1
|
Toepfer S, Keniya MV, Lackner M, Monk BC. Azole Combinations and Multi-Targeting Drugs That Synergistically Inhibit Candidozyma auris. J Fungi (Basel) 2024; 10:698. [PMID: 39452650 PMCID: PMC11508803 DOI: 10.3390/jof10100698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024] Open
Abstract
Limited antifungal treatment options and drug resistance require innovative approaches to effectively combat fungal infections. Combination therapy is a promising strategy that addresses these pressing issues by concurrently targeting multiple cellular sites. The drug targets usually selected for combination therapy are from different cellular pathways with the goals of increasing treatment options and reducing development of resistance. However, some circumstances can prevent the implementation of combination therapy in clinical practice. These could include the increased risk of adverse effects, drug interactions, and even the promotion of drug resistance. Furthermore, robust clinical evidence supporting the superiority of combination therapy over monotherapy is limited and underscores the need for further research. Despite these challenges, synergies detected with different antifungal classes, such as the azoles and echinocandins, suggest that treatment strategies can be optimized by better understanding the underlying mechanisms. This review provides an overview of multi-targeting combination strategies with a primary focus on Candidozyma auris infections.
Collapse
Affiliation(s)
- Stephanie Toepfer
- Sir John Walsh Research Institute, University of Otago, Dunedin 9016, New Zealand;
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, 6020 Innsbruck, Austria;
| | - Mikhail V. Keniya
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, 6020 Innsbruck, Austria;
| | - Brian C. Monk
- Sir John Walsh Research Institute, University of Otago, Dunedin 9016, New Zealand;
| |
Collapse
|
2
|
Mao CX, Luo J, Zhang Y, Zhang CQ. Targeted deletion of three CYP51s in Fusarium fujikuroi and their different roles in determining sensitivity to 14α-demethylase inhibitor fungicides. PEST MANAGEMENT SCIENCE 2023; 79:1324-1330. [PMID: 36424479 DOI: 10.1002/ps.7304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 11/01/2022] [Accepted: 11/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Fusarium fujikuroi is the pathogenic agent of rice bakanae disease and has developed serious resistance to prochloraz, a 14α-demethylase inhibitor (DMI). Prochloraz resistance in F. fujikuroi is caused by cooperation between FfCyp51B with Cyp51A and shows cross-resistance only to prothioconazole but not to tebuconazole, difenoconazole, propiconazole, metconazole, hexaconazole, and triadimefon. This study aimed to analyze the functions of the three Cyp51s in F. fujikuroi, especially their role in determining sensitivity to DMIs. RESULTS The respective deletion of FfCyp51A, Cyp51B, and Cyp51C had no obvious effect on morphology, conidium germination, or pathogenicity. The involvement of growth, growth and ergosterol biosynthesis, and conidium production and ergosterol biosynthesis was observed for FfCyp51A, Cyp51B, and Cyp51C, respectively. Compared with the sensitive isolate of F. fujikuroi, the effect on sensitivity to the tested DMIs was divided into four groups: (i) both of Cyp51A and Cyp51B positively regulate the sensitivity to prochloraz and prothioconazole; (ii) Cyp51B positively regulate the sensitivity to tebuconazole and metconazole, but negatively regulate the sensitivity to difenoconazole; (iii) Cyp51A and Cyp51B play opposite roles in the sensitivity to triadimefon. Therefore, deletion of Cyp51A in F. fujikuroi confers a higher sensitivity to triadimefon, while deletion of Cyp51B results in a triadimefon-resistant mutant isolate; (iv) deletion of Cyp51B yielded a mutant isolate that was more resistant to propiconazole and hexaconazole. CONCLUSION Sophisticated interactions exist within the three Cyp51 genes to DMIs fungicides sensitivity in F. fujikuroi, and Cyp51B probably plays a more critical role than Cyp51A and Cyp51C. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cheng-Xin Mao
- Department of Crop Protection, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Ju Luo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yu Zhang
- Department of Crop Protection, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Chuan-Qing Zhang
- Department of Crop Protection, Zhejiang Agriculture and Forest University, Hangzhou, China
| |
Collapse
|
3
|
Jin Q, Li G, Qin K, Shang Y, Yan H, Liu H, Zeng B, Hu Z. The expression pattern, subcellular localization and function of three sterol 14α-demethylases in Aspergillus oryzae. Front Genet 2023; 14:1009746. [PMID: 36755574 PMCID: PMC9899854 DOI: 10.3389/fgene.2023.1009746] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Sterol 14α-demethylase catalyzes lanosterol hydroxylation, which is one of the key reactions in the biosynthetic pathway of sterols. There is only one sterol 14α-demethylases gene named Erg11 in Saccharomyces cerevisiae genome. In this study, three sterol 14α-demethylases genes named AoErg11A, AoErg11B and AoErg11C were identified in Aspergillus oryzae genome through bioinformatics analysis. The function of these three genes were studied by yeast complementation, and the expression pattern/subcellular localization of these genes/proteins were detected. The results showed that the three AoErg11s were expressed differently at different growth times and under different abiotic stresses. All of the three proteins were located in endoplasmic reticulum. The AoErg11s could not restore the temperature-sensitive phenotype of S. cerevisiae erg11 mutant. Overexpression of the three AoErg11s affected both growth and sporulation, which may be due to the effect of AoErg11s on ergosterol content. Therefore, this study revealed the functions of three AoErg11s and their effects on the growth and ergosterol biosynthesis of A. oryzae, which may contribute to the further understanding of the ergosterol biosynthesis and regulation mechanism in this important filamentous fungus, A. oryzae.
Collapse
Affiliation(s)
- Qi Jin
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Ganghua Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Kunhai Qin
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yitong Shang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Huanhuan Yan
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Hongliang Liu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China,*Correspondence: Zhihong Hu, ; Bin Zeng,
| | - Zhihong Hu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China,*Correspondence: Zhihong Hu, ; Bin Zeng,
| |
Collapse
|
4
|
A binding mode hypothesis for prothioconazole binding to CYP51 derived from first principles quantum chemistry. J Comput Aided Mol Des 2020; 35:493-503. [PMID: 32638183 DOI: 10.1007/s10822-020-00331-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
Abstract
In order to assess safety and efficacy of small molecule drugs as well as agrochemicals, it is key to understanding the nature of protein-ligand interaction on an atomistic level. Prothioconazole (PTZ), although commonly considered to be an azole-like inhibitor of sterol 14-α demethylase (CYP51), differs from classical azoles with respect to how it binds its target. The available evidence is only indirect, as crystallographic elucidation of CYP51 complexed with PTZ have not yet been successful. We derive a binding mode hypothesis for PTZ binding its target, compare to DPZ, a triazole-type metabolite of PTZ, and set our findings into context of its biochemistry and spectroscopy. Quantum Theory of Atoms in Molecules (QTAIM) analysis of computed DFT electron densities is used to qualitatively understand the topology of binding, revealing significant differences of how R- and S-enantiomers are binding and, in particular, how the thiozolinthione head of PTZ binds to heme compared to DPZ's triazole head. The difference of binding enthalpy is calculated at coupled cluster (DLPNO-CCSD(T)) level of theory, and we find that DPZ binds stronger to CYP51 than PTZ by more than ΔH ~ 11 kcal/mol.
Collapse
|
5
|
Inhibitory Effects of Berberine Hydrochloride on Trichophyton mentagrophytes and the Underlying Mechanisms. Molecules 2019; 24:molecules24040742. [PMID: 30791402 PMCID: PMC6412246 DOI: 10.3390/molecules24040742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND T. mentagrophytes can infect all mammals, including rabbits, causing serious infections with remarkable economic losses for rabbit farmers. Berberine is an alkaloid that is effective against a variety of microbial infections such as T. mentagrophytes. Growth curve by dry weight determination and in-vivo antifungal assay were carried out to clarify the inhibitory effect of berberine hydrochloride against T. mentagrophytes. Transcriptomics analyses were also carried out for better understanding of the underlying mechanisms. RESULTS The growth rate of T. mentagrophytes was significantly higher in control condition than under berberine hydrochloride or clotrimazole for 60 h. The growth rate of T. mentagrophytes was significantly slighter higher in berberine condition (1 mg) than under clotrimazole for 46 h. T. mentagrophytes seriously shrunk after berberine or clotrimazole treatment, as observed by TEM and in SEM. Significant recovery was evident in three berberine groups on day 6 compared with the DMSO group. Results from transcriptomics analyses showed 18,881 identified unigenes, including 18,754 and 12,127 in the NT and SwissProt databases. Among these, 12,011, 9174, and 11,679 unigenes belonged to 3 Gene Ontology (GO), 43 KEGG, and 25 KOG categories, respectively. Interestingly, we found that down-regulation of 14α-demethylase exposed to various medicines was slightly different, i.e., berberine hydrochloride (fold change -3.4956) and clotrimazole (fold change -2.1283) caused various degrees of alteration. CONCLUSIONS Berberine hydrochloride could inhibit the growth of T. mentagrophytes. Berberine hydrochloride could also cure dermatosis induced by T. mentagrophytes. Down-regulation of 14α-demethylase exposed to various medicines was slightly different and might be one of the anti-resistance mechanisms of berberine hydrochloride in T. mentagrophytes. The present investigation provides considerable transcript sequence data that would help further assess the antifungal mechanisms against T. mentagrophytes, for antifungal medicine development.
