1
|
Ribeiro VC, Russo LC, Hoch NC. PARP14 is regulated by the PARP9/DTX3L complex and promotes interferon γ-induced ADP-ribosylation. EMBO J 2024; 43:2908-2928. [PMID: 38834852 PMCID: PMC11251048 DOI: 10.1038/s44318-024-00125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024] Open
Abstract
Protein ADP-ribosylation plays important but ill-defined roles in antiviral signalling cascades such as the interferon response. Several viruses of clinical interest, including coronaviruses, express hydrolases that reverse ADP-ribosylation catalysed by host enzymes, suggesting an important role for this modification in host-pathogen interactions. However, which ADP-ribosyltransferases mediate host ADP-ribosylation, what proteins and pathways they target and how these modifications affect viral infection and pathogenesis is currently unclear. Here we show that host ADP-ribosyltransferase activity induced by IFNγ signalling depends on PARP14 catalytic activity and that the PARP9/DTX3L complex is required to uphold PARP14 protein levels via post-translational mechanisms. Both the PARP9/DTX3L complex and PARP14 localise to IFNγ-induced cytoplasmic inclusions containing ADP-ribosylated proteins, and both PARP14 itself and DTX3L are likely targets of PARP14 ADP-ribosylation. We provide evidence that these modifications are hydrolysed by the SARS-CoV-2 Nsp3 macrodomain, shedding light on the intricate cross-regulation between IFN-induced ADP-ribosyltransferases and the potential roles of the coronavirus macrodomain in counteracting their activity.
Collapse
Affiliation(s)
| | | | - Nícolas Carlos Hoch
- Department of Biochemistry, University of São Paulo, São Paulo, 05508-000, Brazil.
| |
Collapse
|
2
|
Carabias A, Camara-Wilpert S, Mestre MR, Lopéz-Méndez B, Hendriks IA, Zhao R, Pape T, Fuglsang A, Luk SHC, Nielsen ML, Pinilla-Redondo R, Montoya G. Retron-Eco1 assembles NAD +-hydrolyzing filaments that provide immunity against bacteriophages. Mol Cell 2024; 84:2185-2202.e12. [PMID: 38788717 DOI: 10.1016/j.molcel.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/15/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
Retrons are toxin-antitoxin systems protecting bacteria against bacteriophages via abortive infection. The Retron-Eco1 antitoxin is formed by a reverse transcriptase (RT) and a non-coding RNA (ncRNA)/multi-copy single-stranded DNA (msDNA) hybrid that neutralizes an uncharacterized toxic effector. Yet, the molecular mechanisms underlying phage defense remain unknown. Here, we show that the N-glycosidase effector, which belongs to the STIR superfamily, hydrolyzes NAD+ during infection. Cryoelectron microscopy (cryo-EM) analysis shows that the msDNA stabilizes a filament that cages the effector in a low-activity state in which ADPr, a NAD+ hydrolysis product, is covalently linked to the catalytic E106 residue. Mutations shortening the msDNA induce filament disassembly and the effector's toxicity, underscoring the msDNA role in immunity. Furthermore, we discovered a phage-encoded Retron-Eco1 inhibitor (U56) that binds ADPr, highlighting the intricate interplay between retron systems and phage evolution. Our work outlines the structural basis of Retron-Eco1 defense, uncovering ADPr's pivotal role in immunity.
Collapse
Affiliation(s)
- Arturo Carabias
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| | - Sarah Camara-Wilpert
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mario Rodríguez Mestre
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Blanca Lopéz-Méndez
- Protein Purification and Characterization Facility, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ivo A Hendriks
- Proteomics Department, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ruiliang Zhao
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Tillmann Pape
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Core Facility for Integrated Microscopy (CFIM), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anders Fuglsang
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Sean Hoi-Ching Luk
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Michael L Nielsen
- Proteomics Department, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rafael Pinilla-Redondo
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Guillermo Montoya
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
3
|
Abstract
Post-translational modifications exist in different varieties to regulate diverse characteristics of their substrates, ultimately leading to maintenance of cell health. The enzymes of the intracellular poly(ADP-ribose) polymerase (PARP) family can transfer either a single ADP-ribose to targets, in a reaction called mono(ADP-ribosyl)ation or MARylation, or multiple to form chains of poly(ADP-ribose) or PAR. Traditionally thought to be attached to arginine or glutamate, recent data have added serine, tyrosine, histidine and others to the list of potential ADP-ribose acceptor amino acids. PARylation by PARP1 has been relatively well studied, whereas less is known about the other family members such as PARP7 and PARP10. ADP-ribosylation on arginine and serine is reversed by ARH1 and ARH3 respectively, whereas macrodomain-containing MACROD1, MACROD2 and TARG1 reverse modification of acidic residues. For the other amino acids, no hydrolases have been identified to date. For many PARPs, it is not clear yet what their endogenous targets are. Better understanding of their biochemical reactions is required to be able to determine their biological functions in future studies. In this review, we discuss the current knowledge of PARP specificity in vitro and in cells, as well as provide an outlook for future research.
Collapse
|
4
|
Monoclonal Anti-AMP Antibodies Are Sensitive and Valuable Tools for Detecting Patterns of AMPylation. iScience 2020; 23:101800. [PMID: 33299971 PMCID: PMC7704405 DOI: 10.1016/j.isci.2020.101800] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/16/2020] [Accepted: 11/10/2020] [Indexed: 12/29/2022] Open
Abstract
AMPylation is a post-translational modification that modifies amino acid side chains with adenosine monophosphate (AMP). Recently, a role of AMPylation as a universal regulatory mechanism in infection and cellular homeostasis has emerged, driving the demand for universal tools to study this modification. Here, we describe three monoclonal anti-AMP antibodies (mAbs) from mouse that are capable of protein backbone-independent recognition of AMPylation, in denatured (western blot) as well as native (ELISA, IP) applications, thereby outperforming previously reported tools. These antibodies are highly sensitive and specific for AMP modifications, highlighting their potential as tools for new target identification, as well as for validation of known targets. Interestingly, applying the anti-AMP mAbs to various cancer cell lines reveals a previously undescribed broad and diverse AMPylation pattern. In conclusion, these anti-AMP mABs will further advance the current understanding of AMPylation and the spectrum of modified targets. Generation of murine monoclonal anti-AMP antibodies via synthetic AMPylated peptide Characterization in the applications western blot, ELISA, and immunoprecipitation Sensitive and specific recognition of AMPylation independent of protein backbone Expansion of toolbox for the detection and enrichment of AMPylation
Collapse
|
5
|
Biomimetic α-selective ribosylation enables two-step modular synthesis of biologically important ADP-ribosylated peptides. Nat Commun 2020; 11:5600. [PMID: 33154359 PMCID: PMC7645758 DOI: 10.1038/s41467-020-19409-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
The α-type ADP-ribosylated peptides represent a class of important molecular tools in the field of protein ADP-ribosylation, however, they are difficult to access because of their inherent complicated structures and the lack of effective synthetic tools. In this paper, we present a biomimetic α-selective ribosylation reaction to synthesize a key intermediate, α-ADP-ribosyl azide, directly from native β-nicotinamide adenine dinucleotide in a clean ionic liquid system. This reaction in tandem with click chemistry then offers a two-step modular synthesis of α-ADP-ribosylated peptides. These syntheses can be performed open air in eppendorf tubes, without the need for specialized instruments or training. Importantly, we demonstrate that the synthesized α-ADP-ribosylated peptides show high binding affinity and desirable stability for enriching protein partners, and reactivity in post-stage poly ADP-ribosylations. Owing to their simple chemistry and multidimensional bio-applications, the presented methods may provide a powerful platform to produce general molecular tools for the study of protein ADP-ribosylation. ADP-ribosylated peptides are important molecular tools, however, the lack of effective synthetic methods hinders the access to their complex structures. Here, the authors present a biomimetic α-selective ribosylation reaction coupled with click chemistry ultimately providing a two-step modular synthesis of α-ADP-ribosylated peptides.
