1
|
Human Mitochondrial Pathologies of the Respiratory Chain and ATP Synthase: Contributions from Studies of Saccharomyces cerevisiae. Life (Basel) 2020; 10:life10110304. [PMID: 33238568 PMCID: PMC7700678 DOI: 10.3390/life10110304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
The ease with which the unicellular yeast Saccharomyces cerevisiae can be manipulated genetically and biochemically has established this organism as a good model for the study of human mitochondrial diseases. The combined use of biochemical and molecular genetic tools has been instrumental in elucidating the functions of numerous yeast nuclear gene products with human homologs that affect a large number of metabolic and biological processes, including those housed in mitochondria. These include structural and catalytic subunits of enzymes and protein factors that impinge on the biogenesis of the respiratory chain. This article will review what is currently known about the genetics and clinical phenotypes of mitochondrial diseases of the respiratory chain and ATP synthase, with special emphasis on the contribution of information gained from pet mutants with mutations in nuclear genes that impair mitochondrial respiration. Our intent is to provide the yeast mitochondrial specialist with basic knowledge of human mitochondrial pathologies and the human specialist with information on how genes that directly and indirectly affect respiration were identified and characterized in yeast.
Collapse
|
2
|
Ellis TP, Schonauer MS, Dieckmann CL. CBT1 interacts genetically with CBP1 and the mitochondrially encoded cytochrome b gene and is required to stabilize the mature cytochrome b mRNA of Saccharomyces cerevisiae. Genetics 2005; 171:949-57. [PMID: 16118200 PMCID: PMC1456833 DOI: 10.1534/genetics.104.036467] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutation of a CCG sequence in the 5'-untranslated region of the mitochondrially encoded cytochrome b mRNA in Saccharomyces cerevisiae results in destabilization of the message and respiratory deficiency of the mutant strain. This phenotype mimics that of a mutation in the nuclear CBP1 gene. Here it is shown that overexpression of the nuclear CBT1 gene, due to a transposon insertion in the 5'-untranslated region, rescues the respiratory defects resulting from mutating the CCG sequence to ACG. Overexpressing alleles of CBT1 are allelic to soc1, a previously isolated suppressor of cbp1ts-induced temperature sensitivity of respiratory growth. Quantitative primer extension analysis indicated that cbt1 null strains have defects in 5'-end processing of precursor cytochrome b mRNA to the mature form. Cbt1p is also required for stabilizing the mature cytochrome b mRNA after 5' processing.
Collapse
Affiliation(s)
- Timothy P Ellis
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
3
|
Krause K, Lopes de Souza R, Roberts DGW, Dieckmann CL. The mitochondrial message-specific mRNA protectors Cbp1 and Pet309 are associated in a high-molecular weight complex. Mol Biol Cell 2004; 15:2674-83. [PMID: 15047869 PMCID: PMC420092 DOI: 10.1091/mbc.e04-02-0126] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In Saccharomyces cerevisiae, the nuclear-encoded protein Cbp1 promotes stability and translation of mitochondrial cytochrome b transcripts through interaction with the 5' untranslated region. Fusion of a biotin binding peptide tag to the C terminus of Cbp1 has now allowed detection in mitochondrial extracts by using peroxidase-coupled avidin. Cbp1 is associated with the mitochondrial membranes when high ionic strength extraction conditions are used. However, the protein is easily solubilized by omitting salt from the extraction buffer, which suggests Cbp1 is loosely associated with the membrane through weak hydrophobic interactions. Gel filtration analysis and blue native PAGE showed that Cbp1 is part of a single 900,000-Da complex. The complex was purified using the biotin tag and a sequence-specific protease cleavage site. In addition to Cbp1, the complex contains several polypeptides of molecular weights between 113 and 40 kDa. Among these, we identified another message-specific factor, Pet309, which promotes the stability and translation of mitochondrial cytochrome oxidase subunit I mRNA. A hypothesis is presented in which the Cbp1-Pet309 complex contains several message-specific RNA binding proteins and links transcription to translation of the mRNAs at the membrane.