Collapse
|
6
|
Lepesheva GI, Friggeri L, Waterman MR. CYP51 as drug targets for fungi and protozoan parasites: past, present and future. Parasitology 2018; 145:1820-1836. [PMID: 29642960 PMCID: PMC6185833 DOI: 10.1017/s0031182018000562] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The efficiency of treatment of human infections with the unicellular eukaryotic pathogens such as fungi and protozoa remains deeply unsatisfactory. For example, the mortality rates from nosocomial fungemia in critically ill, immunosuppressed or post-cancer patients often exceed 50%. A set of six systemic clinical azoles [sterol 14α-demethylase (CYP51) inhibitors] represents the first-line antifungal treatment. All these drugs were discovered empirically, by monitoring their effects on fungal cell growth, though it had been proven that they kill fungal cells by blocking the biosynthesis of ergosterol in fungi at the stage of 14α-demethylation of the sterol nucleus. This review briefs the history of antifungal azoles, outlines the situation with the current clinical azole-based drugs, describes the attempts of their repurposing for treatment of human infections with the protozoan parasites that, similar to fungi, also produce endogenous sterols, and discusses the most recently acquired knowledge on the CYP51 structure/function and inhibition. It is our belief that this information should be helpful in shifting from the traditional phenotypic screening to the actual target-driven drug discovery paradigm, which will rationalize and substantially accelerate the development of new, more efficient and pathogen-oriented CYP51 inhibitors.
Collapse
Affiliation(s)
- Galina I. Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Laura Friggeri
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Michael R. Waterman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| |
Collapse
|
7
|
Teixeira M, Moreno L, Stielow B, Muszewska A, Hainaut M, Gonzaga L, Abouelleil A, Patané J, Priest M, Souza R, Young S, Ferreira K, Zeng Q, da Cunha M, Gladki A, Barker B, Vicente V, de Souza E, Almeida S, Henrissat B, Vasconcelos A, Deng S, Voglmayr H, Moussa T, Gorbushina A, Felipe M, Cuomo C, de Hoog GS. Exploring the genomic diversity of black yeasts and relatives ( Chaetothyriales, Ascomycota). Stud Mycol 2017; 86:1-28. [PMID: 28348446 PMCID: PMC5358931 DOI: 10.1016/j.simyco.2017.01.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The order Chaetothyriales (Pezizomycotina, Ascomycetes) harbours obligatorily melanised fungi and includes numerous etiologic agents of chromoblastomycosis, phaeohyphomycosis and other diseases of vertebrate hosts. Diseases range from mild cutaneous to fatal cerebral or disseminated infections and affect humans and cold-blooded animals globally. In addition, Chaetothyriales comprise species with aquatic, rock-inhabiting, ant-associated, and mycoparasitic life-styles, as well as species that tolerate toxic compounds, suggesting a high degree of versatile extremotolerance. To understand their biology and divergent niche occupation, we sequenced and annotated a set of 23 genomes of main the human opportunists within the Chaetothyriales as well as related environmental species. Our analyses included fungi with diverse life-styles, namely opportunistic pathogens and closely related saprobes, to identify genomic adaptations related to pathogenesis. Furthermore, ecological preferences of Chaetothyriales were analysed, in conjuncture with the order-level phylogeny based on conserved ribosomal genes. General characteristics, phylogenomic relationships, transposable elements, sex-related genes, protein family evolution, genes related to protein degradation (MEROPS), carbohydrate-active enzymes (CAZymes), melanin synthesis and secondary metabolism were investigated and compared between species. Genome assemblies varied from 25.81 Mb (Capronia coronata) to 43.03 Mb (Cladophialophora immunda). The bantiana-clade contained the highest number of predicted genes (12 817 on average) as well as larger genomes. We found a low content of mobile elements, with DNA transposons from Tc1/Mariner superfamily being the most abundant across analysed species. Additionally, we identified a reduction of carbohydrate degrading enzymes, specifically many of the Glycosyl Hydrolase (GH) class, while most of the Pectin Lyase (PL) genes were lost in etiological agents of chromoblastomycosis and phaeohyphomycosis. An expansion was found in protein degrading peptidase enzyme families S12 (serine-type D-Ala-D-Ala carboxypeptidases) and M38 (isoaspartyl dipeptidases). Based on genomic information, a wide range of abilities of melanin biosynthesis was revealed; genes related to metabolically distinct DHN, DOPA and pyomelanin pathways were identified. The MAT (MAting Type) locus and other sex-related genes were recognized in all 23 black fungi. Members of the asexual genera Fonsecaea and Cladophialophora appear to be heterothallic with a single copy of either MAT-1-1 or MAT-1-2 in each individual. All Capronia species are homothallic as both MAT1-1 and MAT1-2 genes were found in each single genome. The genomic synteny of the MAT-locus flanking genes (SLA2-APN2-COX13) is not conserved in black fungi as is commonly observed in Eurotiomycetes, indicating a unique genomic context for MAT in those species. The heterokaryon (het) genes expansion associated with the low selective pressure at the MAT-locus suggests that a parasexual cycle may play an important role in generating diversity among those fungi.
Collapse
Affiliation(s)
- M.M. Teixeira
- Division of Pathogen Genomics, Translational Genomics Research Institute (TGen), Flagstaff, AZ, USA
- Department of Cell Biology, University of Brasília, Brasilia, Brazil
| | - L.F. Moreno
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Department of Basic Pathology, Federal University of Paraná State, Curitiba, PR, Brazi1
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - B.J. Stielow
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - A. Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - M. Hainaut
- Université Aix-Marseille (CNRS), Marseille, France
| | - L. Gonzaga
- The National Laboratory for Scientific Computing (LNCC), Petropolis, Brazil
| | | | - J.S.L. Patané
- Department of Biochemistry, University of São Paulo, Brazil
| | - M. Priest
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - R. Souza
- The National Laboratory for Scientific Computing (LNCC), Petropolis, Brazil
| | - S. Young
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - K.S. Ferreira
- Department of Biological Sciences, Federal University of São Paulo, Diadema, SP, Brazil
| | - Q. Zeng
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - M.M.L. da Cunha
- Núcleo Multidisciplinar de Pesquisa em Biologia UFRJ-Xerém-NUMPEX-BIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A. Gladki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - B. Barker
- Division of Pathogen Genomics, Translational Genomics Research Institute (TGen), Flagstaff, AZ, USA
| | - V.A. Vicente
- Department of Basic Pathology, Federal University of Paraná State, Curitiba, PR, Brazi1
| | - E.M. de Souza
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - S. Almeida
- Department of Clinical and Toxicological Analysis, University of São Paulo, São Paulo, SP, Brazil
| | - B. Henrissat
- Université Aix-Marseille (CNRS), Marseille, France
| | - A.T.R. Vasconcelos
- The National Laboratory for Scientific Computing (LNCC), Petropolis, Brazil
| | - S. Deng
- Shanghai Institute of Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - H. Voglmayr
- Department of Systematic and Evolutionary Botany, University of Vienna, Vienna, Austria
| | - T.A.A. Moussa
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - A. Gorbushina
- Federal Institute for Material Research and Testing (BAM), Berlin, Germany
| | - M.S.S. Felipe
- Department of Cell Biology, University of Brasília, Brasilia, Brazil
| | - C.A. Cuomo
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - G. Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Department of Basic Pathology, Federal University of Paraná State, Curitiba, PR, Brazi1
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Bromley M, Johns A, Davies E, Fraczek M, Mabey Gilsenan J, Kurbatova N, Keays M, Kapushesky M, Gut M, Gut I, Denning DW, Bowyer P. Mitochondrial Complex I Is a Global Regulator of Secondary Metabolism, Virulence and Azole Sensitivity in Fungi. PLoS One 2016; 11:e0158724. [PMID: 27438017 PMCID: PMC4954691 DOI: 10.1371/journal.pone.0158724] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 06/21/2016] [Indexed: 12/12/2022] Open
Abstract
Recent estimates of the global burden of fungal disease suggest that that their incidence has been drastically underestimated and that mortality may rival that of malaria or tuberculosis. Azoles are the principal class of antifungal drug and the only available oral treatment for fungal disease. Recent occurrence and increase in azole resistance is a major concern worldwide. Known azole resistance mechanisms include over—expression of efflux pumps and mutation of the gene encoding the target protein cyp51a, however, for one of the most important fungal pathogens of humans, Aspergillus fumigatus, much of the observed azole resistance does not appear to involve such mechanisms. Here we present evidence that azole resistance in A. fumigatus can arise through mutation of components of mitochondrial complex I. Gene deletions of the 29.9KD subunit of this complex are azole resistant, less virulent and exhibit dysregulation of secondary metabolite gene clusters in a manner analogous to deletion mutants of the secondary metabolism regulator, LaeA. Additionally we observe that a mutation leading to an E180D amino acid change in the 29.9 KD subunit is strongly associated with clinical azole resistant A. fumigatus isolates. Evidence presented in this paper suggests that complex I may play a role in the hypoxic response and that one possible mechanism for cell death during azole treatment is a dysfunctional hypoxic response that may be restored by dysregulation of complex I. Both deletion of the 29.9 KD subunit of complex I and azole treatment alone profoundly change expression of gene clusters involved in secondary metabolism and immunotoxin production raising potential concerns about long term azole therapy.