Collapse
|
6
|
Yamashita S, Tanaka M, Nodono H, Hamada A, Hamada T, Hasegawa M, Nishi Y, Moss J, Miwa M. Human alcohol dehydrogenase 1 is an acceptor protein for polyADP-ribosylation. Biochem Pharmacol 2019; 167:27-32. [PMID: 30936015 PMCID: PMC9872671 DOI: 10.1016/j.bcp.2019.03.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 03/19/2019] [Indexed: 01/26/2023]
Abstract
Alcohol dehydrogenase (ADH) is important for preventing alcohol toxicity and developmental disorders, and may be involved in other diseases including neurodegenerative diseases. We found that the major acceptor protein of polyADP-ribosylation in a model organism of neurodegeneration using a Drosophila melanogaster mutant lacking poly(ADP-ribose) glycohydrolase, was ADH. Thus we postulated that human ADH activity might be regulated by polyADP-ribosylation, a post-translational modification. The radioactivity of [32P]NAD+ was incorporated into human ADH1 by human poly(ADP-ribose) polymerase 1 in vitro, but was not incorporated when heat-inactivated PARP1 or a PARP inhibitor, 3-aminobenzamide, was used. The incorporated radioactivity was not released from ADH1 protein in the presence of excess amount of ADP-ribose or poly(ADP-ribose) as competitors. However, it was released by incubation with 1 M neutral NH2OH or 0.1 N NaOH, but was not with 0.1 N HCl, suggesting the bond between ADH1 and poly(ADP-ribose) is an ester linkage. When HepG2 cells, a human hepatoma cell line, were cultured in the presence of another PARP inhibitor, olaparib, ADH activity of the cell was significantly increased. These results suggest that polyADP-ribosylation could regulate ADH activity in vivo and might be involved in neurodegeneration.
Collapse
Affiliation(s)
- Sachiko Yamashita
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan,Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1590, USA
| | - Masakazu Tanaka
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan,Division of Molecular Pathology, Center for Chronic Viral Diseases, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Hiroto Nodono
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Akiko Hamada
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Takashi Hamada
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Makoto Hasegawa
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Yoshisuke Nishi
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1590, USA
| | - Masanao Miwa
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan,Corresponding author. (M. Miwa)
| |
Collapse
|
7
|
Li P, Zhen Y, Yu Y. Site-specific analysis of the Asp- and Glu-ADP-ribosylated proteome by quantitative mass spectrometry. Methods Enzymol 2019; 626:301-321. [PMID: 31606080 DOI: 10.1016/bs.mie.2019.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
ADP-ribosylation is a protein post-translational modification that is critically involved in a wide array of biological processes connected to cell stress responses. Enzymes known as poly-ADP-ribose polymerases (PARPs) catalyze the addition of the ADP-ribose units to amino acids with various side chain chemistries. In particular, the PARP family member PARP1 is responsible for the modification of a large number of proteins and is involved in initiation of the DNA damage response, although the mechanisms through which PARP1 functions are still incompletely understood. The analysis of protein ADP-ribosylation is challenging because PARylation is a low-abundance, labile and heterogeneous protein modification. Recently, we developed an integrative proteomic platform for the site-specific analysis of protein ADP-ribosylation on Asp and Glu residues. Herein, we describe the method, and demonstrate its utility in quantitative characterization of the human Asp- and Glu-ADP-ribosylated proteome.
Collapse
Affiliation(s)
- Peng Li
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yuanli Zhen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yonghao Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
8
|
Yanez M, Jhanji M, Murphy K, Gower RM, Sajish M, Jabbarzadeh E. Nicotinamide Augments the Anti-Inflammatory Properties of Resveratrol through PARP1 Activation. Sci Rep 2019; 9:10219. [PMID: 31308445 PMCID: PMC6629694 DOI: 10.1038/s41598-019-46678-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/03/2019] [Indexed: 01/01/2023] Open
Abstract
Resveratrol (RSV) and nicotinamide (NAM) have garnered considerable attention due to their anti-inflammatory and anti-aging properties. NAM is a transient inhibitor of class III histone deacetylase SIRTs (silent mating type information regulation 2 homologs) and SIRT1 is an inhibitor of poly-ADP-ribose polymerase-1 (PARP1). The debate on the relationship between RSV and SIRT1 has precluded the use of RSV as a therapeutic drug. Recent work demonstrated that RSV facilitates tyrosyl-tRNA synthetase (TyrRS)-dependent activation of PARP1. Moreover, treatment with NAM is sufficient to facilitate the nuclear localization of TyrRS that activates PARP1. RSV and NAM have emerged as potent agonists of PARP1 through inhibition of SIRT1. In this study, we evaluated the effects of RSV and NAM on pro-inflammatory macrophages. Our results demonstrate that treatment with either RSV or NAM attenuates the expression of pro-inflammatory markers. Strikingly, the combination of RSV with NAM, exerts additive effects on PARP1 activation. Consistently, treatment with PARP1 inhibitor antagonized the anti-inflammatory effect of both RSV and NAM. For the first time, we report the ability of NAM to augment PARP1 activation, induced by RSV, and its associated anti-inflammatory effects mediated through the induction of BCL6 with the concomitant down regulation of COX-2.
Collapse
Affiliation(s)
- Maria Yanez
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Megha Jhanji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Kendall Murphy
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - R Michael Gower
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, USA
| | - Mathew Sajish
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Ehsan Jabbarzadeh
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA.
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
9
|
Lassak J, Koller F, Krafczyk R, Volkwein W. Exceptionally versatile – arginine in bacterial post-translational protein modifications. Biol Chem 2019; 400:1397-1427. [DOI: 10.1515/hsz-2019-0182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/01/2019] [Indexed: 12/24/2022]
Abstract
Abstract
Post-translational modifications (PTM) are the evolutionary solution to challenge and extend the boundaries of genetically predetermined proteomic diversity. As PTMs are highly dynamic, they also hold an enormous regulatory potential. It is therefore not surprising that out of the 20 proteinogenic amino acids, 15 can be post-translationally modified. Even the relatively inert guanidino group of arginine is subject to a multitude of mostly enzyme mediated chemical changes. The resulting alterations can have a major influence on protein function. In this review, we will discuss how bacteria control their cellular processes and develop pathogenicity based on post-translational protein-arginine modifications.
Collapse
Affiliation(s)
- Jürgen Lassak
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Franziska Koller
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Ralph Krafczyk
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Wolfram Volkwein
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| |
Collapse
|
10
|
Kotagale NR, Taksande BG, Inamdar NN. Neuroprotective offerings by agmatine. Neurotoxicology 2019; 73:228-245. [DOI: 10.1016/j.neuro.2019.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/31/2022]
|
11
|
Stevens LA, Moss J. Mono-ADP-Ribosylation Catalyzed by Arginine-Specific ADP-Ribosyltransferases. Methods Mol Biol 2019; 1813:149-165. [PMID: 30097866 DOI: 10.1007/978-1-4939-8588-3_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Methods are described for determination of arginine-specific mono-ADP-ribosyltransferase activity of purified proteins and intact cells by monitoring the transfer of ADP-ribose from NAD+ to a model substrate, e.g., arginine, agmatine, and peptide (human neutrophil peptide-1 [HNP1]), and for the nonenzymatic hydrolysis of ADP-ribose-arginine to ornithine, a noncoded amino acid. In addition, preparation of purified ADP-ribosylarginine is included as a control substrate for ADP-ribosylation reactions.
