1
|
Liu HJ, Yang ZL, Ren LL, Wang YM, Wang X, Qian TT. Functional Divergence of the Glutamine Phosphoribosyl Pyrophosphate Amidotransferase (ASE) Gene Family in Arabidopsis. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021060119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Yokoyama N, Nonaka C, Ohashi Y, Shioda M, Terahata T, Chen W, Sakamoto K, Maruyama C, Saito T, Yuda E, Tanaka N, Fujishiro T, Kuzuyama T, Asai K, Takahashi Y. Distinct roles for U-type proteins in iron-sulfur cluster biosynthesis revealed by genetic analysis of the Bacillus subtilis sufCDSUB operon. Mol Microbiol 2018; 107:688-703. [PMID: 29292548 DOI: 10.1111/mmi.13907] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/24/2017] [Accepted: 12/29/2017] [Indexed: 01/09/2023]
Abstract
The biosynthesis of iron-sulfur (Fe-S) clusters in Bacillus subtilis is mediated by the SUF-like system composed of the sufCDSUB gene products. This system is unique in that it is a chimeric machinery comprising homologues of E. coli SUF components (SufS, SufB, SufC and SufD) and an ISC component (IscU). B. subtilis SufS cysteine desulfurase transfers persulfide sulfur to SufU (the IscU homologue); however, it has remained controversial whether SufU serves as a scaffold for Fe-S cluster assembly, like IscU, or acts as a sulfur shuttle protein, like E. coli SufE. Here we report that reengineering of the isoprenoid biosynthetic pathway in B. subtilis can offset the indispensability of the sufCDSUB operon, allowing the resultant Δsuf mutants to grow without detectable Fe-S proteins. Heterologous bidirectional complementation studies using B. subtilis and E. coli mutants showed that B. subtilis SufSU is interchangeable with E. coli SufSE but not with IscSU. In addition, functional similarity in SufB, SufC and SufD was observed between B. subtilis and E. coli. Our findings thus indicate that B. subtilis SufU is the protein that transfers sulfur from SufS to SufB, and that the SufBCD complex is the site of Fe-S cluster assembly.
Collapse
Affiliation(s)
- Nao Yokoyama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Chihiro Nonaka
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Yukari Ohashi
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Masaharu Shioda
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Takuya Terahata
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Wen Chen
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Kotomi Sakamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Chihiro Maruyama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Takuya Saito
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Eiki Yuda
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Naoyuki Tanaka
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Takashi Fujishiro
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Tomohisa Kuzuyama
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kei Asai
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Yasuhiro Takahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
3
|
Qin L, Gong X, Xie J, Jiang D, Cheng J, Li G, Huang J, Fu Y. Phosphoribosylamidotransferase, the first enzyme for purine de novo synthesis, is required for conidiation in the sclerotial mycoparasite Coniothyrium minitans. Fungal Genet Biol 2011; 48:956-65. [PMID: 21763446 DOI: 10.1016/j.fgb.2011.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 04/15/2011] [Accepted: 06/22/2011] [Indexed: 11/29/2022]
Abstract
Coniothyrium minitans is an important sclerotial parasite of the fungal phytopathogen, Sclerotinia sclerotiorum. Previously, we constructed a T-DNA insertional library, and screened for many conidiation-deficient mutants from this library. Here, we report a T-DNA insertional mutant ZS-1T21882 that completely lost conidiation. In mutant ZS-1T21882, the T-DNA was integrated into a gene (CmPrat-1) which encodes phosphoribosylamidotransferase (PRAT, EC 2.4.2.14), an enzyme catalyzing the first committed step in de novo purine nucleotide synthesis. Gene replacement and complementation experiments confirmed that phosphoribosylamidotransferase is essential for conidiation of C. minitans. Mutant ZS-1T21882 did not grow on modified Czapek-Dox broth (MCD), but it grew well on MCD amended with IMP or AMP. The conidial production of this mutant was dependent on the dosage of IMP amended. At low concentrations, such as 0.1 mM and 0.25 mM, the mutant produced very few pycnidia, while up to 0.75 mM or higher, the conidiation of this mutant was restored completely. cAMP could not restore the conidiation of mutant ZS-1T21882 when amended into MCD, but could when amended into PDA. Neither GMP nor cGMP could restore the conidiation in MCD or in PDA. Our findings suggest that phosphoribosylamidotransferase is essential for conidiation of C. minitans via adenosine related molecules. Furthermore, when dual cultured with its host, this mutant produced conidia in the host mycelium and on the sclerotia of S. sclerotiorum, but not in dead mycelium or on dead sclerotia, suggesting that C. minitans is likely to able to obtain adenosine or related components from its host during parasitization.