Collapse
Affiliation(s)
- Mike Bromley
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, Faculty of Medicine and Human Sciences, University of Manchester, 2.24 Core technology Building, Grafton St., Manchester, M13 9NT, United Kingdom
| | - Anna Johns
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, Faculty of Medicine and Human Sciences, University of Manchester, 2.24 Core technology Building, Grafton St., Manchester, M13 9NT, United Kingdom
| | - Emma Davies
- National Aspergillosis Centre, University Hospital of South Manchester, University of Manchester, School of Translational Medicine, Manchester Academic Health Science Centre, 2nd Floor Education & Research Centre, University of Manchester, Manchester, M23 9LT, United Kingdom
| | - Marcin Fraczek
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, Faculty of Medicine and Human Sciences, University of Manchester, 2.24 Core technology Building, Grafton St., Manchester, M13 9NT, United Kingdom
| | - Jane Mabey Gilsenan
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, Faculty of Medicine and Human Sciences, University of Manchester, 2.24 Core technology Building, Grafton St., Manchester, M13 9NT, United Kingdom
| | - Natalya Kurbatova
- The EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Maria Keays
- The EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Misha Kapushesky
- The EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Marta Gut
- Centro Nacional de Analisis Genomico, Parc Cientific de Barcelona, Baldiri Reixac, 4, PCB - Tower I, 08028 Barcelona, Spain
| | - Ivo Gut
- Centro Nacional de Analisis Genomico, Parc Cientific de Barcelona, Baldiri Reixac, 4, PCB - Tower I, 08028 Barcelona, Spain
| | - David W. Denning
- National Aspergillosis Centre, University Hospital of South Manchester, University of Manchester, School of Translational Medicine, Manchester Academic Health Science Centre, 2nd Floor Education & Research Centre, University of Manchester, Manchester, M23 9LT, United Kingdom
| | - Paul Bowyer
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, Faculty of Medicine and Human Sciences, University of Manchester, 2.24 Core technology Building, Grafton St., Manchester, M13 9NT, United Kingdom
- National Aspergillosis Centre, University Hospital of South Manchester, University of Manchester, School of Translational Medicine, Manchester Academic Health Science Centre, 2nd Floor Education & Research Centre, University of Manchester, Manchester, M23 9LT, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Chen W, Lee MK, Jefcoate C, Kim SC, Chen F, Yu JH. Fungal cytochrome p450 monooxygenases: their distribution, structure, functions, family expansion, and evolutionary origin. Genome Biol Evol 2014; 6:1620-34. [PMID: 24966179 PMCID: PMC4122930 DOI: 10.1093/gbe/evu132] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cytochrome P450 (CYP) monooxygenase superfamily contributes a broad array of biological functions in living organisms. In fungi, CYPs play diverse and pivotal roles in versatile metabolism and fungal adaptation to specific ecological niches. In this report, CYPomes in the 47 genomes of fungi belong to the phyla Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota have been studied. The comparison of fungal CYPomes suggests that generally fungi possess abundant CYPs belonging to a variety of families with the two global families CYP51 and CYP61, indicating individuation of CYPomes during the evolution of fungi. Fungal CYPs show highly conserved characteristic motifs, but very low overall sequence similarities. The characteristic motifs of fungal CYPs are distinguishable from those of CYPs in animals, plants, and especially archaea and bacteria. The four representative motifs contribute to the general function of CYPs. Fungal CYP51s and CYP61s can be used as the models for the substrate recognition sites analysis. The CYP proteins are clustered into 15 clades and the phylogenetic analyses suggest that the wide variety of fungal CYPs has mainly arisen from gene duplication. Two large duplication events might have been associated with the booming of Ascomycota and Basidiomycota. In addition, horizontal gene transfer also contributes to the diversification of fungal CYPs. Finally, a possible evolutionary scenario for fungal CYPs along with fungal divergences is proposed. Our results provide the fundamental information for a better understanding of CYP distribution, structure and function, and new insights into the evolutionary events of fungal CYPs along with the evolution of fungi.
Collapse
Affiliation(s)
- Wanping Chen
- Department of Food Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, ChinaDepartment of Bacteriology and Genetics, University of Wisconsin-Madison
| | - Mi-Kyung Lee
- Department of Bacteriology and Genetics, University of Wisconsin-Madison
| | - Colin Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison
| | - Sun-Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Dae-Jon, Republic of Korea
| | - Fusheng Chen
- Department of Food Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jae-Hyuk Yu
- Department of Bacteriology and Genetics, University of Wisconsin-Madison
| |
Collapse
|
10
|
Geisler K, Hughes RK, Sainsbury F, Lomonossoff GP, Rejzek M, Fairhurst S, Olsen CE, Motawia MS, Melton RE, Hemmings AM, Bak S, Osbourn A. Biochemical analysis of a multifunctional cytochrome P450 (CYP51) enzyme required for synthesis of antimicrobial triterpenes in plants. Proc Natl Acad Sci U S A 2013; 110:E3360-7. [PMID: 23940321 PMCID: PMC3761579 DOI: 10.1073/pnas.1309157110] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Members of the cytochromes P450 superfamily (P450s) catalyze a huge variety of oxidation reactions in microbes and higher organisms. Most P450 families are highly divergent, but in contrast the cytochrome P450 14α-sterol demethylase (CYP51) family is one of the most ancient and conserved, catalyzing sterol 14α-demethylase reactions required for essential sterol synthesis across the fungal, animal, and plant kingdoms. Oats (Avena spp.) produce antimicrobial compounds, avenacins, that provide protection against disease. Avenacins are synthesized from the simple triterpene, β-amyrin. Previously we identified a gene encoding a member of the CYP51 family of cytochromes P450, AsCyp51H10 (also known as Saponin-deficient 2, Sad2), that is required for avenacin synthesis in a forward screen for avenacin-deficient oat mutants. sad2 mutants accumulate β-amyrin, suggesting that they are blocked early in the pathway. Here, using a transient plant expression system, we show that AsCYP51H10 is a multifunctional P450 capable of modifying both the C and D rings of the pentacyclic triterpene scaffold to give 12,13β-epoxy-3β,16β-dihydroxy-oleanane (12,13β-epoxy-16β-hydroxy-β-amyrin). Molecular modeling and docking experiments indicate that C16 hydroxylation is likely to precede C12,13 epoxidation. Our computational modeling, in combination with analysis of a suite of sad2 mutants, provides insights into the unusual catalytic behavior of AsCYP51H10 and its active site mutants. Fungal bioassays show that the C12,13 epoxy group is an important determinant of antifungal activity. Accordingly, the oat AsCYP51H10 enzyme has been recruited from primary metabolism and has acquired a different function compared to other characterized members of the plant CYP51 family--as a multifunctional stereo- and regio-specific hydroxylase in plant specialized metabolism.
Collapse
Affiliation(s)
- Katrin Geisler
- Departments of Metabolic Biology and
- Department of Plant and Environmental Sciences, VKR Research Centre Pro-Active Plants, Faculty of Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark; and
| | - Richard K. Hughes
- Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Frank Sainsbury
- Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | - Martin Rejzek
- Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Shirley Fairhurst
- Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Carl-Erik Olsen
- Department of Plant and Environmental Sciences, VKR Research Centre Pro-Active Plants, Faculty of Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark; and
| | - Mohammed Saddik Motawia
- Department of Plant and Environmental Sciences, VKR Research Centre Pro-Active Plants, Faculty of Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark; and
| | | | - Andrew M. Hemmings
- Schools of Chemistry and
- Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Søren Bak
- Department of Plant and Environmental Sciences, VKR Research Centre Pro-Active Plants, Faculty of Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark; and
| | | |
Collapse
|
11
|
Comparative molecular similarity indices analysis of some 1-substituted imidazole analogs as Candida albicans P450-demethylase inhibitors. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0251-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Bowyer P, Mosquera J, Anderson M, Birch M, Bromley M, Denning DW. Identification of novel genes conferring altered azole susceptibility in Aspergillus fumigatus. FEMS Microbiol Lett 2012; 332:10-9. [PMID: 22509997 DOI: 10.1111/j.1574-6968.2012.02575.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 11/30/2022] Open
Abstract
Azoles are currently the mainstay of antifungal treatment both in agricultural and in clinical settings. Although the target site of azole action is well studied, the basis of azole resistance and the ultimate mode of action of the drug in fungi are poorly understood. To gain a deeper insight into these aspects of azole action, restriction-mediated plasmid integration (REMI) was used to create azole sensitive and resistant strains of the clinically important fungus Aspergillus fumigatus. Four azole sensitive insertions and four azole-resistant insertions were characterized. Three phenotypes could be re-created in wild-type AF210 by reintegration of rescued plasmid and a further four could be confirmed by complementation of the mutant phenotype with a copy of the wild-type gene predicted to be disrupted by the original insertional event. Six insertions were in genes not previously associated with azole sensitivity or resistance. Two insertions occur in transporter genes that may affect drug efflux, whereas others may affect transcriptional regulation of sterol biosynthesis genes and NADH metabolism in the mitochondrion. Two insertions are in genes of unknown function.
