1
|
Dieteren CEJ, Koopman WJH, Swarts HG, Peters JGP, Maczuga P, van Gemst JJ, Masereeuw R, Smeitink JAM, Nijtmans LGJ, Willems PHGM. Subunit-specific incorporation efficiency and kinetics in mitochondrial complex I homeostasis. J Biol Chem 2012; 287:41851-60. [PMID: 23038253 DOI: 10.1074/jbc.m112.391151] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Studies employing native PAGE suggest that most nDNA-encoded CI subunits form subassemblies before assembling into holo-CI. In addition, in vitro evidence suggests that some subunits can directly exchange in holo-CI. Presently, data on the kinetics of these two incorporation modes for individual CI subunits during CI maintenance are sparse. Here, we used inducible HEK293 cell lines stably expressing AcGFP1-tagged CI subunits and quantified the amount of tagged subunit in mitoplasts and holo-CI by non-native and native PAGE, respectively, to determine their CI incorporation efficiency. Analysis of time courses of induction revealed three subunit-specific patterns. A first pattern, represented by NDUFS1, showed overlapping time courses, indicating that imported subunits predominantly incorporate into holo-CI. A second pattern, represented by NDUFV1, consisted of parallel time courses, which were, however, not quantitatively overlapping, suggesting that imported subunits incorporate at similar rates into holo-CI and CI assembly intermediates. The third pattern, represented by NDUFS3 and NDUFA2, revealed a delayed incorporation into holo-CI, suggesting their prior appearance in CI assembly intermediates and/or as free monomers. Our analysis showed the same maximum incorporation into holo-CI for NDUFV1, NDUFV2, NDUFS1, NDUFS3, NDUFS4, NDUFA2, and NDUFA12 with nearly complete loss of endogenous subunit at 24 h of induction, indicative of an equimolar stoichiometry and unexpectedly rapid turnover. In conclusion, the results presented demonstrate that newly formed nDNA-encoded CI subunits rapidly incorporate into holo-CI in a subunit-specific manner.
Collapse
Affiliation(s)
- Cindy E J Dieteren
- Department of Biochemistry, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Lunzer R, Ortner I, Haltrich D, Kulbe KD, Nidetzky B. Enzymatic Regeneration of NAD in Enantioselective Oxidation of Secondary Alcohols: Glutamate Dehydrogenase Versus NADH Dehydrogenase. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242429809003627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
3
|
Lazarou M, Thorburn DR, Ryan MT, McKenzie M. Assembly of mitochondrial complex I and defects in disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:78-88. [PMID: 18501715 DOI: 10.1016/j.bbamcr.2008.04.015] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 04/15/2008] [Accepted: 04/25/2008] [Indexed: 12/19/2022]
Abstract
Isolated complex I deficiency is the most common cause of respiratory chain dysfunction. Defects in human complex I result in energy generation disorders and they are also implicated in neurodegenerative disease and altered apoptotic signaling. Complex I dysfunction often occurs as a result of its impaired assembly. The assembly process of complex I is poorly understood, complicated by the fact that in mammals, it is composed of 45 different subunits and is regulated by both nuclear and mitochondrial genomes. However, in recent years we have gained new insights into complex I biogenesis and a number of assembly factors involved in this process have also been identified. In most cases, these factors have been discovered through their gene mutations that lead to specific complex I defects and result in mitochondrial disease. Here we review how complex I is assembled and the factors required to mediate this process.
Collapse
Affiliation(s)
- Michael Lazarou
- Department of Biochemistry, La Trobe University, 3086 Melbourne, Australia
| | | | | | | |
Collapse
|
4
|
Vogel RO, Smeitink JAM, Nijtmans LGJ. Human mitochondrial complex I assembly: A dynamic and versatile process. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1215-27. [PMID: 17854760 DOI: 10.1016/j.bbabio.2007.07.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 07/24/2007] [Accepted: 07/26/2007] [Indexed: 12/12/2022]
Abstract
One can but admire the intricate way in which biomolecular structures are formed and cooperate to allow proper cellular function. A prominent example of such intricacy is the assembly of the five inner membrane embedded enzymatic complexes of the mitochondrial oxidative phosphorylation (OXPHOS) system, which involves the stepwise combination of >80 subunits and prosthetic groups encoded by both the mitochondrial and nuclear genomes. This review will focus on the assembly of the most complicated OXPHOS structure: complex I (NADH:ubiquinone oxidoreductase, EC 1.6.5.3). Recent studies into complex I assembly in human cells have resulted in several models elucidating a thus far enigmatic process. In this review, special attention will be given to the overlap between the various assembly models proposed in different organisms. Complex I being a complicated structure, its assembly must be prone to some form of coordination. This is where chaperone proteins come into play, some of which may relate complex I assembly to processes such as apoptosis and even immunity.
