1
|
Huang C, Li W, Chen J. Stringent Response Factor DksA Contributes to Fatty Acid Degradation Function to Influence Cell Membrane Stability and Polymyxin B Resistance of Yersinia enterocolitica. Int J Mol Sci 2023; 24:11951. [PMID: 37569327 PMCID: PMC10418728 DOI: 10.3390/ijms241511951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
DksA is a proteobacterial regulator that binds directly to the secondary channel of RNA polymerase with (p)ppGpp and is responsible for various bacterial physiological activities. While (p)ppGpp is known to be involved in the regulation and response of fatty acid metabolism pathways in many foodborne pathogens, the role of DksA in this process has yet to be clarified. This study aimed to characterize the function of DksA on fatty acid metabolism and cell membrane structure in Yersinia enterocolitica. Therefore, comparison analysis of gene expression, growth conditions, and membrane permeabilization among the wide-type (WT), DksA-deficient mutant (YEND), and the complemented strain was carried out. It confirmed that deletion of DksA led to a more than four-fold decrease in the expression of fatty acid degradation genes, including fadADEIJ. Additionally, YEND exhibited a smaller growth gap compared to the WT strain at low temperatures, indicating that DksA is not required for the growth of Y. enterocolitica in cold environments. Given that polymyxin B is a cationic antimicrobial peptide that targets the cell membrane, the roles of DksA under polymyxin B exposure were also characterized. It was found that DksA positively regulates the integrity of the inner and outer membranes of Y. enterocolitica under polymyxin B, preventing the leakage of intracellular nucleic acids and proteins and ultimately reducing the sensitivity of Y. enterocolitica to polymyxin B. Taken together, this study provides insights into the functions of DksA and paves the way for novel fungicide development.
Collapse
Affiliation(s)
| | | | - Jingyu Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, 17 Qinghua East Rd., Beijing 100083, China
| |
Collapse
|
2
|
Gummesson B, Shah SA, Borum AS, Fessler M, Mitarai N, Sørensen MA, Svenningsen SL. Valine-Induced Isoleucine Starvation in Escherichia coli K-12 Studied by Spike-In Normalized RNA Sequencing. Front Genet 2020; 11:144. [PMID: 32211022 PMCID: PMC7066862 DOI: 10.3389/fgene.2020.00144] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Escherichia coli cells respond to a period of famine by globally reorganizing their gene expression. The changes are known as the stringent response, which is orchestrated by the alarmone ppGpp that binds directly to RNA polymerase. The resulting changes in gene expression are particularly well studied in the case of amino acid starvation. We used deep RNA sequencing in combination with spike-in cells to measure global changes in the transcriptome after valine-induced isoleucine starvation of a standard E. coli K12 strain. Owing to the whole-cell spike-in method that eliminates variations in RNA extraction efficiency between samples, we show that ribosomal RNA levels are reduced during isoleucine starvation and we quantify how the change in cellular RNA content affects estimates of gene regulation. Specifically, we show that standard data normalization relying on sample sequencing depth underestimates the number of down-regulated genes in the stringent response and overestimates the number of up-regulated genes by approximately 40%. The whole-cell spike-in method also made it possible to quantify how rapidly the pool of total messenger RNA (mRNA) decreases upon amino acid starvation. A principal component analysis showed that the first two components together described 69% of the variability of the data, underlining that large and highly coordinated regulons are at play in the stringent response. The induction of starvation by sudden addition of high valine concentrations provoked prominent regulatory responses outside of the expected ppGpp, RpoS, and Lrp regulons. This underlines the notion that with the high resolution possible in deep RNA sequencing analysis, any different starvation method (e.g., nitrogen-deprivation, removal of an amino acid from an auxotroph strain, or valine addition to E. coli K12 strains) will produce measurable variations in the stress response produced by the cells to cope with the specific treatment.
Collapse
Affiliation(s)
- Bertil Gummesson
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Shiraz Ali Shah
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Mathias Fessler
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Namiko Mitarai
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
3
|
Gourse RL, Chen AY, Gopalkrishnan S, Sanchez-Vazquez P, Myers A, Ross W. Transcriptional Responses to ppGpp and DksA. Annu Rev Microbiol 2018; 72:163-184. [PMID: 30200857 PMCID: PMC6586590 DOI: 10.1146/annurev-micro-090817-062444] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The stringent response to nutrient deprivation is a stress response found throughout the bacterial domain of life. Although first described in proteobacteria for matching ribosome synthesis to the cell's translation status and for preventing formation of defective ribosomal particles, the response is actually much broader, regulating many hundreds of genes-some positively, some negatively. Utilization of the signaling molecules ppGpp and pppGpp for this purpose is ubiquitous in bacterial evolution, although the mechanisms employed vary. In proteobacteria, the signaling molecules typically bind to two sites on RNA polymerase, one at the interface of the β' and ω subunits and one at the interface of the β' secondary channel and the transcription factor DksA. The β' secondary channel is targeted by other transcription regulators as well. Although studies on the transcriptional outputs of the stringent response date back at least 50 years, the mechanisms responsible are only now coming into focus.
Collapse
Affiliation(s)
- Richard L Gourse
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Albert Y Chen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Saumya Gopalkrishnan
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Patricia Sanchez-Vazquez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | | | - Wilma Ross
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| |
Collapse
|
4
|
Takada H, Shimada T, Dey D, Quyyum MZ, Nakano M, Ishiguro A, Yoshida H, Yamamoto K, Sen R, Ishihama A. Differential Regulation of rRNA and tRNA Transcription from the rRNA-tRNA Composite Operon in Escherichia coli. PLoS One 2016; 11:e0163057. [PMID: 28005933 PMCID: PMC5179076 DOI: 10.1371/journal.pone.0163057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/01/2016] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli contains seven rRNA operons, each consisting of the genes for three rRNAs (16S, 23S and 5S rRNA in this order) and one or two tRNA genes in the spacer between 16S and 23S rRNA genes and one or two tRNA genes in the 3’ proximal region. All of these rRNA and tRNA genes are transcribed from two promoters, P1 and P2, into single large precursors that are afterward processed to individual rRNAs and tRNAs by a set of RNases. In the course of Genomic SELEX screening of promoters recognized by RNA polymerase (RNAP) holoenzyme containing RpoD sigma, a strong binding site was identified within 16S rRNA gene in each of all seven rRNA operons. The binding in vitro of RNAP RpoD holoenzyme to an internal promoter, referred to the promoter of riRNA (an internal RNA of the rRNA operon), within each 16S rRNA gene was confirmed by gel shift assay and AFM observation. Using this riRNA promoter within the rrnD operon as a representative, transcription in vitro was detected with use of the purified RpoD holoenzyme, confirming the presence of a constitutive promoter in this region. LacZ reporter assay indicated that this riRNA promoter is functional in vivo. The location of riRNA promoter in vivo as identified using a set of reporter plasmids agrees well with that identified in vitro. Based on transcription profile in vitro and Northern blot analysis in vivo, the majority of transcript initiated from this riRNA promoter was estimated to terminate near the beginning of 23S rRNA gene, indicating that riRNA leads to produce the spacer-coded tRNA. Under starved conditions, transcription of the rRNA operon is markedly repressed to reduce the intracellular level of ribosomes, but the levels of both riRNA and its processed tRNAGlu stayed unaffected, implying that riRNA plays a role in the continued steady-state synthesis of tRNAs from the spacers of rRNA operons. We then propose that the tRNA genes organized within the spacers of rRNA-tRNA composite operons are expressed independent of rRNA synthesis under specific conditions where further synthesis of ribosomes is not needed.
Collapse
Affiliation(s)
- Hiraku Takada
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| | - Tomohiro Shimada
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuda, Yokohama, Japan
| | - Debashish Dey
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | | | - Masahiro Nakano
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Akira Ishiguro
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| | - Hideji Yoshida
- Department of Physics, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Kaneyoshi Yamamoto
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Ranjan Sen
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
- * E-mail:
| |
Collapse
|
5
|
Stochastic induction of persister cells by HipA through (p)ppGpp-mediated activation of mRNA endonucleases. Proc Natl Acad Sci U S A 2015; 112:5171-6. [PMID: 25848049 DOI: 10.1073/pnas.1423536112] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The model organism Escherichia coli codes for at least 11 type II toxin-antitoxin (TA) modules, all implicated in bacterial persistence (multidrug tolerance). Ten of these encode messenger RNA endonucleases (mRNases) inhibiting translation by catalytic degradation of mRNA, and the 11th module, hipBA, encodes HipA (high persister protein A) kinase, which inhibits glutamyl tRNA synthetase (GltX). In turn, inhibition of GltX inhibits translation and induces the stringent response and persistence. Previously, we presented strong support for a model proposing (p)ppGpp (guanosine tetra and penta-phosphate) as the master regulator of persistence. Stochastic variation of [(p)ppGpp] in single cells induced TA-encoded mRNases via a pathway involving polyphosphate and Lon protease. Polyphosphate activated Lon to degrade all known type II antitoxins of E. coli. In turn, the activated mRNases induced persistence and multidrug tolerance. However, even though it was known that activation of HipA stimulated (p)ppGpp synthesis, our model did not explain how hipBA induced persistence. Here we show that, in support of and consistent with our initial model, HipA-induced persistence depends not only on (p)ppGpp but also on the 10 mRNase-encoding TA modules, Lon protease, and polyphosphate. Importantly, observations with single cells convincingly show that the high level of (p)ppGpp caused by activation of HipA does not induce persistence in the absence of TA-encoded mRNases. Thus, slow growth per se does not induce persistence in the absence of TA-encoded toxins, placing these genes as central effectors of bacterial persistence.