Collapse
Affiliation(s)
- Kirsten Krause
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
4
|
Saracco SA, Fox TD. Cox18p is required for export of the mitochondrially encoded Saccharomyces cerevisiae Cox2p C-tail and interacts with Pnt1p and Mss2p in the inner membrane. Mol Biol Cell 2002; 13:1122-31. [PMID: 11950926 PMCID: PMC102256 DOI: 10.1091/mbc.01-12-0580] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2001] [Revised: 12/03/2001] [Accepted: 12/24/2001] [Indexed: 11/11/2022] Open
Abstract
The amino- and carboxy-terminal domains of mitochondrially encoded cytochrome c oxidase subunit II (Cox2p) are translocated out of the matrix to the intermembrane space. We have carried out a genetic screen to identify components required to export the biosynthetic enzyme Arg8p, tethered to the Cox2p C terminus by a translational gene fusion inserted into mtDNA. We obtained multiple alleles of COX18, PNT1, and MSS2, as well as mutations in CBP1 and PET309. Focusing on Cox18p, we found that its activity is required to export the C-tail of Cox2p bearing a short C-terminal epitope tag. This is not a consequence of reduced membrane potential due to loss of cytochrome oxidase activity because Cox2p C-tail export was not blocked in mitochondria lacking Cox4p. Cox18p is not required to export the Cox2p N-tail, indicating that these two domains of Cox2p are translocated by genetically distinct mechanisms. Cox18p is a mitochondrial integral inner membrane protein. The inner membrane proteins Mss2p and Pnt1p both coimmunoprecipitate with Cox18p, suggesting that they work together in translocation of Cox2p domains, an inference supported by functional interactions among the three genes.
Collapse
Affiliation(s)
- Scott A Saracco
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | |
Collapse
|
5
|
Vaistij FE, Goldschmidt-Clermont M, Wostrikoff K, Rochaix JD. Stability determinants in the chloroplast psbB/T/H mRNAs of Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 21:469-82. [PMID: 10758498 DOI: 10.1046/j.1365-313x.2000.00700.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The chloroplast gene psbB encodes the chlorophyll-a binding protein P5 (CP47), one of the core subunits of photosystem II (PSII). The psbB mRNA and the downstream psbT and psbH transcripts fail to accumulate in the Chlamydomonas reinhardtii nuclear mutant 222E affected in the Mbb1 gene (Monod et al. 1992, Mol. Gen. Genet. 231, 449-459). By introducing chimeric genes consisting of sequences from psbB and the reporter gene aadA into the chloroplast, the target site of Mbb1 was mapped in the psbB 5' untranslated region (UTR). Primer extension analysis indicates that the psbB RNA exists in a less abundant long form and a more abundant short form, with 5' ends at positions -147 and -35 relative to the AUG initiation codon, respectively. The longer transcript is present both in the wild type (WT) and 222E mutant, but the shorter one accumulates only in the WT. Two putative stem-loop structures in the longer 5' UTR can be deleted individually without affecting psbB mRNA accumulation. Insertion of a poly G cassette in the long leader stabilizes a chimeric psbB transcript in the 222E mutant, suggesting the involvement of a 5'-3' exonuclease. We also show that psbH and psbT are transcribed from the upstream psbB gene promoter, and that the psbH mRNA has its own target sequence for Mbb1 function. We discuss the role of this nucleus-encoded factor, required for specific chloroplast gene expression, in the assembly of the multi-protein PSII complex.