Collapse
Affiliation(s)
- Li Qin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Affiliation(s)
- Robert L Switzer
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA.
| |
Collapse
|
5
|
Zalkin H. The amidotransferases. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 66:203-309. [PMID: 8430515 DOI: 10.1002/9780470123126.ch5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- H Zalkin
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| |
Collapse
|
6
|
Li S, Smith JL, Zalkin H. Mutational analysis of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase propeptide processing. J Bacteriol 1999; 181:1403-8. [PMID: 10049369 PMCID: PMC93527 DOI: 10.1128/jb.181.5.1403-1408.1999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glutamine phosphoribosylpyrophosphate amidotransferase from Bacillus subtilis is a member of an N-terminal nucleophile hydrolase enzyme superfamily, several of which undergo autocatalytic propeptide processing to generate the mature active enzyme. A series of mutations was analyzed to determine whether amino acid residues required for catalysis are also used for propeptide processing. Propeptide cleavage was strongly inhibited by replacement of the cysteine nucleophile and two residues of an oxyanion hole that are required for glutaminase function. However, significant propeptide processing was retained in a deletion mutant with multiple defects in catalysis that was devoid of enzyme activity. Intermolecular processing of noncleaved mutant enzyme subunits by active wild-type enzyme subunits was not detected in hetero-oligomers obtained from a coexpression experiment. While direct in vitro evidence for autocatalytic propeptide cleavage was not obtained, the results indicate that some but not all of the amino acid residues that have a role in catalysis are also needed for propeptide processing.
Collapse
Affiliation(s)
- S Li
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
7
|
Menon AL, Hendrix H, Hutchins A, Verhagen MF, Adams MW. The delta-subunit of pyruvate ferredoxin oxidoreductase from Pyrococcus furiosus is a redox-active, iron-sulfur protein: evidence for an ancestral relationship with 8Fe-type ferredoxins. Biochemistry 1998; 37:12838-46. [PMID: 9737861 DOI: 10.1021/bi980979p] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pyruvate ferredoxin oxidoreductase (POR) from the hyperthermophilic archaeon Pyrococcus furiosus (Pf) catalyzes the final oxidative step in carbohydrate fermentation in which pyruvate is oxidized to acetyl-CoA and CO2, coupled to the reduction of ferredoxin (Fd). POR is composed of two 'catalytic units' of molecular mass approximately 120 kDa. Each unit consists of four subunits, alpha beta gamma delta, with masses of approximately 44, 36, 20, and 12 kDa, respectively, and contains at least two [4Fe-4S] clusters. The precise mechanism of catalysis and the role of the individual subunits are not known. The gene encoding the delta-subunit of Pf POR has been expressed in E. coli, and the protein was purified after reconstitution with iron and sulfide. The reconstituted delta-subunit (recPOR-delta) is monomeric with a mass of 11 879 +/- 1.2 Da as determined by mass spectrometry, in agreement with that predicted from the gene sequence. Purified recPOR-delta contains 8 Fe mol/mol and remained intact when incubated at 85 degreesC for 2 h, as judged by its visible absorption properties. The reduced form of the protein exhibited an EPR spectrum characteristic of two, spin-spin interacting [4Fe-4S]1+ clusters. When compared with the EPR properties of the reduced holoenzyme, the latter was shown to contain a third [4Fe-4S]1+ cluster in addition to the two within the delta-subunit. The reduction potential of the two 4Fe clusters in isolated recPOR-delta (-403 +/- 8 mV at pH 8.0 and 24 degreesC) decreased linearly with temperature (-1.55 mV/ degreesC) up to 82 degreesC. RecPOR-delta replaced Pf Fd as an in vitro electron carrier for two oxidoreductases from Pf, POR and Fd:NADP oxidoreductase, and the POR holoenzyme displayed a higher apparent affinity for its own subunit (apparent Km = 1.0 microM at 80 degreesC) than for Fd (apparent Km = 4.4 microM). The molecular and spectroscopic properties and amino acid sequence of the isolated delta-subunit suggest that it evolved from an 8Fe-type Fd by the addition of approximately 40 residues at the N-terminus, and that this extension enabled it to interact with additional subunits within POR.
Collapse
Affiliation(s)
- A L Menon
- Department of Biochemistry and Molecular Biology, Center for Metalloenzyme Studies, University of Georgia, Athens 30602-7229, USA
| | | | | | | | | |
Collapse
|
8
|
Chen S, Zheng L, Dean DR, Zalkin H. Role of NifS in maturation of glutamine phosphoribosylpyrophosphate amidotransferase. J Bacteriol 1997; 179:7587-90. [PMID: 9393728 PMCID: PMC179714 DOI: 10.1128/jb.179.23.7587-7590.1997] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Glutamine phosphoribosylpyrophosphate amidotransferase from Bacillus subtilis is synthesized as an inactive precursor that requires two maturation steps: incorporation of a [4Fe-4S] center and cleavage of an 11-residue NH2-terminal propeptide. Overproduction from a multicopy plasmid in Escherichia coli leads to the formation of soluble proenzyme and mature enzyme forms as well as a small fraction of insoluble proenzyme. Heterologous expression of Azotobacter vinelandii nifS from a compatible plasmid increased the maturation of the soluble proenzyme three- to fourfold without influencing the content of the insoluble fraction. These results support a role for NifS in heterologous Fe-S cluster assembly and enzyme maturation.