Collapse
Affiliation(s)
- Linda A Stevens
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Palazzo L, Leidecker O, Prokhorova E, Dauben H, Matic I, Ahel I. Serine is the major residue for ADP-ribosylation upon DNA damage. eLife 2018; 7:e34334. [PMID: 29480802 PMCID: PMC5837557 DOI: 10.7554/elife.34334] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/23/2018] [Indexed: 12/18/2022] Open
Abstract
Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes that synthesise ADP-ribosylation (ADPr), a reversible modification of proteins that regulates many different cellular processes. Several mammalian PARPs are known to regulate the DNA damage response, but it is not clear which amino acids in proteins are the primary ADPr targets. Previously, we reported that ARH3 reverses the newly discovered type of ADPr (ADPr on serine residues; Ser-ADPr) and developed tools to analyse this modification (Fontana et al., 2017). Here, we show that Ser-ADPr represents the major fraction of ADPr synthesised after DNA damage in mammalian cells and that globally Ser-ADPr is dependent on HPF1, PARP1 and ARH3. In the absence of HPF1, glutamate/aspartate becomes the main target residues for ADPr. Furthermore, we describe a method for site-specific validation of serine ADP-ribosylated substrates in cells. Our study establishes serine as the primary form of ADPr in DNA damage signalling.
Collapse
Affiliation(s)
- Luca Palazzo
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | | | - Evgeniia Prokhorova
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Helen Dauben
- Max Planck Institute for Biology of AgeingCologneGermany
| | - Ivan Matic
- Max Planck Institute for Biology of AgeingCologneGermany
| | - Ivan Ahel
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
13
|
Abstract
ADP-ribosylation is a post-translational modification where single units (mono-ADP-ribosylation) or polymeric chains (poly-ADP-ribosylation) of ADP-ribose are conjugated to proteins by ADP-ribosyltransferases. This post-translational modification and the ADP-ribosyltransferases (also known as PARPs) responsible for its synthesis have been found to play a role in nearly all major cellular processes, including DNA repair, transcription, translation, cell signaling, and cell death. Furthermore, dysregulation of ADP-ribosylation has been linked to diseases including cancers, diabetes, neurodegenerative disorders, and heart failure, leading to the development of therapeutic PARP inhibitors, many of which are currently in clinical trials. The study of this therapeutically important modification has recently been bolstered by the application of mass spectrometry-based proteomics, arguably the most powerful tool for the unbiased analysis of protein modifications. Unfortunately, progress has been hampered by the inherent challenges that stem from the physicochemical properties of ADP-ribose, which as a post-translational modification is highly charged, heterogeneous (linear or branched polymers, as well as monomers), labile, and found on a wide range of amino acid acceptors. In this Perspective, we discuss the progress that has been made in addressing these challenges, including the recent breakthroughs in proteomics techniques to identify ADP-ribosylation sites, and future developments to provide a proteome-wide view of the many cellular processes regulated by ADP-ribosylation.
Collapse
Affiliation(s)
- Casey M Daniels
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
Sung VMH. Mechanistic overview of ADP-ribosylation reactions. Biochimie 2015; 113:35-46. [PMID: 25828806 DOI: 10.1016/j.biochi.2015.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 03/20/2015] [Indexed: 10/23/2022]
Abstract
ADP-ribosylation reactions consist of mono-ADP-ribosylation, poly-ADP-ribosylation and cyclic ADP-ribosylation. These reactions play essential roles in many important physiological and pathophysiological events. The types of chemical linkages, the evolutionarily conserved motif within the enzymes to determine the target specificity, stereochemistry of the ADP-ribosylated products, and the chemical reactions taking place among the enzymes and substrates are discussed.
Collapse
Affiliation(s)
- Vicky M-H Sung
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Harvard University, MA 02115, USA.
| |
Collapse
|
15
|
Identification and analysis of ADP-ribosylated proteins. Curr Top Microbiol Immunol 2015; 384:33-50. [PMID: 25113886 DOI: 10.1007/82_2014_424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The analysis of ADP-ribosylated proteins is a challenging task, on the one hand because of the diversity of the target proteins and the modification sites, on the other hand because of the particular problems posed by the analysis of ADP-ribosylated peptides. ADP-ribosylated proteins can be detected in in vitro experiments after the incorporation of radioactively labeled or chemically modified ADP-ribose. Endogenously ADP-ribosylated proteins may be detected and enriched by antibodies directed against the ADP-ribosyl moiety or by ADP-ribosyl binding macro domains. The determination of the exact attachment site of the modification, which is a prerequisite for the understanding of the specificity of the various ADP-ribosyl transferases and the structural consequences of ADP-ribosylation, necessitates the proteolytic cleavage of the proteins. The resulting peptides can afterwards be enriched either by IMAC (using the affinity of the pyrophosphate group for heavy metal ions) or by immobilized boronic acid beads (using the affinity of the vicinal ribose hydroxy groups for boronic acid). The identification of the modified peptides usually requires tandem mass spectrometric measurements. Problems that hamper the mass spectrometric analysis by collision-induced decay (CID) can be circumvented either by the application of different fragmentation techniques (electron transfer or electron capture dissociation; ETD or ECD) or by enzymatic cleavage of the ADP-ribosyl group to ribosyl-phosphate.
Collapse
|
16
|
Picchianti M, Del Vecchio M, Di Marcello F, Biagini M, Veggi D, Norais N, Rappuoli R, Pizza M, Balducci E. Auto ADP-ribosylation of NarE, a Neisseria meningitidis ADP-ribosyltransferase, regulates its catalytic activities. FASEB J 2013; 27:4723-30. [PMID: 23964075 DOI: 10.1096/fj.13-229955] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
NarE is an arginine-specific mono-ADP-ribosyltransferase identified in Neisseria meningitidis that requires the presence of iron in a structured cluster for its enzymatic activities. In this study, we show that NarE can perform auto-ADP-ribosylation. This automodification occurred in a time- and NAD-concentration-dependent manner; was inhibited by novobiocin, an ADP-ribosyltransferase inhibitor; and did not occur when NarE was heat inactivated. No reduction in incorporation was evidenced in the presence of high concentrations of ATP, GTP, ADP-ribose, or nicotinamide, which inhibits NAD-glycohydrolase, impeding the formation of free ADP-ribose. Based on the electrophoretic profile of NarE on auto-ADP-ribosylation and on the results of mutagenesis and mass spectrometry analysis, the auto-ADP-ribosylation appeared to be restricted to the addition of a single ADP-ribose. Chemical stability experiments showed that the ADP-ribosyl linkage was sensitive to hydroxylamine, which breaks ADP-ribose-arginine bonds. Site-directed mutagenesis suggested that the auto-ADP-ribosylation site occurred preferentially on the R(7) residue, which is located in the region I of the ADP-ribosyltransferase family. After auto-ADP-ribosylation, NarE showed a reduction in ADP-ribosyltransferase activity, while NAD-glycohydrolase activity was increased. Overall, our findings provide evidence for a novel intramolecular mechanism used by NarE to regulate its enzymatic activities.
