1
|
Zhang P, Fang Z, Song Y, Wang S, Bao L, Liu M, Dang Y, Wei Y, Zhang SH. Aspartate Transaminase AST2 Involved in Sporulation and Necrotrophic Pathogenesis in the Hemibiotrophs Magnaporthe oryzae and Colletotrichum graminicola. Front Microbiol 2022; 13:864866. [PMID: 35479642 PMCID: PMC9037547 DOI: 10.3389/fmicb.2022.864866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 11/23/2022] Open
Abstract
Aspartate family includes five additional amino acids other than aspartate, among which most except aspartate have been reported for their action in pathogenesis by amino acid biosynthesis. However, how aspartate, the initial substrate of this family metabolic pathway, is involved in pathogenesis remains unknown. Here, we focused on aspartate transaminase (AST) that catalyzes transamination reaction between glutamate-aspartate in Magnaporthe oryzae. Three MoAST genes were bioinformatically analyzed, of which MoAST2 was uniquely upregulated when invasive hyphae switched to necrotrophic pathogenesis. MoAST2 deletion (ΔMoast2) caused a drastic reduction in conidiogenesis and appressorium formation. Particularly, ΔMoast2 was observed to be proliferated at the biotrophic phase but inhibited at the necrotrophic stage, and with invisible symptoms detected, suggesting a critical role in necrotrophic phase. Glutamate family restored the ΔMoast2 defects but aspartate family did not, inferring that transamination occurs from aspartate to glutamine. MoAST2 is cytosolic and possessed H2O2 stress tolerance. In parallel, Colletotrichum graminicola AST2, CgAST2 was proven to be a player in necrotrophic anthracnose development. Therefore, conserved AST2 is qualified to be a drug target for disease control.
Collapse
Affiliation(s)
- Penghui Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Zhenyu Fang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yanyue Song
- College of Plant Sciences, Jilin University, Changchun, China
| | - Shaowei Wang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Lina Bao
- College of Plant Sciences, Jilin University, Changchun, China
| | - Mingyu Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yuejia Dang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yi Wei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Shi-Hong Zhang
- College of Plant Sciences, Jilin University, Changchun, China.,College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
2
|
Regulatory Mechanisms ofCordyceps sinensison Steroidogenesis in MA-10 Mouse Leydig Tumor Cells. Biosci Biotechnol Biochem 2014; 74:1855-9. [DOI: 10.1271/bbb.100262] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
3
|
Napoli E, Ross-Inta C, Wong S, Omanska-Klusek A, Barrow C, Iwahashi C, Garcia-Arocena D, Sakaguchi D, Berry-Kravis E, Hagerman R, Hagerman PJ, Giulivi C. Altered zinc transport disrupts mitochondrial protein processing/import in fragile X-associated tremor/ataxia syndrome. Hum Mol Genet 2011; 20:3079-92. [PMID: 21558427 DOI: 10.1093/hmg/ddr211] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder that affects individuals who are carriers of small CGG premutation expansions in the fragile X mental retardation 1 (FMR1) gene. Mitochondrial dysfunction was observed as an incipient pathological process occurring in individuals who do not display overt features of FXTAS (1). Fibroblasts from premutation carriers had lower oxidative phosphorylation capacity (35% of controls) and Complex IV activity (45%), and higher precursor-to-mature ratios (P:M) of nDNA-encoded mitochondrial proteins (3.1-fold). However, fibroblasts from carriers with FXTAS symptoms presented higher FMR1 mRNA expression (3-fold) and lower Complex V (38%) and aconitase activities (43%). Higher P:M of ATPase β-subunit (ATPB) and frataxin were also observed in cortex from patients that died with FXTAS symptoms. Biochemical findings observed in FXTAS cells (lower mature frataxin, lower Complex IV and aconitase activities) along with common phenotypic traits shared by Friedreich's ataxia and FXTAS carriers (e.g. gait ataxia, loss of coordination) are consistent with a defective iron homeostasis in both diseases. Higher P:M, and lower ZnT6 and mature frataxin protein expression suggested defective zinc and iron metabolism arising from altered ZnT protein expression, which in turn impairs the activity of mitochondrial Zn-dependent proteases, critical for the import and processing of cytosolic precursors, such as frataxin. In support of this hypothesis, Zn-treated fibroblasts showed a significant recovery of ATPB P:M, ATPase activity and doubling time, whereas Zn and desferrioxamine extended these recoveries and rescued Complex IV activity.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