Collapse
|
6
|
Nakano M, Ogasawara H, Shimada T, Yamamoto K, Ishihama A. Involvement of cAMP-CRP in transcription activation and repression of the pck gene encoding PEP carboxykinase, the key enzyme of gluconeogenesis. FEMS Microbiol Lett 2014; 355:93-9. [PMID: 24814025 DOI: 10.1111/1574-6968.12466] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 05/08/2014] [Accepted: 05/08/2014] [Indexed: 11/30/2022] Open
Abstract
cAMP receptor protein (CRP) is the best characterized global regulator of Escherichia coli. After genomic SELEX screening, a total of minimum 378 promoters have been identified as its regulation targets on the E. coli genome. Among a number of promoters carrying two CRP-binding sites, several promoters carry two CRP-binding sites, one upstream but another downstream of transcription initiation sites. The regulatory role of downstream CRP site remains unsolved. Using the pck gene encoding phosphoenolpyruvate carboxykinase as a model promoter, we analyzed the role of CRP-associated downstream of the transcription initiation site. Gel shift assay and AFM observation indicate that CRP binds to both the promoter-distal site (CRP box-1) at -90.5 and the site (CRP box-2) at +13.5 downstream of transcription initiation site. The binding affinity is higher for CRP box-1. Roles of two CRP sites were examined using in vitro transcription assay and in vivo reporter assay. In both cases, transcription repression was observed in the presence of high concentrations of CRP. Taken together, we propose that cAMP-CRP associated at downstream CRP box-2 plays as a repressor for pck transcription only in the presence of high levels of cAMP-CRP.
Collapse
Affiliation(s)
- Masahiro Nakano
- Department of Frontier Bioscience and Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| | | | | | | | | |
Collapse
|
7
|
Kalia D, Merey G, Nakayama S, Zheng Y, Zhou J, Luo Y, Guo M, Roembke BT, Sintim HO. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem Soc Rev 2012; 42:305-41. [PMID: 23023210 DOI: 10.1039/c2cs35206k] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
For an organism to survive, it must be able to sense its environment and regulate physiological processes accordingly. Understanding how bacteria integrate signals from various environmental factors and quorum sensing autoinducers to regulate the metabolism of various nucleotide second messengers c-di-GMP, c-di-AMP, cGMP, cAMP and ppGpp, which control several key processes required for adaptation is key for efforts to develop agents to curb bacterial infections. In this review, we provide an update of nucleotide signaling in bacteria and show how these signals intersect or integrate to regulate the bacterial phenotype. The intracellular concentrations of nucleotide second messengers in bacteria are regulated by synthases and phosphodiesterases and a significant number of these metabolism enzymes had been biochemically characterized but it is only in the last few years that the effector proteins and RNA riboswitches, which regulate bacterial physiology upon binding to nucleotides, have been identified and characterized by biochemical and structural methods. C-di-GMP, in particular, has attracted immense interest because it is found in many bacteria and regulate both biofilm formation and virulence factors production. In this review, we discuss how the activities of various c-di-GMP effector proteins and riboswitches are modulated upon c-di-GMP binding. Using V. cholerae, E. coli and B. subtilis as models, we discuss how both environmental factors and quorum sensing autoinducers regulate the metabolism and/or processing of nucleotide second messengers. The chemical syntheses of the various nucleotide second messengers and the use of analogs thereof as antibiofilm or immune modulators are also discussed.
Collapse
Affiliation(s)
- Dimpy Kalia
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Growth rate regulation in bacteria has been an important issue in bacterial physiology for the past 50 years. This review, using Escherichia coli as a paradigm, summarizes the mechanisms for the regulation of rRNA synthesis in the context of systems biology, particularly, in the context of genome-wide competition for limited RNA polymerase (RNAP) in the cell under different growth conditions including nutrient starvation. The specific location of the seven rrn operons in the chromosome and the unique properties of the rrn promoters contribute to growth rate regulation. The length of the rrn transcripts, coupled with gene dosage effects, influence the distribution of RNAP on the chromosome in response to growth rate. Regulation of rRNA synthesis depends on multiple factors that affect the structure of the nucleoid and the allocation of RNAP for global gene expression. The magic spot ppGpp, which acts with DksA synergistically, is a key effector in both the growth rate regulation and the stringent response induced by nutrient starvation, mainly because the ppGpp level changes in response to environmental cues. It regulates rRNA synthesis via a cascade of events including both transcription initiation and elongation, and can be explained by an RNAP redistribution (allocation) model.
Collapse
Affiliation(s)
- Ding Jun Jin
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| | | | | |
Collapse
|
9
|
Direct regulation of Escherichia coli ribosomal protein promoters by the transcription factors ppGpp and DksA. Proc Natl Acad Sci U S A 2011; 108:5712-7. [PMID: 21402902 DOI: 10.1073/pnas.1019383108] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We show here that the promoters for many of the Escherichia coli ribosomal protein operons are regulated directly by two transcription factors, the small RNA polymerase-binding protein DksA and the nutritional stress-induced nucleotide ppGpp. ppGpp and DksA work together to inhibit transcription initiation from ribosomal protein promoters in vitro and in vivo. The degree of promoter regulation by ppGpp/DksA varies among the r-protein promoters, but some are inhibited almost as much as rRNA promoters. Thus, many r-protein operons are regulated at the level of transcription in addition to their control by the classic translational feedback systems discovered ~30 y ago. We conclude that direct control of r-protein promoters and rRNA promoters by the same signal, ppGpp/DksA, makes a major contribution to the balanced and coordinated synthesis rates of all of the ribosomal components.
Collapse
|
10
|
Genetic analysis of the invariant residue G791 in Escherichia coli 16S rRNA implicates RelA in ribosome function. J Bacteriol 2009; 191:2042-50. [PMID: 19168615 DOI: 10.1128/jb.00904-08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies identified G791 in Escherichia coli 16S rRNA as an invariant residue for ribosome function. In order to establish the functional role of this residue in protein synthesis, we searched for multicopy suppressors of the mutant ribosomes that bear a G-to-U substitution at position 791. We identified relA, a gene whose product has been known to interact with ribosomes and trigger a stringent response. Overexpression of RelA resulted in the synthesis of approximately 1.5 times more chloramphenicol acetyltransferase (CAT) protein than could be synthesized by the mutant ribosomes in the absence of RelA overexpression. The ratio of mutant rRNA to the total ribosome pool was not changed, and the steady-state level of CAT mRNA was decreased by RelA overexpression. These data confirmed that the phenotype of RelA as a multicopy suppressor of the mutant ribosome did not result from the enhanced synthesis of mutant rRNA or CAT mRNA from the plasmid. To test whether the phenotype of RelA was related to the stringent response induced by the increased cellular level of (p)ppGpp, we screened for mutant RelA proteins whose overexpression enhances CAT protein synthesis by the mutant ribosomes as effectively as wild-type RelA overexpression and then screened for those whose overexpression does not produce sufficiently high levels of (p)ppGpp to trigger the stringent response under the condition of amino acid starvation. Overexpression of the isolated mutant RelA proteins resulted in the accumulation of (p)ppGpp in cells, which was amounted to approximately 18.2 to 38.9% of the level of (p)ppGpp found in cells that overexpress the wild-type RelA. These findings suggest that the function of RelA as a multicopy suppressor of the mutant ribosome does not result from its (p)ppGpp synthetic activity. We conclude that RelA has a previously unrecognized role in ribosome function.