Collapse
Affiliation(s)
- Paul Bowyer
- Manchester Academic Health Science Centre, NIHR Translational Research Facility in Respiratory Medicine, University Hospital of South Manchester NHS Foundation Trust, The University of Manchester, Manchester, UK.
| | | | | | | | | | | |
Collapse
|
13
|
Hargrove TY, Wawrzak Z, Liu J, Nes WD, Waterman MR, Lepesheva GI. Substrate preferences and catalytic parameters determined by structural characteristics of sterol 14alpha-demethylase (CYP51) from Leishmania infantum. J Biol Chem 2011; 286:26838-48. [PMID: 21632531 DOI: 10.1074/jbc.m111.237099] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Leishmaniasis is a major health problem that affects populations of ∼90 countries worldwide, with no vaccine and only a few moderately effective drugs. Here we report the structure/function characterization of sterol 14α-demethylase (CYP51) from Leishmania infantum. The enzyme catalyzes removal of the 14α-methyl group from sterol precursors. The reaction is essential for membrane biogenesis and therefore has great potential to become a target for antileishmanial chemotherapy. Although L. infantum CYP51 prefers C4-monomethylated sterol substrates such as C4-norlanosterol and obtusifoliol (V(max) of ∼10 and 8 min(-1), respectively), it is also found to 14α-demethylate C4-dimethylated lanosterol (V(max) = 0.9 min(-1)) and C4-desmethylated 14α-methylzymosterol (V(max) = 1.9 min(-1)). Binding parameters with six sterols were tested, with K(d) values ranging from 0.25 to 1.4 μM. Thus, L. infantum CYP51 is the first example of a plant-like sterol 14α-demethylase, where requirements toward the composition of the C4 atom substituents are not strict, indicative of possible branching in the postsqualene portion of sterol biosynthesis in the parasite. Comparative analysis of three CYP51 substrate binding cavities (Trypanosoma brucei, Trypanosoma cruzi, and L. infantum) suggests that substrate preferences of plant- and fungal-like protozoan CYP51s largely depend on the differences in the enzyme active site topology. These minor structural differences are also likely to underlie CYP51 catalytic rates and drug susceptibility and can be used to design potent and specific inhibitors.
Collapse
Affiliation(s)
- Tatiana Y Hargrove
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
14
|
Liu X, Yu F, Schnabel G, Wu J, Wang Z, Ma Z. Paralogous cyp51 genes in Fusarium graminearum mediate differential sensitivity to sterol demethylation inhibitors. Fungal Genet Biol 2011; 48:113-23. [DOI: 10.1016/j.fgb.2010.10.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 06/21/2010] [Accepted: 10/07/2010] [Indexed: 11/27/2022]
|
15
|
Kitahama Y, Nakamura M, Yoshida Y, Aoyama Y. The Construction and Characterization of Self-Sufficient Lanosterol 14-Demethylase Fusion Proteins Consisting of Yeast CYP51 and Its Reductase. Biol Pharm Bull 2009; 32:558-63. [DOI: 10.1248/bpb.32.558] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yutaka Kitahama
- Department of Bioinformatics, Faculty of Engineering, Soka University
| | - Masashi Nakamura
- Department of Bioinformatics, Faculty of Engineering, Soka University
| | - Yuzo Yoshida
- School of Pharmaceutical Sciences, Mukogawa Women's University
| | - Yuri Aoyama
- Department of Bioinformatics, Faculty of Engineering, Soka University
| |
Collapse
|
16
|
Black SD, Coon MJ. P-450 cytochromes: structure and function. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 60:35-87. [PMID: 3310532 DOI: 10.1002/9780470123065.ch2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- S D Black
- Division of Medicinal Chemistry and Pharmacognosy, Ohio State University, Columbus
| | | |
Collapse
|
17
|
Topal A, Adams N, Dauterman WC, Hodgson E, Kelly SL. Purification and herbicide metabolism studies on tulip (Tulipa gesneriana) cytochrome P450. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780380103] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Khalil IA, Mercer EL. Effect of diclobutrazol on the growth and sterol and photosynthetic pigment content of winter wheat. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780280306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Lepesheva GI, Waterman MR. Sterol 14alpha-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim Biophys Acta Gen Subj 2006; 1770:467-77. [PMID: 16963187 PMCID: PMC2324071 DOI: 10.1016/j.bbagen.2006.07.018] [Citation(s) in RCA: 297] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 07/21/2006] [Accepted: 07/31/2006] [Indexed: 11/22/2022]
Abstract
The CYP51 family is an intriguing subject for fundamental P450 structure/function studies and is also an important clinical drug target. This review updates information on the variety of the CYP51 family members, including their physiological roles, natural substrates and substrate preferences, and catalytic properties in vitro. We present experimental support for the notion that specific conserved regions in the P450 sequences represent a CYP51 signature. Two possible roles of CYP51 in P450 evolution are discussed and the major approaches for CYP51 inhibition are summarized.
Collapse
Affiliation(s)
- Galina I Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | |
Collapse
|
20
|
Yates PJ, Lenton JR, Goad LJ. Effects of triazole inhibitors of sterol biosynthesis on the free and esterified sterol composition of celery cell suspension cultures. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780390402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Kelly SL, Lamb DC, Jackson CJ, Warrilow AG, Kelly DE. The biodiversity of microbial cytochromes P450. Adv Microb Physiol 2003; 47:131-86. [PMID: 14560664 DOI: 10.1016/s0065-2911(03)47003-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The cytochrome P450 (CYP) superfamily of genes and proteins are well known for their involvement in pharmacology and toxicology, but also increasingly for their importance and diversity in microbes. The extent of diversity has only recently become apparent with the emergence of data from whole genome sequencing projects and the coming years will reveal even more information on the diversity in microbial eukaryotes. This review seeks to describe the historical development of these studies and to highlight the importance of the genes and proteins. CYPs are deeply involved in the development of strategies for deterrence and attraction as well as detoxification. As such, there is intense interest in pathways of secondary metabolism that include CYPs in oxidative tailoring of antibiotics, sometimes influencing potency as bioactive compounds. Further to this is interest in CYPs in metabolism of xenobiotics for use as carbon sources for microbial growth and as biotransformation agents or in bioremediation. CYPs are also current and potential drug targets; compounds inhibiting CYP are antifungal and anti-protozoan agents, and potentially similar compounds may be useful against some bacterial diseases such as tuberculosis. Of note is the diversity of CYP requirements within an organism, ranging from Escherichia coli that has no CYPs as in many bacteria, to Mycobacterium smegmatis that has 40 representing 1% of coding genes. The basidiomycete fungus Phanerochaete chrysosporium surprised all when it was found to contain a hundred or more CYPs. The functional genomic investigation of these orphan CYPs is a major challenge for the future.
Collapse
Affiliation(s)
- Steven L Kelly
- Wolfson Laboratory of P450 Biodiversity, Institute of Biological Sciences, University of Wales Aberystwyth, Aberystwyth, Wales, UK
| | | | | | | | | |
Collapse
|
22
|
Jackson CJ, Lamb DC, Marczylo TH, Warrilow AGS, Manning NJ, Lowe DJ, Kelly DE, Kelly SL. A novel sterol 14alpha-demethylase/ferredoxin fusion protein (MCCYP51FX) from Methylococcus capsulatus represents a new class of the cytochrome P450 superfamily. J Biol Chem 2002; 277:46959-65. [PMID: 12235134 DOI: 10.1074/jbc.m203523200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sterol 14alpha-demethylase encoded by CYP51 is a member of the cytochrome P450 (CYP) superfamily of enzymes and has been shown to have an essential role in sterol biosynthesis in eukaryotes, with orthologues recently being described in some bacteria. Examination of the genome sequence data for the proteobacterium Methylococcus capsulatus, a bacterial species known to produce sterol, revealed the presence of a single CYP with strong homology to CYP51, particularly to a form in Mycobacterium tuberculosis. This M. capsulatus CYP51 protein represents a new class of CYP consisting of the CYP domain naturally fused to a ferredoxin domain at the C terminus via an alanine-rich linker. Expression of the M. capsulatus MCCYP51FX fusion in Escherichia coli yielded a P450, which, when purified to homogeneity, had the predicted molecular mass approximately 62 kDa on SDS/PAGE and bound lanosterol as a putative substrate. Sterol 14alpha-demethylase activity was shown (0.24 nmol of lanosterol metabolized per minute per nanomole of MCCYP51FX fusion) by gas chromatography/mass spectrometry with the activity dependent upon the presence of ferredoxin reductase and NADPH. Our unique findings describe a new class of naturally existing cytochrome P450, which will provide pivotal information for CYP structure/function in general.
Collapse
Affiliation(s)
- Colin J Jackson
- Wolfson Laboratory of P450 Biodiversity, Institute of Biological Sciences, University of Wales Aberystwyth, Wales SY23 3DA, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Peng FC, Wu SW, Wag BL. Metabolism of territrem a by liver microsomes of Wistar rats: identification of the metabolites and their metabolic sequence. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2001; 64:579-593. [PMID: 11760155 DOI: 10.1080/15287390152627255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The metabolism of territrem A (TRA) was investigated in liver microsomes of male Wistar rats. The results indicated that three metabolites were produced from TRA and these metabolic reactions were inhibited by metyrapone, an inhibitor of cytochrome P-450. Based on analysis by high-performance liquid chromatography (HPLC), mass, and nuclear magnetic resonance (NMR) spectroscopic techniques, the structure of these metabolites were identified as 4beta-hydroxymethyl-4beta-demethylterritrem A (MA1), 4beta-oxo-4beta-demethylterritrem A (MAX), and 2-dihydro-4beta-demethylterritrem A (MA2). It was proposed that reactions proceeded by three sequential oxidative reactions in the pyran moiety of TRA: first, hydroxylation at the 4beta-C methyl group of TRA to form MA1; second, oxidation at the 4beta hydroxyl group of MA, to form MAX; and third, decarbonylation at the 4beta-C oxo group of MAX to form MA2.