King SR, Walsh LP, Stocco DM. Nigericin inhibits accumulation of the steroidogenic acute regulatory protein but not steroidogenesis. Mol Cell Endocrinol 2000; 166:147-53. [PMID: 10996433 DOI: 10.1016/s0303-7207(00)00280-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The steroidogenic acute regulatory (StAR) protein mediates the delivery of cholesterol from the outer to the inner mitochondrial membrane, where the cholesterol side chain cleavage complex converts it to pregnenolone. While the mechanism by which this mitochondrial protein acts is poorly understood, one component of the mitochondrial electrochemical gradient, the electrochemical potential (DeltaPsi), appears to be essential. In this study, the importance of the other component, the proton gradient (DeltapH), was examined. Disruption of DeltapH with the electroneutral K(+)/H(+) exchanger, nigericin, had no effect on steroidogenesis in MA-10 mouse Leydig tumor cells at concentrations which significantly reduced StAR protein levels. These data indicate for the first time in true steroidogenic cells, that StAR can act prior to being fully imported into the mitochondria and are consistent with observations made in COS-1 cells using mutant forms of StAR. These results support the hypothesis that a DeltaPsi-dependent factor is required for StAR activity and demonstrate that nigericin is the first compound described, capable of inhibiting StAR accumulation without affecting steroidogenesis.
Collapse
Affiliation(s)
- S R King
- Department of Cell Biology and Biochemistry, Texas Technical University Health Sciences Center, 3601 4th Street, 79430, Lubbock, TX, USA
| | | | | |
Collapse
|
5
|
Gratzer S, Beilharz T, Beddoe T, Henry MF, Lithgow T. The mitochondrial protein targeting suppressor (mts1) mutation maps to the mRNA-binding domain of Npl3p and affects translation on cytoplasmic polysomes. Mol Microbiol 2000; 35:1277-85. [PMID: 10760130 DOI: 10.1046/j.1365-2958.2000.01765.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In all eukaryotic organisms, messenger RNA (mRNA) is synthesized in the nucleus and then exported to the cytoplasm for translation. The export reaction requires the concerted action of a large number of protein components, including a set of shuttle proteins that can exit and re-enter the nucleus through the nuclear pore complex. Here, we show that, in Saccharomyces cerevisiae, the shuttle protein Npl3p leaves the nuclear pore complex entirely and continues to function in the cytoplasm. A mutation at position 219 in its RNA-binding domain leaves Npl3p lingering in the cytoplasm associated with polysomes. Yeast cells expressing the mutant Npl3(L-219S) protein show alterations in mRNA stability that can affect protein synthesis. As a result, defects in nascent polypeptide targeting to subcellular compartments such as the mitochondria are also suppressed.
Collapse
Affiliation(s)
- S Gratzer
- Department of Biochemistry, La Trobe University, Bundoora 3083, Australia
| | | | | | | | | |
Collapse
|
6
|
Endo S, Ishiguro S, Tamai M. Possible mechanism for the decrease of mitochondrial aspartate aminotransferase activity in ischemic and hypoxic rat retinas. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1450:385-96. [PMID: 10395949 DOI: 10.1016/s0167-4889(99)00062-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glutamate is believed to be an excitatory amino acid neurotransmitter in the retina. Enzymes for glutamate metabolism, such as glutamate dehydrogenase, ornithine aminotransferase, glutaminase, and aspartate aminotransferase (AAT), exist mainly in the mitochondria. The abnormal increase of intracellular calcium ions in ischemic retinal cells may cause an influx of calcium ions into the mitochondria, subsequently affecting various mitochondrial enzyme activities through the activity of mitochondrial calpain. As AAT has the highest level of activity among enzymes involved in glutamate metabolism, we investigated the change of AAT activity in ischemic and hypoxic rat retinas and the protection against such activity by calpain inhibitors. We used normal RCS (rdy+/rdy+) rats. For the in vivo studies, we clamped the optic nerve of anesthetized rats to induce ischemia. In the in vitro studies, the eye cups were incubated with Locke's solution saturated with 95% N2/5% CO2. The activity of cytosolic AAT (cAAT) was about 20% of total activity, whereas mitochondrial AAT (mAAT) was about 75% in rat retina. Ninety minutes of ischemia or hypoxia caused a 20% decrease in mAAT activity, whereas cAAT activity remained unchanged. To examine the contribution of intracellular calcium ions to the degradation of mAAT, we used Ca2+-free Locke's solution containing 1 mM EGTA, ryanodine (Ca2+ channel blocker), and thapsigargin (Ca2+-ATPase inhibitor). In the present study, thapsigargin in Ca2+-free Locke's solution, but not ryanodine in this solution, was found to prevent AAT degradation. AAT degradation was also prevented by calpain inhibitors (Ca2+-dependent protease inhibitor) such as calpeptin at 1 nM, 10 nM, 0.1 microM, 1 microM and 10 microM, and by calpain inhibitor peptide, but not by other protease inhibitors (10 microM leupeptin, pepstatin, chymostatin). Additionally, we determined the subcellular localization of calpain activity and examined the change of calpain activity in ischemic rat retinas. Our results suggest that decreased activity of mAAT in ischemic and hypoxic rat retinas might be evoked by the degradation by calpain-catalyzed proteolysis in mitochondria.