Collapse
|
11
|
Szalewska-Palasz A, Wegrzyn G, Wegrzyn A. Mechanisms of physiological regulation of RNA synthesis in bacteria: new discoveries breaking old schemes. J Appl Genet 2007; 48:281-94. [PMID: 17666783 DOI: 10.1007/bf03195225] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Although in bacterial cells all genes are transcribed by RNA polymerase, there are 2 additional enzymes capable of catalyzing RNA synthesis: poly(A) polymerase I, which adds poly(A) residues to transcripts, and primase, which produces primers for DNA replication. Mechanisms of actions of these 3 RNA-synthesizing enzymes were investigated for many years, and schemes of their regulations have been proposed and generally accepted. Nevertheless, recent discoveries indicated that apart from well-understood mechanisms, there are additional regulatory processes, beyond the established schemes, which allow bacterial cells to respond to changing environmental and physiological conditions. These newly discovered mechanisms, which are discussed in this review, include: (i) specific regulation of gene expression by RNA polyadenylation, (ii) control of DNA replication by interactions of the starvation alarmones, guanosine pentaphosphate and guanosine tetraphosphate, (p)ppGpp, with DnaG primase, (iii) a role for the DksA protein in ppGpp-mediated regulation of transcription, (iv) allosteric modulation of the RNA polymerase catalytic reaction by specific inhibitors of transcription, rifamycins, (v) stimulation of transcription initiation by proteins binding downstream of the promoter sequences, and (vi) promoter-dependent control of transcription antitermination efficiency.
Collapse
|
12
|
Abstract
The Bacillus subtilis spoIIIA locus encodes eight proteins, SpoIIIAA to SpoIIIAH, which are expressed in the mother cell during endospore formation and which are essential for the activation of sigma(G) in the forespore. Complementation studies indicated that this locus may be transcribed from two promoters, one promoter upstream from the first gene and possibly a second unidentified promoter within the locus. Fragments of the spoIIIA locus were expressed at an ectopic site to complement the sporulation-defective phenotype of a spoIIIAH deletion, and we determined that complementation required a fragment of DNA that extended into spoIIIAF. To confirm that there was a promoter located in spoIIIAF, we constructed transcriptional fusions to lacZ and found strong sporulation-induced promoter activity. Primer extension assays were used to determine the transcription start site, and point mutations introduced into the -10 and -35 regions of the promoter reduced its activity. This promoter is transcribed by sigma(E)-RNA polymerase and is repressed by SpoIIID. Therefore, we concluded that the spoIIIA locus is transcribed from two promoters, one at the start of the locus (P1(spoIIIA)) and the other within the locus (P2(spoIIIA)). Based on Campbell integrations and reverse transcription-PCR analysis of the P2(spoIIIA) region, we determined that P2(spoIIIA) is sufficient for transcription of spoIIIAG and spoIIIAH. Inactivation of P2(spoIIIA) blocked spore formation, indicating that P2(spoIIIA) is essential for expression of spoIIIAG and spoIIIAH. The P2(spoIIIA) activity is twice the P1(spoIIIA) activity; therefore, larger amounts of SpoIIIAG and SpoIIIAH than of proteins encoded at the upstream end of the locus may be required.
Collapse
Affiliation(s)
- Chris Guillot
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
13
|
Hook-Barnard IG, Brickman TJ, McIntosh MA. Identification of an AU-rich translational enhancer within the Escherichia coli fepB leader RNA. J Bacteriol 2007; 189:4028-37. [PMID: 17400738 PMCID: PMC1913407 DOI: 10.1128/jb.01924-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fepB gene encodes a periplasmic binding protein that is essential for the uptake of ferric enterobactin by Escherichia coli. Its transcription is regulated in response to iron levels by the Fur repressor. The fepB transcript includes a 217-nucleotide leader sequence with several features suggestive of posttranscriptional regulation. To investigate the fepB leader for its contribution to fepB expression, defined deletions and substitution mutations in the leader were characterized using fepB-phoA translational fusions. The fepB leader was found to be necessary for maximal fepB expression, primarily due to the influence of an AU-rich translational enhancer (TE) located 5' to the Shine-Dalgarno sequence. Deletions or substitutions within the TE sequence decreased fepB-phoA expression fivefold. RNase protection and in vitro transcription-translation assays demonstrated that the TE augmented translational efficiency, as well as RNA levels. Moreover, primer extension inhibition assays showed that the TE increases ribosome binding. In contrast to the enhancing effect of the TE, the natural fepB GUG start codon decreased ribosome binding and reduced fepB expression 2.5-fold compared with the results obtained with leaders bearing an AUG initiation codon. Thus, the TE-GUG organization in fepB results in an intermediate level of expression compared to the level with AUG, with or without the TE. Furthermore, we found that the TE-GUG sequence is conserved among the eight gram-negative strains examined that have fepB genes, suggesting that this organization may provide a selective advantage.
Collapse
MESH Headings
- Base Composition
- Base Sequence
- Codon, Initiator/genetics
- DNA Primers/genetics
- Enhancer Elements, Genetic/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/metabolism
- Molecular Sequence Data
- Peptide Chain Initiation, Translational/genetics
- Periplasmic Proteins/genetics
- Periplasmic Proteins/metabolism
- Protein Biosynthesis/genetics
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Spliced Leader/genetics
- RNA, Spliced Leader/metabolism
- Ribosomes/metabolism
- Sequence Homology, Nucleic Acid
- Transcription, Genetic
Collapse
Affiliation(s)
- India G Hook-Barnard
- Department of Molecular Microbiology andd Immunology, University of Missouri School of Medicine, Columbia, Missouri 65212, USA.
| | | | | |
Collapse
|
14
|
Shimada T, Fujita N, Maeda M, Ishihama A. Systematic search for the Cra-binding promoters using genomic SELEX system. Genes Cells 2005; 10:907-18. [PMID: 16115199 DOI: 10.1111/j.1365-2443.2005.00888.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cra (or FruR), a global transcription factor with both repression and activation activities, controls a large number of the genes for glycolysis and gluconeogenesis. To get insights into the entire network of transcription regulation of the E. coli genome by Cra, we isolated a set of Cra-binding sequences using an improved method of genomic SELEX. From the DNA sequences of 97 independently isolated DNA fragments by SELEX, the Cra-binding sequences were identified in a total of ten regions on the E. coli genome, including promoters of six known genes and four hitherto-unidentified genes. All six known promoters are repressed by Cra, but none of the activation-type promoters were cloned after two cyles of SELEX, because the Cra-binding affinity to the repression-type promoters is higher than the activation-type promoters, as determined by the quantitative gel shift assay. Of a total of four newly identified Cra-binding sequences, two are associated with promoter regions of the gapA (glyceraldehyde 3-phosphate dehydrogenase) and eno (enolase) genes, both involved in sugar metabolism. The regulation of newly identified genes by Cra was confirmed by the in vivo promoter strength assay using a newly developed TFP (two-fluorescent protein) vector for promoter assay or by in vitro transcription assay in the presence of Cra protein.
Collapse
Affiliation(s)
- Tomohiro Shimada
- Nippon Institute for Biological Science, Division of Molecular Biology, Ome, Tokyo 198-0024, Japan
| | | | | | | |
Collapse
|
15
|
Abstract
The small nucleotide ppGpp acts as a global regulator of gene expression in bacteria. Proteomic analysis of cells lacking ppGpp has shown that this nucleotide might affect many more genes than previously anticipated. These findings and others suggest that ppGpp causes a redirection of transcription so that genes important for starvation survival and virulence are favoured at the expense of those required for growth and proliferation. In addition, new insights into the mechanism by which ppGpp affects gene expression have been achieved owing to in vitro studies of ppGpp function, complemented by structural studies of the ppGpp-RNA polymerase complex.
Collapse
Affiliation(s)
- Lisa U Magnusson
- Department of Cell and Molecular Biology-Microbiology, Göteborg University, Box 462, 405 30 Göteborg, Sweden
| | | | | |
Collapse
|
16
|
Abstract
Ribosomal RNA transcription is the rate-limiting step in ribosome synthesis in bacteria and has been investigated intensely for over half a century. Multiple mechanisms ensure that rRNA synthesis rates are appropriate for the cell's particular growth condition. Recently, important advances have been made in our understanding of rRNA transcription initiation in Escherichia coli. These include (a) a model at the atomic level of the network of protein-DNA and protein-protein interactions that recruit RNA polymerase to rRNA promoters, accounting for their extraordinary strength; (b) discovery of the nonredundant roles of two small molecule effectors, ppGpp and the initiating NTP, in regulation of rRNA transcription initiation; and (c) identification of a new component of the transcription machinery, DksA, that is absolutely required for regulation of rRNA promoter activity. Together, these advances provide clues important for our molecular understanding not only of rRNA transcription, but also of transcription in general.