Collapse
Affiliation(s)
- F C Peng
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Republic of China.
| | | | | |
Collapse
|
24
|
Lamb DC, Cannieux M, Warrilow AG, Bak S, Kahn RA, Manning NJ, Kelly DE, Kelly SL. Plant sterol 14 alpha-demethylase affinity for azole fungicides. Biochem Biophys Res Commun 2001; 284:845-9. [PMID: 11396979 DOI: 10.1006/bbrc.2001.5010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Azole fungicides were thought to have much greater affinity for the fungal cytochrome P450 enzyme, sterol 14 alpha-demthylase (CYP51) than the plant orthologue. Using purified CYP51 from the plant Sorghum bicolor L Moenech, a direct comparison of the sensitivity to the fungicides triadimenol and tebuconazole has been carried out. S. bicolor CYP51 was purified to homogenity as determined by SDS--PAGE and specific heme content. Addition of the azole fungicides triadimenol and tebuconazole induced type II spectral changes, with saturation occurring at equimolar azole/P450 concentrations. Inhibition of reconstituted activities revealed only a threefold insensitivity of the plant CYP51 compared to a fungal CYP51, from the phytopathogen Ustilago maydis, as judged by IC(50) values. The implications for fungicide mode of action and application are discussed.
Collapse
Affiliation(s)
- D C Lamb
- Institute of Biological Sciences, University of Wales, Aberystwyth SY23 3DA, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hegele-Hartung C, Grützner M, Lessl M, Grøndahl C, Ottesen J, Brännström M. Activation of meiotic maturation in rat oocytes after treatment with follicular fluid meiosis-activating sterol in vitro and ex vivo. Biol Reprod 2001; 64:418-24. [PMID: 11159342 DOI: 10.1095/biolreprod64.2.418] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Meiosis-activating sterols (MAS) have been found to induce meiotic maturation in mouse oocytes in vitro. In the present study we have extended these observations by investigating the effects of follicular fluid MAS (FF-MAS) on rat oocyte maturation in vitro and ex vivo. Rat oocytes freed from their follicles were cultured with FF-MAS (0 microM, 1 microM, 3 microM, 10 microM, 30 microM) for 22 h in a medium containing the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX; 250 microM). A dose-dependent significant increase in germinal vesicle breakdown (GVB) was observed after adding FF-MAS to the culture medium in both cumulus-enclosed (CEO) and denuded (DO) oocytes. A time course study (0, 3, 8, 14, and 22 h) showed a significant increase in GVB after 14 h when DO and CEO were cultured in the presence of 10 microM FF-MAS + 250 microM IBMX. Furthermore immature rats were primed with eCG (20 IU) and 48 h later perfused ex vivo for 12 h in a recirculating system with either FF-MAS (0 microM, 10 microM, 30 microM, 60 microM), cholesterol (60 microM), or LH (0.2 microg/ml) in the presence of 200 microM IBMX, respectively. In addition, ovarian perfusion was carried out with FF-MAS (30 microM, 60 microM) or 0.2 microg/ml LH in the absence of IBMX. After 12 h, oocytes were freed from the ovaries and checked for GVB. By using the ex vivo perfused rat ovary, we found that FF-MAS, starting at 30 microM, was dose-dependently able to overcome IBMX-induced meiotic arrest leading to a comparable increase in GVB as was observed for LH. Furthermore, it was found that FF-MAS in the absence of IBMX was also able to induce meiotic maturation. Our data are consistent with the notion that the maturation-inducing effects of FF-MAS are mediated by different mechanisms compared to spontaneous maturation.
Collapse
Affiliation(s)
- C Hegele-Hartung
- FC/HT Research Laboratories of Schering AG, Müllerstrasse 170-178, D-13342 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Purification of cytochrome P450 from filamentous fungus Rhyzopus nigricans. Pflugers Arch 2000. [DOI: 10.1007/bf03376540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Lu Z, Xia G, Byskov AG, Andersen CY. Effects of amphotericin B and ketoconazole on mouse oocyte maturation: implications on the role of meiosis-activating sterol. Mol Cell Endocrinol 2000; 164:191-6. [PMID: 11026570 DOI: 10.1016/s0303-7207(00)00223-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Meiosis-activating sterol (MAS) has been shown to induce mouse oocytes cultured in the presence of hypoxanthine (HX) to resume meiosis. The present research was conducted to determine whether amphotericin B or ketoconazole (a promoter and an inhibitor of production of MAS), affected oocyte maturation. Mouse cumulus cell-enclosed oocytes (CEO) or denuded oocytes (DO) were cultured for 24 h in the presence of 4 mM HX with FSH or amphotericin B or ketoconazole. At the end of the culture, the frequency of germinal vesicle break down (GVBD) and polar body formation (PB) were recorded. The results demonstrated: (i) FSH (10-200 IU/l) induced dose-dependent oocytes maturation in CEO, but was without effect on DO. A maximum increase in GVBD and PB was observed with 25-50 IU/l FSH. The presence of FSH (50 IU/l) for 1 h was sufficient to induce meiotic resumption, which after 2 h reached a plateau similar to that of a continuous presence of FSH. (ii) CEO exposed to amphotericin B (0.0025-2.5 microg/l) underwent GVBD dose-dependently, whereas no effect was observed on DO. The presence of amphotericin B (0.025 microg/l) for 1 h stimulated oocyte resumption in a way similar to that of FSH. (iii) Amphotericin B (0.025 microg/l) and FSH (50 IU/l) did not show any additive effect on resumption of meiosis. (iv) Ketoconazole (10(-7)-10(-3) M) inhibited the effect of FSH on resumption of meiosis, but had no effect on oocyte spontaneous maturation. These results show that FSH and amphotericin B induce resumption of meiosis and indicate that they are likely to cause an accumulation of meiosis activating sterols in the CEO, but ketoconazole blocks the production of MAS. The present study supports the notion that MAS plays a physiological relevant role in triggering resumption of meiosis in mouse oocytes.
Collapse
Affiliation(s)
- Z Lu
- College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | | | | | | |
Collapse
|
28
|
Manavathu EK, Cutright JL, Chandrasekar PH. Organism-dependent fungicidal activities of azoles. Antimicrob Agents Chemother 1998; 42:3018-21. [PMID: 9797246 PMCID: PMC105986 DOI: 10.1128/aac.42.11.3018] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/1997] [Accepted: 08/13/1998] [Indexed: 11/20/2022] Open
Abstract
We investigated the antifungal activities of itraconazole and voriconazole on Aspergillus species by time kill studies, and the results were compared with those obtained for Candida species. Exposure of Aspergillus fumigatus conidia to varying concentrations (1.25 to 10 microg/ml) of itraconazole and voriconazole resulted in cellular death; the cytocidal effect was time and concentration dependent. In contrast, no killing of Candida albicans occurred in the presence of itraconazole and voriconazole at concentrations as high as 10 microg/ml, although candidal growth was inhibited compared to the drug-free control. Amphotericin B (1.25 to 10 microg/ml), on the other hand, killed both A. fumigatus and C. albicans. Similar results were obtained for non-A. fumigatus aspergilli and non-C. albicans Candida species. These observations indicate that both itraconazole and voriconazole are cytocidal agents for Aspergillus species but not for Candida species, suggesting that azoles possess organism-dependent fungicidal activities.
Collapse
Affiliation(s)
- E K Manavathu
- Division of Infectious Diseases, Department of Medicine, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|
29
|
Lamb DC, Kelly DE, Kelly SL. Molecular diversity of sterol 14alpha-demethylase substrates in plants, fungi and humans. FEBS Lett 1998; 425:263-5. [PMID: 9559662 DOI: 10.1016/s0014-5793(98)00247-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metabolism of lanosterol (LAN), 24-methylene-24,25-dihydrolanosterol (24-methyleneDHL), dihydrolanosterol (DHL) and obtusifoliol (OBT) by purified human, plant (Sorghum bicolor) and fungal (Candida albicans) sterol 14alpha-demethylase (CYP51; P450(14DM)) reconstituted with NADPH cytochrome P450 reductases was studied in order to elucidate the substrate specificity and sterol stereo- and regio-structural requirements for optimal CYP51 activity. Both human and C. albicans CYP51 could catalyse 14alpha-demethylation of each substrate with varying levels of activity, but having slightly higher activity for their respective endogenous substrates in vivo, dihydrolanosterol for human CYP51 (Vmax = 0.5 nmol/min/nmol CYP51) and 24-methylene-24,25-dihydrolanosterol for C. albicans CYP51 (Vmax = 0.3 nmol/min/nmol CYP51). In contrast, S. bicolor CYP51 showed strict substrate specificity and selectivity towards its own endogenous substrate, obtusifoliol (Vmax = 5.5 nmol/min/nmol CYP51) and was inactive towards 14alpha-demethylation of lanosterol, 24-methylene-24,25-dihydrolanosterol and dihydrolanosterol. These findings confirm that the presence of the 4beta-methyl group in the sterol molecule renders the plant CYP51 incapable of 14alpha-demethylation thus revealing the strict active site conservation of plant CYP51 during evolution.
Collapse
Affiliation(s)
- D C Lamb
- Institute of Biological Sciences, University of Wales Aberystwyth, UK
| | | | | |
Collapse
|
30
|
Kelly SL, Lamb DC, Kelly DE. Sterol 22-desaturase, cytochrome P45061, possesses activity in xenobiotic metabolism. FEBS Lett 1997; 412:233-5. [PMID: 9257726 DOI: 10.1016/s0014-5793(97)00785-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CYP61 was revealed in the sequencing of the yeast genome on chromosome XIII and was the last member of the CYP superfamily in yeast to be discovered. We show here that besides the housekeeping role in 22-desaturation during ergosterol biosynthesis the enzyme is also that responsible for benzo(a)pyrene metabolism/promutagen activation by yeast in genotoxicity assays. This enzyme may represent an ancestral activity for the superfamily which allowed xenobiotic metabolism for the first time.