Collapse
Affiliation(s)
- Monica Picchianti
- 1Centro Ricerche Novartis Vaccines and Diagnostics, Via Fiorentina 1, 53100 Siena, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Site-specific characterization of the Asp- and Glu-ADP-ribosylated proteome. Nat Methods 2013; 10:981-4. [PMID: 23955771 DOI: 10.1038/nmeth.2603] [Citation(s) in RCA: 258] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 07/01/2013] [Indexed: 12/12/2022]
Abstract
Poly(ADP-ribosyl)ation is catalyzed by a family of enzymes known as PARPs. We describe a method to characterize the human aspartic acid- and glutamic acid-ADP-ribosylated proteome. We identified 1,048 ADP-ribosylation sites on 340 proteins involved in a wide array of nuclear functions; among these were many previously unknown PARP downstream targets whose ADP-ribosylation was sensitive to PARP inhibitor treatment. We also confirmed that iniparib had a negligible effect on PARP activity in intact cells.
Collapse
|
18
|
Feijs KLH, Verheugd P, Lüscher B. Expanding functions of intracellular resident mono-ADP-ribosylation in cell physiology. FEBS J 2013; 280:3519-29. [PMID: 23639026 DOI: 10.1111/febs.12315] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 12/12/2022]
Abstract
Poly-ADP-ribosylation functions in diverse signaling pathways, such as Wnt signaling and DNA damage repair, where its role is relatively well characterized. Contrarily, mono-ADP-ribosylation by for example ARTD10/PARP10 is much less understood. Recent developments hint at the involvement of mono-ADP-ribosylation in transcriptional regulation, the unfolded protein response, DNA repair, insulin secretion and immunity. Additionally, macrodomain-containing hydrolases, MacroD1, MacroD2 and C6orf130/TARG1, have been identified that make mono-ADP-ribosylation reversible. Complicating further progress is the lack of tools such as mono-ADP-ribose-specific antibodies. The currently known functions of mono-ADP-ribosylation are summarized here, as well as the available tools such as mass spectrometry to study this modification in vitro and in cells.
Collapse
Affiliation(s)
- Karla L H Feijs
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | | | | |
Collapse
|
19
|
Hoxha V, Lama C, Chang PL, Saurabh S, Patel N, Olate N, Dauwalder B. Sex-specific signaling in the blood-brain barrier is required for male courtship in Drosophila. PLoS Genet 2013; 9:e1003217. [PMID: 23359644 PMCID: PMC3554526 DOI: 10.1371/journal.pgen.1003217] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 11/20/2012] [Indexed: 01/12/2023] Open
Abstract
Soluble circulating proteins play an important role in the regulation of mating behavior in Drosophila melanogaster. However, how these factors signal through the blood–brain barrier (bbb) to interact with the sex-specific brain circuits that control courtship is unknown. Here we show that male identity of the blood–brain barrier is necessary and that male-specific factors in the bbb are physiologically required for normal male courtship behavior. Feminization of the bbb of adult males significantly reduces male courtship. We show that the bbb–specific G-protein coupled receptor moody and bbb–specific Go signaling in adult males are necessary for normal courtship. These data identify sex-specific factors and signaling processes in the bbb as important regulators of male mating behavior. Complex behaviors such as mating behavior are controlled by the brain. Ensembles of brain cells work in networks to ensure proper behavior at the right time. While the state of these cells plays an important role in whether and how the behavior is displayed, information from outside the brain is also required. Often, this information is provided by hormones that are present in the circulating fluid (such as the blood). However, the brain is protected by a layer of very tight cells, the so-called blood–brain barrier, that keeps unwanted molecules out. So how then do hormones and other regulatory factors “talk” to the brain? We are studying this question by examining the mating behavior of males of a model organism, the fruit fly Drosophila melanogaster. We have found that the blood–brain barrier cells themselves contain male-specific molecules that play an important role. When they are absent, courtship behavior is compromised. We have also identified how outside factors talk to the brain: by using a cellular signaling protein and a particular signaling pathway. Together they are well suited to pass on outside information to the brain network that regulates mating behavior.
Collapse
Affiliation(s)
- Valbona Hoxha
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Chamala Lama
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Peter L. Chang
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Sumit Saurabh
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Naiya Patel
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Nicole Olate
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Brigitte Dauwalder
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Hottiger MO. ADP-ribosylation of histones by ARTD1: an additional module of the histone code? FEBS Lett 2011; 585:1595-9. [PMID: 21420964 DOI: 10.1016/j.febslet.2011.03.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/14/2011] [Accepted: 03/14/2011] [Indexed: 11/17/2022]
Abstract
ADP-ribosylation is a covalent post-translational protein modification catalyzed by ADP-ribosyltransferases and is involved in important processes such as cell cycle regulation, DNA damage response, replication or transcription. Histones are ADP-ribosylated by ADP-ribosyltransferase diphtheria toxin-like 1 at specific amino acid residues, in particular lysines, of the histones tails. Specific ADP-ribosyl hydrolases and poly-ADP-ribose glucohydrolases degrade the ADP-ribose polymers. The ADP-ribose modification is read by zinc finger motifs or macrodomains, which then regulate chromatin structure and transcription. Thus, histone ADP-ribosylation may be considered an additional component of the histone code.
Collapse
Affiliation(s)
- Michael O Hottiger
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
21
|
Moss J, Vaughan M. ADP-ribosylation of guanyl nucleotide-binding regulatory proteins by bacterial toxins. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 61:303-79. [PMID: 3128060 DOI: 10.1002/9780470123072.ch6] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- J Moss
- Laboratory of Cellular Metabolism, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892
| | | |
Collapse
|
22
|
Vogelsgesang M, Aktories K. Exchange of glutamine-217 to glutamate of Clostridium limosum exoenzyme C3 turns the asparagine-specific ADP-ribosyltransferase into an arginine-modifying enzyme. Biochemistry 2006; 45:1017-25. [PMID: 16411778 DOI: 10.1021/bi052253g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
C3-like ADP-ribosyltransferaseses are produced by Clostridium species, Bacillus cereus, and various Staphylococcus aureus strains. The exoenzymes modify the low-molecular-mass GTPases RhoA, B, and C. In structural studies of C3-like exoenzymes, an ARTT-motif (ADP-ribosylating turn-turn motif) was identified that appears to be involved in substrate specificity and recognition (Han, S., Arvai, A. S., Clancy, S. B., Tainer, J. A. (2001) J. Mol. Biol. 305, 95-107). Exchange of Gln217, which is a key residue of the ARTT-motif, to Glu in C3 from Clostridium limosum results in inhibition of ADP-ribosyltransferase activity toward RhoA. The mutant protein is still capable of NAD-binding and possesses NAD+ glycohydrolase activity. Whereas recombinant wild-type C3 modifies Rho proteins specifically at an asparagine residue (Asn41), Gln217Glu-C3 is capable of ADP-ribosylation of poly-arginine but not poly-asparagine. Soybean trypsin inhibitor, a model substrate for many arginine-specific ADP-ribosyltransferases, is modified by the Gln217Glu-C3 transferase. Also in C3 ADP-ribosyltransferases from Clostridium botulinum and B. cereus, the exchange of the equivalent Gln residue to Glu blocked asparagine modification of RhoA but elicited arginine-specific ADP-ribosylation. Moreover, the Gln217Glu-C3lim transferase was able to ADP-ribosylate recombinant wild-type C3lim at Arg86, resulting in decrease in ADP-ribosyltransferase activity of the wild-type enzyme. The data indicate that the exchange of one amino acid residue in the ARTT-motif turns the asparagine-modifying ADP-ribosyltransferases of the C3 family into arginine-ADP-ribosylating transferases.