Collapse
Affiliation(s)
- S Chen
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
9
|
Chen S, Tomchick DR, Wolle D, Hu P, Smith JL, Switzer RL, Zalkin H. Mechanism of the synergistic end-product regulation of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase by nucleotides. Biochemistry 1997; 36:10718-26. [PMID: 9271502 DOI: 10.1021/bi9711893] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
De novo purine nucleotide synthesis is regulated, at least in part, by end-product inhibition of glutamine PRPP amidotransferase. An important feature of this inhibition is the fact that certain synergistic nucleotide pairs give more than additive inhibition. The physiological importance of synergism is in amplifying regulation by the adenine and guanine nucleotide end products of de novo synthesis. Using a new method to quantitate synergism, ADP plus GMP were confirmed [Meyer, E., and Switzer, R. L. (1978) J. Biol. Chem. 254, 5397-5402] to give strong synergistic inhibition of Bacillus subtilis glutamine PRPP amidotransferase. An X-ray structure of the ternary enzyme.ADP.GMP complex established that ADP binds to the allosteric A site and GMP to the catalytic C site. GMP increased the binding affinity of ADP for the A site by approximately 20-fold. Synergism results from a specific nucleotide-nucleotide interaction that is dependent upon a nucleoside diphosphate in the A site and a nucleoside monophosphate in the C site. Furthermore, synergism is enhanced by the competition between nucleotide inhibitor and PRPP substrate for the C site. Purine base specificity results from a backbone carbonyl interaction of Lys305' with the 6-NH2 group of adenine in the A site and a Ser347 Ogamma interaction with the 2-NH2 group of guanine in the C site. Steric considerations favor binding of the nucleoside diphosphate to the A site. Site-directed replacements of key residues increased the nucleotide concentrations needed for 50% inhibition and in some cases perturbed synergism. Mutations in either of the nucleotide sites perturbed function at both sites, supporting the important role of synergism.
Collapse
Affiliation(s)
- S Chen
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- Dennis H. Flint
- E. I. du Pont de Nemours and Co., Central Research and Development, Experimental Station, P.O. Box 80328, Wilmington, Delaware 19880-0328
| | | |
Collapse
|
11
|
Parr IB, Boehlein SK, Dribben AB, Schuster SM, Richards NG. Mapping the aspartic acid binding site of Escherichia coli asparagine synthetase B using substrate analogs. J Med Chem 1996; 39:2367-78. [PMID: 8691431 DOI: 10.1021/jm9601009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Novel inhibitors of asparagine synthetase, that will lower circulating levels of blood asparagine, have considerable potential in developing new protocols for the treatment of acute lymphoblastic leukemia. We now report the indirect characterization of the aspartate binding site of Escherichia coli asparagine synthetase B (AS-B) using a number of stereochemically, and conformationally, defined aspartic acid analogs. Two compounds, prepared using novel reaction conditions for the stereospecific beta-functionalization of aspartic acid diesters, have been found to be competitive inhibitors with respect to aspartate in kinetic studies on AS-B. Chemical modification experiments employing [(fluorosulfonyl)benzoyl]adenosine (FSBA), an ATP analog, demonstrate that both inhibitors bind to the aspartate binding site of AS-B. Our results reveal that large steric alterations in the substrate are not tolerated by the enzyme, consistent with the failure of previous efforts to develop AS inhibitors using random screening approaches, and that all of the ionizable groups are placed in close proximity in the bound conformation of aspartate.
Collapse
Affiliation(s)
- I B Parr
- Department of Chemistry, University of Florida, Gainesville 32611, USA
| | | | | | | | | |
Collapse
|
12
|
Liu Y, Tsinoremas NF, Golden SS, Kondo T, Johnson CH. Circadian expression of genes involved in the purine biosynthetic pathway of the cyanobacterium Synechococcus sp. strain PCC 7942. Mol Microbiol 1996; 20:1071-81. [PMID: 8809759 DOI: 10.1111/j.1365-2958.1996.tb02547.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Extensive circadian (daily) control over gene expression in the cyanobacterium Synechococcus sp. strain PCC 7942 is programmed into at least two differentially phased groups. The transcriptional activity of the smaller group of genes is maximal at about dawn and minimal at about dusk. We identified one of the genes belonging to this latter group as purF, which encodes the key regulatory enzyme in the de novo purine synthetic pathway, glutamine PRPP amidotransferase (also known as amidophosphoribosyltransferase). Its expression pattern as a function of circadian time was confirmed by both luminescence from a purF::luxAB reporter strain and the abundance of purF mRNA. By fusing sequences upstream of the purF coding region to promoterless luxAB genes, we identified a limited upstream region, which potentially regulates purF circadian expression patterns in vivo. We also identified the purL gene immediately upstream of purF. The purL gene encodes FGAM synthetase, the fourth enzyme in the purine nucleotide biosynthesis pathway. Although these genes are expressed as part of a larger operon in other bacteria, reporter gene fusions revealed that purF and purL are transcribed independently in Synechococcus and that they are expressed at different phases of the circadian cycle. This differential expression pattern may be related to the oxygen sensitivity of amidophosphoribosyltransferase.