Collapse
Affiliation(s)
- F E Vaistij
- Department of Molecular Biology,Department of Plant Biology, University of Geneva, Sciences II, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
6
|
Chen W, Islas-Osuna MA, Dieckmann CL. Suppressor analysis of mutations in the 5'-untranslated region of COB mRNA identifies components of general pathways for mitochondrial mRNA processing and decay in Saccharomyces cerevisiae. Genetics 1999; 151:1315-25. [PMID: 10101159 PMCID: PMC1460556 DOI: 10.1093/genetics/151.4.1315] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cytochrome b gene in Saccharomyces cerevisiae, COB, is encoded by the mitochondrial genome. Nuclear-encoded Cbp1 protein is required specifically for COB mRNA stabilization. Cbp1 interacts with a CCG element in a 64-nucleotide sequence in the 5'-untranslated region of COB mRNA. Mutation of any nucleotide in the CCG causes the same phenotype as cbp1 mutations, i.e., destabilization of both COB precursor and mature message. In this study, eleven nuclear suppressors of single-nucleotide mutations in CCG were isolated and characterized. One dominant suppressor is in CBP1, while the other 10 semidominant suppressors define five distinct linkage groups. One group of four mutations is in PET127, which is required for 5' end processing of several mitochondrial mRNAs. Another mutation is linked to DSS1, which is a subunit of mitochondrial 3' --> 5' exoribonuclease. A mutation linked to the SOC1 gene, previously defined by recessive mutations that suppress cbp1 ts alleles and stabilize many mitochondrial mRNAs, was also isolated. We hypothesize that the products of the two uncharacterized genes also affect mitochondrial RNA turnover.
Collapse
Affiliation(s)
- W Chen
- Department of Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
7
|
Abstract
Studies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5' untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling in these highly complex expression systems.
Collapse
Affiliation(s)
- J E McCarthy
- Posttranscriptional Control Group, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), Manchester M60 1QD, United Kingdom.
| |
Collapse
|
8
|
Abstract
Several yeast genes produce multiple transcripts with different 3'-ends. Of these, four genes are known to produce truncated transcripts that end within the coding sequence of longer transcripts: CBP1 , AEP2 / ATP13 , RNA14 and SIR1 . It has been shown that the level of the truncated CBP1 transcript increases during the switch to respiratory growth while that of the full-length transcript decreases. To determine whether this phenomenon is unique to CBP1 , northern analysis was used to determine whether the levels of other truncated transcripts are regulated similarly by carbon source. The levels of the shortest transcripts of AEP2 / ATP13 and RNA14 increased during respiration while the shortest SIR1 transcript remained constant. However, two longer SIR1 transcripts were regulated reciprocally by carbon source. Mapping the 3'-ends of each transcript by sequencing partial cDNA clones revealed multiple 3'-ends for each transcript. Examination of the sequences surrounding the 3'-ends of the induced transcripts failed to identify a consensus sequence but did reveal weak putative 3'-end formation signals in all of the transcripts. Similarly, no consensus sequence was found when the sequences surrounding the 3'-ends of the longest transcripts were compared, but again weak putative 3'-end formation signals were identified. These data are suggestive of carbon source regulation of alternative poly(A) site choice in yeast.
Collapse
MESH Headings
- Base Sequence
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
- Blotting, Northern
- Carbon/metabolism
- DNA-Binding Proteins/genetics
- Fungal Proteins/genetics
- Gene Expression Regulation, Fungal
- Glycerol/pharmacology
- Models, Biological
- Molecular Sequence Data
- Molecular Weight
- Proton-Translocating ATPases/genetics
- RNA Processing, Post-Transcriptional
- RNA, Fungal/analysis
- RNA, Fungal/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Regulatory Sequences, Nucleic Acid
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins
- Silent Information Regulator Proteins, Saccharomyces cerevisiae
- Trans-Activators/genetics
- mRNA Cleavage and Polyadenylation Factors
Collapse
Affiliation(s)
- K A Sparks
- Department of Biochemistry and Department Molecular and Cellular Biology, Life Sciences South Room 454, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
9
|
Grossman LI, Seelan RS, Jaradat SA. Transcriptional regulation of mammalian cytochrome c oxidase genes. Electrophoresis 1998; 19:1254-9. [PMID: 9694260 DOI: 10.1002/elps.1150190805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cytochrome c oxidase (COX) holoenzyme is a 13-subunit complex that carries out the terminal step in the electron transport chain. Three of the subunits, which contain the electron transfer function, are coded by mitochondrial DNA and the other ten subunits by nuclear DNA. Since the holoenzyme contains equivalent amounts of each subunit, we and others have examined transcriptional regulation of COX nuclear subunits to explore whether there is a common basis for co-regulation. Each gene is seen to have a unique pattern of recognition by regulatory factors; although some factors bind to more than one gene, not all COX genes seem to be regulated by the same set of factors. Current information about the COX promoters that have been examined is summarized, and the relation of promoter regulation to coordinate gene expression is discussed.