Collapse
Affiliation(s)
- Brian J Paul
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
17
|
Dennis PP, Ehrenberg M, Bremer H. Control of rRNA synthesis in Escherichia coli: a systems biology approach. Microbiol Mol Biol Rev 2004; 68:639-68. [PMID: 15590778 PMCID: PMC539008 DOI: 10.1128/mmbr.68.4.639-668.2004] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first part of this review contains an overview of the various contributions and models relating to the control of rRNA synthesis reported over the last 45 years. The second part describes a systems biology approach to identify the factors and effectors that control the interactions between RNA polymerase and rRNA (rrn) promoters of Escherichia coli bacteria during exponential growth in different media. This analysis is based on measurements of absolute rrn promoter activities as transcripts per minute per promoter in bacterial strains either deficient or proficient in the synthesis of the factor Fis and/or the effector ppGpp. These absolute promoter activities are evaluated in terms of rrn promoter strength (V(max)/K(m)) and free RNA polymerase concentrations. Three major conclusions emerge from this evaluation. First, the rrn promoters are not saturated with RNA polymerase. As a consequence, changes in the concentration of free RNA polymerase contribute to changes in rrn promoter activities. Second, rrn P2 promoter strength is not specifically regulated during exponential growth at different rates; its activity changes only when the concentration of free RNA polymerase changes. Third, the effector ppGpp reduces the strength of the rrn P1 promoter both directly and indirectly by reducing synthesis of the stimulating factor Fis. This control of rrn P1 promoter strength forms part of a larger feedback loop that adjusts the synthesis of ribosomes to the availability of amino acids via amino acid-dependent control of ppGpp accumulation.
Collapse
Affiliation(s)
- Patrick P Dennis
- Division of Molecular and Cellular Biosciences, National Science Foundation, 4201 Wilson Blvd., Arlington VA 22230, USA.
| | | | | |
Collapse
|
18
|
Opel ML, Aeling KA, Holmes WM, Johnson RC, Benham CJ, Hatfield GW. Activation of transcription initiation from a stable RNA promoter by a Fis protein-mediated DNA structural transmission mechanism. Mol Microbiol 2004; 53:665-74. [PMID: 15228542 DOI: 10.1111/j.1365-2958.2004.04147.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The leuV operon of Escherichia coli encodes three of the four genes for the tRNA1Leu isoacceptors. Transcription from this and other stable RNA promoters is known to be affected by a cis-acting UP element and by Fis protein interactions with the carboxyl-terminal domain of the alpha-subunits of RNA polymerase. In this report, we suggest that transcription from the leuV promoter also is activated by a Fis-mediated, DNA supercoiling-dependent mechanism similar to the IHF-mediated mechanism described previously for the ilvP(G) promoter (S. D. Sheridan et al., 1998, J Biol Chem 273: 21298-21308). We present evidence that Fis binding results in the translocation of superhelical energy from the promoter-distal portion of a supercoiling-induced DNA duplex destabilized (SIDD) region to the promoter-proximal portion of the leuV promoter that is unwound within the open complex. A mutant Fis protein, which is defective in contacting the carboxyl-terminal domain of the alpha-subunits of RNA polymerase, remains competent for stimulating open complex formation, suggesting that this DNA supercoiling-dependent component of Fis-mediated activation occurs in the absence of specific protein interactions between Fis and RNA polymerase. Fis-mediated translocation of superhelical energy from upstream binding sites to the promoter region may be a general feature of Fis-mediated activation of transcription at stable RNA promoters, which often contain A+T-rich upstream sequences.
Collapse
Affiliation(s)
- Michael L Opel
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | |
Collapse
|
19
|
Magnusson LU, Nystrom T, Farewell A. Underproduction of sigma 70 mimics a stringent response. A proteome approach. J Biol Chem 2003; 278:968-73. [PMID: 12421813 DOI: 10.1074/jbc.m209881200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When Escherichia coli cells enter stationary phase due to carbon starvation the synthesis of ribosomal proteins is rapidly repressed. In a DeltarelA DeltaspoT mutant, defective in the production of the alarmone guanosine tetraphosphate (ppGpp), this regulation of the levels of the protein synthesizing system is abolished. Using a proteomic approach we demonstrate that the production of the vast majority of detected E. coli proteins are decontrolled during carbon starvation in the DeltarelA DeltaspoT strain and that the starved cells behave as if they were growing exponentially. In addition we show that the inhibition of ribosome synthesis by the stringent response can be qualitatively mimicked by artificially lowering the levels of the housekeeping sigma factor, sigma(70). In other words, genes encoding the protein-synthesizing system are especially sensitive to reduced availability of sigma(70) programmed RNA polymerase. This effect is not dependent on ppGpp since lowering the levels of sigma(70) gives a similar but less pronounced effect in a ppGpp(0) strain. The data is discussed in view of the models advocating for a passive control of gene expression during stringency based on alterations in RNA polymerase availability.
Collapse
Affiliation(s)
- Lisa U Magnusson
- Department of Cell and Molecular Biology-Microbiology, Göteborg University, Box 462, Sweden
| | | | | |
Collapse
|
20
|
Abstract
How do bacteria adapt and optimize their growth in response to different environments? The answer to this question is intimately related to the control of ribosome bio-synthesis. During the last decades numerous proposals have been made to explain this control but none has been definitive. To readdress the problem, we have used measurements of rRNA synthesis rates and rrn gene dosages in E. coli to find the absolute transcription rates of the average rrn operon (transcripts per min per operon) at different growth rates. By combining these rates with lacZ expression data from rRNA promoter-lacZ fusions, the abolute activities of the isolated rrnB P1 and P2 promoters were determined as functions of the growth rate in the presence and absence of Fis and of the effector ppGpp. The promoter activity data were analyzed to obtain the relative concentrations of free RNA polymerase, [R(f)], and the ratio of the Michaelis-Menten parameters, V(max)/K(m) (promoter strength), that characterize the promoter-RNA polymerase interaction. The results indicate that changes in the basal concentration of ppGpp can account for all growth-medium dependent regulation of the rrn P1 promoter strength. The P1 promoter strength was maximal when Fis was present and the level of ppGpp was undetectable during growth in rich media or in ppGpp-deficient strains; this maximal strength was 3-fold reduced when Fis was removed and the level of ppGpp remained undetectable. At ppGpp levels above 55 pmol per cell mass unit (OD(460)) during growth in poor media, the P1 promoter strength was minimal and not affected by the presence or absence of fis. The half-maximal value occurred at 20 pmol ppGpp/OD(460) and corresponds to an intracellular concentration of about 50 microM. In connection with previously published data, the results suggest that ppGpp reduces the P1 promoter strength directly, by binding RNA polymerase, and indirectly, by inhibiting the synthesis of Fis.
Collapse
Affiliation(s)
- X Zhang
- Department of Molecular and Cell Biology, University of Texas at Dallas, TX 75083-0688, Richardson, USA
| | | | | | | |
Collapse
|
21
|
Barker MM, Gaal T, Josaitis CA, Gourse RL. Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. J Mol Biol 2001; 305:673-88. [PMID: 11162084 DOI: 10.1006/jmbi.2000.4327] [Citation(s) in RCA: 269] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the role of ppGpp in both negative and positive regulation of transcription initiation during exponential growth in Escherichia coli, we examined transcription in vivo and in vitro from the growth-rate-dependent rRNA promoter rrnB P1 and from the inversely growth-rate-dependent amino acid biosynthesis/transport promoters PargI, PhisG, PlysC, PpheA, PthrABC, and PlivJ. rrnB P1 promoter activity was slightly higher at all growth-rates in strains unable to synthesize ppGpp (deltarelAdeltaspoT) than in wild-type strains. Consistent with this observation and with the large decrease in rRNA transcription during the stringent response (when ppGpp levels are much higher), ppGpp inhibited transcription from rrnB P1 in vitro. In contrast, amino acid promoter activity was considerably lower in deltarelAdeltaspoT strains than in wild-type strains, but ppGpp had no effect on amino acid promoter activity in vitro. Detailed kinetic analysis in vitro indicated that open complexes at amino acid promoters formed much more slowly and were much longer-lived than rrnB P1 open complexes. ppGpp did not increase the rates of association with, or escape from, amino acid promoters in vitro, consistent with its failure to stimulate transcription directly. In contrast, ppGpp decreased the half-lives of open complexes at all promoters, whether the half-life was seconds (rrnB P1) or hours (amino acid promoters). The results described here and in the accompanying paper indicate that ppGpp directly inhibits transcription, but only from promoters like rrnB P1 that make short-lived open complexes. The results indicate that stimulation of amino acid promoters occurs indirectly. The accompanying paper evaluates potential models for positive control of amino acid promoters by ppGpp that might explain the requirement of ppGpp for amino acid prototrophy.