Collapse
Affiliation(s)
- Y Liu
- Department of Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | |
Collapse
|
13
|
Stoker PW, O'Leary MH, Boehlein SK, Schuster SM, Richards NG. Probing the mechanism of nitrogen transfer in Escherichia coli asparagine synthetase by using heavy atom isotope effects. Biochemistry 1996; 35:3024-30. [PMID: 8608141 DOI: 10.1021/bi952504t] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In experiments aimed at determining the mechanism of nitrogen transfer in purF amidotransferase enzymes, 13C and 15N kinetic isotope effects have been measured for both of the glutamine-dependent activities of Escherichia coli asparagine synthetase B (AS-B). For the glutaminase reaction catalyzed by AS-B at pH 8.0, substitution heavy atom labels in the side chain amide of the substrate yields observed values of 1.0245 and 1.0095 for the amide carbon and amide nitrogen isotope effects, respectively. In the glutamine-dependent synthesis of asparagine at pH 8.0, the amide carbon and amide nitrogen isotope effects have values of 1.0231 and 1.0222, respectively. We interpret these results to mean that nitrogen transfer does not proceed by the formation of free ammonia in the active site of the enzyme and probably involves a series of intermediates in which glutamine becomes covalently attached to aspartate. While a number of mechanisms are consistent with the observed isotope effects, a likely reaction pathway involves reaction of an oxyanion with beta-aspartyl-AMP. This yields an intermediate in which C-N bond cleavage gives an acylthioenzyme and a second tetrahedral intermediate. Loss of AMP from the latter gives asparagine. An alternate reaction mechanism in which asparagine is generated from an imide intermediate also appears consistent with the observed kinetic isotope effects.
Collapse
Affiliation(s)
- P W Stoker
- Department of Biochemistry, Beadle Center, University of Nebraska-Lincoln, 68583, USA
| | | | | | | | | |
Collapse
|
14
|
Kim JH, Wolle D, Haridas K, Parry RJ, Smith JL, Zalkin H. A stable carbocyclic analog of 5-phosphoribosyl-1-pyrophosphate to probe the mechanism of catalysis and regulation of glutamine phosphoribosylpyrophosphate amidotransferase. J Biol Chem 1995; 270:17394-9. [PMID: 7542237 DOI: 10.1074/jbc.270.29.17394] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Glutamine phosphoribosylpyrophosphate (PRPP) amidotransferase catalysis and regulation were studied using a new stable carbocyclic analog of PRPP, 1-alpha-pyrophosphoryl-2-alpha, 3-alpha-dihydroxy-4-beta-cyclopentane-methanol-5-phosphate (cPRPP). Although cPRPP competes with PRPP for binding to the catalytic C site of the Escherichia coli enzyme, two lines of evidence demonstrate that cPRPP, unlike PRPP, does not promote an active enzyme conformation. First, cPRPP was not able to "activate" Cys1 for reaction with glutamine or a glutamine affinity analog. The ring oxygen of PRPP may thus be necessary for the conformation change that activates Cys1 for catalysis. Second, binding of cPRPP to the C site blocks binding of AMP and GMP, nucleotide end product inhibitors, to this site. However, the binding of nucleotide to the allosteric site was essentially unaffected by cPRPP in the C site. Since it is expected that nucleotide inhibitors would bind with low affinity to the active enzyme conformation, the nucleotide binding data support the conclusion that cPRPP does not activate the enzyme.
Collapse
Affiliation(s)
- J H Kim
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | |
Collapse
|
15
|
Liu Y, Tsinoremas NF, Johnson CH, Lebedeva NV, Golden SS, Ishiura M, Kondo T. Circadian orchestration of gene expression in cyanobacteria. Genes Dev 1995; 9:1469-78. [PMID: 7601351 DOI: 10.1101/gad.9.12.1469] [Citation(s) in RCA: 256] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We wanted to identify genes that are controlled by the circadian clock in the prokaryotic cyanobacterium Synechococcus sp. strain PCC 7942. To use luciferase as a reporter to monitor gene expression, bacterial luciferase genes (luxAB) were inserted randomly into the Synechococcus genome by conjugation with Escherichia coli and subsequent homologous recombination. The resulting transformed clones were then screened for bioluminescence using a new developed cooled-CCD camera system. We screened approximately 30,000 transformed Synechococcus colonies and recovered approximately 800 clones whose bioluminescence was bright enough to be easily monitored by the screening apparatus. Unexpectedly, the bioluminescence expression patterns of almost all of these 800 colonies clearly manifested circadian rhythmicity. These rhythms exhibited a range of waveforms and amplitudes, and they also showed a variety of phase relationships. We also found bioluminescence rhythms expressed by cyanobacterial colonies in which the luciferase gene set was coupled to the promoters of several known genes. Together, these results indicate that control of gene expression by circadian clocks may be more widespread than expected thus far. Moreover, our results show that screening organisms in which promoterless luciferase genes have been inserted randomly throughout the genome by homologous recombination provides an extremely sensitive method to explore differential gene expression.
Collapse
Affiliation(s)
- Y Liu
- Department of Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Ito T, Shiraishi H, Okada K, Shimura Y. Two amidophosphoribosyltransferase genes of Arabidopsis thaliana expressed in different organs. PLANT MOLECULAR BIOLOGY 1994; 26:529-33. [PMID: 7948903 DOI: 10.1007/bf00039565] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Amidophosphoribosyltransferase (ATase: EC 2.4.2.14) is a key enzyme in the pathway of purine nucleotide biosynthesis. We have identified several cDNA clones whose amino acid sequences exhibit similarity with the known ATases in a cDNA library of young floral buds of Arabidopsis thaliana. The cDNA clones are derived from two genes homologous with each other. These cDNAs represent the first plant representatives of ATase gene. Structural comparison with ATases of other organisms has revealed that the two genes encode [4Fe-4S] cluster-dependent ATases. Northern blot analysis showed that expression level of the genes is different in three organs; one gene is expressed in flowers and roots, while the other gene is mainly expressed in leaves.