Collapse
Affiliation(s)
- L I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
10
|
Liu Y, Gu KL, Dieckmann CL. Independent regulation of full-length and 5'-truncated PAS5 mRNAs in Saccharomyces cerevisiae. Yeast 1996; 12:135-43. [PMID: 8686377 DOI: 10.1002/(sici)1097-0061(199602)12:2%3c135::aid-yea892%3e3.0.co;2-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Peroxisome assembly in Saccharomyces cerevisiae requires the products of several genes. In this report, the PAS5 gene has been characterized. The gene is on the left arm of chromosome X and encodes a polypeptide with similarity to the mammalian peroxisome assembly factor-1 (PAF-1). Two different length transcripts are produced from the yeast PAS5 gene. The longer mRNAs encompass an open reading frame, while the shorter transcripts initiate 46-110 base pairs downstream of the first in-frame AUG. The longer transcripts are induced four-fold on medium containing fatty acids as the sole carbon source, while the shorter transcripts are induced up to ten-fold on medium containing glycerol as a carbon source. The full-length coding sequence encodes a protein with a calculated molecular weight of 30.7 kDa. A protein of 25 kDa could be translated from the shorter transcripts and would lack a very acidic domain found in the amino-terminal extension of the longer protein. The common portion of the proteins is very basic; the calculated pI of the longer polypeptide is 9.02 and that of the shorter protein is 10.06.
Collapse
Affiliation(s)
- Y Liu
- Department of Biochemistry, University of Arizona, Tucson 85721, USA
| | | | | |
Collapse
|
11
|
|
12
|
Golik P, Szczepanek T, Bartnik E, Stepien PP, Lazowska J. The S. cerevisiae nuclear gene SUV3 encoding a putative RNA helicase is necessary for the stability of mitochondrial transcripts containing multiple introns. Curr Genet 1995; 28:217-24. [PMID: 8529267 DOI: 10.1007/bf00309780] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The product of the nuclear gene SUV3 is implicated in a variety of post-transcriptional processes in yeast mitochondria. We have analysed the effect of SUV3 gene-disruption on the expression of intron-containing alleles of the mitochondrial cytb and cox1 genes. We have constructed several strains with mitochondrial genomes containing different combinations of cytb and cox1 introns, and associated these genomes with the disruption of SUV3. The resulting strains were tested for their respiratory competence and spectral cytochrome content. All the strains containing only two or three introns showed normal expression of cytb and cox1, whereas the strains containing more introns were unable to express the appropriate gene. The analysis of mitochondrial RNAs by Northern hybridisation showed that the loss of respiratory competence in the strains containing more introns is due to the decrease of mRNA level with no over-accumulation of high-molecular-weight precursors. However, the transcription of the genes was not affected. These results led us to the notion that SUV3 is required for the stability of intron-containing cytb and cox1 transcripts in a cumulative way, not dependent on any particular intron.