Collapse
Affiliation(s)
- S Endo
- Department of Ophthalmology, Tohoku University School of Medicine, 1-1 Seiryou-machi, Aoba-ku, Sendai 980-8574, Japan.
| | | | | |
Collapse
|
7
|
King SR, Liu Z, Soh J, Eimerl S, Orly J, Stocco DM. Effects of disruption of the mitochondrial electrochemical gradient on steroidogenesis and the Steroidogenic Acute Regulatory (StAR) protein. J Steroid Biochem Mol Biol 1999; 69:143-54. [PMID: 10418988 DOI: 10.1016/s0960-0760(98)00152-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The steroidogenic acute regulatory (StAR) protein, which mediates cholesterol delivery to the inner mitochondrial membrane and the P450scc enzyme, has been shown to require a mitochondrial electrochemical gradient for its activity in vitro. To characterize the role of this gradient in cholesterol transfer, investigations were conducted in whole cells, utilizing the protonophore carbonyl cyanide m-chlorophenylhydrazone (m-CCCP) and the potassium ionophore valinomycin. These reagents, respectively, dissipate the mitochondrial electrochemical gradient and inner mitochondrial membrane potential. Both MA-10 Leydig tumor cell steroidogenesis and mitochondrial import of StAR were inhibited by m-CCCP or valinomycin at concentrations which had only minimal effects on P450scc activity. m-CCCP also inhibited import and processing of both StAR and the truncated StAR mutants, N-19 and C-28, in transfected COS-1 cells. Steroidogenesis induced by StAR and N-47, an active N-terminally truncated StAR mutant, was reduced in transfected COS-1 cells when treated with m-CCCP. This study shows that StAR action requires a membrane potential, which may reflect a functional requirement for import of StAR into the mitochondria, or more likely, an unidentified factor which is sensitive to ionophore treatment. Furthermore, the ability of N-47 to stimulate steroidogenesis in nonsteroidogenic HepG2 liver tumor cells, suggests that the mechanism by which StAR acts may be common to many cell types.
Collapse
Affiliation(s)
- S R King
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock 79430, USA
| | | | | | | | | | | |
Collapse
|
8
|
3-Hydroxy-3-methylglutaryl coenzyme A lyase: targeting and processing in peroxisomes and mitochondria. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33340-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Affiliation(s)
- M Mori
- Department of Molecular Genetics, Kumamoto University School of Medicine, Kuhonji 4-24-1, Kumamoto 862, Japan.
