1
|
Chai P, Lebedenko CG, Flynn RA. RNA Crossing Membranes: Systems and Mechanisms Contextualizing Extracellular RNA and Cell Surface GlycoRNAs. Annu Rev Genomics Hum Genet 2023; 24:85-107. [PMID: 37068783 DOI: 10.1146/annurev-genom-101722-101224] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
The subcellular localization of a biopolymer often informs its function. RNA is traditionally confined to the cytosolic and nuclear spaces, where it plays critical and conserved roles across nearly all biochemical processes. Our recent observation of cell surface glycoRNAs may further explain the extracellular role of RNA. While cellular membranes are efficient gatekeepers of charged polymers such as RNAs, a large body of research has demonstrated the accumulation of specific RNA species outside of the cell, termed extracellular RNAs (exRNAs). Across various species and forms of life, protein pores have evolved to transport RNA across membranes, thus providing a mechanistic path for exRNAs to achieve their extracellular topology. Here, we review types of exRNAs and the pores capable of RNA transport to provide a logical and testable path toward understanding the biogenesis and regulation of cell surface glycoRNAs.
Collapse
Affiliation(s)
- Peiyuan Chai
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Charlotta G Lebedenko
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Ryan A Flynn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Guo Z, Zhang Z, Yang X, Yin K, Chen Y, Zhang Z, Shin K, Zhu Q, Wang ZY, Wang W. PSBR1, encoding a mitochondrial protein, is regulated by brassinosteroid in moso bamboo (Phyllostachys edulis). PLANT MOLECULAR BIOLOGY 2020; 103:63-74. [PMID: 32040757 DOI: 10.1007/s11103-020-00975-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
PSBR1 is a moso bamboo gene negatively regulated by brassinosteroid, which encodes a mitochondrial localized protein. Overexpression of PSBR1 leads to growth inhibition in various growth progresses in Arabidopsis. The young shoot of moso bamboo (Phyllostachys edulis) is known as one of the fastest growing plant organs. The roles of phytohormones in the fast-growth of bamboo shoot are not fully understood. Brassinosteroids (BRs) are a group of growth-promoting steroid hormones that play important roles in cell elongation and division. While BR related genes are highly enriched in fast-growing internodes in moso bamboo, the functions of BR in the fast-growth process is not understood at the molecular level. Here, we identified a poaceae specific gene, PSBR1 (Poaceae specific and BR responsive gene 1) from the moso bamboo genome. PSBR1 was highly expressed in the stem and leaves of bamboo seedling, and the elongating nodes of fast-growing bamboo shoot. PSBR1's expression is increased by BR biosynthesis inhibitor propiconazole but decreased by BR treatment. PSBR1 encodes a novel protein that is localized to the mitochondria in tobacco and bamboo protoplast. The Arabidopsis transgenic plants overexpressing PSBR1 show growth inhibition in both vegetative and reproductive stages. This study suggests that PSBR1 is a BR regulated mitochondrial protein in bamboo, which inhibits plant growth when overexpressed in Arabidopsis.
Collapse
Affiliation(s)
- Zejun Guo
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, 350002, Fujian, China
| | - Zhe Zhang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, 350002, Fujian, China
| | - Xuelian Yang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, 350002, Fujian, China
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Kuixing Yin
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, 350002, Fujian, China
| | - Yitao Chen
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, 350002, Fujian, China
| | - Zhenzhen Zhang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, 350002, Fujian, China
| | - Kihye Shin
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, 350002, Fujian, China
| | - Qiang Zhu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, 350002, Fujian, China
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Wenfei Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
3
|
Wilson BA, Cruz-Diaz N, Su Y, Rose JC, Gwathmey TM, Chappell MC. Angiotensinogen import in isolated proximal tubules: evidence for mitochondrial trafficking and uptake. Am J Physiol Renal Physiol 2016; 312:F879-F886. [PMID: 27903492 PMCID: PMC5451555 DOI: 10.1152/ajprenal.00246.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 11/11/2016] [Accepted: 11/23/2016] [Indexed: 12/15/2022] Open
Abstract
The renal proximal tubules are a key functional component of the kidney and express the angiotensin precursor angiotensinogen; however, it is unclear the extent that tubular angiotensinogen reflects local synthesis or internalization. Therefore, the current study established the extent to which angiotensinogen is internalized by proximal tubules and the intracellular distribution. Proximal tubules were isolated from the kidney cortex of male sheep by enzymatic digestion and a discontinuous Percoll gradient. Tubules were incubated with radiolabeled 125I-angiotensinogen for 2 h at 37°C in serum/phenol-free DMEM/F12 media. Approximately 10% of exogenous 125I-angiotensinogen was internalized by sheep tubules. Subcellular fractionation revealed that 21 ± 4% of the internalized 125I-angiotensinogen associated with the mitochondrial fraction with additional labeling evident in the nucleus (60 ± 7%), endoplasmic reticulum (4 ± 0.5%), and cytosol (15 ± 4%; n = 4). Subsequent studies determined whether mitochondria directly internalized 125I-angiotensinogen using isolated mitochondria from renal cortex and human HK-2 proximal tubule cells. Sheep cortical and HK-2 mitochondria internalized 125I-angiotensinogen at a comparable rate of (33 ± 9 vs. 21 ± 10 pmol·min-1·mg protein-1; n = 3). Lastly, unlabeled angiotensinogen (100 nM) competed for 125I-angiotensinogen uptake to a greater extent than human albumin in HK-2 mitochondria (60 ± 2 vs. 16 ± 13%; P < 0.05, n = 3). Collectively, our data demonstrate angiotensinogen import and subsequent trafficking to the mitochondria in proximal tubules. We conclude that this pathway may constitute a source of the angiotensinogen precursor for the mitochondrial expression of angiotensin peptides.
Collapse
Affiliation(s)
- Bryan A Wilson
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina; and
| | - Nildris Cruz-Diaz
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina; and
| | - Yixin Su
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - James C Rose
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - TanYa M Gwathmey
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina; and
| | - Mark C Chappell
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina; and
| |
Collapse
|
4
|
Baker MA, Naumovski N, Hetherington L, Weinberg A, Velkov T, Aitken RJ. Head and flagella subcompartmental proteomic analysis of human spermatozoa. Proteomics 2013; 13:61-74. [PMID: 23161668 DOI: 10.1002/pmic.201200350] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/16/2012] [Accepted: 10/25/2012] [Indexed: 01/02/2023]
Abstract
Subcellular proteomics not only deepens our knowledge of what proteins are present within cells, but also opens our understanding as to where those proteins reside. Given the highly differentiated, cross-linked state of spermatozoa, such studies have proven difficult to perform. In this study we have fractionated spermatozoa into two components, consisting of either the head or flagellar region. Following SDS-PAGE, 1 mm slices were digested and used for LC-MS/MS analysis. In total, 1429 proteins were identified with 721 proteins being exclusively found in the tail and 521 exclusively in the head. Not only is this the largest reported proteomic analysis of human spermatozoa, but also it has provided novel insights into the compartmentalization of proteins, particularly receptors, never previously reported to be present in this cell type.