Collapse
Affiliation(s)
- P Golik
- Centre de Génétique Moléculaire du CNRS, Yvette, France
| | | | | | | | | |
Collapse
|
13
|
Vandenbol M, Durand P, Bolle PA, Dion C, Portetelle D, Hilger F. Sequence analysis of a 40.2 kb DNA fragment located near the left telomere of yeast chromosome X. Yeast 1994; 10:1657-62. [PMID: 7725802 DOI: 10.1002/yea.320101216] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have sequenced on both strands a 40,257 bp fragment located near the left telomere of chromosome X of Saccharomyces cerevisiae. The sequenced segment contains 21 open reading frames (ORFs) at least 100 amino acids long. Five of the ORFs correspond to known amino acid sequences: two hypothetical proteins in the subtelomeric Y' repeat region of 65.4 and 12.8 KDa, the cytochrome B pre-mRNA processing CBP1 protein, the mitochondrial nuclease NUC1 and the CRT1 protein. Of the 16 remaining ORFs, eight show highest homologies with the S. cerevisiae hexose transporters family (two ORFs), the yeast alpha-glucosidase (two ORFs), the yeast PEP1 precursor, the Escherichia coli galactoside O-acetyltransferase, the S. cerevisiae 137.7 KDa protein located in the Y' region and a protein of unknown function of Schizosaccharomyces pombe. Finally, eight of the ORFs exhibit no significant similarity with any amino acid sequences described in data banks. DNA sequence comparison has revealed the presence of different repeated elements characteristic of yeast chromosome ends. Disruption studies have been performed on two ORFs encoding putative proteins of unknown function.
Collapse
Affiliation(s)
- M Vandenbol
- Unité de Microbiologie, Faculté des Sciences Agronomiques de Gembloux, Belgium
| | | | | | | | | | | |
Collapse
|
14
|
Wallis MG, Groudinsky O, Slonimski PP, Dujardin G. The NAM1 protein (NAM1p), which is selectively required for cox1, cytb and atp6 transcript processing/stabilisation, is located in the yeast mitochondrial matrix. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 222:27-32. [PMID: 8200349 DOI: 10.1111/j.1432-1033.1994.tb18837.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The NAM1 nuclear gene was shown to control the stability and/or processing of mitochondrial transcripts of the cytochrome b, cytochrome oxidase subunit I and ATP synthase subunit VI genes [Groudinsky O., Bousquet I., Wallis M. G., Slonimski, P. P. & Dujardin G. (1993) Mol. Gen. Genet. 240, 419-427]. In order to better understand the mode of action of the NAM1 gene product, we have examined its intracellular fate. A fusion plasmid enabling bacterial over-expression of the corresponding protein-A-NAM1 cognate was constructed and subsequently employed as an antigen to raise polyclonal antibodies. These antibodies specifically recognise a 50-kDa protein which purifies along with the mitochondria and corresponds to NAM1p. Submitochondrial localisation experiments show that NAM1p is a soluble protein, located interior to the mitoplasts. Matricial location is a strong argument in favour of a direct interaction of NAM1p with particular mitochondrial transcripts and leads us to propose a model in which NAM1p could be an RNA-convoying protein stabilising and directing mitochondrial transcripts towards the inner face of the inner membrane where translation and assembly seem to occur.
Collapse
Affiliation(s)
- M G Wallis
- Centre de Génétique Moléculaire du CNRS, Université Paris VI, Gif sur Yvette, France
| | | | | | | |
Collapse
|
15
|
Smooker PM, Macreadie IJ, Wright JL, Lukins HB. Suppression of a yeast mitochondrial RNA processing defect by nuclear mutations. Curr Genet 1994; 25:239-44. [PMID: 7923410 DOI: 10.1007/bf00357168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The S. cerevisiae strain h56 is a temperature-sensitive mit- mutant containing a single nucleotide substitution in the region 5' to the reading frame of the mitochondrial var1 gene. The mutation decreases the efficiency of processing of a precursor RNA such that little var1 mRNA is produced at the restrictive temperature, 36 degrees C. This communication reports the isolation and characterization of several strains carrying nuclear mutations which suppress the temperature-sensitivity of h56. Both dominant and recessive suppressor mutations were isolated. One dominant suppressor strain (h56-S4) was characterized biochemically, and the mechanism of suppression shown to involve a restoration of precursor RNA processing at the restrictive temperature, with a concomitant increase in the synthesis of the var1 protein. It appears likely that the suppressing allele encodes a component of an RNA processing endoribonuclease active on var1 transcripts. A genomic library was constructed from the h56-S4 strain, and several plasmids showing suppressed activity were isolated. A preliminary analysis of these plasmids is presented.