Collapse
Affiliation(s)
- M M Barker
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI, 53706, USA
| | | | | | | |
Collapse
|
22
|
Toulokhonov II, Shulgina I, Hernandez VJ. Binding of the transcription effector ppGpp to Escherichia coli RNA polymerase is allosteric, modular, and occurs near the N terminus of the beta'-subunit. J Biol Chem 2001; 276:1220-5. [PMID: 11035017 DOI: 10.1074/jbc.m007184200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Among the prokaryotae, the nucleotide ppGpp is a second messenger of physiological stress and starvation. The target of ppGpp is RNA polymerase, where it putatively binds and alters the enzyme's activity. Previous data had implicated the beta-subunit of Escherichia coli RNA polymerase as containing a single ppGpp binding site. In this study, a photocross-linkable derivative of ppGpp, 6-thioguanosine-3',5'-(bis)pyrophosphate (6-thio-ppGpp), was used to localize the ppGpp binding site. In in vitro transcription assays, 6-thio-ppGpp inhibited transcription from the argT promoter identically to bona fide ppGpp. The thio group of 6-thio-ppGpp is directly photoactivatable and is thus a zero-length cross-linker. Cross-linking of RNA polymerase was directed primarily to the beta'-subunit and could be competed efficiently by native ppGpp but not by GTP or GDP. Cyanogen bromide digestion analysis of the cross-linked beta'-subunit was consistent with an extreme N-terminal cross-link. To assess allosteric consequences of ppGpp binding to RNA polymerase, high level trypsin resistance in the presence and absence of ppGpp was monitored. Trypsin digestion of RNA polymerase bound to ppGpp leads to protection of an N-terminal fragment of the beta'-subunit and a C-terminal fragment of the beta-subunit. We propose that the N terminus of beta' together with the C terminus of beta constitute a modular ppGpp binding site.
Collapse
Affiliation(s)
- I I Toulokhonov
- Department of Microbiology, Center of Microbial Pathogenesis, State University of New York at Buffalo School of Medicine, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
23
|
Choy HE. The study of guanosine 5'-diphosphate 3'-diphosphate-mediated transcription regulation in vitro using a coupled transcription-translation system. J Biol Chem 2000; 275:6783-9. [PMID: 10702235 DOI: 10.1074/jbc.275.10.6783] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effects of the "alarmone" guanosine 5'-diphosphate 3'-diphosphate (ppGpp) on regulation of the Salmonella typhimurium histindine operon and the Escherichia coli tRNA(leu) operon were analyzed in vitro using a DNA-dependent transcription-translation system, S-30. The expression of the hisG promoter is positively regulated by ppGpp, whereas that of the leuV promoter (of tRNA(1eu)) is negatively regulated by ppGpp. In an attempt to understand the global regulatory mechanism of ppGpp control, interrelationship between ppGpp-dependent activation and repression of gene expression was examined using these promoters as models. It has been traditionally supposed that the ppGpp-dependent regulation, at least for the activation, is by a passive mode of control: the activation of gene expression by ppGpp is a consequence of the repression of stable RNA gene expression in the condition of RNA polymerase limiting. To test this model, the ppGpp-dependent regulations of both an activable promoter (hisGp) and a repressible promoter (leuVp) were determined in vitro simultaneously using a mixed template setup. The rationale for this exercise was to see whether the ppGpp-dependent activation and repression are inversely correlated in the in vitro condition in which RNA polymerase is limiting. No correlation was observed. It was concluded that the ppGpp-dependent activation is independent of the repression. Moreover, it was proposed that ppGpp-dependent activation and repression are mediated by titratable factors, each of which operate independently.
Collapse
Affiliation(s)
- H E Choy
- Department of Biochemistry, Dankook University Medical College, Chungnam, Chonan, Anseo, San 29, Korea.
| |
Collapse
|
24
|
Liang S, Bipatnath M, Xu Y, Chen S, Dennis P, Ehrenberg M, Bremer H. Activities of constitutive promoters in Escherichia coli. J Mol Biol 1999; 292:19-37. [PMID: 10493854 DOI: 10.1006/jmbi.1999.3056] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The in vivo activities of seven constitutive promoters in Escherichia coli have been determined as functions of growth rate in wild-type relA+ spoT+ strains with normal levels of guanosine tetraphosphate (ppGpp) and in ppGpp-deficient DeltarelADeltaspoT derivatives. The promoters include (i) the spc ribosomal protein operon promotor Pspc; (ii) the beta-lactamase gene promotor Pblaof plasmid pBR322; (iii) the PLpromoter of phage lambda; (iv) and (v) the replication control promoters PRNAIand PRNAIIof plasmid pBR322; and (vi) and (vii) the P1 and P2 promoters of the rrnB ribosomal RNA operon. Each strain carried an operon fusion consisting of one of the respective promoter regions linked to lacZ and recombined into the chromosome at the mal locus of a lac deletion strain. The amount of 5'-terminal lacZ mRNA and of beta-galactosidase activity expressed from these promoters were determined by standard hybridization or enzyme activity assays, respectively. In addition, DNA, RNA and protein measurements were used to obtain information about gene dosage, rRNA synthesis and translation rates. By combining lacZ mRNA hybridization data with gene dosage and rRNA synthesis data, the absolute activity of the different promoters, in transcripts/minute per promoter, was determined. In ppGpp-proficient (relA+ spoT+) strains, the respective activities of rrnB P1 and P2 increased 40 and fivefold with increasing growth rate between 0.7 and 3.0 doublings/hour. The activities of Pspc, PL, Pbla, and PRNAIincreased two- to threefold and reached a maximum at growth rates above 2.0 doublings/hour. In contrast, PRNAIIactivity decreased threefold over this range of growth rates. In ppGpp-deficient (DeltarelA DeltaspoT) bacterial strains, the activities of rrnB P1 and P2 promoters both increased about twofold between 1.6 and 3.0 doublings/hour, whereas the activities of Pspc, PL, Pbla, and PRNAI, and PRNAIIwere about constant. To explain these observations, we suggest that the cellular concentration of free RNA polymerase increases with increasing growth rate; for saturation the P1 and P2 rRNA promoters require a high RNA polymerase concentration that is approached only at the highest growth rates, whereas the other promoters are saturated at lower polymerase concentrations achieved at intermediate growth rates. In addition, the data indicate that the respective rrnB P1 and PRNAIIpromoters were under negative and positive control by ppGpp. This caused a reduced activity of rrnB P1 and an increased activity of PRNAIIduring slow growth in wild-type (relA+ spoT+) relative to ppGpp-deficient (DeltarelA DeltaspoT) bacterial strains.
Collapse
Affiliation(s)
- S Liang
- Program in Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083-0688, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Raghavan A, Chatterji D. Guanosine tetraphosphate-induced dissociation of open complexes at the Escherichia coli ribosomal protein promoters rplJ and rpsA P1: nanosecond depolarization spectroscopic studies. Biophys Chem 1998; 75:21-32. [PMID: 9810686 DOI: 10.1016/s0301-4622(98)00186-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
We have measured the fluorescence anisotropy decays of various transcription complexes formed between Escherichia coli RNA polymerase (RNAP) and the rplJ, rpsA P1 and lacUV5 promoters, where the sigma 70-subunit of RNAP is covalently labeled with the fluorescent probe 1,5-IAEDANS. The observed changes in the rotational correlation times (phi r) of the sigma 70-bound probe upon ppGpp or NTP addition to preformed open complexes, were used to directly infer the extent of association of the sigma-subunit with these transcription complexes. At the rplJ and rpsA P1 promoters, the addition of ppGpp (in the absence of heparin and nucleotides), results in the dissociation of RNAP from the binary complex. This is either accompanied by, or leads to the dissociation of a fraction of the holoenzyme-bound sigma 70. At the lacUV5 promoter, only a marginal dissociation of RNAP is observed. We propose a model where two types of ppGpp-bound RNAP interact with the ribosomal protein promoters. One is transcription-competent and releases sigma 70 upon elongation, while the other dissociates from the open complex. A fraction of the latter species releases the sigma 70 subunit and is unable to form a transcription-competent holoenzyme. Our data supports the mechanism of open complex-destabilization at stringent promoters by ppGpp.