Collapse
Affiliation(s)
- Rutger O Vogel
- Nijmegen Centre for Mitochondrial Disorders, Department of Pediatrics, Radboud University Nijmegen Medical Centre, Geert Grooteplein 10, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
5
|
Vogel RO, Dieteren CEJ, van den Heuvel LPWJ, Willems PHGM, Smeitink JAM, Koopman WJH, Nijtmans LGJ. Identification of mitochondrial complex I assembly intermediates by tracing tagged NDUFS3 demonstrates the entry point of mitochondrial subunits. J Biol Chem 2007; 282:7582-90. [PMID: 17209039 DOI: 10.1074/jbc.m609410200] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biogenesis of human mitochondrial complex I (CI) requires the coordinated assembly of 45 subunits derived from both the mitochondrial and nuclear genome. The presence of CI subcomplexes in CI-deficient cells suggests that assembly occurs in distinct steps. However, discriminating between products of assembly or instability is problematic. Using an inducible NDUFS3-green fluorescent protein (GFP) expression system in HEK293 cells, we here provide direct evidence for the stepwise assembly of CI. Upon induction, six distinct NDUFS3-GFP-containing subcomplexes gradually appeared on a blue native Western blot also observed in wild type HEK293 mitochondria. Their stability was demonstrated by differential solubilization and heat incubation, which additionally allowed their distinction from specific products of CI instability and breakdown. Inhibition of mitochondrial translation under conditions of steady state labeling resulted in an accumulation of two of the NDUFS3-GFP-containing subcomplexes (100 and 150 kDa) and concomitant disappearance of the fully assembled complex. Lifting inhibition reversed this effect, demonstrating that these two subcomplexes are true assembly intermediates. Composition analysis showed that this event was accompanied by the incorporation of at least one mitochondrial DNA-encoded subunit, thereby revealing the first entry point of these subunits.
Collapse
Affiliation(s)
- Rutger O Vogel
- Nijmegen Centre for Mitochondrial Disorders, Department of Paediatrics, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
6
|
Yadava N, Houchens T, Potluri P, Scheffler IE. Development and Characterization of a Conditional Mitochondrial Complex I Assembly System. J Biol Chem 2004; 279:12406-13. [PMID: 14722084 DOI: 10.1074/jbc.m313588200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We developed a conditional complex I assembly system in a Chinese hamster fibroblast mutant line, CCL16-B2, that does not express the NDUFA1 gene (encoding the MWFE protein). In this mutant, a hemagglutinin (HA) epitope-tagged MWFE protein was expressed from a doxycycline-inducible promoter. The expression of the protein was absolutely dependent on the presence of doxycycline, and the gene could be turned off completely by removal of doxycycline. These experiments demonstrated a key role of MWFE in the pathway of complex I assembly. Upon induction the MWFE.HA protein reached steady-state levels within 24 h, but the appearance of fully active complex I was delayed by another approximately 24 h. The MWFE appeared in a precomplex that probably includes one or more subunits encoded by mtDNA. The fate of MWFE and the stability of complex I were themselves very tightly linked to the activity of mitochondrial protein synthesis and to the assembly of subunits encoded by mtDNA (ND1-6 and ND4L). This novel conditional system can shed light not only on the mechanism of complex I assembly but emphasizes the role of subunits previously thought of as "accessory." It promises to have broader applications in the study of cellular energy metabolism and production of reactive oxygen species and related processes.
Collapse
Affiliation(s)
- Nagendra Yadava
- Section of Molecular Biology, Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093-0322, USA
| | | | | | | |
Collapse
|
7
|
Hoffbuhr KC, Davidson E, Filiano BA, Davidson M, Kennaway NG, King MP. A pathogenic 15-base pair deletion in mitochondrial DNA-encoded cytochrome c oxidase subunit III results in the absence of functional cytochrome c oxidase. J Biol Chem 2000; 275:13994-4003. [PMID: 10788526 DOI: 10.1074/jbc.275.18.13994] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A 15-base pair, in-frame, deletion (9480del15) in the mitochondrial DNA (mtDNA)-encoded cytochrome c oxidase subunit III (COX III) gene was identified previously in a patient with recurrent episodes of myoglobinuria and an isolated COX deficiency. Transmitochondrial cell lines harboring 0, 97, and 100% of the 9480del15 deletion were created by fusing human cells lacking mtDNA (rho(0) cells) with platelet and lymphocyte fractions isolated from the patient. The COX III gene mutation resulted in a severe respiratory chain defect in all mutant cell lines. Cells homoplasmic for the mutation had no detectable COX activity or respiratory ATP synthesis, and required uridine and pyruvate supplementation for growth, a phenotype similar to rho(0) cells. The cells with 97% mutated mtDNA exhibited severe reductions in both COX activity (6% of wild-type levels) and rates of ATP synthesis (9% of wild-type). The COX III polypeptide in the mutant cells, although translated at rates similar to wild-type, had reduced stability. There was no evidence for assembly of COX I, COX II, or COX III subunits in a multisubunit complex in cells homoplasmic for the mutation, thus indicating that there was no stable assembly of COX I with COX II in the absence of wild-type COX III. In contrast, the COX I and COX II subunits were assembled in cells with 97% mutated mtDNA.