Collapse
Affiliation(s)
- Martin Vogelsgesang
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Universität Freiburg, Otto-Krayer-Haus, Albertstrasse 25, D-79104 Freiburg, Germany
| | | |
Collapse
|
23
|
Rivera-Nieves J, Thompson WC, Levine RL, Moss J. Thiols mediate superoxide-dependent NADH modification of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 1999; 274:19525-31. [PMID: 10391884 DOI: 10.1074/jbc.274.28.19525] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is covalently modified by NAD in the presence of nitric oxide (NO) and dithiothreitol. Replacement of NAD with NADH in the presence of SIN-1 (3-morpholinosydnonimine) and dithiothreitol increased modification 25-fold. We now demonstrate that in contrast to NO-mediated attachment of NAD, covalent attachment of NADH to GAPDH proceeds in the presence of low molecular weight thiols, independent of NO. Removal of oxygen and transition metal ions inhibited modification, consistent with a role for reactive oxygen species; inhibition by superoxide dismutase, stimulation by xanthine oxidase/hypoxanthine, and the lack of an effect of catalase supported the hypothesis that superoxide, generated from thiol oxidation, was involved. Electrospray mass spectrometry showed covalent linkage of the NADH molecule to GAPDH. Characterization of the product of phosphodiesterase cleavage demonstrated that linkage to GAPDH occurred through the nicotinamide of NADH. Lys-C digestion of GAPDH, followed by peptide isolation by high performance liquid chromatography, matrix-assisted laser desorption ionization time-of-flight analysis, and Edman sequencing, demonstrated that NADH attachment occurred at Cys-149, the active-site thiol. This thiol linkage was stable to HgCl2. Thus, linkage of GAPDH to NADH, in contrast to NAD, occurs in the presence of thiol, is independent of NO, and is mediated by superoxide.
Collapse
Affiliation(s)
- J Rivera-Nieves
- Pulmonary-Critical Care Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
24
|
Faraone-Mennella MR, De Lucia F, De Maio A, Gambacorta A, Nicolaus B, Farina B. ADPribosylation reaction by free ADPribose in Sulfolobus solfataricus, a thermophilic archaeon. J Cell Biochem 1997; 66:37-42. [PMID: 9215526 DOI: 10.1002/(sici)1097-4644(19970701)66:1<37::aid-jcb5>3.0.co;2-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the archaeon Sulfolobus solfataricus, protein ADPribosylation by free ADPribose was demonstrated by testing both [adenine-14C(U)]ADPR and [adenine-14C(U)]NAD as substrates. The occurrence of this process was shown by using specific experimental conditions. Increasing the incubation time and lowering the pH of the reaction mixture enhanced the protein glycation by free ADPribose. At pH 7.5 and 10 min incubation, the incorporation of free ADPribose into proteins was highly reduced. Under these conditions, the autoradiographic pattern showed that, among the targets of ADPribose electrophoresed after incubation with 32P-NAD, the proteins modified by free 32P-ADPribose mostly corresponded to high molecular mass components. Among the compounds known to inhibit the eukaryotic poly-ADPribose polymerase, only ZnCl2 highly reduced the ADPribose incorporation from NAD into the ammonium sulphate precipitate. A 20% inhibition was measured in the presence of nicotinamide or 3-aminobenzamide. No inhibition was observed replacing NAD with ADPR as substrate.
Collapse
Affiliation(s)
- M R Faraone-Mennella
- Dipartimento di Chimica Organica e Biologica, Facoltà di Scienze, Università di Napoli, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Deveze-Alvarez M, García-Soto J, Martínez-Cadena G. Molecular characterisation of a fungal mono(ADP-ribosyl)transferase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 419:155-62. [PMID: 9193648 DOI: 10.1007/978-1-4419-8632-0_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A soluble arginine-specific mono(ADP-ribosyl)transferase was detected in dormant spores of Phycomyces blakesleeanus. Soluble proteins incubated with [32P]NAD revealed, after a two dimensional electrophoretic separation, three major ADP-ribosylated substrates with molecular weights of 38, 37, and 36 kDa and pI values of 6.9, 8.1 and 4.6, respectively. The addition of MgCl2 stimulated the (ADP-ribosyl)transferase activity. This enzymatic activity was stimulated by 250 microM NO-releasing agent sodium nitroprusside and inhibited with 8 mM benzamide, 0.4 mM meta-IodoBenzylGuanidine (MIBG), and 0.5 mM novobiocin. The three ADP-ribosylation inhibitors affected the germination of Phycomyces spores. The concentrations necessary to inhibit 50% of the spore germination of Phycomyces were 0.05 mM, 0.2 mM, and 8 mM for novobiocin, MIBG, and benzamide, respectively. All the above inhibitors affected the germination process to the same extent, that is, they inhibited the tube protuberation, leaving the spores as swollen cells. These data suggest that ADP-ribosylation may be involved in the germination process of Phycomyces, particularly in germ-tube formation.
Collapse
Affiliation(s)
- M Deveze-Alvarez
- Instituto de Investigación en Biología Experimental Facultad de Química, Universidad de Guanajuato, México
| | | | | |
Collapse
|
26
|
Abstract
The pineal hormone melatonin modulates constitutive protein secretion from murine melanoma M2R cells in vitro, in a cholera-toxin (CTX)-sensitive process, without effecting major changes in cAMP. The effects of melatonin on GTP binding proteins and putative CTX substrates in these cells were investigated. Melatonin enhanced GTP gamma 35S binding and the incorporation of 32P-P3-(4-azidoanilido)-P1-5'-guanosine triphosphate (Az-32P-GTP) into 94, 40 and 28 kilodalton proteins. Similar changes were induced by CTX treatment. In addition, melatonin enhanced ADP ribosylation of several proteins, among them 94 and 40 kilodalton bands, apparently at arginyl residues. CTX catalyzed the ADP ribosylation of 45 and 40 (both recognized by antibodies specific to the C-terminal peptide of the Gs alpha subunit) and 94 kilodalton proteins and attenuated melatonin's effect. The melatonin-mediated ADP ribosylation reactions were attenuated by nicotinamide which inhibits mono(ADP ribosyl)transferases and poly(ADP-ribose)synthetase, but not by 3-amino benzamide, a specific inhibitor of poly(ADP-ribose)synthetase. Nicotinamide but not 3-amino benzamide prevented the enhancement by melatonin of GTP gamma 35S binding. These results indicate that melatonin enhances protein ADP ribosylation and consequently GTP exchange in a number of CTX-sensitive G proteins. They demonstrate a novel route for concerted activation of multiple GTP binding proteins by a single hormone.