Collapse
Affiliation(s)
- Mark A Baker
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
This article focuses on drug targeting to specific cellular organelles for therapeutic purposes. Drugs can be delivered to all major organelles of the cell (cytosol, endosome/lysosome, nucleus, nucleolus, mitochondria, endoplasmic reticulum, Golgi apparatus, peroxisomes and proteasomes) where they exert specific effects in those particular subcellular compartments. Delivery can be achieved by chemical (e.g., polymeric) or biological (e.g., signal sequences) means. Unidirectional targeting to individual organelles has proven to be immensely successful for drug therapy. Newer technologies that accommodate multiple signals (e.g., protein switch and virus-like delivery systems) mimic nature and allow for a more sophisticated approach to drug delivery. Harnessing different methods of targeting multiple organelles in a cell will lead to better drug delivery and improvements in disease therapy.
Collapse
|
6
|
Baudisch B, Klösgen RB. Dual targeting of a processing peptidase into both endosymbiotic organelles mediated by a transport signal of unusual architecture. MOLECULAR PLANT 2012; 5:494-503. [PMID: 22131051 DOI: 10.1093/mp/ssr092] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
As a result of the endosymbiotic gene transfer, the majority of proteins of mitochondria and chloroplasts are encoded in the nucleus and synthesized in the cytosol as precursor proteins carrying N-terminal transport signals for the 're-import' into the respective target organelle. Most of these transport signals are monospecific, although some of them have dual targeting properties, that is, they are recognized both by mitochondria and by chloroplasts as target organelles. We have identified alpha-MPP2, one of the two isoforms of the substrate binding subunit of mitochondrial processing peptidase of Arabidopsis thaliana, as a novel member of this class of nuclear-encoded organelle proteins. As demonstrated by in organello transport experiments with isolated organelles and by in vivo localization studies employing fluorescent chimeric reporter proteins, the N-terminal region of the alpha-MPP2 precursor comprises transport signals for the import into mitochondria as well as into chloroplasts. Both signals are found within the N-terminal 79 residues of the precursor protein, where they occupy partly separated and partly overlapping regions. Deletion mapping combined with in organello and in vivo protein transport studies demonstrate an unusual architecture of this transport signal, suggesting a composition of three functionally separated domains.
Collapse
Affiliation(s)
- Bianca Baudisch
- Institute of Biology-Plant Physiology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany
| | | |
Collapse
|
7
|
Adams BP, Bose HS. Alteration in accumulated aldosterone synthesis as a result of N-terminal cleavage of aldosterone synthase. Mol Pharmacol 2011; 81:465-74. [PMID: 22184340 DOI: 10.1124/mol.111.076471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aldosterone synthase (AS) regulates blood volume by synthesizing the mineralocorticoid aldosterone. Overproduction of aldosterone in the adrenal gland can lead to hypertension, a major cause of heart disease and stroke. Aldosterone production depends upon stimulation of AS expression by the renin-angiotensin system, which takes 12 h to reach full effect, and then 24 h to subside. However, this promoter-dependent regulation of aldosterone production fails to explain phenomena such as rapid-onset hypertension that occurs quickly and then subsides. Here, we investigate the fate of AS after expression and how these events relate to aldosterone production. Using isolated mitochondria from steroidogenic cells and cell-free synthesized AS, we first showed that the precursor form of AS translocated into the matrix of the mitochondria, where it underwent cleavage by mitochondrial processing peptidase to a mature form approximately 54 kDa in size. Mature AS seemed to translocate across the inner mitochondrial membrane a second time to finally reside in the intermembrane space. Unprocessed N-terminal AS has 2-fold more activity than physiological levels. These results show how the subcellular mechanisms of AS localization relate to production of aldosterone and reveal a rapid, promoter-independent regulation of aldosterone production.
Collapse
Affiliation(s)
- Brian P Adams
- Department of Biochemistry, Biomedical Sciences, Mercer University School of Medicine and Memorial University Medical Center, Savannah, GA 31404, USA
| | | |
Collapse
|
8
|
Amata O, Marino T, Russo N, Toscano M. A Proposal for Mitochondrial Processing Peptidase Catalytic Mechanism. J Am Chem Soc 2011; 133:17824-31. [DOI: 10.1021/ja207065v] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Orazio Amata
- Dipartimento di Chimica and Centro di Calcolo ad Alte Prestazioni per Elaborazioni Parallele e Distribuite-Centro d'Eccellenza MURST, Universita' della Calabria, I-87030 Arcavacata di Rende (CS), Italy
| | - Tiziana Marino
- Dipartimento di Chimica and Centro di Calcolo ad Alte Prestazioni per Elaborazioni Parallele e Distribuite-Centro d'Eccellenza MURST, Universita' della Calabria, I-87030 Arcavacata di Rende (CS), Italy
| | - Nino Russo
- Dipartimento di Chimica and Centro di Calcolo ad Alte Prestazioni per Elaborazioni Parallele e Distribuite-Centro d'Eccellenza MURST, Universita' della Calabria, I-87030 Arcavacata di Rende (CS), Italy
| | - Marirosa Toscano
- Dipartimento di Chimica and Centro di Calcolo ad Alte Prestazioni per Elaborazioni Parallele e Distribuite-Centro d'Eccellenza MURST, Universita' della Calabria, I-87030 Arcavacata di Rende (CS), Italy
| |
Collapse
|
9
|
Zimmermann R, Eyrisch S, Ahmad M, Helms V. Protein translocation across the ER membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:912-24. [PMID: 20599535 DOI: 10.1016/j.bbamem.2010.06.015] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/11/2010] [Accepted: 06/14/2010] [Indexed: 01/02/2023]
Abstract
Protein translocation into the endoplasmic reticulum (ER) is the first and decisive step in the biogenesis of most extracellular and many soluble organelle proteins in eukaryotic cells. It is mechanistically related to protein export from eubacteria and archaea and to the integration of newly synthesized membrane proteins into the ER membrane and the plasma membranes of eubacteria and archaea (with the exception of tail anchored membrane proteins). Typically, protein translocation into the ER involves cleavable amino terminal signal peptides in precursor proteins and sophisticated transport machinery components in the cytosol, the ER membrane, and the ER lumen. Depending on the hydrophobicity and/or overall amino acid content of the precursor protein, transport can occur co- or posttranslationally. The respective mechanism determines the requirements for certain cytosolic transport components. The two mechanisms merge at the level of the ER membrane, specifically, at the heterotrimeric Sec61 complex present in the membrane. The Sec61 complex provides a signal peptide recognition site and forms a polypeptide conducting channel. Apparently, the Sec61 complex is gated by various ligands, such as signal peptides of the transport substrates, ribosomes (in cotranslational transport), and the ER lumenal molecular chaperone, BiP. Binding of BiP to the incoming polypeptide contributes to efficiency and unidirectionality of transport. Recent insights into the structure of the Sec61 complex and the comparison of the transport mechanisms and machineries in the yeast Saccharomyces cerevisiae, the human parasite Trypanosoma brucei, and mammals have various important mechanistic as well as potential medical implications. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- Richard Zimmermann
- Medical Biochemistry & Molecular Biology, Saarland University, D-66041 Homburg, Germany.