Collapse
Affiliation(s)
- S L Kelly
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, Sheffield University, UK.
| | | | | |
Collapse
|
31
|
Kelly SL, Lamb DC, Baldwin BC, Corran AJ, Kelly DE. Characterization of Saccharomyces cerevisiae CYP61, sterol delta22-desaturase, and inhibition by azole antifungal agents. J Biol Chem 1997; 272:9986-8. [PMID: 9092539 DOI: 10.1074/jbc.272.15.9986] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cytochrome P-45061 (CYP61) was a cytochrome P-450 revealed during the yeast genome project when chromosome XIII was sequenced. Here we report on the properties of this second microsomal P-450 of vegetatively growing yeast. The enzyme kinetics associated with its endogenous role in sterol Delta22-desaturation revealed a Km of 20.4 microM and a Vmax of 2.9nmol/min/nmol CYP61. The affinity of the enzyme for antifungal drugs was characterized to investigate its potential role in determining tolerance to these sterol 14alpha-demethylase (CYP51) inhibitors. Drug binding induced a type II spectral change, which became saturated at equimolar concentrations of azole drug and P-450. Fluconazole exhibited slightly reduced affinity in comparison to ketoconazole as indicated by carbon monoxide displacement. These and Ki determination for fluconazole (0.14 nM) revealed CYP61 to have a similar affinity to azole drugs when compared with data available for CYP51, and the implications for antifungal treatment were considered.
Collapse
Affiliation(s)
- S L Kelly
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, Sheffield University, Sheffield, S10 2UH, United Kingdom.
| | | | | | | | | |
Collapse
|
32
|
Lamb DC, Kelly DE, Schunck WH, Shyadehi AZ, Akhtar M, Lowe DJ, Baldwin BC, Kelly SL. The mutation T315A in Candida albicans sterol 14alpha-demethylase causes reduced enzyme activity and fluconazole resistance through reduced affinity. J Biol Chem 1997; 272:5682-8. [PMID: 9038178 DOI: 10.1074/jbc.272.9.5682] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Sterol 14alpha-demethylase (P45051) is the target for azole antifungal compounds, and resistance to these drugs and agrochemicals is of significant practical importance. We undertook site-directed mutagenesis of the Candida albicans P45051 heterologously expressed in Saccharomyces cerevisiae to probe a model structure for the enzyme. The change T315A reduced enzyme activity 2-fold as predicted for the removal of the residue that formed a hydrogen bond with the 3-OH of the sterol substrate and helped to locate it in the active site. This alteration perturbed the heme environment, causing an altered reduced carbon monoxide difference spectrum with a maximum at 445 nm. The changes also reduced the affinity of the enzyme for the azole antifungals ketoconazole and fluconazole and after expression induced by galactose caused 4-5-fold azole resistance in transformants of S. cerevisiae. This is the first example of a single base change in the target enzyme conferring resistance to azoles through reduced azole affinity.
Collapse
Affiliation(s)
- D C Lamb
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2UH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kahn RA, Bak S, Olsen CE, Svendsen I, Moller BL. Isolation and reconstitution of the heme-thiolate protein obtusifoliol 14alpha-demethylase from Sorghum bicolor (L.) Moench. J Biol Chem 1996; 271:32944-50. [PMID: 8955137 DOI: 10.1074/jbc.271.51.32944] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The heme-thiolate (cytochrome P450) enzyme which catalyzes the 14alpha-demethylation of obtusifoliol has been isolated from microsomes prepared from etiolated seedlings of Sorghum bicolor (L.) Moench. The obtusifoliol 14alpha-demethylase is a key enzyme in plant sterol biosynthesis and a target for the design of phyla-specific sterol 14alpha-demethylase inhibitors. Microsomal cytochrome P450s were solubilized by using the detergents Renex 690 and reduced Triton X-100, and the obtusifoliol 14alpha-demethylase was isolated by DEAE ion exchange and dye affinity column chromatography. The isolated enzyme has an absorption spectrum characteristic for low spin cytochrome P450s and produces a Type I binding spectrum with obtusifoliol as substrate. Binding spectra were not obtained with lanosterol, campesterol, sitosterol, or stigmasterol. Obtusifoliol 14alpha-demethylase has an apparent molecular mass of 53 kDa and is estimated to constitute approximately 20% of the total cytochrome P450 content of the microsomal membranes and about 0.2% of the total microsomal protein. Gas chromatography-mass spectrometry analysis of reconstitution experiments with dilauroylphosphatidylcholine micelles containing isolated obtusifoliol 14alpha-demethylase and sorghum NADPHcytochrome P450 oxidoreductase demonstrated the conversion of obtusifoliol (4alpha,14alpha-dimethyl-5alpha-ergosta-8, 24(28)-dien-3beta-ol) to 4alpha-methyl-5alpha-ergosta-8,14, 24(28)-trien3beta-ol, the 14alpha-demethylated product of obtusifoliol with a double bond introduced at the Delta14 position. The N-terminal amino acid sequence of the protein is MDLADIPQ/KQQRLMAGXALVV. Five internal sequences were obtained after endoproteinase Lys-C and Glu-C digestion. The fragment AAGAFSYISFGGGRH aligns with the unique heme binding domain of mammalian and yeast sterol 14alpha-demethylases which belong to the CYP51 family. Therefore it is conceivable that the obtusifoliol 14alpha-demethylase from plants also belongs to the CYP51 family, the only P450 family so far known to be conserved across the phyla.
Collapse
Affiliation(s)
- R A Kahn
- Plant Biochemistry Laboratory, Department of Plant Biology, The Royal Veterinary and Agricultural University, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
34
|
Baillie G, Hitchcock C, Burnet F. Increased cytochrome P-450 activity inAspergillus fumigatusafter xenobiotic exposure. Med Mycol 1996. [DOI: 10.1080/02681219680000581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
35
|
Kelly SL, Lamb DC, Corran AJ, Baldwin BC, Parks LW, Kelly DE. Purification and reconstitution of activity of Saccharomyces cerevisiae P450 61, a sterol delta 22-desaturase. FEBS Lett 1995; 377:217-20. [PMID: 8543054 DOI: 10.1016/0014-5793(95)01342-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
P450 was purified from microsomal fractions of a strain of Saccharomyces cerevisiae which contained detectable P450 despite the disruption of CYP51A1. The P450 had a molecular mass of 58 kDa, similar to P450 51A1, and in a reconstituted assay with rabbit NADPH-P450 reductase and dilauryl phosphotidylcholine exhibited activity for conversion of ergosta-5,7-dienol into ergosterol. N-Terminal amino acid sequencing of the purified protein corresponded to the translated sequence of P450 61 which was recently identified during sequencing of chromosome XIII. This allowed the function of this family of P450 to be identified as sterol delta 22-desaturation in the pathway of ergosterol biosynthesis.
Collapse
Affiliation(s)
- S L Kelly
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, Sheffield University, UK
| | | | | | | | | | | |
Collapse
|
36
|
Sekigawa Y, Fukuhara M, Sonoda Y, Sato Y. Purification and characterization of a cytochrome P450 isozyme catalyzing lanosterol 14 alpha-demethylation (P45014DM) in hamster liver. Lipids 1995; 30:1067-73. [PMID: 8614296 DOI: 10.1007/bf02536606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To characterize cholesterol synthesis in Syrian golden hamster, an isozyme of cytochrome P450 lanosterol 14 alpha-demethylase (P45014DM), which catalyzes the initial step in the biosynthesis of cholesterol from lanosterol, was purified and its mode of induction by microsomal enzyme inducers was characterized. P450450DM was purified from hamster livers by chromatography using aminooctyl-Sepharose CL-6B columns, to a specific content of 12.8 nmol/mg-protein. The purified protein displayed a single band on SDS-polyacrylamide gel electrophoresis with an apparent molecular weight of 52,000. The absorption spectra of the oxidized form of the purified protein showed a Soret peak at 417 nm in a low-spin state and a Soret peak of reduced CO-binding complex at 448 nm. In a reconstituted system, the purified protein catalyzed 14 alpha-demethylation of 24,25-dihydrolanosterol (1.58 nmol/min/nmol-P450), although it did not show any activities toward testosterone and 7-ethoxyresorufin, marker substrates of other P450 families. Immunoblot analysis using an antibody against porcine P45014DM, which inhibited the activity of lanosterol 14-alpha-demethylation in the hamster liver microsomes, demonstrated that the level of this isozyme protein was markedly decreased in dexamethasone-treated hamster livers. This was accompanied by a decrease in the enzyme activity. In contrast, the levels and the activity in the phenobarbital- and 3-methylcholanthrene-treated hamsters were almost equal to that in the untreated animals.
Collapse
Affiliation(s)
- Y Sekigawa
- Department of Pharmaceutical Sciences, National Institute of Public Health, Tokyo, Japan
| | | | | | | |
Collapse
|
37
|
Joseph-Horne T, Hollomon D, Loeffler RS, Kelly SL. Altered P450 activity associated with direct selection for fungal azole resistance. FEBS Lett 1995; 374:174-8. [PMID: 7589528 DOI: 10.1016/0014-5793(95)01102-k] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Azole antifungals inhibit CYP51A1-mediated sterol 14 alpha-demethylation and the mechanism(s) of resistance to such compounds in Ustilago maydis were examined. The inhibition of growth was correlated with the accumulation of the substrate, 24-methylene-24,25-dihydrolanosterol (eburicol), and depletion of ergosterol. Mutants overcoming the effect of azole antifungal treatment exhibited a unique phenotype with leaky CYP51A1 activity which was resistant to inhibition. The results demonstrate that alterations at the level of inhibitor binding to the target site can produce azole resistance. Similar changes may account for fungal azole resistance phenomena in agriculture, and also in medicine where resistance has become a problem in immunocompromised patients suffering from AIDS.