Collapse
Affiliation(s)
- M Bubis
- Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | | | | |
Collapse
|
27
|
Fujita H, Okamoto H, Tsuyama S. ADP-ribosylation in adrenal glands: purification and characterization of mono-ADP-ribosyltransferases and ADP-ribosylhydrolase affecting cytoskeletal actin. Int J Biochem Cell Biol 1995; 27:1065-78. [PMID: 7496996 DOI: 10.1016/1357-2725(95)00070-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mono-ADP-ribosylation in mammals is poorly understood. In this study, we purified four mono-ADP-ribosyltransferases and one ADP-ribosylhydrolase from rat adrenal medulla. The four purified mono-ADP-ribosyltransferases had molecular weights of 69,000 by gel filtration, pH optima of 8.0, and Kms for their action on NAD of about 20 microM. The four enzymes ADP-ribosylated to the alpha-subunit of heteromeric GTP-binding proteins. After tryptic digestion of alkylated actin mono-ADP-ribosylated by the purified mono-ADP-ribosyltransferases or botulinum C2 toxin, the two radioactive peptide patterns were identical. The purified ADP-ribosylhydrolase with mono-ADP-ribosylated actin as the substrate had a molecular weight of 61,000 on gel filtration, a pH optimum of 7.5, and a Km for mono-ADP-ribosylated actin of about 7 microM. The enzyme released ADP-ribose from ADP-ribosylated actin and the alpha-subunit of hetromeric GTP-binding proteins. Actin monomers mono-ADP-ribosylated by the four mono-ADP-ribosyltransferases did not form actin filaments after the addition of Mg2+. After release of ADP-ribose by ADP-ribosylhydrolase, actin filaments formed on the addition of Mg2+, suggesting that the polymerization and depolymerization of cytoplasmic actin the adrenal chromaffin cells may be regulated by mono-ADP-ribosylation.
Collapse
Affiliation(s)
- H Fujita
- Department of Veterinary Science, University of Osaka Prefecture, Japan
| | | | | |
Collapse
|
28
|
Faraone-Mennella MR, De Lucia F, De Maio A, Gambacorta A, Quesada P, De Rosa M, Nicolaus B, Farina B. ADP-ribosylation reactions in Sulfolobus solfataricus, a thermoacidophilic archaeon. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1246:151-9. [PMID: 7819282 DOI: 10.1016/0167-4838(94)00169-h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An ADP-ribosylating system was detected in a crude homogenate from Sulfolobus solfataricus, a thermophilic archaeon, optimally growing at 87 degrees C. The archaeal ADP-ribosylation reaction was time-, temperature- and NAD-dependent. It proved to be highly thermostable, with about 30% decrease of 14C incorporation from [14C]NAD on incubation at 80 degrees C for up to 24 h. The main reaction product was found to be mono-ADP-ribose. Testing both [adenine-14C(U)]NAD and [adenine-14C(U)]ADPR as substrates, it was found that acceptor proteins were modified by ADP-ribose both enzymatically, via ADP-ribosylating enzymes, and via chemical attachment of free ADP-ribose, likely produced by NAD glycohydrolase activity. The synthesis of ADP-ribose-protein complexes was shown to involve mainly acceptors with molecular masses in the 40-100 kDa range, as determined by electrophoresis on polyacrylamide gel in the presence of sodium dodecyl sulphate.
Collapse
Affiliation(s)
- M R Faraone-Mennella
- Dipartimento di Chimica Organica e Biologica, Facoltà di Scienze, Università Federico II, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Tsuchiya M, Shimoyama M. Target protein for eucaryotic arginine-specific ADP-ribosyltransferase. Mol Cell Biochem 1994; 138:113-8. [PMID: 7898452 DOI: 10.1007/bf00928451] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Among ADP-ribosyltransferases reported in eucaryotes, arginine-specific transferases from turkey erythrocytes, chicken heterophils and rabbit skeletal muscle have been purified and extensively studied. They were reported to modify a number of proteins in vitro. ADP-ribosylation of Ha-ras-p21 and transducin by the turkey erythrocyte transferase inhibits their GTPase and GTP-binding activities. Chicken heterophil enzyme modifies several substrate proteins for protein kinases and decreases the phosphate-acceptor activity. Rabbit skeletal muscle Ca(2+)-ATPase is inhibited by ADP-ribosylation catalyzed by the muscle transferase. Three transferases all ADP-ribosylate small molecular weight guanidino compounds such as arginine, arginine methylester and agmatine and poly-L-arginine and nuclear histones. However, the observation that muscle transferase did not ADP-ribosylate casein or actin, both of which can be modified by the heterophil transferase under the same conditions indicates that substrate specificity of these two enzymes are different. Substrate-dependent effects were observed with polyions of nucleotides such that polyanions stimulate the ADP-ribosylation of possible target protein, p33 by chicken heterophil transferase but has no effect on the modification of casein by the same enzyme.
Collapse
Affiliation(s)
- M Tsuchiya
- Department of Biochemistry, Shimane Medical University, Izumo, Japan
| | | |
Collapse
|
30
|
Penyige A, Vargha G, Ensign JC, Barabás G. The possible role of ADP ribosylation in physiological regulation of sporulation in Streptomyces griseus. Gene X 1992; 115:181-5. [PMID: 1612434 DOI: 10.1016/0378-1119(92)90557-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The role of ADP ribosylation of proteins in the physiological regulation of sporulation in Streptomyces griseus was studied. We report here that both the activity of NAD+: arginine ADP-ribosyltransferase (ADPRT) and the pattern of ADP-ribosylated proteins showed characteristic changes during the life cycle in S. griseus 2682. Analysis off ADP-ribosylated proteins revealed that in a nonsporulating mutant of the parental wild-type (wt) strain (Bld7 mutant), both the activity of ADPRT and the pattern of ADP-ribosylated proteins were different from those of the parental strain. Addition of 3-aminobenzamide (3AB), the most potent inhibitor of ADPRT, inhibited sporulation of S. griseus 2682 and the A-factor (AF)-induced sporulation of S. griseus Bld7, but in both cases the inhibitory effect of 3AB was strictly age-dependent. Using [alpha-32P]GTP, we have demonstrated the presence of GTP-binding proteins in purified cell membranes of S. griseus 2682 and S. griseus Bld7. The same GTP-binding proteins were observed in Bld7 and the wt. AF stimulated the basal GTPase activity of cell membranes of S. griseus 2682 in a concentration-dependent manner, suggesting that GTP-binding proteins might be involved in the AF-induced sporulation process.
Collapse
Affiliation(s)
- A Penyige
- Department of Biology, University Medical School, Debrecen, Hungary
| | | | | | | |
Collapse
|
31
|
|
32
|
Braun AP, Gupta RC, Sulakhe PV. Pertussis toxin-sensitive G-proteins in the sino-atrial node and right atrium of bovine heart. Eur J Pharmacol 1990; 189:105-9. [PMID: 2121510 DOI: 10.1016/0922-4106(90)90236-q] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Three apparently distinct pertussis toxin (PTX)-sensitive substrates, with Mrs of 39, 40 and 41 kDa, were identified in membranes prepared from the sino-atrial (SA) node and right atrium of bovine heart. Based on their biochemical characterization, the effects of guanine nucleotides/MgCl2 on their PTX-catalyzed [32P]ADP ribosylation, and the PTX-induced decrease in radiolabelled agonist high-affinity binding to muscarinic acetylcholine receptors present in these membranes, we tentatively identify these proteins as the alpha-subunits of the G0 and Gi subtypes of G-proteins. These results indicate that PTX alters the G-protein modulation of SA nodal and atrial muscarinic acetylcholine receptors by disrupting at least one of a group of PTX-sensitive G-proteins present in these tissues.