| | | | | | | |
Collapse
|
10
|
Fujimoto H, Taguchi JI, Imai Y, Ayabe S, Hashimoto H, Kobayashi H, Ogasawara K, Aizawa T, Yamakado M, Nagai R, Ohno M. Manganese superoxide dismutase polymorphism affects the oxidized low-density lipoprotein-induced apoptosis of macrophages and coronary artery disease. Eur Heart J 2007; 29:1267-74. [PMID: 17967822 DOI: 10.1093/eurheartj/ehm500] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIMS Oxidative damage promotes atherosclerosis. Manganese superoxide dismutase (MnSOD) is an antioxidant enzyme localized in mitochondria. We investigated the associations of the MnSOD polymorphism (valine-to-alanine in the mitochondrial-targeting domain) with its activity in leukocytes, with macrophage apoptosis by oxidized low-density lipoprotein (oxLDL), and with coronary artery disease (CAD). METHODS AND RESULTS Blood samples were taken from 50 healthy subjects. The mitochondrial MnSOD activities in leukocytes were 542.4 +/- 71.6 U/mg protein (alanine/alanine, n = 2), 302.0 +/- 94.9 U/mg protein (alanine/valine, n = 12), and 134.0 +/- 67.1 U/mg protein (valine/valine, n = 36; P < 0.0001 for non-valine/valine vs. valine/valine). Macrophages were treated with oxLDL. After incubation, the percentages of apoptotic macrophages were 48.6 +/- 3.6% (alanine/alanine), 78.6 +/- 9.8% (alanine/valine), and 87.5 +/- 7.0% (valine/valine) (P < 0.0001, non-valine/valine vs. valine/valine). The association of the MnSOD polymorphism with CAD was investigated using blood samples collected from 498 CAD patients and 627 healthy subjects; the alanine allele was found to reduce the risk of CAD and acute myocardial infarction (AMI). CONCLUSION Our data indicate that the alanine variant of signal peptide increases the mitochondrial MnSOD activity, protects macrophages against the oxLDL-induced apoptosis, and reduces the risk of CAD and AMI.
Collapse
Affiliation(s)
- Hajime Fujimoto
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hervouet E, Pecina P, Demont J, Vojtísková A, Simonnet H, Houstek J, Godinot C. Inhibition of cytochrome c oxidase subunit 4 precursor processing by the hypoxia mimic cobalt chloride. Biochem Biophys Res Commun 2006; 344:1086-93. [PMID: 16643849 DOI: 10.1016/j.bbrc.2006.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 04/01/2006] [Indexed: 11/30/2022]
Abstract
Cobalt is often used as a hypoxia mimic in cell culture, because it stabilizes the alpha subunits of the transcription factor, HIF (hypoxia-inducible factor). We have previously shown that HIF stabilization due to a deficiency of the von Hippel Lindau protein (pVHL) in clear cell renal carcinoma (CRCC) was correlated to a down-regulation of oxidative phosphorylation. To better understand this mechanism, we have used CoCl2 in CRCC expressing stably transfected vhl. We show that, in addition to its effect on HIF-alpha subunits, CoCl2 prevented the normal processing of the precursor of cytochrome c oxidase (COX) subunit 4 and induced COX degradation very likely by inhibiting the mitochondrial intermediate peptidase (MIP) that cleaves the COX4 precursor protein. This cobalt-induced MIP inhibition was however not observed in other human mitochondrial precursor sequences as previously predicted from comparison between human and yeast mitochondrial precursor sequences.
Collapse
Affiliation(s)
- Eric Hervouet
- Centre de Génétique Moléculaire et Cellulaire, UMR 5534, Centre National de la Recherche Scientifique-Université Claude Bernard de Lyon 1-69622 Villeurbanne, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Mark Paetzel
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
13
|
Biswas TK, Getz GS. Import of yeast mitochondrial transcription factor (Mtf1p) via a nonconventional pathway. J Biol Chem 2002; 277:45704-14. [PMID: 12270918 DOI: 10.1074/jbc.m202565200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast mitochondrial (mt) transcription factor Mtf1p is imported into the mitochondria from the cytoplasm without a conventional mt-targeting presequence. To understand its import the mt translocation of wild type and mutant Mtf1p constructs was investigated in vitro under various assay conditions. We report here that Mtf1p, unlike most mt matrix proteins hitherto studied, is translocated into the mitochondria independent of membrane potential, ATP hydrolysis, and membrane receptor. This unusual import of Mtf1p was also observed on ice (3 degrees C). Sub-mitochondrial fractionation demonstrated that Mtf1p was translocated in vitro to one or more of the same mt sites as the endogenous protein that includes the matrix. To identify the mt-targeting sequence of Mtf1p, various N-terminal, C-terminal, or internally deleted Mtf1p derivatives were generated. The full-length and C-terminal deletions but not the N-terminal truncated Mtf1p were imported into mitochondria, indicating the importance of its N-terminal sequence for mt targeting. However, the internal deletion of Mtf1p revealed that the first 150-amino acid N-terminal sequence alone was not sufficient for mt targeting of Mtf1p, suggesting that an extended rather than a short N-terminal sequence is required for import. We favor a model in which Mtf1p adopts an import-competent conformation during translation. Consistent with this model are three findings: most of the protein sequence appears to be required for optimal import, urea denaturation eliminates its import competence, and the import-competent form of the protein is more resistant to tryptic hydrolysis than is the denatured protein. This represents a novel mechanism for mitochondrial protein import.
Collapse
Affiliation(s)
- Tapan K Biswas
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
14
|
Curran SP, Leuenberger D, Schmidt E, Koehler CM. The role of the Tim8p-Tim13p complex in a conserved import pathway for mitochondrial polytopic inner membrane proteins. J Cell Biol 2002; 158:1017-27. [PMID: 12221072 PMCID: PMC2173223 DOI: 10.1083/jcb.200205124] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Tim23p is imported via the TIM (translocase of inner membrane)22 pathway for mitochondrial inner membrane proteins. In contrast to precursors with an NH2-terminal targeting presequence that are imported in a linear NH2-terminal manner, we show that Tim23p crosses the outer membrane as a loop before inserting into the inner membrane. The Tim8p-Tim13p complex facilitates translocation across the intermembrane space by binding to the membrane spanning domains as shown by Tim23p peptide scans with the purified Tim8p-Tim13p complex and crosslinking studies with Tim23p fusion constructs. The interaction between Tim23p and the Tim8p-Tim13p complex is not dependent on zinc, and the purified Tim8p-Tim13p complex does not coordinate zinc in the conserved twin CX3C motif. Instead, the cysteine residues seemingly form intramolecular disulfide linkages. Given that proteins of the mitochondrial carrier family also pass through the TOM (translocase of outer membrane) complex as a loop, our study suggests that this translocation mechanism may be conserved. Thus, polytopic inner membrane proteins, which lack an NH2-terminal targeting sequence, pass through the TOM complex as a loop followed by binding of the small Tim proteins to the hydrophobic membrane spanning domains.
Collapse
Affiliation(s)
- Sean P Curran
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles Young Drive East, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
15
|
Neve EP, Ingelman-Sundberg M. Identification and characterization of a mitochondrial targeting signal in rat cytochrome P450 2E1 (CYP2E1). J Biol Chem 2001; 276:11317-22. [PMID: 11133991 DOI: 10.1074/jbc.m008640200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 2E1 (CYP2E1) lacking the hydrophobic NH(2)-terminal hydrophobic transmembrane domain is specifically targeted to mitochondria, where it is processed to a soluble and catalytically active form (Delta2E1) with a mass of about 40 kDa. Small amounts of Delta2E1 were also observed in mitochondria isolated from rat liver, indicating that this form of CYP2E1 is also present in vivo. In the present study the mitochondrial targeting signal was identified and characterized by the use of several NH(2)-terminally truncated and mutated forms of CYP2E1 that were expressed in the mouse H2.35 hepatoma cell line. Two potential mitochondrial targeting sequences were identified in the NH(2) terminus of CYP2E1. Deletion of the first potential mitochondrial targeting sequence located between amino acids 50 and 65, as in Delta(2-64)2E1, still resulted in mitochondrial targeting and processing, but when, in addition to the first, the second potential mitochondrial targeting sequence located between amino acids 74 and 95 was also deleted, as in Delta(2-95)2E1, the mitochondrial targeting was abolished. Mutation of the four positively charged Arg and Lys residues present in this sequence to neutral Ala residues resulted in the abrogation of mitochondrial targeting. Deletion of a hydrophobic stretch of amino acids between residues 76 and 83 also abolished mitochondrial targeting and import. Once imported in the mitochondria, these constructs were further processed to the mature protein Delta2E1. It is concluded that mitochondrial targeting of CYP2E1 is mediated through a sequence located between residues 74 and 95 and that positively charged residues as well as a hydrophobic stretch present in the beginning of this sequence are essential for this process.