Collapse
Affiliation(s)
- T Ito
- Division 1 of Gene Expression and Regulation, National Institute for Basic Biology, Okazaki, Japan
| | | | | | | |
Collapse
|
17
|
Smith JL, Zaluzec EJ, Wery JP, Niu L, Switzer RL, Zalkin H, Satow Y. Structure of the allosteric regulatory enzyme of purine biosynthesis. Science 1994; 264:1427-33. [PMID: 8197456 DOI: 10.1126/science.8197456] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Multi-wavelength anomalous diffraction (MAD) has been used to determine the structure of the regulatory enzyme of de novo synthesis of purine nucleotides, glutamine 5-phosphoribosyl-1-pyrophosphate (PRPP) amidotransferase, from Bacillus subtilis. This allosteric enzyme, a 200-kilodalton tetramer, is subject to end product regulation by purine nucleotides. The metalloenzyme from B. subtilis is a paradigm for the higher eukaryotic enzymes, which have been refractory to isolation in stable form. The two folding domains of the polypeptide are correlated with functional domains for glutamine binding and for transfer of ammonia to the substrate PRPP. Eight molecules of the feedback inhibitor adenosine monophosphate (AMP) are bound to the tetrameric enzyme in two types of binding sites: the PRPP catalytic site of each subunit and an unusual regulatory site that is immediately adjacent to each active site but is between subunits. An oxygen-sensitive [4Fe-4S] cluster in each subunit is proposed to regulate protein turnover in vivo and is distant from the catalytic site. Oxygen sensitivity of the cluster is diminished by AMP, which blocks a channel through the protein to the cluster. The structure is representative of both glutamine amidotransferases and phosphoribosyltransferases.
Collapse
Affiliation(s)
- J L Smith
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | | | | | | | | | | | | |
Collapse
|
18
|
Zhou G, Smith J, Zalkin H. Binding of purine nucleotides to two regulatory sites results in synergistic feedback inhibition of glutamine 5-phosphoribosylpyrophosphate amidotransferase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37444-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Brayton K, Chen Z, Zhou G, Nagy P, Gavalas A, Trent J, Deaven L, Dixon J, Zalkin H. Two genes for de novo purine nucleotide synthesis on human chromosome 4 are closely linked and divergently transcribed. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37689-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Bussey LB, Switzer RL. The degA gene product accelerates degradation of Bacillus subtilis phosphoribosylpyrophosphate amidotransferase in Escherichia coli. J Bacteriol 1993; 175:6348-53. [PMID: 8407808 PMCID: PMC206734 DOI: 10.1128/jb.175.19.6348-6353.1993] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A search for genes involved in the inactivation and degradation of enzymes in sporulating Bacillus subtilis led to identification of the B. subtilis degA gene, whose product stimulates degradation of B. subtilis glutamine phosphoribosylpyrophosphate amidotransferase in Escherichia coli cells. degA encodes a 36.7-kDa protein that has sequence similarity to several E. coli and B. subtilis regulatory proteins of the LacI class. B. subtilis degA::cat insertional inactivation mutants had no detectable defect in the inactivation or degradation of phosphoribosylpyrophosphate amidotransferase in glucose- or lysine-starved B. subtilis cells, however. We suggest that degA encodes either a novel protease or, more likely, a gene that stimulates production of such a protease.
Collapse
Affiliation(s)
- L B Bussey
- Department of Biochemistry, University of Illinois, Urbana 61801
| | | |
Collapse
|
21
|
Iwahana H, Yamaoka T, Mizutani M, Mizusawa N, Ii S, Yoshimoto K, Itakura M. Molecular cloning of rat amidophosphoribosyltransferase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53167-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
22
|
Gu ZM, Martindale DW, Lee BH. Isolation and complete sequence of the purL gene encoding FGAM synthase II in Lactobacillus casei. Gene 1992; 119:123-6. [PMID: 1398079 DOI: 10.1016/0378-1119(92)90076-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The purL gene from Lactobacillus casei, encoding phosphoribosylformylglycinamidine synthase II involved in the de novo synthesis of purines, was cloned and sequenced. The putative purL product of 741 amino acids (M(r) of 79,575) shows 25% and 53% identity to the homologous enzymes from Escherichia coli and Bacillus subtilis, respectively. In addition, partial sequences of two other pur genes (purQ and purF) and a possible third gene (purC) were obtained. All these genes are organized in an operon similar to that of B. subtilis. In contrast, the corresponding genes from E. coli and Salmonella typhimurium are scattered through the genome.