Collapse
Affiliation(s)
- P M Smooker
- Department of Biochemistry, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
16
|
Groudinsky O, Bousquet I, Wallis MG, Slonimski PP, Dujardin G. The NAM1/MTF2 nuclear gene product is selectively required for the stability and/or processing of mitochondrial transcripts of the atp6 and of the mosaic, cox1 and cytb genes in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1993; 240:419-27. [PMID: 8413192 DOI: 10.1007/bf00280396] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The NAM1/MTF2 gene was firstly isolated as a multicopy suppressor of mitochondrial splicing deficiencies and independently as a gene of which a thermosensitive allele affects mitochondrial transcription in organello. To determine which step in mitochondrial RNA metabolism is controlled in vivo by the NAM1 gene, mitochondrial transcripts of seven transcription units from strains carrying an inactive nam1::URA3 gene disruption in various mitochondrial genetic backgrounds were analysed by Northern blot hybridisations. In a strain carrying an intron-containing mitochondrial genome, the inactivation of the NAM1 gene led to a strong decrease in (or total absence of) the mosaic cytb and cox1 mRNAs and in transcripts of the atp6-rf3/ens2 genes, which are co-transcribed with cox1. Neither the accumulation of unspliced cytb or cox1 pre-mRNAs, nor that of excised circular intron molecules of ai1 or ai2 were observed, but the abundance of the bi1 and ai7 lariats was comparable to that observed in the wild-type strain, thus demonstrating that transcription of the cytb and cox1 genes does occur. In strains carrying the intron-less mitochondrial genome with or without the rf3/ens2 sequence, wild-type amounts of cytb and cox1 mRNAs were detected while the amount of the atp6 mRNA was always strongly decreased. The abundance of transcripts from five other genes was either slightly (21S rRNA) or not at all (cox2, cox3, atp9 and 15S rRNA) affected by the nam1 inactivation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- O Groudinsky
- Centre de Génétique Moléculaire, Laboratoire propre du CNRS associé à l'Université P. et M. Curie, Gif sur Yvette, France
| | | | | | | | | |
Collapse
|
17
|
Abstract
The combination of genetic, molecular and biochemical approaches have made the yeast Saccharomyces cerevisiae a convenient organism to study translation. The sequence similarity of translation factors from yeast and other organisms suggests a high degree of conservation in the translational machineries. This view is also strengthened by a functional analogy of some proteins implicated in translation. Beautiful genetic experiments have confirmed existing models and added new insights in the mechanism of translation. This review summarizes recent experiments using yeast as a model system for the analysis of this complex process.
Collapse
Affiliation(s)
- P Linder
- Department of Microbiology, Biozentrum, Basel, Switzerland
| |
Collapse
|
18
|
Krummeck G, Gottenöf T, Rödel G. AUG codons in the RNA leader sequences of the yeast PET genes CBS1 and SCO1 have no influence on translation efficiency. Curr Genet 1991; 20:465-9. [PMID: 1782674 DOI: 10.1007/bf00334773] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report that the major transcription start sites of the yeast PET gene SCO1 are located at positions -149 and -125 relative to the AUG initiation codon of the SCO1 reading frame. The leader sequences of the resulting mRNAs possess a single AUG codon at position -49, which initiates a short open reading frame of three amino acids. The recent finding of a similar situation in the case of the PET gene CBS1 prompted us to address the question as to whether these AUG codons might play some role in the expression of these PET genes. After removal of the upstream AUG codons by site-directed mutagenesis, expression was monitored by use of lacZ fusions and compared to the respective wild-type constructs. Our data show that under all growth conditions tested the leader-contained AUG initiation codons have no significant influence on the expression of both PET genes.