Collapse
Affiliation(s)
- T Joseph-Horne
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | | | | | | |
Collapse
|
38
|
Vitas M, Rozman D, Komel R, Kelly SL. P450-mediated progesterone hydroxylation in Cochliobolus lunatus. J Biotechnol 1995. [DOI: 10.1016/0168-1656(95)00073-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
39
|
Sloane DL, So OY, Leung R, Scarafia LE, Saldou N, Jarnagin K, Swinney DC. Cloning and functional expression of the cDNA encoding rat lanosterol 14-alpha demethylase. Gene 1995; 161:243-8. [PMID: 7665087 DOI: 10.1016/0378-1119(95)00211-n] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Lanosterol 14 alpha-demethylase (LDM) is a cytochrome P-450 enzyme in the biosynthetic pathway of cholesterol. As such, it represents a target for cholesterol-lowering drugs. Rat LDM (rLDM) has been purified from the livers of rats treated with cholestyramine. The purified protein was used to generate tryptic fragments which were then sequenced. The amino acid (aa) sequences were used to design oligodeoxyribonucleotide primers and a DNA fragment was generated by RT-PCR to probe a phagemid library. A clone encoding rLDM was isolated from the livers of cholestyramine-treated rats. The clone contains an open reading frame encoding a polypeptide of 486 aa and a predicted molecular mass of 55 045 Da. The deduced aa sequence shows a high degree of identity to the yeast LDM sequences, as well as sequences which match typical P-450 sequence motifs. When produced in a baculovirus/insect cell culture system, LDM activity was detected and inhibited by the specific inhibitor azalanstat with an IC50 value of less than 2 nM. The isolation of this full-length coding sequence should facilitate research into understanding the direct and indirect effects of LDM in the regulation of cholesterol biosynthesis and the search for cholesterol-lowering drugs.
Collapse
Affiliation(s)
- D L Sloane
- Syntex Discovery Research, Palo Alto, CA 94303, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Trzaskos JM, Ko SS, Magolda RL, Favata MF, Fischer RT, Stam SH, Johnson PR, Gaylor JL. Substrate-based inhibitors of lanosterol 14 alpha-methyl demethylase: I. Assessment of inhibitor structure-activity relationship and cholesterol biosynthesis inhibition properties. Biochemistry 1995; 34:9670-6. [PMID: 7626636 DOI: 10.1021/bi00030a003] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A series of 15-, 32-, and 15,32-substituted lanost-8-en-3 beta-ols is described which function as inhibitors of cholesterol biosynthesis. These agents inhibit lanosterol 14 alpha-methyl demethylase activity as well as suppress HMG-CoA reduction activity in cultured cells. Several of these agents are extremely potent as both demethylase inhibitors and reductase suppressors, while others are more selective in their activities. Selected regio double bond isomers show preference for demethylase inhibition with the following order: delta 8 > delta 7 > delta 6 = unsaturated sterols. Comparisons also show that 4,4-dimethyl sterols are always more potent demethylase inhibitors and reductase suppressors than their 4,4-bisnomethyl counterparts. However, evaluation of an extensive oxylanosterol series leads us to conclude that demethylase inhibition and reductase suppression are not parallel in the same molecule. In addition, the oxylanosterols, but not the oxycholesterols, are able to disrupt coordinate regulation of HMG-CoA reductase from the LDL receptor. Thus, oxylanosterol treatment at levels which suppress reductase activity enhances LDL receptor activity. These results demonstrate that compounds can be made which (1) are selective reductase suppressors enabling dissection of the dual inhibitor nature of these compounds and (2) maximize reductase suppression and LDL receptor induction without demethylase inhibition which could lead to novel agents for serum cholesterol lowering.
Collapse
Affiliation(s)
- J M Trzaskos
- Du Pont Merck Pharmaceutical Company, Wilmington, Delaware 19880-0400, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Wittekindt NE, Würgler FE, Sengstag C. Targeting of heterologous membrane proteins into proliferated internal membranes in Saccharomyces cerevisiae. Yeast 1995; 11:913-28. [PMID: 8533467 DOI: 10.1002/yea.320111003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Overproduction of chimeric proteins containing the HMG2/1 peptide, which comprises the seven transmembrane domains of Saccharomyces cerevisiae 3-hydroxy-3-methylglutaryl-CoA reductase isozymes 1 and 2, has previously been observed to induce the proliferation of internal endoplasmic reticulum-like membranes. In order to exploit this amplified membrane surface area for the accommodation of heterologous microsomal proteins, we fused sequences coding for human cytochrome P4501A1 (CYP1A1) to sequences encoding the HMG2/1 peptide and expressed the hybrid genes in yeast. The heterologous hybrid proteins were targeted into strongly proliferated membranes, as shown by electron microscopic and immunofluorescent analysis. Fusion proteins comprising the whole CYP1A1 polypeptide (HMG2/1-CYP1A1) exhibited 7-ethoxyresorufin-O-deethylase activity, whereas fusion proteins lacking the N-terminal 56 amino acids of CYP1A1 (HMG2/1-delta CYP1A1) were inactive and appeared to be unable to incorporate protoheme. Similar amounts of heterologous protein were detected in cells expressing HMG2/1-CYP1A1, HMG2/1-delta CYP1A1 and CYP1A1, respectively. Replacement of the N-terminal membrane anchor domain of human NADPH-cytochrome P450 oxidoreductase by the HMG2/1 peptide also resulted in a functional fusion enzyme, which was able to interact with HMG2/1-CYP1A1 and the yeast endogenous P450 enzyme lanosterol-14 alpha-demethylase.
Collapse
Affiliation(s)
- N E Wittekindt
- Institute of Toxicology, Swiss Federal Institute of Technology, Schwerzenbach, Switzerland
| | | | | |
Collapse
|
42
|
Wittekindt NE, Würgler FE, Sengstag C. Functional expression of fused enzymes between human cytochrome P4501A1 and human NADPH-cytochrome P450 oxidoreductase in Saccharomyces cerevisiae. DNA Cell Biol 1995; 14:273-83. [PMID: 7710684 DOI: 10.1089/dna.1995.14.273] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The activity of human cytochrome P450 enzymes heterologously expressed in Saccaromyces cerevisiae cells is limited by the yeast endogenous cytochrome P450 oxidoreductase (yOR). To overcome these limitations, we constructed hybrids between human P4501A1 (CYP1A1) and human P450 oxidoreductase (hOR) by combining the cDNA encoding hOR with the CYP1A1 cDNA. In addition, in one construct, the amino terminus of hOR was replaced by the membrane anchor domain of a yeast protein. Anchoring of the fusion constructs in internal membranes either by the amino terminus of hOR or by the yeast peptide resulted in functional hybrid proteins, which were present in similar amounts as the authentic CYP1A1 in microsomal fractions of recombinant cells. Saccharomyces cerevisiae cells transformed with the expression plasmids produced the respective proteins in the expected molecular sizes reactive with both anti-CYP1A immunoglobulin (Ig) and anti-oxidoreductase Ig. Saccharomyces cerevisiae yOR-mutant (cpr1-) and wild-type (CPR1+) cells containing the fused enzymes exhibited CYP1A1-specific 7-ethoxyresorufin-O-deethylase activities. Reduced CO-difference spectra of microsomal fractions containing the fused enzymes indicated a proper incorporation of protoheme into the CYP1A1 domains. These results show that the chimeric proteins represent catalytically self-sufficient monooxygenase systems. The hOR domains of the hybrid proteins were also functional as cytochrome c reductases and able to activate the yeast P450 enzyme lanosterol-14 alpha-demethylase, indicating correct insertion of the chimeric proteins in internal membranes.
Collapse
Affiliation(s)
- N E Wittekindt
- Institute of Toxicology, Swiss Federal Institute of Technology, Schwerzenbach
| | | | | |
Collapse
|
43
|
Abstract
Cytochromes P450 constitute a superfamily of hemoproteins which have evolved from a common ancestor. Recent advances in molecular biology have offered a powerful approach to the research on the multiplicity of P450. Now, every mammalian P450 species can be characterized by heterologous expression of its cDNA. In addition, a heterogous expression system is also useful for analysis of structure-function relationships of P450 monooxygenases. Comparison of enzymatic activity and expression level in yeast of a series of artificial genetic fusion enzymes of P450 with P450 reductase has revealed the strategy of how to construct a most suitable fusion. The P450/reductase fused enzyme is a simplified monooxygenase as compared with the two enzyme systems in nature. The P450 domain of the fused enzyme is bound to the microsomes, while the reductase domain lies on the cytoplasmic side, moving flexibly. This structural feature seems to reflect the topology of both enzymes in mammalian microsomes, and will be used as a model to analyze in vivo protein-protein interactions of microsomal P450 monooxygenases. Combined with the discovery of some naturally occurring P450/reductase fusions from bacteria to mammals, comparison of these natural enzymes with artificial ones will be discussed.
