGPP and FPP, respectively. Previous studies have shown that K-Ras4B and the Ras-related GTPase TC21 are substrates for both PGGT-I and PFT in vitro. It is shown that TC21 can compete with the C-terminal peptide of the gamma subunit of heterotrimeric G proteins and with the C-terminal peptide of lamin B for geranylgeranylation by PGGT-I and for farnesylation by PFT, respectively. K-Ras4B competes in both cases but is almost exclusively farnesylated by PFT in the presence of the lamin B peptide competitor. Rapid and single turnover kinetic studies indicate that the rate constant for the PGGT-I-catalyzed geranylgeranyl transfer step of the reaction cycle is 14-fold larger than the steady-state turnover number, which indicates that the rate of the overall reaction is limited by a step subsequent to prenyl transfer such as release of products from the enzyme. PGGT-I-catalyzed farnesylation is 37-fold slower than geranylgeranylation and is limited by the farnesyl transfer step. These results together with earlier studies provide a paradigm for the substrate specificity of PGGT-I and PFT and provide information that is critical for the design of prenyltransferase inhibitors as anti-cancer agents.
Collapse
Affiliation(s)
- K Yokoyama
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | | | | | | |
Collapse
|
24
|
Del Villar K, Mitsuzawa H, Yang W, Sattler I, Tamanoi F. Amino acid substitutions that convert the protein substrate specificity of farnesyltransferase to that of geranylgeranyltransferase type I. J Biol Chem 1997; 272:680-7. [PMID: 8995312 DOI: 10.1074/jbc.272.1.680] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Protein farnesyltransferase (FTase), a heterodimer enzyme consisting of alpha and beta subunits, catalyzes the addition of farnesyl groups to the C termini of proteins such as Ras. In this paper, we report that the protein substrate specificity of yeast FTase can be switched to that of a closely related enzyme, geranylgeranyltransferase type I (GGTase I) by a single amino acid change at one of the three residues: Ser-159, Tyr-362, or Tyr-366 of its beta-subunit, Dpr1. All three Dpr1 mutants can function as either FTase or GGTase I beta subunit in vivo, although some differences in efficiency were observed. These results point to the importance of two distinct regions (one at 159 and the other at 362 and 366) of Dpr1 for the recognition of the protein substrate. Analysis of the protein, after site directed mutagenesis was used to change Ser-159 to all possible amino acids, showed that either asparagine or aspartic acid at this position allowed FTase beta to function as GGTase I beta. A similar site-directed mutagenesis study on Tyr-362 showed that leucine, methionine, or isoleucine at this position also resulted in the ability of mutant FTase beta to function as GGTase I beta. Interestingly, in both position 159 and 362 substitutions, amino acids that could change the protein substrate specificity had similar van der Waals volumes. Biochemical characterization of the S159N and Y362L mutant proteins showed that their kcat/Km values for GGTase I substrate are increased about 20-fold compared with that of the wild type protein. These results demonstrate that the conversion of the protein substrate specificity of FTase to that of GGTase I can be accomplished by introducing a distinct size amino acid at either of the two residues, 159 and 362.