Collapse
Affiliation(s)
- G Krummeck
- Labor für Molekulare Biologie und Allgemeine Pathologie, Universität Ulm, München, Federal Republic of Germany
| | | | | |
Collapse
|
19
|
Abstract
We describe a collection of nuclear respiratory-defective mutants (pet mutants) of Saccharomyces cerevisiae consisting of 215 complementation groups. This set of mutants probably represents a substantial fraction of the total genetic information of the nucleus required for the maintenance of functional mitochondria in S. cerevisiae. The biochemical lesions of mutants in approximately 50 complementation groups have been related to single enzymes or biosynthetic pathways, and the corresponding wild-type genes have been cloned and their structures have been determined. The genes defined by an additional 20 complementation groups were identified by allelism tests with mutants characterized in other laboratories. Mutants representative of the remaining complementation groups have been assigned to one of the following five phenotypic classes: (i) deficiency in cytochrome oxidase, (ii) deficiency in coenzyme QH2-cytochrome c reductase, (iii) deficiency in mitochondrial ATPase, (iv) absence of mitochondrial protein synthesis, and (v) normal composition of respiratory-chain complexes and of oligomycin-sensitive ATPase. In addition to the genes identified through biochemical and genetic analyses of the pet mutants, we have cataloged PET genes not matched to complementation groups in the mutant collection and other genes whose products function in the mitochondria but are not necessary for respiration. Together, this information provides an up-to-date list of the known genes coding for mitochondrial constituents and for proteins whose expression is vital for the respiratory competence of S. cerevisiae.
Collapse
Affiliation(s)
- A Tzagoloff
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | |
Collapse
|
20
|
Identification of the CBP1 polypeptide in mitochondrial extracts from Saccharomyces cerevisiae. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40058-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Grivell LA. Nucleo-mitochondrial interactions in yeast mitochondrial biogenesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 182:477-93. [PMID: 2666128 DOI: 10.1111/j.1432-1033.1989.tb14854.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- L A Grivell
- Department of Molecular Cell Biology, University of Amsterdam, The Netherlands
| |
Collapse
|
22
|
Wu M, Tzagoloff A. Identification and Characterization of a New Gene (CBP3) Required for the Expression of Yeast Coenzyme QH2-Cytochrome c Reductase. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)60438-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
23
|
Schulze M, Rödel G. SCO1, a yeast nuclear gene essential for accumulation of mitochondrial cytochrome c oxidase subunit II. MOLECULAR & GENERAL GENETICS : MGG 1988; 211:492-8. [PMID: 2835635 DOI: 10.1007/bf00425706] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have identified and isolated a novel yeast nuclear gene (SCO1) which is essential for accumulation of the mitochondrially synthesized subunit II of cytochrome c oxidase (CoxII). Analysis of the mitochondrial translation products in a sco1-1 mutant reveals a strong reduction in CoxII. Examination of mitochondrial transcripts by Northern blot hybridization shows that transcription and transcript maturation of OXI1, the gene coding for CoxII, is not affected. Therefore the SCO1 gene product must be involved in a post-transcriptional step in the synthesis of CoxII. We have isolated a 1.7 kb DNA fragment from a yeast gene bank which carries the functional SCO1 gene. Two RNA species of 0.9 kb and 1.2 kb, respectively, hybridize with this DNA fragment, which is localized on chromosome II. Cells whose chromosomal 1.7 kb fragment has been replaced by the yeast URA3 gene fail to accumulate CoxII and in addition subunit I of cytochrome c oxidase (CoxI). The possibility that the SCO1 gene product is bifunctional, i.e. required for both CoxI and CoxII accumulation, is discussed.
Collapse
Affiliation(s)
- M Schulze
- Institut für Genetik und Mikrobiologie, Universität München, Federal Republic of Germany
| | | |
Collapse
|
24
|
Abstract
Comparative analysis of the components of the mitochondrial translational apparatus reveals a remarkable variability. For example the mitochondrial ribosomal rRNAs, display a three-fold difference in size in different organisms as a result of insertions or deletions, which affect specific areas of the rRNA molecule. This suggests that such areas are either not essential for mitoribosome function or that they can be replaced by proteins. Also mitochondrial tRNAs and mitoribosomal proteins are much less conserved than their cytoplasmic counterparts. Not only do the mitochondrial translational molecules vary in properties, also the location of the genes from which they are derived is not the same in all cases: mitochondrial tRNA genes which usually are found in the mtDNA, may have a nuclear location in protozoa and, conversely, only in fungi one finds a mitoribosomal protein gene in the organellar genome. The high rate of change of the components of the mitochondrial protein synthesizing machinery is accompanied by a number of unique features of the translation process: (i) the mitochondrial genetic code differs substantially from the standard code in a species-specific manner; (ii) special codon-anticodon recognition rules are followed; (iii) unusual mechanisms of translational initiation may exist. These observations suggest that the evolutionary pressures that have shaped the present day mitochondrial translational apparatus have been different in different organisms and also distinct from those acting on the cytoplasmic machinery. In spite of the interspecies variability, however, many features of the mitochondrial and bacterial protein synthetic apparatus show a clear resemblance, providing support for the hypothesis of a prokaryotic endosymbiont ancestry of mitochondria.