Collapse
Affiliation(s)
- A Raghavan
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
26
|
Raghavan A, Kameshwari DB, Chatterji D. The differential effects of guanosine tetraphosphate on open complex formation at the Escherichia coli ribosomal protein promoters rplJ and rpsA P1. Biophys Chem 1998; 75:7-19. [PMID: 9810685 DOI: 10.1016/s0301-4622(98)00185-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of guanosine tetraphosphate (ppGpp) on inhibition of single-round in vitro transcription and on the kinetics of open complex formation were investigated at the Escherichia coli ribosomal protein promoters rplJ and rpsA P1. The two promoters differ in their saturation characteristics and sensitivities to ppGpp. With a 10:1 molar ratio of RNA polymerase (RNAP) to DNA, saturation of transcription activity and weak inhibition (approximately 30%) are observed at rplJ, in contrast to the weak activity and strong inhibition (approximately 80%) at rpsA P1. In the absence of ppGpp, the two promoters show a threefold difference in the overall rate constants of association (ka) (6.5 x 10(7) M-1 s-1 at rplJ and 2.0 x 10(7) M-1 s-1 at rpsA P1), while the dissociation rate constants (kd) are similar (approximately 4.8 x 10(-5) s-1). The addition of ppGpp causes a twofold reduction in k2 (isomerisation constant) rplJ and a threefold decrease in KB (equilibrium constant of RNAP binding) at rpsA P1. There is a significant twofold increase in kd at rplJ, compared with smaller changes at rpsA P1 and at the non-stringent lacUV5 promoter. These results indicate that ppGpp affects the formation and stability of the open complex at the rplJ promoter, in contrast to the inhibition of RNAP binding to the rpsA P1 promoter.
Collapse
Affiliation(s)
- A Raghavan
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | |
Collapse
|
27
|
Bartlett MS, Gaal T, Ross W, Gourse RL. RNA polymerase mutants that destabilize RNA polymerase-promoter complexes alter NTP-sensing by rrn P1 promoters. J Mol Biol 1998; 279:331-45. [PMID: 9642041 DOI: 10.1006/jmbi.1998.1779] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in Escherichia coli rpoB or rpoC, selected for the ability to confer prototrophy on relA spoT strains, were found to affect transcription from rrn P1 promoters. Two mutant strains (beta RH454 and beta' delta 215-220) reduced transcription of rrn P1 core promoter-lacZ fusions but not of control promoter-lacZ fusions. Purified mutant RNAPs formed complexes with rrn P1 promoters that were much less stable than those formed by wild-type RNAP and required high concentrations of the initiating NTP for efficient rrn P1 transcription. The instability of the rrn P1 core promoter complexes with the mutant RNAPs and their altered regulatory properties support a recently proposed model for the control of rRNA transcription by changing concentrations of the initiating NTPs. We further suggest that destabilization of promoter complexes by the mutant RNAPs mimics effects of ppGpp, decreasing or increasing transcription depending on the kinetic properties of the specific promoter.
Collapse
Affiliation(s)
- M S Bartlett
- Department of Bacteriology, University of Wisconsin-Madison 53706, USA
| | | | | | | |
Collapse
|
28
|
Chatterji D, Fujita N, Ishihama A. The mediator for stringent control, ppGpp, binds to the beta-subunit of Escherichia coli RNA polymerase. Genes Cells 1998; 3:279-87. [PMID: 9685179 DOI: 10.1046/j.1365-2443.1998.00190.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Inhibition of transcription of rRNA in Escherichia coli upon amino acid starvation is thought to be due to the binding of ppGpp to RNA polymerase. However, the nature of this interaction still remains obscure. RESULTS Here, the azido-derivative of ppGpp was synthesized from azido-GDP and [gamma-32P]ATP by way of the phosphate transfer reaction of the RelA enzyme. The product was subsequently characterized by one and two-dimensional chromatography. The resulting compound [32P]azido-ppGpp, where the azido group is attached to the base moiety, was purified to homogeneity and was photo-crosslinked to Escherichia coli RNA polymerase. SDS-PAGE analysis of the azido-ppGpp-bound enzyme, tryptic digestion and Western blot analysis suggested that azido-ppGpp binds to the beta-subunit of RNA polymerase. CONCLUSION It was observed that both the N-terminal and C-terminal domains of the beta-subunit were labelled with azido-ppGpp in the native enzyme. However, under denaturing conditions only the C-terminal part from amino acid residue 802 to residue 1211/1216/1223 was predominantly crosslinked to azido-ppGpp. The excess of unlabelled ppGpp competes with azido-ppGpp for binding to the enzyme. azido-ppGpp inhibits single-round transcription at the stringent promoter like rrnBP1. In addition, ribosomal protein genes were also found to be inhibited by N3ppGpp. On the other hand, transcription at the lac UV5 promoter remained unaffected upon the addition of azido-ppGpp.
Collapse
Affiliation(s)
- D Chatterji
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan.
| | | | | |
Collapse
|
29
|
Jung YH, Lee Y. Escherichia coli rnpB promoter mutants altered in stringent response. Biochem Biophys Res Commun 1997; 230:582-6. [PMID: 9015366 DOI: 10.1006/bbrc.1996.6005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The promoter of the rnpB gene (encoding the RNA component of Escherichia coli RNase P) shares a consensus discriminator sequence, located between the -10 hexamer sequence and the transcription start site, with other promoters whose activities are repressed upon stringent condition. Under stringent conditions induced by seryl-tRNA starvation the transcription of the rnpB gene was repressed in wild type E. coli but not in a relaxed strain carrying a relA- mutation. Site-directed mutagenesis was carried out to examine sequences of the rnpB promoter necessary for stringent control. The results indicate that the discriminator region is responsible for the transcription repression of the rnpB gene during the stringent response and that both the content and position of GC pairs in the region determine the strength of negative stringent signals.
Collapse
Affiliation(s)
- Y H Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Taejon
| | | |
Collapse
|
30
|
Krohn M, Wagner R. Transcriptional pausing of RNA polymerase in the presence of guanosine tetraphosphate depends on the promoter and gene sequence. J Biol Chem 1996; 271:23884-94. [PMID: 8798619 DOI: 10.1074/jbc.271.39.23884] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have studied the response of the effector molecule guanosine 3',5'-bisdiphosphate (ppGpp) on RNA polymerase pausing during in vitro transcription elongation. Pausing was followed during single round extension of stalled ternary complexes excluding possible ppGpp effects on initiation. The ppGpp dependences of early pausing sites within different transcription systems controlled by promoters with known response to enhanced ppGpp levels in vivo were quantitatively characterized. Transcription of stable RNAs and mRNA genes were analyzed. In addition, the in vitro pausing behavior of two promoter variants directing the same sequence but differing in their in vivo ppGpp sensitivity were compared. In the presence of ppGpp we noted a slight general enhancement of specific pauses in all transcription systems. However, genes known to be under stringent or growth rate control in vivo revealed a notably stronger pausing enhancement. The sites of pausing are not changed by the presence of ppGpp but appear to be sequence-specific. The effect of ppGpp on the extent of pausing depends on the particular promoter and closely adjacent sequences that the RNA polymerase has passed during initiation. Pausing enhancement requires the presence of ppGpp during elongation but not during initiation. The results underline the importance of pausing for transcription regulation and offer a plausible explanation for inhibition of stable RNA expression under conditions of elevated concentrations of ppGpp.
Collapse
Affiliation(s)
- M Krohn
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Federal Republic of Germany
| | | |
Collapse
|
31
|
Tedin K, Bläsi U. The RNA chain elongation rate of the lambda late mRNA is unaffected by high levels of ppGpp in the absence of amino acid starvation. J Biol Chem 1996; 271:17675-86. [PMID: 8663373 DOI: 10.1074/jbc.271.30.17675] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this study, the effects of high levels of guanosine tetraphosphate (ppGpp) on the decay and RNA chain elongation kinetics of the bacteriophage lambda late transcript in Escherichia coli were examined in the absence of amino acid starvation. The accumulation, mRNA decay kinetics, and RNA chain elongation rate of the lambda late mRNA were determined after heat induction of lambdacI857 lysogens in the presence of high levels of ppGpp induced from a RelAalpha fragment-overproducing plasmid. The accumulation kinetics and elongation rate determinations of the late mRNA were made at long times after induction to allow a new steady state of transcriptional activities under conditions of elevated intracellular levels of ppGpp. The results indicate no prolonged or significant effect on either mRNA decay or the RNA chain elongation rate of the late mRNA as a result of elevated ppGpp levels. Surprisingly, the RNA chain elongation rate determinations indicate an RNA polymerase processivity of approximately 90-100 nucleotides/s for the lambda late transcript despite the presence of high levels of ppGpp. The results are discussed in terms of various models for regulation of stable and messenger RNA synthesis in E. coli.