Collapse
Affiliation(s)
- A P Braun
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
33
|
Penyige A, Barabás G, Szabó I, Ensign C. ADP-ribosylation of membrane proteins ofStreptomyces griseusstrain 52-1. FEMS Microbiol Lett 1990. [DOI: 10.1111/j.1574-6968.1990.tb04247.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
34
|
Aktories K, Just I, Rosenthal W. Different types of ADP-ribose protein bonds formed by botulinum C2 toxin, botulinum ADP-ribosyltransferase C3 and pertussis toxin. Biochem Biophys Res Commun 1988; 156:361-7. [PMID: 3140813 DOI: 10.1016/s0006-291x(88)80849-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We attempted to characterize ADP-ribose-amino acid bonds formed by various bacterial toxins. The ADP-ribose-arginine bond formed by botulinum C2 toxin in actin was cleaved with a half-life of about 2 h by treatment with hydroxylamine (0.5 M). In contrast, the ADP-ribose-cysteine bond formed by pertussis toxin in transducin and the ADP-ribose-amino acid linkage formed by botulinum ADP-ribosyltransferase C3 in platelet cytosolic proteins were not affected by hydroxylamine. HgCl2 cleaved the ADP-ribose-amino acid bond formed by pertussis toxin in transducin but not those formed by botulinum C2 toxin or botulinum ADP-ribosyltransferase C3 in actin and platelet cytosolic proteins, respectively. NaOH (0.5 M) cleaved the ADP-ribose-amino acid bonds formed by botulinum C2 toxin and pertussis toxin but not the one formed by botulinum ADP-ribosyltransferase C3. The data indicate that the ADP-ribose bond formed by botulinum ADP-ribosyltransferase C3 differs from those formed by the known bacterial ADP-ribosylating toxins.
Collapse
Affiliation(s)
- K Aktories
- Rudolf-Buchheim-Institut für Pharmakologie, Justus-Liebig Universität Giessen, F.R.G
| | | | | |
Collapse
|
35
|
Meyer T, Koch R, Fanick W, Hilz H. ADP-ribosyl proteins formed by pertussis toxin are specifically cleaved by mercury ions. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1988; 369:579-83. [PMID: 3223989 DOI: 10.1515/bchm3.1988.369.2.579] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Various types of ADP-ribosyl protein conjugates were synthesized and their chemical stability was compared with that of cysteine-linked ADP-ribosyl groups as formed by incubation of transducin or Gi/Go proteins with NAD and pertussis toxin. Treatment with 0.1 mM HgCl2 specifically cleaved the cysteine-linked conjugates. This may provide a tool for the quantitation of modified Gi/Go proteins as well as of other acceptors modified by ADP-ribose at cysteine residues in the presence of other ADP-ribosyl proteins.
Collapse
Affiliation(s)
- T Meyer
- Institut für Physiologische Chemie, Universität Hamburg, Germany
| | | | | | | |
Collapse
|
36
|
Tanuma S, Kawashima K, Endo H. Eukaryotic mono(ADP-ribosyl)transferase that ADP-ribosylates GTP-binding regulatory Gi protein. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)60743-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
37
|
Aktories K, Rösener S, Blaschke U, Chhatwal GS. Botulinum ADP-ribosyltransferase C3. Purification of the enzyme and characterization of the ADP-ribosylation reaction in platelet membranes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 172:445-50. [PMID: 3127209 DOI: 10.1111/j.1432-1033.1988.tb13908.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A novel ADP-ribosyltransferase C3 was purified to homogeneity from filtrates of certain strains of Clostridium botulinum type C by ammonium sulfate precipitation, gel filtration, ion-exchange chromatography and heat treatment. The molecular mass of botulinum ADP-ribosyltransferase C3 was found to be 25 kDa. In the presence of [32P]NAD but not with [carbonyl-14C]NAD, C3 labelled 21-24-kDa protein(s) in membranes of human platelets and other tissues. The Km value of the ADP-ribosylation reaction for NAD was about 2 microM. Labelling of the 21-24-kDa protein(s) by C3 was largely reduced by addition of nicotinamide. Snake venom phosphodiesterase cleaved the ADP-ribose attached to the 21-24-kDa protein(s) by C3 and released 5'AMP. C3 catalyzed hydrolysis of [carbonyl-14C]NAD and released [carbonyl-14C]nicotinamide. ADP-ribosylation of 21-24-kDa platelet membrane protein(s) was biphasically regulated by Mg2+, Mn2+ and Ca2+. In the absence of free divalent cations GTP, GTP[gamma S] and GDP but not GDP[beta S], GMP, ATP or ATP[gamma S] increased labelling by C3. In the presence of Mg2+, GTP[gamma S] was inhibitory. Guanine nucleotides prevented heat inactivation of the substrate protein(s) with the rank order GTP[gamma S] = GTP = GDP greater than GDP[beta S] greater than GMP much greater than ATP = GMP = ATP[gamma S]. The data support the view that the novel ADP-ribosyltransferase C3 modifies eukaryotic 21-24-kDa GTP-binding protein(s).
Collapse
Affiliation(s)
- K Aktories
- Rudolf-Buchheim-Institut für Pharmakologie
| | | | | | | |
Collapse
|
38
|
Abstract
The characteristics of ADP-ribosyltransferase activity in skeletal muscle membranes have been studied. The membrane enzymes can ADP-ribosylate exogenous substrates such as guanylhydrazones, polyarginine, lysozyme, and histones. The properties of the enzyme are investigated by using diethylaminobenzylidineaminoguanidine as a model substrate. Incubation of the membranes with [32P]adenylate-labeled NAD results in the labeling of a number of cellular proteins. Magnesium ions, detergents, and diethylaminobenzylidineaminoguanidine stimulated the ADP-ribosylation of membrane proteins, whereas L-arginine methyl ester and arginine inhibited ADP-ribosylation. The labeling of specific proteins in the sarcoplasmic reticulum and glycogen pellet is influenced significantly by detergents, nucleotides, and thiols. The hydroxylamine sensitivity of the ADP-ribose linkage in the membrane proteins is similar to that reported for (ADP-ribose)-arginine linkage. Snake venom phosphodiesterase digestion of the ADP-ribosylated membranes produces 5'-AMP as the major acid-soluble digestion product. The results suggest that the primary mode of modification is mono(ADP-ribosyl)ation. The ADP-ribosyltransferase activity in the membrane preparations is not extracted under conditions used for solubilization of extrinsic proteins, suggesting that the activity is associated with some integral membrane protein.
Collapse
Affiliation(s)
- G Soman
- Department of Biochemistry and Biophysics, Iowa State University, Ames 50011
| | | |
Collapse
|
39
|
|
40
|
Soman G, Narayanan J, Martin BL, Graves DJ. Use of substituted (benzylidineamino)guanidines in the study of guanidino group specific ADP-ribosyltransferase. Biochemistry 1986; 25:4113-9. [PMID: 3017413 DOI: 10.1021/bi00362a019] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A number of substituted (benzylidineamino)guanidines with different substitutents in the benzene nucleus are synthesized by coupling substituted benzaldehydes with aminoguanidine, and these compounds are tested as substrates for cholera toxin catalyzed ADP-ribosylation. A spectrophotometric assay method for the measurement of ADP-ribosyltransferase activity is developed, making use of the absorption characteristics of some of these compounds and the difference in the ionic character of the free compounds and the ADP-ribosylated products. The kinetic parameters for the ADP-ribosylation of these compounds are evaluated. A correlation between log kcat or log (kcat/Km) and the Hammett substituent constant sigma is observed. This correlation suggests the importance of substrate electronic effects on the enzymatic reaction. The reactivity of these compounds as acceptors of ADP-ribosyl groups in the reaction catalyzed by cholera toxin increases with increasing electron-donating power of the substituents in the benzene function. The effect is primarily on the catalytic rate constant, kcat, not on the binding constant, Km. The results are consistent with an SN2 reaction mechanism in which the deprotonated guanidino group makes a nucleophilic attack on the C-1 carbon of the ribose moiety.