Collapse
Affiliation(s)
- E P Neve
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | |
Collapse
|
16
|
Koo YK, Nandi D, Silverman RB. The multiple active enzyme species of gamma-aminobutyric acid aminotransferase are not isozymes. Arch Biochem Biophys 2000; 374:248-54. [PMID: 10666304 DOI: 10.1006/abbi.1999.1623] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Purified gamma-aminobutyric acid aminotransferase (GABA-AT) from pig brain under certain conditions gave a single band on 12% NaDodSO(4)-PAGE, whereas two or three distinct bands were observed on 7.5% native PAGE. These multiple active species were isolated by 5% preparative gel electrophoresis and characterized by N-terminal sequencing and MALDI-TOF mass spectrometry. The results indicate that these active enzyme species are not GABA-AT isozymes in pig brain, but are the products of proteolysis of the N-terminus of GABA-AT, differing by 3, 7, and 12 residues from the full sequence (as deduced from the cDNA), respectively. Conditions for obtaining the nontruncated GABA-AT were found, and the potential cause for the proteolysis was determined. It was found that Na(2)EDTA inhibits the N-terminal cleavage during GABA-AT preparation from pig brain. The presence of Triton X-100 in the homogenization step is partially responsible for this proteolysis, and Mn(2+) strongly enhances the protease activity, suggesting the presence of a membrane-bound matrix metalloprotease that causes the N-terminal cleavage.
Collapse
Affiliation(s)
- Y K Koo
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA
| | | | | |
Collapse
|
17
|
Ito A. Mitochondrial processing peptidase: multiple-site recognition of precursor proteins. Biochem Biophys Res Commun 1999; 265:611-6. [PMID: 10600469 DOI: 10.1006/bbrc.1999.1703] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During or shortly after import of the precursor proteins into mitochondria, the amino-terminal extension peptides are first proteolytically removed by mitochondrial processing peptidase (MPP). The peptidase is a metalloendopeptidase, classified as a member of pitrilysin family, and forms a heterodimer consisting of structurally related alpha- and beta-subunits which are homologous to core proteins, core 2 and core 1, respectively, of mitochondrial ubiquinol-cytochrome c oxidoreductase complex. The enzyme specifically recognizes a large variety of mitochondrial precursor proteins and is cleaved at a single and specific site. In this review, I will focus on recognition mechanisms of precursor proteins by MPP. Structural characteristics of the precursor responsible for the recognition by MPP, role of each subunit, and amino acid residues of MPP involved in the recognition are discussed.
Collapse
Affiliation(s)
- A Ito
- Department of Molecular Chemistry, Graduate School of Science, Kyushu University, Fukuoka, 812-8581, Japan.
| |
Collapse
|
18
|
Hiroi S, Harada H, Nishi H, Satoh M, Nagai R, Kimura A. Polymorphisms in the SOD2 and HLA-DRB1 genes are associated with nonfamilial idiopathic dilated cardiomyopathy in Japanese. Biochem Biophys Res Commun 1999; 261:332-9. [PMID: 10425186 DOI: 10.1006/bbrc.1999.1036] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To reveal genetic risk factors of nonfamilial idiopathic cardiomyopathy (IDC) in Japanese, polymorphisms in the SOD2 and HLA-DRB1 genes were investigated in 86 patients and 380 healthy controls. There was a significant excess of homozygotes for the V allele [Val versus Ala (A allele), a polymorphism in the leader peptide of manganese superoxide dismutase at position 16] of the SOD2 gene in the patients compared with the controls (87.2% versus 74.7%, odds ratio = 2.30, p = 0.013, pc < 0.03), and a significant increase in the frequency of HLA-DRB1*1401 in the patients was confirmed (14.0% vs 4.5%, odds ratio = 3.46, p = 0.001, pc < 0.03). A two-locus analysis suggested that these two genetic markers (SOD2-VV genotype and DRB1*1401) may play a synergistic role in controlling the susceptibility to nonfamilial IDC. In addition, processing efficiency of Val-type SOD2 leader peptide in the presence of mitochondria was siginificantly lower than that of the Ala-type by 11 +/- 4%, suggesting that this lower processing efficiency was in part an underlying mechanism of the association between the SOD2-VV genotype and nonfamilial IDC.
Collapse
Affiliation(s)
- S Hiroi
- Division of Adult Diseases, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 101, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Lee CM, Sedman J, Neupert W, Stuart RA. The DNA helicase, Hmi1p, is transported into mitochondria by a C-terminal cleavable targeting signal. J Biol Chem 1999; 274:20937-42. [PMID: 10409639 DOI: 10.1074/jbc.274.30.20937] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a novel mitochondrial targeting signal in the precursor of the DNA helicase Hmi1p of Saccharomyces cerevisiae that is located at the C terminus of the protein. Similar to classical N-terminal presequences, this C-terminal targeting signal consists of a stretch of positively charged amino acids that has the potential to form an amphipathic alpha-helix. Deletion of the C-terminal 36 amino acids of helicase resulted in loss of import into mitochondria, while deletion of the N-terminal 40 amino acids had no effect. When C-terminal regions of the helicase were placed at the C terminus of a passenger protein, dihydrofolate reductase, the resulting fusion proteins were directed into the mitochondrial matrix, and the C-terminal region of helicase became proteolytically processed. Import of helicase occurs in a C- to N-terminal direction; it requires a membrane potential and the TIM17-23 translocase together with mitochondrial Hsp70. Helicase is the only mitochondrial matrix protein identified thus far with a cleavable targeting signal at its C terminus.
Collapse
Affiliation(s)
- C M Lee
- Institut für Physiologische Chemie der Universität München, Goethestrasse 33, 80336 München, Germany
| | | | | | | |
Collapse
|
20
|
Nett JH, Trumpower BL. Intermediate length Rieske iron-sulfur protein is present and functionally active in the cytochrome bc1 complex of Saccharomyces cerevisiae. J Biol Chem 1999; 274:9253-7. [PMID: 10092599 DOI: 10.1074/jbc.274.14.9253] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the relationship between post-translational processing of the Rieske iron-sulfur protein of Saccharomyces cerevisiae and its assembly into the mitochondrial cytochrome bc1 complex we used iron-sulfur proteins in which the presequences had been changed by site-directed mutagenesis of the cloned iron-sulfur protein gene, so that the recognition sites for the matrix processing peptidase or the mitochondrial intermediate peptidase (MIP) had been destroyed. When yeast strain JPJ1, in which the gene for the iron-sulfur protein is deleted, was transformed with these constructs on a single copy expression vector, mitochondrial membranes and bc1 complexes isolated from these strains accumulated intermediate length iron-sulfur proteins in vivo. The cytochrome bc1 complex activities of these membranes and bc1 complexes indicate that intermediate iron-sulfur protein (i-ISP) has full activity when compared with that of mature sized iron-sulfur protein (m-ISP). Therefore the iron-sulfur cluster must have been inserted before processing of i-ISP to m-ISP by MIP. When iron-sulfur protein is imported into mitochondria in vitro, i-ISP interacts with components of the bc1 complex before it is processed to m-ISP. These results establish that the iron-sulfur cluster is inserted into the apoprotein before MIP cleaves off the second part of the presequence and that this second processing step takes place after i-ISP has been assembled into the bc1 complex.