Collapse
Affiliation(s)
- Z M Gu
- Department of Microbiology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Québec, Canada
| | | | | |
Collapse
|
23
|
Zhou G, Broyles S, Dixon J, Zalkin H. Avian glutamine phosphoribosylpyrophosphate amidotransferase propeptide processing and activity are dependent upon essential cysteine residues. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42602-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Novel Iron—Sulfur Centers in Metalloenzymes and Redox Proteins from Extremely Thermophilic Bacteria. ADVANCES IN INORGANIC CHEMISTRY 1992. [DOI: 10.1016/s0898-8838(08)60068-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Zalkin H, Dixon JE. De novo purine nucleotide biosynthesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1992; 42:259-87. [PMID: 1574589 DOI: 10.1016/s0079-6603(08)60578-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- H Zalkin
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
26
|
de Boer JG, Glickman BW. Mutational analysis of the structure and function of the adenine phosphoribosyltransferase enzyme of Chinese hamster. J Mol Biol 1991; 221:163-74. [PMID: 1717694 DOI: 10.1016/0022-2836(91)80212-d] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have analyzed the adenine phosphoribosyltransferase (APRT) enzyme from Chinese hamster ovary cells through the study of mutants that are able to grow in the presence of the toxic adenine analogue 8-azaadenine. The distribution of the amino acid alterations was analyzed in terms of the binding regions for the purine and phosphoribosylpyrophosphate substrates and a comparison was made with mutants known in human APRT and human, mouse and hamster hypoxanthine-guanine phosphoribosyltransferase. A number of mutants were found to cluster in several regions of the amino acid sequence. Residual enzyme activity with adenine was determined and this was correlated with substrate binding regions. A model of the secondary structure features is proposed.
Collapse
Affiliation(s)
- J G de Boer
- York University Biology Department, Downsview, Ontario, Canada
| | | |
Collapse
|
27
|
|
28
|
Zalkin H. Organization and regulation of genes for de novo purine nucleotide synthesis in Bacillus subtilis. Res Microbiol 1991; 142:765-9. [PMID: 1784814 DOI: 10.1016/0923-2508(91)90053-d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- H Zalkin
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-6799
| |
Collapse
|
29
|
Barton JW, Bleskan J, Patterson D. Isolation of a human cDNA encoding amidophosphoribosyltransferase and functional complementation of a CHO Ade-A mutant deficient in this activity. SOMATIC CELL AND MOLECULAR GENETICS 1991; 17:311-22. [PMID: 2047942 DOI: 10.1007/bf01232825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report here the isolation of a human cDNA encoding the first step in de novo purine biosynthesis, amidophosphoribosyltransferase (PRAT). The human PRAT cDNA was isolated by complementation of a Saccharomyces cerevisiae ade4 mutant deficient in PRAT enzymatic activity. The identity of the isolated cDNA, designated pAdeA-3, was confirmed by several independent methods. Genomic DNA sequences homologous to pAdeA-3 show coordinate segregation with the hypoxanthine nutritional requirement in Chinese hamster ovary (CHO) cell Ade-A-human hybrids, segregants of these hybrids, and irradiation reduction hybrids. The PRAT cDNA after insertion into a mammalian expression vector was capable of correcting the PRAT cDNA after insertion into a mammalian expression vector was capable of correcting the PRAT enzyme deficiency in CHO Ade-A mutants. This correction was monitored by both cell-free PRAT assays and in vivo phosphoribosylformylglycinamide (FGAR) accumulation studies. FGAR accumulation is a classic method for assessment of the early steps of purine nucleotide biosynthesis. Two of the isolated transformants, designated PRAT-1 and PRAT-2, exhibited 22% and 53%, respectively, of wild-type CHO K1 PRAT enzymatic activity using a cell-free enzyme assay. These same two transformants plus an additional transformant, designated PRAT-13, showed FGAR accumulations of 150%, 260%, and 140%, respectively, compared to the levels of accumulation seen in CHO K1. Transformants PRAT-1 and PRAT-2 both contained a mRNA species recognized by the PRAT cDNA of identical size to a mRNA species in human fibroblasts homologous to the PRAT cDNA. This observation, along with the functionality of the cDNA in both yeast and CHO cells deficient in PRAT activity, suggests the isolated cDNA is full length.
Collapse
Affiliation(s)
- J W Barton
- Eleanor Roosevelt Institute for Cancer Research, Denver, Colorado
| | | | | |
Collapse
|
30
|
Zhou GC, Dixon JE, Zalkin H. Cloning and expression of avian glutamine phosphoribosylpyrophosphate amidotransferase. Conservation of a bacterial propeptide sequence supports a role for posttranslational processing. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)45339-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Scofield MA, Lewis WS, Schuster SM. Nucleotide sequence of Escherichia coli asnB and deduced amino acid sequence of asparagine synthetase B. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38244-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Mei BG, Zalkin H. Amino-terminal deletions define a glutamine amide transfer domain in glutamine phosphoribosylpyrophosphate amidotransferase and other PurF-type amidotransferases. J Bacteriol 1990; 172:3512-4. [PMID: 2188964 PMCID: PMC209170 DOI: 10.1128/jb.172.6.3512-3514.1990] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A series of deletions was constructed in cloned Escherichia coli purF encoding glutamine phosphoribosylpyrophosphate amidotransferase. These deletions extended into the NH2 terminus of the protein and removed amino acids that are required for glutamine-dependent enzyme activity. Enzyme function, ascribed to the NH3-dependent activity, was retained in deletions that removed up to 237 amino acids. This result supports a model in which PurF-type amidotransferases contain an NH2-terminal glutamine amide transfer domain of approximately 194 to 200 amino acids fused to an aminator domain with NH3-dependent function.