Collapse
Affiliation(s)
- K Del Villar
- Department of Microbiology and Molecular Genetics, Molecular Biology Institute, UCLA, Los Angeles, California 90095-1489, USA
| | | | | | | | | |
Collapse
|
25
|
Coleman PS, Chen LC, Sepp-Lorenzino L. Cholesterol metabolism and tumor cell proliferation. Subcell Biochem 1997; 28:363-435. [PMID: 9090301 DOI: 10.1007/978-1-4615-5901-6_13] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- P S Coleman
- Boston Biomedical Research Institute, Laboratory of Metabolic Regulation, MA 02114, USA
| | | | | |
Collapse
|
26
|
Fu HW, Moomaw JF, Moomaw CR, Casey PJ. Identification of a cysteine residue essential for activity of protein farnesyltransferase. Cys299 is exposed only upon removal of zinc from the enzyme. J Biol Chem 1996; 271:28541-8. [PMID: 8910483 DOI: 10.1074/jbc.271.45.28541] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Protein farnesyltransferase (FTase) is a zinc metalloenzyme that performs a post-translational modification on many proteins that is critical for their function. The importance of cysteine residues in FTase activity was investigated using cysteine-specific reagents. Zinc-depleted FTase (apo-FTase), but not the holoenzyme, was completely inactivated by treatment with N-ethylmaleimide (NEM). Similar effects were detected after treatment of the enzyme with iodoacetamide. The addition of zinc to apo-FTase protects it from inactivation by NEM. These findings indicated the presence of specific cysteine residue(s), potentially located at the zinc binding site, that are required for FTase activity. We performed a selective labeling strategy whereby the cysteine residues exposed upon removal of zinc from the enzyme were modified with [3H]NEM. The enzyme so modified was digested with trypsin, and four labeled peptides were identified and sequenced, one peptide being the major site of labeling and the remaining three labeled to lesser extents. The major labeled peptide contained a radiolabeled cysteine residue, Cys299, that is in the beta subunit of FTase and is conserved in all known protein prenyltransferases. This cysteine residue was changed to both alanine and serine by site-directed mutagenesis, and the mutant proteins were produced in Escherichia coli and purified. While both mutant proteins retained the ability to bind farnesyl diphosphate, they were found to have lost essentially all catalytic activity and ability to bind zinc. These results indicate that the Cys299 in the beta subunit of FTase plays a critical role in catalysis by the enzyme and is likely to be one of the residues that directly coordinate the zinc atom in this enzyme.
Collapse
Affiliation(s)
- H W Fu
- Departments of Molecular Cancer Biology and Biochemistry, Duke University Medical Center, Durham, North Carolina 27710-3686, USA.
| | | | | | | |
Collapse
|
27
|
Gaon I, Turek TC, Weller VA, Edelstein RL, Singh SK, Distefano MD. Photoactive Analogs of Farnesyl Pyrophosphate Containing Benzoylbenzoate Esters: Synthesis and Application to Photoaffinity Labeling of Yeast Protein Farnesyltransferase. J Org Chem 1996; 61:7738-7745. [PMID: 11667728 DOI: 10.1021/jo9602736] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Farnesyl pyrophosphate (FPP) is involved in a large number of cellular processes including the prenylation of transforming mutants of Ras proteins implicated in cancer. Photoactive analogs could provide useful information about enzyme active sites that bind farnesyl pyrophosphate; however, the availability of such compounds is extremely limited. Molecules that incorporate benzophenone moieties are attractive photoaffinity labeling reagents because of their useful photochemical properties. Here, the syntheses of two compounds, 3a and 3b, containing para- and meta-substituted benzoylbenzoates are described. Compounds 3a and 3b are competitive inhibitors (with respect to FPP) of yeast protein farnesyltransferase (PFTase) with K(i) values of 910 and 380 nM, respectively. Both compounds inactivate PFTase upon photolysis, resulting in as much as 44% inactivation of enzyme activity. Photolysis of PFTase in the presence of [(32)P]3a or of [(32)P]3b results in preferential labeling of the beta subunit, suggesting that this subunit is involved in prenyl group recognition. These compounds should be valuable tools for studying enzymes that utilize FPP as a substrate.
Collapse
Affiliation(s)
- Igor Gaon
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | | | | | | | | | | |
Collapse
|
28
|
Johannes L, Perez F, Laran-Chich MP, Henry JP, Darchen F. Characterization of the interaction of the monomeric GTP-binding protein Rab3a with geranylgeranyl transferase II. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 239:362-8. [PMID: 8706741 DOI: 10.1111/j.1432-1033.1996.0362u.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The monomeric GTP-binding protein Rab3a controls exocytosis in neuroendocrine and neuronal cells. Like other members of the Rab family, Rab3a is posttranslationally modified by the addition of hydrophobic geranylgeranyl groups to its C-terminus. The geranylgeranylation reaction is catalysed by the heterotrimeric geranylgeranyl transferase II. We describe the cDNA cloning of the beta-subunit of human geranylgeranyl transferase II by means of the yeast two-hybrid system. The human enzyme, which is 49% and 96% similar to yeast and rat isoforms, respectively, can complement the beta-subunit deficiency in the yeast strain ANY119. Furthermore, by means of the two-hybrid system and in vitro geranylgeranylation reactions with purified recombinant rat geranylgeranyl transferase II, we have characterized Rab3a domains implicated in the interaction with geranylgeranyl transferase II. We find that the N-terminus, the effector loop, the hypervariable region of the C-terminus, and the geranylgeranyl-acceptor cysteines have roles in this interaction. The GDP-bound form of Rab3a is the preferred substrate of geranylgeranyl transferase II.
