Goppelt-Struebe M, Reiser CO, Schneider N, Grell M. Modulation of tumor necrosis factor (TNF) receptor expression during monocytic differentiation by glucocorticoids.
Inflamm Res 1996;
45:503-7. [PMID:
8912015 DOI:
10.1007/bf02311086]
[Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE AND DESIGN
Regulation of tumor necrosis factor receptors by glucocorticoids was investigated during phorbol ester-induced monocytic differentiation.
MATERIALS AND TREATMENT
As model system the human monocytic cell lines U937 and THP-1, which express both types of TNF receptors (TNF-R60 and TNF-R80), were differentiated with tetradecanoyl phorbol-13-acetate (TPA, 5 x 10(-9) M) in the presence or absence of dexamethasone (10(-9) - 10(-6) M).
METHODS
Expression of TNF receptors was determined at the mRNA level by Northern blot analysis and at the protein level by FACS analysis.
RESULTS
During differentiation, TNF-R60 mRNA was down-regulated, whereas TNF-R80 mRNA levels were increased. Dexamethasone had no effect on TNF-R60 mRNA expression but attenuated TNF-R80 mRNA expression in both cell lines. Cell surface expression of TNF-R60 protein remained essentially unchanged during differentiation of THP-1 cells, whereas a rapid down-regulation of TNF-R80 was observed that was followed by a slow recovery. Surface expression of TNF-R80 was not affected by dexamethasone, whereas TNF-R60 expression was reduced by about 25%.
CONCLUSIONS
These results indicate differential regulation of the two types of TNF receptors at the mRNA and protein level during monocytic differentiation. Glucocorticoids interfered with mRNA expression of TNF-R80 and protein expression of TNF-R60, but the rather limited effect leaves the question of its functional relevance open. In contrast to other cytokine systems, TNF receptors do not appear to be major targets of glucocorticoid action.
Collapse