Collapse
Affiliation(s)
- J H Nett
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
21
|
Arnold I, Fölsch H, Neupert W, Stuart RA. Two distinct and independent mitochondrial targeting signals function in the sorting of an inner membrane protein, cytochrome c1. J Biol Chem 1998; 273:1469-76. [PMID: 9430684 DOI: 10.1074/jbc.273.3.1469] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Proteins of the mitochondrial inner membrane display a wide variety of orientations, many spanning the membrane more than once. Some of these proteins are synthesized with NH2-terminal cleavable targeting sequences (presequences) whereas others are targeted to mitochondria via internal signals. Here we report that two distinct mitochondrial targeting signals can be present in precursors of inner membrane proteins, an NH2-terminal one and a second, internal one. Using cytochrome c1 as a model protein, we demonstrate that these two mitochondrial targeting signals operate independently of each other. The internal targeting signal, consisting of a transmembrane segment and a stretch of positively charged amino acid residues directly following it, initially directs the translocation of the preprotein into the intermembrane space. It then inserts into the inner membrane from the intermembrane space side in a delta psi-dependent manner and thereby determines the orientation the protein attains in the inner membrane. Analysis of a number of other presequence-containing protein of the inner membrane suggest that they too contain such internal targeting signals.
Collapse
Affiliation(s)
- I Arnold
- Institut für Physiologische Chemie, Universität München, Germany
| | | | | | | |
Collapse
|
22
|
Chow KS, Singh DP, Roper JM, Smith AG. A single precursor protein for ferrochelatase-I from Arabidopsis is imported in vitro into both chloroplasts and mitochondria. J Biol Chem 1997; 272:27565-71. [PMID: 9346891 DOI: 10.1074/jbc.272.44.27565] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ferrochelatase is the last enzyme of heme biosynthesis and in higher plants is found in both chloroplasts and mitochondria. We have isolated cDNAs for two isoforms of ferrochelatase from Arabidopsis thaliana, both of which are imported into isolated chloroplasts. In this paper we show that ferrochelatase-I is also imported into isolated pea mitochondria with approximately the same efficiency as into chloroplasts. Processing of the precursor was observed with both chloroplast stroma and mitochondrial matrix extracts. This was inhibited by EDTA, indicating it was due to the specific processing proteases. The specificity of import was verified by the fact that the mitochondrial preparation did not import the precursor of the light-harvesting chlorophyll a/b protein precursor or the precursor of porphobilinogen deaminase, an earlier enzyme of tetrapyrrole biosynthesis, both of which are exclusively chloroplast-located. Furthermore, import of ferrochelatase-I precursor into mitochondria was inhibited by valinomycin, but this had no effect on its import into chloroplasts. Thus a single precursor molecule is recognized by the import machinery of the two organelles. The implications for the targeting of ferrochelatase in a possible protective role against photooxidative stress are discussed.
Collapse
Affiliation(s)
- K S Chow
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | | | | | | |
Collapse
|
23
|
Gruhler A, Arnold I, Seytter T, Guiard B, Schwarz E, Neupert W, Stuart RA. N-terminal hydrophobic sorting signals of preproteins confer mitochondrial hsp70 independence for import into mitochondria. J Biol Chem 1997; 272:17410-5. [PMID: 9211883 DOI: 10.1074/jbc.272.28.17410] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The requirement of mitochondrial hsp70 (mt-hsp70) for the import of a series of preproteins containing hydrophobic sorting signals into isolated yeast mitochondria was investigated. Here we demonstrate that the presence of such a sorting signal in proximity to the N-terminal matrix-targeting sequence of a preprotein can secure a translocating polypeptide chain in the import channel in a manner that does not require mt-hsp70 activity. Trapping the translocating chain in this fashion leads to efficient processing by the mitochondrial processing peptidase and to complete translocation across the outer mitochondrial membrane into the intermembrane space. These mt-hsp70-independent effects appear to be exerted at the level of the inner membrane through an interaction of the hydrophobic core of the sorting signal with component(s) of the translocase of the inner membrane. Hydrophobic sorting signals of inner membrane proteins inserted into the membrane from the matrix, as well as those of intermembrane space proteins, are capable of causing this mt-hsp70-independent stabilization, demonstrating that this phenomenon is not unique to those preproteins normally sorted to the intermembrane space.
Collapse
Affiliation(s)
- A Gruhler
- Institut für Physiologische Chemie, Universität München, Goethestrasse 33, 80336 München, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Boumans H, van Gaalen MC, Grivell LA, Berden JA. Differential inhibition of the yeast bc1 complex by phenanthrolines and ferroin. Implications for structure and catalytic mechanism. J Biol Chem 1997; 272:16753-60. [PMID: 9201979 DOI: 10.1074/jbc.272.27.16753] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
o-Phenanthroline and m-phenanthroline both inhibit the electron transfer activity of lauryl maltoside-solubilized yeast bc1 complex progressively with time. Pre-steady-state kinetics indicate that these compounds bind to the complex on the intermembrane space side, thereby blocking reduction of cytochrome b via the ubiquinol oxidation site. o-Phenanthroline is additionally capable of chelating an iron atom derived from the Rieske Fe-S cluster, thereby distorting the structure of the Rieske protein. EPR analysis shows that the secondary effect of o-phenanthroline occurs after initial inactivation and that m-phenanthroline, which lacks chelating activity, does not affect the Rieske Fe-S cluster. Spectral analysis shows that the b and c1 cytochromes are still dithionite-reducible after inactivation by o-phenanthroline, indicating that they remain intact. Inactivation by o-phenanthroline can be prevented by the addition of Fe2+. Surprisingly, ferroin, the o-phenanthroline-ferrous sulfate complex, also inhibits the bc1 complex activity. In contrast to o-phenanthroline, this effect is instantaneous. The two types of inhibition are clearly distinguishable by pre-steady-state reduction kinetics. Interestingly, ferroin can only inhibit electron transfer activity by about 50%. This behavior is discussed in relation to the dimeric structure of the bc1 complex, and we conclude that ferroin binds to only one of the two protomers. The rate of inactivation by o-phenanthroline is dependent on the incubation temperature and can be quantitated in terms of the half-life for a certain temperature, the time at which the bc1 activity is reduced to 50%. In contrast to the solubilized form, the bc1 complex in intact mitochondria is insensitive to o-phenanthroline, suggesting that the inactivation rate by o-phenanthroline is dependent on accessibility of the complex to the agent. Reaction with o-phenanthroline is thus a useful technique for study of structural stability of the bc1 complex under different conditions and should provide a sensitive tool for determination of the relative stability of mutant enzymes.