Collapse
Affiliation(s)
- K C Hoffbuhr
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | | | | | |
Collapse
|
8
|
Dudchenko AM, Luk'yanova LD. Effects of adaptation to periodic hypoxia on kinetic parameters of respiratory chain enzymes in rat brain. Bull Exp Biol Med 1996. [DOI: 10.1007/bf02446754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Assembly of Multisubunit Complexes in Mitochondria. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1569-2558(09)60019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
10
|
Alves P, Videira A. Disruption of the gene coding for the 21.3-kDa subunit of the peripheral arm of complex I from Neurospora crassa. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37354-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
11
|
Myers M, Forgac M. Assembly of the peripheral domain of the bovine vacuolar H(+)-adenosine triphosphatase. J Cell Physiol 1993; 156:35-42. [PMID: 8314860 DOI: 10.1002/jcp.1041560106] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The biosynthesis and assembly of the peripheral sector (V1) of the vacuolar proton-translocating adenosine triphosphatase (V-ATPase) was studied in a bovine kidney epithelial cell line. Monolayer cultures of cells were metabolically radiolabeled with Tran35S-label and the V-ATPase subsequently immunoprecipitated using a monoclonal antibody raised against the bovine brain-coated vesicle proton pump. The V-ATPase immunoprecipitated from the bovine kidney cell line has a subunit composition very similar to that of the bovine brain-coated vesicle proton pump and the V-ATPase prepared from other kidney tissues. Radiolabeling the cells for increasing times showed that the V1 or peripheral portion of the V-ATPase is assembled within 10-15 min; the intact V1V0 complex is also detectable within 10-15 min. Fractionation of the cells into cytosolic and membrane components prior to immunoprecipitation revealed that there is a significant pool of V1 in the cytosol; a similar complex is also found in bovine brain cytosol. Pulse-chase studies suggest that this cytosolic pool is not an obligate precursor for membrane-bound V1V0 and does not exchange with the membrane V1 population at later times. No qualitative differences in assembly were observed when pulse-chase studies were performed at 15 degrees C or in the presence of brefeldin A. This suggests that assembly of V1V0 is probably completed in the endoplasmic reticulum prior to distribution of the enzyme throughout the cell, with a cytosolic pool of V1 of unknown function existing in parallel with the fully assembled complex.
Collapse
Affiliation(s)
- M Myers
- Department of Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | |
Collapse
|
12
|
Whelan J, Young S, Day DA. Cloning of ndhK from soybean chloroplasts using antibodies raised to mitochondrial complex I. PLANT MOLECULAR BIOLOGY 1992; 20:887-95. [PMID: 1463827 DOI: 10.1007/bf00027160] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
A soybean shoot cDNA expression library was screened with polyclonal antibodies raised against red beet complex I and several clones were identified. One clone, consisting of a 1 kb insert, was fully sequenced. The sequence of 1025 bp was found to contain two extended open reading frames and the proteins encoded were identified as the ndhK and ndhJ products of the chloroplast genome. Nuclear, mitochondrial and chloroplast DNA was isolated and probed with a ndhK-specific probe. The chloroplast DNA contained a single copy of the cloned insert. With nuclear DNA, positively hybridising bands of 1.2, 2.7 and 3.2 kb were observed indicating that at least one gene homologous to ndhK of the chloroplast genome, is also present in the nucleus. The mitochondrial DNA did not hybridise with the ndhK probe. Western analysis of thylakoid proteins with the mitochondrial complex I antibodies revealed several bands. It is suggested that soybean contains two copies of the ndhK gene, one, on the plastid genome, coding for a subunit of a chloroplast NAD(P)H dehydrogenase, and the other, in the nucleus, coding for a subunit of mitochondrial complex I.
Collapse
Affiliation(s)
- J Whelan
- Division of Biochemistry and Molecular Biology, Faculty of Science, Australian National University, Canberra
| | | | | |
Collapse
|
13
|
Chapter 6 NADH-ubiquinone oxidoreductase. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0167-7306(08)60174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
14
|
Asson-Batres M, Hare J. Effect of oxygen on the synthesis and assembly of mitochondrial encoded subunits of cytochrome oxidase and cytochrome b.c1 in mouse embryo fibroblasts. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)92908-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|