Collapse
Affiliation(s)
- K Tedin
- Institute for Microbiology and Genetics, The University of Vienna, Biocenter, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | |
Collapse
|
32
|
Reddy PS, Raghavan A, Chatterji D. Evidence for a ppGpp-binding site on Escherichia coli RNA polymerase: proximity relationship with the rifampicin-binding domain. Mol Microbiol 1995; 15:255-65. [PMID: 7746147 DOI: 10.1111/j.1365-2958.1995.tb02240.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
On amino acid starvation, Escherichia coli cells exhibit an adaptive facility termed the stringent response. This is characterized by the production of high levels of a regulatory nucleotide, ppGpp, and concomitant curtailment in rRNA synthesis. Various studies reported earlier indicated that RNA polymerase is the site of action of ppGpp although a direct demonstration of the interaction of ppGpp with E. coli RNA polymerase is still lacking. Here we report the labelling of ppGpp with a fluorescent probe, 1-aminonapthalene-5-sulphonate (AmNS), at the terminal phosphates. AmNS-ppGpp responded much like a ppGpp molecule in an in vitro total transcription assay at selective promoters. Fluorescence titration of the tryptophan emission of RNA polymerase by AmNS-ppGpp indicated a unique binding site in the absence of template DNA. Competition experiments showed that unlabelled ppGpp binds to the enzyme at the same site. Sigma factor seems to have no effect on this binding. The titration profile is also characterized by a single slope in the Scatchard analysis. The presence of GTP or GDP does not influence the binding of AmNS-ppGpp with RNA polymerase. Forster's distance measurement was carried out which placed AmNS-ppGpp 27 A away from the rifampicin-binding domain of RNA polymerase.
Collapse
Affiliation(s)
- P S Reddy
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | |
Collapse
|
33
|
Jones GH. Purification and properties of ATP:GTP 3'-pyrophosphotransferase (guanosine pentaphosphate synthetase) from Streptomyces antibioticus. J Bacteriol 1994; 176:1475-81. [PMID: 8113189 PMCID: PMC205215 DOI: 10.1128/jb.176.5.1475-1481.1994] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Two forms of ATP:GTP 3'-pyrophosphotransferase (guanosine pentaphosphate synthetase) have been purified from Streptomyces antibioticus. The larger form has an M(r) of 88,000, while the M(r) of a smaller form is 47,000. Both synthetase forms are active in the formation of guanosine 5'-triphosphate, 3'-diphosphate in reaction mixtures containing methanol. Unlike the RelA protein from Escherichia coli, the synthetases from S. antibioticus do not use GDP efficiently as a substrate. Experiments using crude extracts of S. antibioticus mycelium and the 88,000-M(r) form of guanosine pentaphosphate synthetase strongly suggest that the 47,000-M(r) species is produced by proteolysis of the larger species. This conclusion is supported by the observation that antibody to either protein reacts with the other protein. Thus, the 88,000-M(r) species may be the catalytically relevant protein in vivo. Unlike the RelA protein, the 88,000-M(r) protein is not activated by ribosomes. Modest levels of guanosine pentaphosphate synthesis were observed in mycelial extracts derived from nine other actinomycetes.
Collapse
Affiliation(s)
- G H Jones
- Department of Biology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
34
|
Affiliation(s)
- R Wagner
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Germany
| |
Collapse
|
35
|
Wellington S, Spiegelman G. The kinetics of formation of complexes between Escherichia coli RNA polymerase and the rrnB P1 and P2 promoters of Bacillus subtilis. Effects of guanosine tetraphosphate on select steps of transcription initiation. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53165-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
Ohlsen K, Gralla J. DNA melting within stable closed complexes at the Escherichia coli rrnB P1 promoter. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)88626-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
37
|
Ohlsen KL, Gralla JD. Interrelated effects of DNA supercoiling, ppGpp, and low salt on melting within the Escherichia coli ribosomal RNA rrnB P1 promoter. Mol Microbiol 1992; 6:2243-51. [PMID: 1406265 DOI: 10.1111/j.1365-2958.1992.tb01400.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The formation of complexes containing high levels of DNA melting at the ribosomal RNA rrnB P1 promoter in vitro is shown to be facilitated by DNA supercoiling or low salt. The effector nucleotide ppGpp is ineffective under these conditions. The loss of supercoils or addition of salt increases the effectiveness of ppGpp in inhibiting formation of these complexes. In vivo plasmid DNA supercoiling is shown to decrease during starvation protocols that also increase levels of ppGpp. The results suggest that ppGpp regulation may be affected by the state of DNA supercoiling in vivo.
Collapse
Affiliation(s)
- K L Ohlsen
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024
| | | |
Collapse
|
38
|
Tedin K, Bremer H. Toxic effects of high levels of ppGpp in Escherichia coli are relieved by rpoB mutations. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)45883-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
39
|
Ogawa T, Okazaki T. Concurrent transcription from the gid and mioC promoters activates replication of an Escherichia coli minichromosome. MOLECULAR & GENERAL GENETICS : MGG 1991; 230:193-200. [PMID: 1745229 DOI: 10.1007/bf00290668] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The origin of replication of the Escherichia coli chromosome (oriC) is located in an intercistronic region between the gidA and the mioC genes. The possibility that transcription from the promoters of these two genes is involved in minichromosome replication was examined. Inactivation of the gid promoter led to a reduction in transformation frequency with an oriC plasmid but inactivation of the mioC promoter did not. The decrease in transformation frequency was most pronounced when both promoters were inactive. Under conditions that selected for plasmid-harboring cells, mutation of the gid promoter caused efficient multimerization or integration of oriC plasmids into the chromosomal oriC region and loss of free plasmid molecules. These changes in plasmid structure were also observed, albeit less frequently, with some plasmids defective in mioC promoter activity. In an in vitro DNA replication system for oriC DNA, plasmids with a defective gid promoter had greatly reduced template activity and essentially no replication occurred when both promoters were inactive. These results suggest that coupled transcription starting from the gid as well as the mioC promoter activates initiation of plasmid replication, the major contribution being made by gid transcription. These two promoters are suggested to be under stringent control.
Collapse
Affiliation(s)
- T Ogawa
- Department of Molecular Biology, School of Science, Nagoya University, Japan
| | | |
Collapse
|
40
|
Abstract
Ochi (Agric. Biol. Chem. 51:829-835, 1987) has isolated a relaxed mutant of Streptomyces antibioticus, designated relC49, relC49 accumulates significantly lower levels of ppGpp than the parent stain, IMRU3720. At its maximum, the ppGpp level in relC49 was only one-fourth that observed in strain IMRU3720. Interestingly, a burst of ppGpp synthesis between 18 and 22 h of growth in IMRU3720 coincided with the onset of actinomycin production in that strain. As shown previously, the activity in protein synthesis of ribosomes from strain IMRU3720 decreases with the age of the culture. The decrease in activity was less pronounced in cultures of relC49. relC49 mycelium contains reduced levels of phenoxazinone synthase, a key enzyme involved in actinomycin biosynthesis. The rel mutation prevents the normal increase in the activity of one of the other enzymes required for production of the antibiotic, 3-hydroxyanthanilate-4-methyltransferase, and a third enzyme, actinomycin synthetase I, appears to be completely absent from relC49 mycelium. Levels of phenoxazinone synthease mRNA were examined by RNA dot blotting with the cloned phenoxazinone synthase gene as a probe. mRNA levels for phenoxazinone synthase were dramatically reduced in relC49 compared with strain IMRU3720. These results are discussed in terms of the possible regulation of the onset of actinomycin production by ppGpp.
Collapse
Affiliation(s)
- K S Kelly
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | | | | |
Collapse
|
41
|
|
42
|
Characterization of transcriptional initiation from promoters P1 and P2 of the pyrBI operon of Escherichia coli K12. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)30629-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
43
|
Guanosine tetraphosphate (ppGpp) dependence of the growth rate control of rrnB P1 promoter activity in Escherichia coli. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38441-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
44
|
Strathdee CA, Lo RY. Regulation of expression of the Pasteurella haemolytica leukotoxin determinant. J Bacteriol 1989; 171:5955-62. [PMID: 2478522 PMCID: PMC210460 DOI: 10.1128/jb.171.11.5955-5962.1989] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Pasteurella haemolytica leukotoxin determinant is composed of four contiguous genes encoded on the same DNA strand and denoted lktCABD, in the order of their genetic organization. To gain a better understanding of the expression and regulation of the leukotoxin, the transcripts and promoters of the lkt determinant were mapped. Northern (RNA) blot analysis revealed two sets of transcripts. One set was 3.7 and 3.4 kilobases long, encoded lktCA, and comprised approximately 90% of the transcripts, whereas the other set was 7.4 and 7.1 kilobases long and encoded lktCABD. Two promoters were present, and each had features similar to the Escherichia coli consensus promoter sequences. Both promoters were located upstream from lktC; they were separated by 258 base pairs, as mapped by primer extension analysis. These results suggest a mechanism of expression similar to that of the related E. coli hemolysin. Transcription initiated upstream from lktC at either promoter and continued through lktC and lktA to a rho-independent transcriptional termination signal in the lktA-lktB intercistronic region. This signal attenuated expression by terminating 90% of transcription to generate the 3.7- and 3.4-kilobase lktCA transcripts. The remaining readthrough transcription generated full-length 7.4- and 7.1-kilobase lktCABD transcripts. Expression of the leukotoxin was greatly reduced by growth at 30 degrees C, pH 6.5, and Fe2+ limitation. These conditions also modulated the expression of a number of other secreted proteins, which suggests that all of these secreted proteins are controlled by the same regulatory mechanism.