Collapse
Affiliation(s)
- H Boumans
- E. C. Slater Institute, Department of Molecular Cell Biology, BioCentrum, University of Amsterdam, 1018 TV Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
25
|
Kanamori T, Nishikawa S, Shin I, Schultz PG, Endo T. Probing the environment along the protein import pathways in yeast mitochondria by site-specific photocrosslinking. Proc Natl Acad Sci U S A 1997; 94:485-90. [PMID: 9012810 PMCID: PMC19539 DOI: 10.1073/pnas.94.2.485] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Artificially aminoacylated suppressor tRNAs were used to introduce photoreactive amino acids into model mitochondrial precursor proteins to probe the environment along the protein import pathway. Amino acids with benzophenone side chains of various lengths [DL-2-amino-3-(p-benzoylphenyl)propanoic acid (1) and DL-2-amino-5-(p-benzoylphenyl)pentanoic acid (2)] were incorporated at specific sites throughout the cytochrome b2-dihydrofolate reductase fusion proteins, pb2(220)-DHFR and pb2 delta 19(220)-DHFR, which were destined for the intermembrane space and the matrix in mitochondria, respectively. In vitro import of pb2(220)-DHFR and pb2 delta 19(220)-DHFR bearing 1 or 2 into isolated yeast mitochondria was arrested so that the N terminus reached the intermembrane space or the matrix, respectively, while the DHFR domain remained at the mitochondrial surface. The matrix-targeted pb2 delta 19(220)-DHFR was photocrosslinked to Tom40 in the outer membrane, Tim44 in the inner membrane, and Ssc1p in the matrix, suggesting that the protein has an extended conformation in the import channels. On the other hand, incorporation of 2 at various positions in the 50-residue segment of intermembrane-space-targeted pb2(220)-DHFR gave photocrosslinks only to Tom40, suggesting that the segment is not in an extended conformation, but localized near Tom40. The N-terminal portion of pb2(220)-DHFR, but not pb2 delta 19(220)-DHFR, was photocrosslinked to an as-yet-unidentified mitochondrial component to generate a 95-kDa crosslinked product.
Collapse
Affiliation(s)
- T Kanamori
- Department of Chemistry, Faculty of Science, Nagoya University, Japan
| | | | | | | | | |
Collapse
|
26
|
Luciano P, Géli V. The mitochondrial processing peptidase: function and specificity. Cell Mol Life Sci 1996; 52:1077-82. [PMID: 8988249 DOI: 10.1007/bf01952105] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Targeting signals of mitochondrial precursors are cleaved in the matrix during or after import by the mitochondrial processing peptidase (MPP). This enzyme consists of two nonidentical alpha- and beta-subunits each of molecular weight of about 50 kDa. In mammals and fungi, MPP is soluble in the matrix, whereas in plants the enzyme is part of the cytochrome bc1 complex. MPP is a metalloendopeptidase which has been classified as a member of the pitrilysin family on the basis of the HXXEHX76E zinc-binding motif present in beta-MPP. Both subunits of MPP are required for processing activity. The alpha-subunit of MPP, which probably recognizes a three-dimensional motif adopted by the presequence, presents the presequence to beta-MPP, which carries the catalytic active site. MPP acts as an endoprotease on chemically synthesized peptides corresponding to mitochondrial presequences. Matrix-targeting signals and MPP cleavage signals seem to be distinct, although the two signals may overlap within a given presequence. The structural element helix-turn-helix, that cleavable presequences adopt in a membrane mimetic environment, may be required for processing but is not sufficient for proteolysis. Binding of the presequence by alpha-MPP tolerates a high degree of mutations of the presequence. alpha-MPP may present a degenerated cleavage site motif to beta-MPP in an accessible conformation for processing. The conformation of mitochondrial presequences bound to MPP remains largely unknown.
Collapse
Affiliation(s)
- P Luciano
- Laboratoire d'Ingéniérie des Systèmes Macromoléculaires, CNRS, Marseille, France
| | | |
Collapse
|
27
|
Sjöling S, Waltner M, Kalousek F, Glaser E, Weiner H. Studies on protein processing for membrane-bound spinach leaf mitochondrial processing peptidase integrated into the cytochrome bc1 complex and the soluble rat liver matrix mitochondrial processing peptidase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:114-21. [PMID: 8954161 DOI: 10.1111/j.1432-1033.1996.0114r.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The plant mitochondrial processing peptidase (MPP) that catalyses the cleavage of the presequences from precursor proteins during or after protein import is a membrane-bound enzyme that constitutes an integral part of the bc1 complex of the respiratory chain. In contrast, MPP from mammals is soluble in the matrix space and does not form part of the respiratory chain. In the present study, we have compared the substrate specificity of the isolated spinach leaf bc1/MPP with rat liver MPP using synthetic signal peptides and different mitochondrial precursor proteins. Inhibition studies of processing with synthetic peptides showed a similar inhibition pattern for plant and rat MPP activity. A peptide derived from the presequence of rat liver mitochondrial aldehyde dehydrogenase (ALDH) was a potent inhibitor of the spinach and rat MPP. Two nonprocessed signal peptides, rhodanese and linker-deleted ALDH (a form of ALDH that lacks the RGP linker connecting two helices in the presequence) had lower inhibitory effects towards each protease. The signal peptide from thiolase, another nonprocessed protein, had little inhibitory effect on MPP. Peptides derived from presequence of the plant Nicotiana plumbaginifolia F1 beta also showed a similar inhibitory pattern with rat MPP as with spinach MPP processing. In-vitro synthesised precursors of plant N. plumbaginifolia F1 beta and rat liver ALDH were cleaved to mature form by both spinach and rat MPP. However, the efficiency of processing was higher with the homologous precursor. Linker-deleted ALDH, rhodanese, and thiolase were not processed by the mammalian or plant MPP. However, both forms of MPP cleaved a mutated form of rhodanese that possesses a typical MPP cleavage motif, RXY S. Addition of the same cleavage motif to thiolase did not result in processing by either MPP. These results show that similar higher-order structural elements upstream from the cleavage site are important for processing by both the membrane-bound plant and the soluble mammalian MPP.
Collapse
Affiliation(s)
- S Sjöling
- Department of Biochemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | | | | | | | | |
Collapse
|
28
|
Priest JW, Hajduk SL. In vitro import of the Rieske iron-sulfur protein by trypanosome mitochondria. J Biol Chem 1996; 271:20060-9. [PMID: 8702725 DOI: 10.1074/jbc.271.33.20060] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Most of the proteins present in the mitochondrion are imported to that location from the cytosol. While this process has been studied extensively in fungal and mammalian systems, little work has been done in other eukaryotic organisms. We are particularly interested in the Trypanosoma brucei system because this organism developmentally regulates mitochondrial function during its life cycle and because one of the imported proteins lacks a conventional targeting sequence. We report here the development of an in vitro import system using crude trypanosome mitochondria and a nuclear encoded, mitochondrial protein. Import of the Rieske iron-sulfur protein subunit of the cytochrome c reductase complex requires a membrane potential, ATP, and a protein component on the mitochondrial surface. The precursor protein is sequentially processed to the mature form in two steps by peptidases that require divalent metal ions for activity. As in other eukaryotic systems, the first processing event occurs inside the inner membrane and is probably catalyzed by a matrix-processing protease. Surprisingly, the second processing activity is located outside the inner membrane. Both processing steps require ATP but are independent of a membrane potential. We suggest that the trypanosome iron-sulfur protein is imported along a "conservative sorting pathway" but that the assembly mechanism of the reductase complex may be unique to trypanosomes.