Collapse
Affiliation(s)
- B G Mei
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
33
|
Bourdineaud JP, Howard SP, Pages JM, Bernadac A, Leroy G, Bruschi M, Lazdunski C. Cytoplasmic and periplasmic expression of a synthetic gene for ferredoxin in Escherichia coli. Biochimie 1990; 72:407-15. [PMID: 2124144 DOI: 10.1016/0300-9084(90)90065-o] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A synthetic gene coding for a modified ferredoxin II of Desulfovibrio desulfuricans Norway strain was assembled from 10 oligonucleotides. This gene was cloned into various expression vectors allowing either cytoplasmic expression or export to the periplasmic space. In the latter case, two different constructs were made, each of which contained the OmpA signal peptide: one of these constructs contained 3 additional N-terminal amino acids as compared to the wild-type ferredoxin (56 amino acid residues). The expression of proteins encoded by the 3 constructs was assayed in E coli and the proteins were localized by cell fractionation and immunogold labelling. A low percentage of the periplasmic ferredoxin (approximately 5%) was secreted to the medium in the absence of cell lysis. The recombinant ferredoxin was purified and found to be correctly processed by the leader peptidase. However, due to the high cysteine content intramolecular and intermolecular disulfide bonds were formed and prevented binding of [4Fe-4S] clusters. Reconstitution experiments using these recombinant proteins are in progress.
Collapse
Affiliation(s)
- J P Bourdineaud
- Centre de Biochimie et de Biologie Moléculaire, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Conover RC, Kowal AT, Fu WG, Park JB, Aono S, Adams MW, Johnson MK. Spectroscopic characterization of the novel iron-sulfur cluster in Pyrococcus furiosus ferredoxin. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38921-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
|
36
|
Spectroscopic characterization of the iron-sulfur cluster in Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)51476-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
37
|
Mei B, Zalkin H. A cysteine-histidine-aspartate catalytic triad is involved in glutamine amide transfer function in purF-type glutamine amidotransferases. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)84750-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Watzele G, Tanner W. Cloning of the Glutamine:Fructose-6-phosphate Amidotransferase Gene from Yeast. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)81857-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
39
|
Evidence That the Iron-Sulfur Cluster of Bacillus subtilis Glutamine Phosphoribosylpyrophosphate Amidotransferase Determines Stability of the Enzyme to Degradation in Vivo. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83312-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
40
|
Busetta B. The use of folding patterns in the search of protein structural similarities; a three-dimensional model of phosphoribosyl transferases. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 957:21-33. [PMID: 3179319 DOI: 10.1016/0167-4838(88)90153-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A new way to predict the topologies of proteins of unknown three-dimensional structure is derived from the comparison of the distribution of the strongest predicted secondary structures with equivalent distributions recorded for proteins of known X-ray structures. As an illustration the tentative three-dimensional model of phosphoribosyl transferases which was proposed by Argos et al. is rediscussed.
Collapse
Affiliation(s)
- B Busetta
- Laboratoire de Cristallographie U.A 144, Talence, France
| |
Collapse
|
41
|
Plank DW, Howard JB. Identification of the reactive sulfhydryl and sequences of cysteinyl-tryptic peptides from beef heart aconitase. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68459-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Souciet JL, Hermodson MA, Zalkin H. Mutational analysis of the glutamine phosphoribosylpyrophosphate amidotransferase pro-peptide. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)69075-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
43
|
Surin BP, Downie JA. Characterization of the Rhizobium leguminosarum genes nodLMN involved in efficient host-specific nodulation. Mol Microbiol 1988; 2:173-83. [PMID: 3132583 DOI: 10.1111/j.1365-2958.1988.tb00019.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Three nodulation genes, nodL, nodM and nodN, were isolated from Rhizobium leguminosarum and their DNA sequences were determined. The three genes are in the same orientation as the previously described nodFE genes and the predicted molecular weights of their products are 20,105 (nodL), 65,795 (nodM) and 18,031 (nodN). Analysis of gene regulation using operon fusions showed that nodL, nodM and nodN are induced in response to flavanone molecules and that this induction is nodD-dependent. In addition, it was shown that the nodM and nodN genes are in one operon which is preceded by a conserved 'nod-box' sequence, whereas the nodL gene is in the same operon as the nodFE genes. DNA hybridizations using specific gene probes showed that strongly homologous genes are present in Rhizobium trifolii but not Rhizobium meliloti or Bradyrhizobium japonicum. A mutation within nodL strongly reduced nodulation of peas, Lens and Lathyrus but had little effect on nodulation of Vicia species. A slight reduction in nodulation of Vicia hirsuta was observed with strains carrying mutations in nodM or nodN.