Collapse
Affiliation(s)
- L Johannes
- Service de Neurobiologie Physico-Chimique, Centre National de la Recherche Scientifique UPR 9071, Paris, France
| | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- P J Casey
- Department of Molecular Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710-3686, USA
| | | |
Collapse
|
30
|
Mu, Omer CA, Gibbs RA. On the Stereochemical Course of Human Protein-Farnesyl Transferase. J Am Chem Soc 1996. [DOI: 10.1021/ja953005i] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mu
- Contribution from the Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, Wayne State University, 528 Shapero Hall, Detroit, Michigan 48202, and Department of Cancer Research, Merck Research Laboratories, West Point, Pennsylvania 19846
| | - Charles A. Omer
- Contribution from the Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, Wayne State University, 528 Shapero Hall, Detroit, Michigan 48202, and Department of Cancer Research, Merck Research Laboratories, West Point, Pennsylvania 19846
| | - Richard A. Gibbs
- Contribution from the Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, Wayne State University, 528 Shapero Hall, Detroit, Michigan 48202, and Department of Cancer Research, Merck Research Laboratories, West Point, Pennsylvania 19846
| |
Collapse
|
31
|
|
32
|
Bukhtiyarov YE, Omer CA, Allen CM. Photoreactive analogues of prenyl diphosphates as inhibitors and probes of human protein farnesyltransferase and geranylgeranyltransferase type I. J Biol Chem 1995; 270:19035-40. [PMID: 7642565 DOI: 10.1074/jbc.270.32.19035] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Photoreactive analogues of prenyl diphosphates have been useful in studying prenyltransferases. The effectiveness of analogues with different chain lengths as probes of recombinant human protein prenyltransferases is established here. A putative geranylgeranyl diphosphate analogue, 2-diazo-3,3,3-trifluoropropionyloxy-farnesyl diphosphate (DATFP-FPP), was the best inhibitor of both protein farnesyltransferase (PFT) and protein geranylgeranyltransferase-I (PFFT-I). Shorter photoreactive isprenyl diphosphate analogues with geranyl and dimethylallyl moieties and the DATFP-derivative of farnesyl monophosphate were much poorer inhibitors. DATFP-FPP was a competitive inhibitor of both PFT and PGGT-I with Ki values of 100 and 18 nM, respectively. [32P]DATFP-FPP specifically photoradiolabelled the beta-subunits of both PFT and PGGT-I. Photoradiolabelling of PGGT-I was inhibited more effectively by geranylgeranyl diphosphate than farnesyl diphosphate, whereas photoradiolabelling of PFT was inhibited better by farnesyl diphosphate than geranylgeranyl diphosphate. These results lead to the conclusions that DATFP-FPP is an effective probe of the prenyl diphosphate binding domains of PFT and PGGT-I. Furthermore, the beta-subunits of protein prenyltransferases must contribute significantly to the recognition and binding of the isoprenoid substrate.
Collapse
Affiliation(s)
- Y E Bukhtiyarov
- Department of Biochemistry and Molecular Biology, J. Hillis Miller Health Center, University of Florida, Gainesville 32610, USA
| | | | | |
Collapse
|
33
|
Abstract
The photoactivatable aryl ketone derivatives have been rediscovered as biochemical probes in the last 5 years. The expanding use of benzophenone (BP) photoprobes can be attributed to three distinct chemical and biochemical advantages. First, BPs are chemically more stable than diazo esters, aryl azides, and diazirines. Second, BPs can be manipulated in ambient light and can be activated at 350-360 nm, avoiding protein-damaging wavelengths. Third, BPs react preferentially with unreactive C-H bonds, even in the presence of solvent water and bulk nucleophiles. These three properties combine to produce highly efficient covalent modifications of macromolecules, frequently with remarkable site specificity. This Perspectives includes a brief review of BP photochemistry and a selection of specific applications of these photoprobes, which address questions in protein, nucleic acid, and lipid biochemistry.
Collapse
Affiliation(s)
- G Dormán
- Department of Chemistry, State University of New York at Stony Brook 11794-3400
| | | |
Collapse
|