Collapse
Affiliation(s)
- C A Strathdee
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | |
Collapse
|
45
|
Zacharias M, Wagner R. Functional characterization of a putative internal promoter sequence between the 16S and the 23S RNA genes within the Escherichia coli rrnB operon. Mol Microbiol 1989; 3:405-10. [PMID: 2473375 DOI: 10.1111/j.1365-2958.1989.tb00185.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transcription of ribosomal RNAs in Escherichia coli is started from two strong tandem promoters, P1 and P2. It is known, however, that internal promoter-like structures occur and in a recent report (Mankin et al., 1987) a promoter sequence Pi within the 16S and 23S RNA spacer region showing good homology to the prokaryotic consensus promoter structure was identified. It was proposed that this putative promoter has a possible function in the transcription of ribosomal RNAs in E. coli. Fusion of various DNA fragments containing the putative promoter sequence and different parts of the 16S/23S spacer region as well as the 23S RNA to the galactokinase gene allowed us to assess the functional activity of the promoter in vivo. To determine any growth rate dependent function of the putative promoter, the measurements were performed under different growth conditions. The promoter activity did not exceed 7% of the lac promoter under in vivo assay conditions. In addition, transcription starting at the promoter Pi did not proceed through the entire 23S RNA gene. We conclude, therefore, that transcription from Pi does not contribute significantly to the synthesis of ribosomal RNAs. Thus its functional significance, if any, remains elusive.
Collapse
MESH Headings
- DNA, Bacterial/genetics
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Galactokinase/genetics
- Genes, Bacterial
- Operon
- Plasmids
- Promoter Regions, Genetic
- RNA, Bacterial/genetics
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/genetics
- Restriction Mapping
- Transcription, Genetic
- rRNA Operon
Collapse
Affiliation(s)
- M Zacharias
- Max-Planck-Institut für Molekulare Genetik, Abteilung Wittmann, Berlin, FRG
| | | |
Collapse
|
46
|
Abstract
DNA probes specific for an internal portion of the toxA and regA genes were used to examine the synthesis of mRNA during the growth cycle of P. aeruginosa PA103. RNA dot blot analysis revealed that in a low-iron growth medium, the synthesis of regA and toxA mRNA followed a biphasic expression pattern. Analysis of ADP-ribosyltransferase activity also indicated that an early and late phase of exotoxin A synthesis occurred. Utilizing an internal SalI probe, examination of the size distribution of the regA mRNA during the cell cycle indicated that a large transcript (T1) was present at early time points, followed by the appearance of a smaller transcript (T2) during late exponential to early stationary phase. An upstream AvaI regA probe was found to hybridize to the T1 transcript but not to the T2 transcript. The data indicate that at least two separate functional regA mRNA species were produced. Analysis of mRNA accumulation for the regA gene when cells were grown in high-iron medium provided additional evidence for two separately controlled transcripts being produced from the regA chromosomal locus. Both regA transcripts were correlated with exotoxin A transcription and production.
Collapse
Affiliation(s)
- D W Frank
- Department of Microbiology and Immunology, University of Rochester Medical Center, New York 14642
| | | |
Collapse
|
47
|
Baracchini E, Glass R, Bremer H. Studies in vivo on Escherichia coli RNA polymerase mutants altered in the stringent response. MOLECULAR & GENERAL GENETICS : MGG 1988; 213:379-87. [PMID: 2460732 DOI: 10.1007/bf00339606] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Previous studies on two Escherichia coli rpoB mutants, carrying single amino acid substitutions at approximate amino acid positions 736 and 906 in the beta subunit, showed that these alterations in the RNA polymerase resulted in an apparent reduced response to valine-induced amino acid starvation in vivo and prevented ppGpp-mediated inhibition of transcriptional initiation at stable RNA promoters in vitro. These observations suggested that the mutations had altered either the ppGpp binding site or the promoter selectivity of the enzyme. The in vivo analysis presented here indicates that these mutants encode an RNA polymerase that responds normally to changes in the level of ppGpp; their apparent relaxedness is due to a reduced accumulation of ppGpp during isoleucine starvation. Thus, there is no indication that the mutations have altered ppGpp binding sites. These observations and the difference between in vitro and in vivo results can be explained by the assumption that the mutations produce an extended ppGpp-dependent pausing of RNA polymerase during the transcription of unstable RNA. Comparison of the vivo and in vitro effects of ppGpp on rrn transcription further suggests that these reflect different phenomena, although in both cases ppGpp inhibits rrn transcription.
Collapse
Affiliation(s)
- E Baracchini
- Biology Programs, University of Texas at Dallas, Richardson 75083-0688
| | | | | |
Collapse
|
48
|
Nagase T, Ishii S, Imamoto F. Differential transcriptional control of the two tRNA(fMet) genes of Escherichia coli K-12. Gene X 1988; 67:49-57. [PMID: 2843439 DOI: 10.1016/0378-1119(88)90007-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The metZ gene of Escherichia coli, which encodes the tRNA(f1Met), was cloned. Using the nucleotide sequence, in vitro transcription, and S1 nuclease mapping analyses, we identified the promoter region, transcriptional start point, the two tandem tRNA(f1Met) structural genes separated by an intergenic space of 33 bp, and the two Rho-independent transcriptional termination sites, in that order. We compared the promoter region of the metZ gene with that of the metY gene, which encodes the tRNA(f2Met) and is located in the promoter-proximal portion of the nusA operon. A G + C-rich sequence (5'-GCGCATCCAC-3'), similar to the corresponding sequence of the rrn promoters that are under stringent control, was found between the Pribnow box and the transcriptional start point of the metZ promoter, but not in the metY promoter region. We therefore examined the effect of guanosine 3'-diphosphate, 5'-diphosphate (ppGpp), the chemical mediator of stringent control, and found that ppGpp inhibited the transcription of the metZ gene, but not that of the metY gene. These data suggested that the promoters for metZ and metY have different physiological functions and are regulated by different mechanisms.
Collapse
Affiliation(s)
- T Nagase
- Laboratory of Molecular Genetics, Tsukuba Life Science Center, RIKEN, Ibaraki, Japan
| | | | | |
Collapse
|
49
|
Scornik OA. Role of idle ribosomes in the response of Chinese hamster ovary cells to depletion of histidyl-tRNA. J Cell Physiol 1988; 136:125-32. [PMID: 3397391 DOI: 10.1002/jcp.1041360116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In Chinese hamster ovary cells, histidine starvation and inactivation of histidyl-tRNA synthetase by mutations or histidinol result in stimulation of protein breakdown. We have previously shown that the regulatory mechanism recognizes the level of aminoacylation of tRNA(His). We now report that it is also sensitive to the functional state of the ribosomes. Cycloheximide, an inhibitor of peptidyl-tRNA translocation, decreases the sensitivity of the regulation. In the presence of 1.5 micrograms cycloheximide/ml, protein synthesis is inhibited to 6% of control; a full response can still be elicited by appropriate concentrations of histidinol, but it requires a more extensive depletion of histidyl-tRNA than in the absence of cycloheximide. The response is attained only when the depletion is sufficient to inhibit protein synthesis further and to increase the number of ribosomes idling in the histidine codon with an empty aminoacyl site, measured by their reactivity in vivo to low concentrations of puromycin. The results indicate that a simple depletion of his-tRNA is not sufficient to elicit the response and suggest that idle ribosomes are required for regulation.
Collapse
Affiliation(s)
- O A Scornik
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03756
| |
Collapse
|
50
|
Balikó G, Raukas A, Boros I, Venetianer P. An Escherichia coli gene in search of a function. MOLECULAR & GENERAL GENETICS : MGG 1988; 211:326-31. [PMID: 2832706 DOI: 10.1007/bf00330611] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The rrnB gene of Escherichia coli is preceded by an open reading frame, which is cotranscribed with rrnB both in vivo and in vitro. It has earlier been shown that a 289 amino acid protein corresponding to this gene is actually synthesized in E. coli. In this paper we show that: (1.) The transcription of this gene diminishes the stringent response of the P1 promoter of the linked rrnB gene, but this is a cis effect and is not mediated by the protein product of the gene. (2.) The functional integrity of this gene seems to be essential, because efforts to replace it by a plasmid-coded copy mutagenized by Tn5 completely failed. (3.) The protein product of this gene was strongly overproduced by a recombinant plasmid, exploiting the principle of "translational coupling". This overproduction did not change the phenotype of the host cell significantly. The protein was purified to apparent electrophoretic homogeneity.
Collapse
Affiliation(s)
- G Balikó
- Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | | | | | | |
Collapse
|