Collapse
Affiliation(s)
- J W Priest
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
29
|
Brunner M, Neupert W. Purification and characterization of mitochondrial processing peptidase of Neurospora crassa. Methods Enzymol 1995; 248:717-28. [PMID: 7674958 DOI: 10.1016/0076-6879(95)48048-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- M Brunner
- Institut für Physiologische Chemie, Universität München, Germany
| | | |
Collapse
|
30
|
Niidome T, Kitada S, Shimokata K, Ogishima T, Ito A. Arginine residues in the extension peptide are required for cleavage of a precursor by mitochondrial processing peptidase. Demonstration using synthetic peptide as a substrate. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31450-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
31
|
Ou W, Kumamoto T, Mihara K, Kitada S, Niidome T, Ito A, Omura T. Structural requirement for recognition of the precursor proteins by the mitochondrial processing peptidase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31443-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
32
|
Bassham DC, Creighton AM, Arretz M, Brunner M, Robinson C. Efficient but aberrant cleavage of mitochondrial precursor proteins by the chloroplast stromal processing peptidase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 221:523-8. [PMID: 8168539 DOI: 10.1111/j.1432-1033.1994.tb18764.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cytosol-synthesized chloroplast and mitochondrial precursor proteins are proteolytically processed after import by highly specific, metal-dependent soluble enzymes: the stromal processing peptidase (SPP) and the matrix processing peptidase (MPP), respectively. We have used in vitro processing assays to compare the reaction specificities of highly purified preparations of pea SPP and Neurospora crassa MPP, both of which are unable to cleave a variety of 'foreign' proteins. We show that SPP can cleave all five mitochondrial precursor proteins tested, namely cyclophilin, the beta subunit of the F1-ATPase complex, the Rieske FeS protein, the alpha-MPP subunit and cytochrome b2. In contrast, MPP is unable to cleave any chloroplast precursor proteins tested. Several of the mitochondrial precursor proteins are cleaved more efficiently by SPP than are many authentic chloroplast precursor proteins but, in each case, cleavage takes place at a site or sites which are N-terminal to the authentic MPP site; pre-cyclophilin is cleaved 5 residues upstream of the MPP site and the precursor of the beta subunit of the F1-ATPase complex is cleaved at sites 5 and 12 residues upstream. We discuss the implications of these data for the SPP reaction mechanism.
Collapse
Affiliation(s)
- D C Bassham
- Department of Biological Sciences, University of Warwick, England
| | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- E M Ellis
- Biomedical Research Centre, University of Dundee, Ninewells Hospital and Medical School, Scotland
| | | |
Collapse
|
34
|
Ryan K, Jensen R. Mas6p can be cross-linked to an arrested precursor and interacts with other proteins during mitochondrial protein import. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80441-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Ramabadran RS, Beattie DS. Processing of the intermediate form of the iron-sulfur protein of the BC1 complex to the mature form after import into yeast mitochondria. Arch Biochem Biophys 1992; 296:279-85. [PMID: 1318693 DOI: 10.1016/0003-9861(92)90573-f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Rieske iron-sulfur protein of the cytochrome bc1 complex is synthesized in the cytosol as a precursor with an additional 30 amino acids at the amino terminus. After import into the mitochondrial matrix, the precursor is processed to the mature form by two distinct proteolytic cleavages. Addition of 2.5 mM EDTA and 0.5 mM o-phenanthroline to the incubation mixture during import of the iron-sulfur protein precursor in vitro resulted in the selective inhibition of the second processing step with the concomitant accumulation of the intermediate form. The intermediate form was chased to the mature form in the presence of antimycin and oligomycin (to block the formation of a membrane potential) provided that 0.5 nM ATP and a metal ion such as Ca2+, Mn2+, or Mg2+ were added. Ca2+ ion was the most effective and at a concentration of 2.5 mM resulted in the complete cleavage of the intermediate to the mature form. Addition of Zn2+, Co2+, Mo2+, and Fe2+ was not effective in restoring the second cleavage. The pH optimum for the processing of the intermediate form of the iron-sulfur protein to the mature form was between 6.8-8.0. Processing of the intermediate form of the iron-sulfur protein to the mature form was observed at temperatures ranging from 12 to 27 degrees C in a temperature-dependent manner. The time course during the chase indicated that the second processing step was completed within 2 min after addition of Ca2+ ions. Attempts to isolate the second processing enzyme by sonication of mitochondria or by solubilization with detergents such as digitonin, Triton X-100, dodecyl-maltoside, or octyl-glucoside were unsuccessful as only the first cleavage was observed. Hence, the second processing enzyme may be present in the inner membrane or matrix in a conformation disrupted by detergents or alternatively the enzyme may be very labile.
Collapse
Affiliation(s)
- R S Ramabadran
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown 26506
| | | |
Collapse
|
36
|
De Vries S, Van Witzenburg R, Grivell LA, Marres CA. Primary structure and import pathway of the rotenone-insensitive NADH-ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 203:587-92. [PMID: 1735444 DOI: 10.1111/j.1432-1033.1992.tb16587.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The gene encoding the yeast mitochondrial rotenone-insensitive internal NADH: ubiquinone-6 oxidoreductase has been sequenced. The DNA sequence indicates the presence of an open reading frame of 1539 bp predicted to encode a protein of 513 amino acid residues (57.2 kDa). The NADH dehydrogenase is synthesized as a precursor protein containing a signal sequence of 26 residues. In vitro import experiments show that the precursor NADH dehydrogenase is cleaved to the mature size by the matrix processing peptidase. Both cleavage and translocation across the mitochondrial membrane(s) are dependent on the membrane potential component of the proton-motive force. Comparison of the protein sequence of the yeast NADH dehydrogenase with the data bank indicates that the enzyme from yeast is homologous to the NADH dehydrogenase of Escherichia coli (22.2% identical residues). Both NADH dehydrogenases contain in the central part of the protein a sequence predicted to fold into a beta alpha beta structure involved in the binding of NADH or FAD(H2). Various aspects of the protein structure are discussed.
Collapse
Affiliation(s)
- S De Vries
- Department of Molecular Cell Biology, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
37
|
Protein import into the yeast mitochondrial matrix. A new translocation intermediate between the two mitochondrial membranes. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54823-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
38
|
Behrens M, Michaelis G, Pratje E. Mitochondrial inner membrane protease 1 of Saccharomyces cerevisiae shows sequence similarity to the Escherichia coli leader peptidase. MOLECULAR & GENERAL GENETICS : MGG 1991; 228:167-76. [PMID: 1886606 DOI: 10.1007/bf00282462] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The nuclear yeast mutant pet ts2858 is defective in the removal of pre-sequences from the mitochondrially encoded cytochrome oxidase subunit II (COXII) and the processing intermediate of cytochrome b2 (Cytb2), a nuclear gene product. In order to identify the genetic lesion in this mutant we have cloned and characterized a DNA region which complements the pet ts2858 mutation. The DNA sequence revealed three open reading frames, one of which is responsible for the complementation. A 570 bp reading frame represents the structural gene PET2858, as demonstrated by in vitro mutagenesis, gene expression from a foreign promoter, and allelism tests. PET2858 encodes a 21.4 kDa protein, which is essential for growth on non-fermentable carbon sources and for the proteolytic processing of COXII and the Cytb2 intermediate. When the N-terminus of the PET2858 protein is fused to a reporter protein, the resulting hybrid molecule is imported into mitochondria. Interestingly, the N-terminal half of the deduced PET2858 protein exhibits 30.7% amino acid identity to the leader peptidase of Escherichia coli. These results suggest that PET2858 codes for a mitochondrial inner membrane protease (IMP1) or at least a subunit of it. This protease is involved in protein processing and export from the mitochondrial matrix.