Collapse
Affiliation(s)
- B P Surin
- C.S.I.R.O. Division of Plant Industry, Canberra, Australia
| | | |
Collapse
|
44
|
Saxild HH, Nygaard P. Gene-enzyme relationships of the purine biosynthetic pathway in Bacillus subtilis. MOLECULAR & GENERAL GENETICS : MGG 1988; 211:160-7. [PMID: 3125411 DOI: 10.1007/bf00338408] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The gene-enzyme relationship has been established for most of the steps of the purine de novo biosynthetic pathway in Bacillus subtilis. The synthesis of inosine monophosphate (IMP) involves ten steps, and the branching from IMP to AMP and to guanosine monophosphate (GMP) synthesis both require two steps. To avoid confusion in the nomenclature of the pur genes we have adopted the Escherichia coli system for B. subtilis. The two genes specifying the enzymes catalysing the conversion of IMP to succinyl-AMP (pur A), and the conversion of IMP to xanthosine monophosphate (guaB), occur as single units whilst the other purine genes are clustered at 55 degrees on the B. subtilis linkage map. Based on transformation and transduction studies, and on complementation studies using B. subtilis pur genes cloned in plasmids, the arrangement of some of the clustered genes has been determined relative to outside markers. The following gene order has been established: pbuG-purB-purF-purM-purH-purD-tre. Three other genes were also found to be located in the cluster, guaA, purL and purE/C. However, we were not able to find their exact location. When the purF, purM, purD and purB genes of B. subtilis are present in plasmids they are capable of directing the synthesis in E. coli of phosphoribosylpyrophosphate amidotransferase (purF), aminoimidazole ribonucleotide synthetase (purM), glycinamide ribonucleotide synthetase (purD) and adenylosuccinate lyase (purB), respectively.
Collapse
Affiliation(s)
- H H Saxild
- Enzyme Division, University Institute of Biological Chemistry, Copenhagen K, Denmark
| | | |
Collapse
|
45
|
Ebbole DJ, Zalkin H. Cloning and characterization of a 12-gene cluster from Bacillus subtilis encoding nine enzymes for de novo purine nucleotide synthesis. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47560-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Phillips MK, Hederstedt L, Hasnain S, Rutberg L, Guest JR. Nucleotide sequence encoding the flavoprotein and iron-sulfur protein subunits of the Bacillus subtilis PY79 succinate dehydrogenase complex. J Bacteriol 1987; 169:864-73. [PMID: 3027051 PMCID: PMC211859 DOI: 10.1128/jb.169.2.864-873.1987] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The nucleotide sequence of a 2.7-kilobase segment of DNA containing the sdhA and sdhB genes encoding the flavoprotein (Fp, sdhA) and iron-sulfur protein (Ip, sdhB) subunits of the succinate dehydrogenase of Bacillus subtilis was determined. This sequence extends the previously reported sequence encoding the cytochrome b558 subunit (sdhC) and completes the sequence of the sdh operon, sdhCAB. The predicted molecular weights for the Fp and Ip subunits, 65,186 (585 amino acids) and 28,285 (252 amino acids), agreed with the values determined independently for the labeled Fp and Ip antigens, although it appeared that the B. subtilis Fp was not functional after expression of the sdhA gene in Escherichia coli. Both subunits closely resembled the corresponding Fp and Ip subunits of the succinate dehydrogenase (SDH) and fumarate reductase of E. coli in size, composition, and amino acid sequence. The sequence homologies further indicated that the B. subtilis SDH subunits are equally related to the SDH and fumarate reductase subunits of E. coli but are less closely related than are the corresponding pairs of E. coli subunits. The regions of highest sequence conservation were identifiable as the catalytically significant flavin adenine dinucleotide-binding sites and cysteine clusters of the iron-sulfur centers.
Collapse
|
47
|
|
48
|
|
49
|
Oliver G, Gosset G, Sanchez-Pescador R, Lozoya E, Ku LM, Flores N, Becerril B, Valle F, Bolivar F. Determination of the nucleotide sequence for the glutamate synthase structural genes of Escherichia coli K-12. Gene 1987; 60:1-11. [PMID: 3326786 DOI: 10.1016/0378-1119(87)90207-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have determined the complete nucleotide sequence of a 6.3-kb chromosomal HpaI-EcoRI fragment, that contains the structural genes for both the large and small subunits of the Escherichia coli K-12 glutamate synthase (GOGAT) enzyme, as well as the 5'- and 3'-flanking and intercistronic DNA regions. The Mrs of the two subunits, as deduced from the nucleotide (nt) sequence, were estimated as 166,208 and 52,246. Partial amino acid sequence of the GOGAT enzyme revealed that the large subunit starts with a cysteine residue that is probably generated by a proteolytic cleavage. Northern blotting experiments revealed a transcript of approximately 7300 nt, that at least contains the cistrons for both subunits. A transcriptional start point and a functional promoter were identified in the 5' DNA flanking region of the large subunit gene. The messenger RNA nontranslated leader region has 120 nt and shares identity with the leader regions of E. coli ribosomal operons, in particular around the so-called boxA sequence implicated in antitermination. Other possible regulatory sequences are described.
Collapse
Affiliation(s)
- G Oliver
- Departamento de Biología Molecular, U.N.A.M., Morelos
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wilson JM, O'Toole TE, Argos P, Shewach DS, Daddona PE, Kelley WN. Human adenine phosphoribosyltransferase. Complete amino acid sequence of the erythrocyte enzyme. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67074-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|