Collapse
Affiliation(s)
- R Benne
- Laboratory of Biochemistry, University of Amsterdam, The Netherlands
| | | |
Collapse
|
25
|
Cigan AM, Donahue TF. Sequence and structural features associated with translational initiator regions in yeast--a review. Gene X 1987; 59:1-18. [PMID: 3325335 DOI: 10.1016/0378-1119(87)90261-7] [Citation(s) in RCA: 336] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have compared the translational initiator regions of 131 yeast genes. 95% utilize the first AUG from the 5' end of the message as the start codon for translation. Yeast leader regions in general are rich in adenine nucleotides (nt), have an average length of 52 nt, and are void of significant secondary structure. Sequences immediately adjacent to AUG start codons are preferred, however, the bias in nucleotide distribution (5'-A-YAA-UAAUGUCU-3') does not reflect a higher eukaryotic consensus (5'-CACCAUGG-3') with the exception of an adenine nucleotide preference at the -3 position. A minority of yeast mRNAs that contain AUG codons in the leader region that do not serve as the start codon for the primary gene product differ from the majority of mRNAs by one or more of these general properties. This analysis appears to indicate that basic features associated with yeast leader regions are consistent with a general mechanism of initiation of protein synthesis in eukaryotes, as proposed by the ribosomal 'scanning' model, but perhaps only basic features associated with ribosomal recognition of an AUG start codon are intact.
Collapse
Affiliation(s)
- A M Cigan
- Department of Molecular Biology, Northwestern University Medical School, Chicago, IL 60611
| | | |
Collapse
|
26
|
Costanzo MC, Mueller PP, Strick CA, Fox TD. Primary structure of wild-type and mutant alleles of the PET494 gene of Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1986; 202:294-301. [PMID: 3010052 DOI: 10.1007/bf00331654] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The product of the yeast nuclear gene PET494 is required specifically for the translation of the mitochondrially encoded subunit III of cytochrome c oxidase. We have determined the DNA sequence of a 1.9 kb fragment carrying PET494. The sequence contains a single long open reading frame of 489 codons. This open reading frame encodes the PET494 protein since the DNA sequence of the corresponding fragment derived from a strain with a known pet494 amber mutation contained an in frame UAG codon. The results of S1 nuclease protection experiments demonstrated that this region is transcribed and that the 5' ends of the major transcripts lie 30 to 40 base-pairs upstream of the first AUG codon in the PET494 reading frame. The predicted PET494 protein has a highly basic amino-terminal domain of 66 amino acids followed by a stretch of 32 uncharged residues, half of which are hydrophobic. The remainder of the protein is not unusual in amino acid composition or distribution except that the carboxyterminal region is notably basic. The phenotype of mutations generated in vitro around codon 119 by exonuclease digestion and linker insertion indicated that this region is dispensable for function. A mutation caused by deletion of 101 bp of coding sequence behaved like a simple frameshift when inserted into the chromosome: it was partially suppressed by the recessive non-group specific frameshift suppressor suf13 and reverted to Pet+ phenotype by mutations linked to PET494.
Collapse
|
27
|
Myers AM, Tzagoloff A. MSW, a yeast gene coding for mitochondrial tryptophanyl-tRNA synthetase. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)95746-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|