Collapse
Affiliation(s)
- M Behrens
- Botanisches Institut, Universität Düsseldorf, Federal Republic of Germany
| | | | | |
Collapse
|
39
|
Yang MJ, Geli V, Oppliger W, Suda K, James P, Schatz G. The MAS-encoded processing protease of yeast mitochondria. Interaction of the purified enzyme with signal peptides and a purified precursor protein. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)38134-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Abstract
Many newly synthesized proteins must be translocated across one or more membranes to reach their destination in the individual organelles or membrane systems. Translocation, mostly requiring an energy source, a signal on the protein itself, loose conformation of the protein and the presence of cytosolic and/or membrane receptor-like proteins, is often accompanied by covalent modifications of transported proteins. In this review I discuss these aspects of protein transport via the classical secretory pathway and/or special translocation mechanisms in the unicellular eukaryotic organism Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- J Horák
- Institute of Physiology, Czechoslovak Academy of Sciences, Prague
| |
Collapse
|
41
|
Horwich AL, Cheng M, West A, Pollock RA. Mitochondrial protein import. Curr Top Microbiol Immunol 1991; 170:1-42. [PMID: 1760928 DOI: 10.1007/978-3-642-76389-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A dynamic picture of the mitochondrial protein import pathway is emerging, with conformational alteration a critical feature both preceding and following membrane translocation. The mediators of these steps of conformational alteration, as well as steps of recognition, translocation, and proteolytic cleavage, appear to be proteins. Using powerful tools of genetics and biochemistry, in years to come it should be possible to determine the precise molecular function of these proteins in mediating these novel reactions.
Collapse
Affiliation(s)
- A L Horwich
- Department of Human Genetics, Yale University, School of Medicine, New Haven, CT 06510-8005
| | | | | | | |
Collapse
|
42
|
|
43
|
Geli V, Yang M, Suda K, Lustig A, Schatz G. The MAS-encoded processing protease of yeast mitochondria. Overproduction and characterization of its two nonidentical subunits. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)30646-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Côté C, Poirier J, Boulet D. Role for the mitochondrial inner membrane in the maturation of the precursor to ornithine carbamyl transferase. Biochem Biophys Res Commun 1990; 170:1273-80. [PMID: 2390092 DOI: 10.1016/0006-291x(90)90531-q] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The precursor to ornithine carbamyl transferase (pOCT) is cleaved at two N-terminal sites when imported into intact mitochondria but only at the N-proximal site when incubated with a membrane-free mitochondrial lysate or matrix fraction. Disruption of the mitochondrial membrane system by sonication, freeze-thaw, or lysis with non-ionic detergents blocks the processing of pOCT to its mature form. Mitoplasts prepared from protease-inactivated, import-incompetent mitochondria recover full processing activity; disruption of the inner membrane impairs the maturation process i.e. causes the loss of the mitoplasts' ability to transform pOCT into OCT. The data reveal a dependency of a maturation event on a "specific" interaction between a precursor protein and the mitochondrial inner membrane probably to position and/or to expose the correct N-distal cleavage site of the presequence.
Collapse
Affiliation(s)
- C Côté
- Université du Québec à Montréal, Department of Chemistry, Canada
| | | | | |
Collapse
|
45
|
Affiliation(s)
- R A Capaldi
- Institute of Molecular Biology, University of Oregon, Eugene 97403
| |
Collapse
|
46
|
Abstract
Precursor proteins from Neurospora crassa were correctly processed by a matrix extract from Vicia faba and cauliflower mitochondria. Processing yielded mature protein of the same molecular mass as mature Neurospora protein. The processing activity has two components. One is antigenically related to and of the same molecular mass as the processing enhancing protein of Neurospora. The second component was not recognized by antibody to the matrix processing protease from Neurospora mitochondria. The second component also houses the protease activity. Similar results were obtained using precursors to both the F1 beta subunit of the mitochondrial F0F1 ATPase and subunit V of the Rieske FeS complex from Neurospora. The beta subunit of the F0F1 ATPASE was processed to the mature form. Subunit V of the Rieske FeS complex was processed to the intermediate form only. Additional processing seen during import into plant mitochondria is not catalyzed by these proteins.
Collapse
Affiliation(s)
- J Whelan
- Department of Botany, University College Dublin, Belfield, Ireland
| | | | | |
Collapse
|
47
|
Abstract
Signal peptidases, the endoproteases that remove the amino-terminal signal sequence from many secretory proteins, have been isolated from various sources. Seven signal peptidases have been purified, two from E. coli, two from mammalian sources, and three from mitochondrial matrix. The mitochondrial enzymes are soluble and function as a heterogeneous dimer. The mammalian enzymes are isolated as a complex and share a common glycosylated subunit. The bacterial enzymes are isolated as monomers and show no sequence homology with each other or the mammalian enzymes. The membrane-bound enzymes seem to require a substrate containing a consensus sequence following the -3, -1 rule of von Heijne at the cleavage site; however, processing of the substrate is strongly influenced by the hydrophobic region of the signal peptide. The enzymes appear to recognize an unknown three-dimensional motif rather than a specific amino acid sequence around the cleavage site. The matrix mitochondrial enzymes are metallo-endopeptidases; however, the other signal peptidases may belong to a unique class of proteases as they are resistant to chelators and most protease inhibitors. There are no data concerning the substrate binding site of these enzymes. In vivo, the signal peptide is rapidly degraded. Three different enzymes in Escherichia coli that can degrade a signal peptide in vitro have been identified. The intact signal peptide is not accumulated in mutants lacking these enzymes, which suggests that these peptidases individually are not responsible for the degradation of an intact signal peptide in vivo. It is speculated that signal peptidases and signal peptide hydrolases are integral components of the secretory pathway and that inhibition of the terminal steps can block translocation.
Collapse
Affiliation(s)
- I K Dev
- Division of Molecular Genetics and Microbiology, Burroughs Wellcome Co., Research Triangle Park, North Carolina 27709
| | | |
Collapse
|
48
|
|
49
|
|
50
|
Stuart RA, Neupert W. Apocytochrome c: an exceptional mitochondrial precursor protein using an exceptional import pathway. Biochimie 1990; 72:115-21. [PMID: 2165819 DOI: 10.1016/0300-9084(90)90136-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The cytochrome c import pathway differs markedly from the general route taken by the majority of other imported proteins, which is characterized by the import involvement of namely, surface receptors, the general insertion protein (GIP), contact sites and by the requirement of a membrane potential (delta psi). Unique features of both the cytochrome c precursor (apocytochrome c) and of the mechanism that transports it into mitochondria, have contributed to the evolution of a distinct import pathway that is not shared by any other mitochondrial protein analysed thus far. The cytochrome c pathway is particularly unique because i) apocytochrome c appears to have spontaneous membrane insertion-activity; ii) cytochrome c heme lyase seems to act as a specific binding site in lieu of a surface receptor and; iii) covalent heme addition and the associated refolding of the polypeptide appears to provide the free energy for the translocation of the cytochrome c polypeptide across the outer mitochondrial membrane.
Collapse
Affiliation(s)
- R A Stuart
- Institut für Physiologische Chemie der Universität München, FRG
| | | |
Collapse
|