Collapse
|
41
|
Hsia JA, Tsai SC, Adamik R, Yost DA, Hewlett EL, Moss J. Amino acid-specific ADP-ribosylation. Sensitivity to hydroxylamine of [cysteine(ADP-ribose)]protein and [arginine(ADP-ribose)]protein linkages. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)36219-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
42
|
Ushiroyama T, Tanigawa Y, Tsuchiya M, Matsuura R, Ueki M, Sugimoto O, Shimoyama M. Amino acid sequence of histone H1 at the ADP-ribose-accepting site and ADP-ribose X histone-H1 adduct as an inhibitor of cyclic-AMP-dependent phosphorylation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1985; 151:173-7. [PMID: 2992955 DOI: 10.1111/j.1432-1033.1985.tb09082.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The ADP-ribosylation site of histone H1 from calf thymus by purified hen liver nuclear ADP-ribosyltransferase was determined and effects of the ADP-ribose X histone-H1 adduct on cAMP-dependent phosphorylation of the histone H1 were investigated. ADP-ribosylated histone H1 was prepared by incubation of histone H1, 1 mM [adenylate-32P]NAD and the purified ADP-ribosyltransferase. N-Bromosuccinimide-directed bisection of ADP-ribosylated histone H1 showed that the NH2-terminal fragment (Mr = 6000) was modified and contained serine residue 38, the site of phosphorylation by cAMP-dependent protein kinase. Digestion of the NH2-terminal fragment with cathepsin D and trypsin, and purification of this fragment, using high-performance liquid chromatography, yielded a radiolabelled single peptide corresponding to residues 29-34 of histone H1, containing the arginine residue as the ADP-ribosylation site. These results indicate that ADP-ribosylation of histone H1 occurs at the arginine residue 34, sequenced at the NH2-terminal side of the phosphate-accepting serine residue 38. Phosphorylation of histone H1 from calf thymus by cAMP-dependent protein kinase was markedly reduced when histone H1 was ADP-ribosylated. Kinetic studies of phosphorylation revealed that ADP-ribosylated histone H1 was a linear competitive inhibitor of histone H1 and a linear non-competitive inhibitor of ATP.
Collapse
|
43
|
Anderson BM, Yost DA. Studies of self-inactivation of bovine seminal fluid NAD glycohydrolase. Chem Biol Interact 1985; 54:159-70. [PMID: 2992823 DOI: 10.1016/s0009-2797(85)80160-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bovine seminal fluid NAD glycohydrolase (NADase) was observed to be rapidly inactivated during catalytic hydrolysis of the substrate NAD. The first-order rate constant for the self-inactivation process was independent of enzyme concentration. The enzyme self-inactivation was a turnover-related process and the number of moles of NAD hydrolyzed required for inactivation was proportional to the enzyme concentration. A number of dinucleotides serving as substrates for the enzyme also promoted self-inactivation. The self-inactivation was an irreversible process having a different rate-limiting step from NAD hydrolysis and was not related to the reversible binding of products and substrate-competitive inhibitors. Modification of arginine residues of the enzyme resulted in the loss of NAD hydrolase activity with no differential effect on the self-inactivation process.
Collapse
|
44
|
Kreimeyer A, Adamietz P, Hilz H. Alkylation-induced mono(ADP-ribosyl)-histones H1 and H2B. Hydroxylamine-resistant linkage in hepatoma cells. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1985; 366:537-44. [PMID: 4026997 DOI: 10.1515/bchm3.1985.366.1.537] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Treatment of hepatoma AH 7974 cells with dimethyl sulfate led to a marked accumulation in vivo of mono)ADP-ribosyl)-histone H1A, H1B, H1 and H2B, respectively. In these conjugates, most of the modifying groups were linked to the acceptor proteins by an 'unusual' bond not described so far for ADP-ribosyl histone conjugates. It resisted treatment with 3M hydroxylamine, 0.1M picrylsulfonate and mild alkali, which excluded a linkage through carboxyl or guanidino residues. The stability of these conjugates formed endogenously differed also from 'non-enzymic' histone H1 conjugates formed by incubation of free ADP-ribose with the histone. Histone-linked mono(ADP-ribosyl) residues synthesized in hepatoma cells in response to alkylation were located exclusively in the domains that interact with DNA, i.e. in the non-globular C-terminal tail of histone H1 and in the N-terminus of histone H2B. Besides poly(ADP-ribosyl)ation, the modification of histones by single ADP-ribose groups may represent an independent process to modulate DNA/histone interaction.
Collapse
|
45
|
Tsuchiya M, Tanigawa Y, Ushiroyama T, Matsuura R, Shimoyama M. ADP-ribosylation of phosphorylase kinase and block of phosphate incorporation into the enzyme. EUROPEAN JOURNAL OF BIOCHEMISTRY 1985; 147:33-40. [PMID: 2982611 DOI: 10.1111/j.1432-1033.1985.tb08714.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Phosphorylase kinase purified from rabbit skeletal muscle was ADP-ribosylated by hen liver nuclear ADP-ribosyltransferase. This modification, as was seen in cAMP-dependent phosphorylation, was observed only in alpha and beta subunits of the phosphorylase kinase and the latter was more rapidly modified. Analysis of the ADP-ribosylated amino acid residue sequenced in alpha and beta subunits showed that both subunits were modified at the area of the arginine residue. The Km for NAD was 0.10 mM and the pH optimum was 9.0. When the ADP-ribosylated phosphorylase kinase was phosphorylated by cAMP-dependent protein kinase, a reduction in phosphate incorporation occurred with increase in the ADP-ribosylation. ADP-ribosylation also suppressed autophosphorylation, to a lesser degree than observed with cAMP-dependent phosphorylation. The ADP-ribosylation-dependent reduction of phosphorylation resulted in a suppression of the phosphorylation-dependent activation of the phosphorylase kinase. These results together with findings of ADP-ribosyltransferase activity in the rabbit skeletal muscle [Soman, G. et al. (1984) Biochem. Biophys. Res. Commun. 120, 973-980] suggest that ADP-ribosylation participates in the regulation of the phosphorylase kinase activity through changes in the rate of phosphorylation.
Collapse
|
46
|
Smith KP, Benjamin RC, Moss J, Jacobson MK. Identification of enzymatic activities which process protein bound mono(ADP-ribose). Biochem Biophys Res Commun 1985; 126:136-42. [PMID: 2982365 DOI: 10.1016/0006-291x(85)90582-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Enzymatic activities have been identified in extracts of cultured mouse cells which catalyze the removal of intact mono(ADP-ribosyl) residues linked to proteins at arginine. Activities that sequentially remove AMP and ribose 5-phosphate have also been identified. These results suggest that mono(ADP-ribosylation) of proteins is a reversible post translational modification.
Collapse
|
47
|
|
48
|
Moss J, Watkins PA, Stanley SJ, Purnell MR, Kidwell WR. Inactivation of glutamine synthetases by an NAD:arginine ADP-ribosyltransferase. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)42962-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
49
|
Jacobson MK, Payne DM, Alvarez-Gonzalez R, Juarez-Salinas H, Sims JL, Jacobson EL. Determination of in vivo levels of polymeric and monomeric ADP-ribose by fluorescence methods. Methods Enzymol 1984; 106:483-94. [PMID: 6387382 DOI: 10.1016/0076-6879(84)06052-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|