Collapse
Affiliation(s)
- Y Yabusaki
- Biotechnology Laboratory, Sumitomo Chemical Co, Ltd, Hyogo, Japan
| |
Collapse
|
44
|
Ito T, Aoyama Y, Ishida K, Kudoh M, Hori K, Tsuchiya S, Yoshida Y. Selectivity of isoprenoid-containing imidazole antifungal compounds for sterol 14-demethylase P450 (P450(14)DM) and 7-ethoxycoumarin O-deethylase P450 of rat liver microsomes. Biochem Pharmacol 1994; 48:1577-82. [PMID: 7980623 DOI: 10.1016/0006-2952(94)90202-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The imidazole antifungal compound AFK-108 (1-[2-(2,4-dichlorophenyl)-2-((2E)-3,7-dimethylocta-2,6- dienyloxy)ethyl]-1H-imidazole) has been shown to be a potent inhibitor for yeast lanosterol 14 alpha-demethylase (P450(14)DM), interacting specifically with the sterol side-chain recognition part of the substrate site through its geranyl moiety. AFK-108 acted as a potent inhibitor for rat liver P450(14)DM, while its farnesyl (AFK-110) and prenyl (AFK-122) homologues were weak inhibitors. This indicates that AFK-108 interacts with rat liver P450(14(DM in the same manner as with the yeast enzyme. However, the difference between the potency of AFK-108 and the homologues was greater in rat P450(14)DM than in the yeast enzyme. AFK-108 and its homologues partially inhibited 7-ethoxycoumarin O-deethylase activity of rat liver microsomes. The order of potency was AFK-122 > AFK-108 > AFK-110, indicating that some steric hindrance of the isoprenoid moiety might affect their potency. The inhibitory effect of AFK-108 for P450(14)DM was considerably higher than for 7-ethoxycoumarin O-deethylase P450, while the inhibition of AFK-110 and AFK-122 on these enzymes was of the same order of magnitude. These results suggest that azole compounds interacting with the side-chain recognition site of P450(14)DM may be good candidates as antifungal agents selective for fungal P450(14)DM.
Collapse
Affiliation(s)
- T Ito
- Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Smith KE, Ahmed F, Williams RA, Kelly SL. Microbial transformations of steroids--VIII. Transformation of progesterone by whole cells and microsomes of Aspergillus fumigatus. J Steroid Biochem Mol Biol 1994; 49:93-100. [PMID: 8003446 DOI: 10.1016/0960-0760(94)90306-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The filamentous fungus, Aspergillus fumigatus, efficiently hydroxylated exogenous progesterone producing, after 3 h of incubation, 11 alpha- and 15 beta-hydroxyprogesterone as major products, 7 beta-hydroxyprogesterone as a minor product and trace amounts of 7 beta, 15 beta- and 11 alpha, 15 beta-dihydroxyprogesterone. After 72 h the dihydroxyprogesterones were the sole metabolites in the culture medium. Microsomes, prepared by Ca2+ precipitation, catalysed only monohydroxylation of progesterone at the same sites as whole cells. Hydroxylation was dependent on NADPH (but not NADH) which was replaceable by NaIO4. Hydroxylation was inhibited by carbon monoxide and by the azole fungicide, ketoconazole. Microsomes gave a dithionite-reduced, carbon monoxide difference absorbance spectrum with a peak at 448 nm and a Type-I progesterone-binding spectrum typical of cytochrome P450 interaction with substrate. Ketoconazole inhibition studies suggest the presence of two non-inducible cytochrome P450 progesterone hydroxylases, one possessing 7 beta site-selectivity, the other 11 alpha/15 beta site-selectivity.
Collapse
Affiliation(s)
- K E Smith
- Department of Biochemistry, Queen Mary and Westfield College, London, England
| | | | | | | |
Collapse
|
46
|
Swinney DC, So OY, Watson DM, Berry PW, Webb AS, Kertesz DJ, Shelton EJ, Burton PM, Walker KA. Selective inhibition of mammalian lanosterol 14 alpha-demethylase by RS-21607 in vitro and in vivo. Biochemistry 1994; 33:4702-13. [PMID: 8161528 DOI: 10.1021/bi00181a030] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The discovery of selective lanosterol 14 alpha-demethylase inhibitors may lead to novel hypolipidemic drugs. RS-21607, (2S,4S)-cis-2[1H-imidazol-1-yl)methyl]-2-[2-(4-chlorophenyl)ethyl]-4- [[(4-aminophenyl)thio]methyl]-1,3-dioxolane, was characterized as a tight-binding, competitive inhibitor of lanosterol 14 alpha-demethylase purified from rat liver. The apparent Ki was determined to be 840 pM and found to be similar in hepatic microsomes from human, rat, and hamster. RS-21607, which contains two chiral centers, was a more effective lanosterol 14 alpha-demethylase inhibitor than its three stereoisomers. In vitro, RS-21607 had a greater affinity for lanosterol 14 alpha-demethylase than the other cytochromes P450 evaluated: CYP7, CYP27, CYP11A1, CYP19, CYP17, CYP11B1, CYP21, CYP3A4, CYP4A, CYP2D6, CYP1A2, CYP2C9, and 27-hydroxycholesterol 7 alpha-hydroxylase. The other stereoisomers were not as selective as RS-21607. Doses of 3-30 mg/kg RS-21607 given orally to hamsters caused a dose-dependent decrease in cholesterol biosynthesis with a corresponding accumulation of 24,25-dihydrolanosterol. RS-21607 inhibited the enzyme and cholesterol biosynthesis in hamster liver by 50% at 18 h following a 30 mg/kg oral dose. This was interpreted to indicate that RS-21607 is able to distribute to the site of action in hamsters and inhibit the target enzyme. In the same dose range, the plasma concentrations of testosterone, corticosterone, and progesterone, the endpoints for the cytochromes P450 involved in steroid biosynthesis, were relatively unaffected. These data show RS-21607 to be an effective and selective inhibitor of lanosterol 14 alpha-demethylase, both in vivo and in vitro. RS-21607 interacted with the purified enzyme to produce a type II binding spectrum, consistent with an interaction between the imidazole moiety and the heme. The electrostatic contribution of the imidazole binding was investigated using the desimidazole analog of RS-21607. The apparent Ki for the desimidazole compound (65 microM) was similar to the apparent Km for the substrate DHL (79 microM). Together, these data confirm that the ligand attached to the imidazole in RS-21607 is a good non-sterol substitute for DHL, i.e., binding to the enzyme with similar affinity, and that the coordination of the imidazole to the heme provides a major electrostatic contribution for the inhibition of lanosterol 14 alpha-demethylase by RS-21607. RS-21607 was also observed to increase the accumulation of 3 beta-hydroxy-24,25-dihydrolanost-8-en-32-al, the second intermediate in the multistep oxidation, but not the first intermediate. 24,25-dihydrolanost-8-ene-3 beta,32-diol.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D C Swinney
- Syntex Discovery Research, Palo Alto, California 94304
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yoshida Y, Aoyama Y. The P450 superfamily: A group of versatile hemoproteins contributing to the oxidation of various small molecules. Stem Cells 1994. [DOI: 10.1002/stem.5530120710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Kelly SL, Kenna S, Arnoldi A, Kelly DE. Studies on azole-induced cell death in Saccharomyces cerevisiae. FEMS Microbiol Lett 1994; 115:219-22. [PMID: 8138136 DOI: 10.1111/j.1574-6968.1994.tb06641.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Saccharomyces cerevisiae strain XL16-5B exhibited a fungicidal response to treatment with ketoconazole. Cell death became apparent during prolonged treatment over 72 h following an initial period over 24 h where viable cells were found and limited cell division occurred. Sterol analysis showed some differences between XL16-5B and the strain XY729-5a, which had a fungistatic response to ketoconazole. In particular, the level of ergosterol was higher in XL16-5B and remained high during treatment.
Collapse
Affiliation(s)
- S L Kelly
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, Sheffield University, UK
| | | | | | | |
Collapse
|
49
|
Suzuki K, Sanga K, Chikaoka Y, Itagaki E. Purification and properties of cytochrome P-450 (P-450lun) catalyzing steroid 11 beta-hydroxylation in Curvularia lunata. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1203:215-23. [PMID: 8268203 DOI: 10.1016/0167-4838(93)90086-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Addition of 11-deoxycortisol to the culture medium of Curvularia lunata induced the increase of cytochrome P-450 content and steroid 11 beta-hydroxylase activity. The enzyme in cell-free extract produces cortisol from 11-deoxycortisol in the presence of NADPH and O2. The enzyme was partially stabilized by glycerol, 11-deoxycortisol, GSH and PMSF. The hydroxylation activity was strongly inhibited by carbon monooxide and sulfhydryl reagents. Cytochrome P-450 located on the microsomal fraction was solubilized with Triton X-100 and sodium cholate and purified to apparent homogeneity by column chromatography. The purified cytochrome P-450 (P-450lun) has a molecular mass of 60 kDa and exhibits the absorption maximum at 392 nm in the spectrum of oxidized form in the presence of 11-deoxycortisol. The reduced CO difference spectrum has a maximal peak at 448 nm. 11 beta-Hydroxylation of 11-deoxycortisol was reconstituted by cytochrome P-450lun, C. lunata NADPH-cytochrome P-450 reductase and DLPC in the presence of NADPH and O2 with a turnover number of 207 nmol/min per nmol of cytochrome P-450. The reductase and DLPC could be partially replaced with the enzyme purified from yeast or pig testis microsome and lipids purified from C. lunata, respectively. P-450lun catalyzes bifunctionally 11 beta- and 14 alpha-hydroxylations of 11-deoxycortisol. Deoxycorticosterone, progesterone, androstenedione and testosterone are hydroxylated in the similar manner.
Collapse
Affiliation(s)
- K Suzuki
- Department of Chemistry, Faculty of Science, Kanazawa University, Japan
| | | | | | | |
Collapse
|
50
|
Purification of a human cytochrome P-450 Isozyme catalyzing lanosterol 14α-demethylation. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/0005-2760(93)90179-d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|