| | | |
Collapse
|
10
|
Zhou SL, Gordon RE, Bradbury M, Stump D, Kiang CL, Berk PD. Ethanol up-regulates fatty acid uptake and plasma membrane expression and export of mitochondrial aspartate aminotransferase in HepG2 cells. Hepatology 1998; 27:1064-74. [PMID: 9537447 DOI: 10.1002/hep.510270423] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To explain the increased plasma mitochondrial aspartate aminotransferase (mAspAT) observed in alcoholics, we cultured HepG2 hepatoma cells in ethanol. Acute (24 hour) exposure to 0, 20, 40, or 80 mmol/L ethanol produced a dose-dependent (r = .98) increase in mAspAT messenger RNA (mRNA) of < or = thirteen-fold, with no significant change in the cellular content of mAspAT or of several other enzymes. The recovery of mAspAT in the medium over 24 hours of ethanol exposure correlated with both ethanol concentration and with mAspAT mRNA (r = .90), reaching 808% of cellular enzyme content/24 hours at 80 mmol/L. Recovery of all other enzymes studied was < or = 20% of cellular content and unaffected by ethanol. Plasma membrane mAspAT content also correlated with mAspAT mRNA (r = .96) and mitochondrial levels were unchanged. No mitochondrial morphologic abnormalities were observed at any ethanol concentration studied. In cells cultured chronically at 0 to 80 mmol/L ethanol, fatty acid uptake Vmax increased in parallel with plasma membrane expression of mAspAT (r = .98). Cellular triglyceride content was highly correlated with Vmax. Thus, the data suggest that: 1) the increased plasma mAspAT observed in alcoholics may reflect pharmacologic upregulation of mAspAT mRNA and of mAspAT synthesis by ethanol; and 2) increased mAspAT-mediated fatty acid uptake may contribute to alcoholic fatty liver.
Collapse
Affiliation(s)
- S L Zhou
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
11
|
Kanazawa M, Yano M, Namchai C, Yamamoto S, Ohtake A, Takayanagi M, Mori M, Niimi H. Visualization of mitochondria with green fluorescent protein in cultured fibroblasts from patients with mitochondrial diseases. Biochem Biophys Res Commun 1997; 239:580-4. [PMID: 9344874 DOI: 10.1006/bbrc.1997.7448] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
cDNAs for green fluorescent protein (GFP) and for a GFP fusion protein containing the presequence of human ornithine transcarbamylase (pOTC-GFP) were transfected into cultured human fibroblasts. GFP cDNA gave diffuse fluorescence throughout the cytoplasm and the nucleus, whereas pOTC-GFP cDNA gave mitochondria-associated fluorescence. Fluorescent mitochondrial structures could be classified into five patterns: thread-like mitochondria, fine thread-like ones, rod-like ones, granular ones, and granular ones with weak cytosolic fluorescence. pOTC-GFP mutants resulted in a loss of mitochondrial fluorescence and an appearance of weak fluorescence throughout the cytoplasm. pOTC-GFP cDNA was transfected into fibroblasts from patients with various mitochondrial diseases. Higher ratios of fibroblasts with granular mitochondria and those with fine thread-like ones were observed in a patient with Reye's syndrome and a patient with Kearns-Sayre syndrome. Weak cytosolic fluorescence was sometimes observed in fibroblasts from these patients. This method will be useful to analyze mitochondrial structural alterations and disorders of mitochondrial protein import.
Collapse
Affiliation(s)
- M Kanazawa
- Department of Pediatrics, Chiba University, School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Yano M, Kanazawa M, Terada K, Namchai C, Yamaizumi M, Hanson B, Hoogenraad N, Mori M. Visualization of mitochondrial protein import in cultured mammalian cells with green fluorescent protein and effects of overexpression of the human import receptor Tom20. J Biol Chem 1997; 272:8459-65. [PMID: 9079673 DOI: 10.1074/jbc.272.13.8459] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The presequence of the ornithine transcarbamylase precursor (pOTC) was fused to green fluorescent protein (GFP), yielding pOTC-GFP and pOTCN-GFP containing the presequence plus 4 and 58 residues of mature ornithine transcarbamylase, respectively. When GFP cDNA was transfected into COS-7 cells, the cytosol and nucleus were fluorescent. On the other hand, pOTC-GFP cDNA gave strong fluorescence of a unique mitochondrial pattern. After fractionation of cells expressing pOTC-GFP with digitonin, fluorescence was recovered mostly in the particulate fraction. Immunoblot analysis showed that processed GFP was present in the particulate fraction, whereas pOTC-GFP was recovered in both the soluble and particulate fractions. pOTC-GFP and pOTCN-GFP synthesized in vitro were imported efficiently into the isolated mitochondria. Single and triple amino acid mutations in the presequence resulted in impaired mitochondrial import and in a loss of mitochondrial fluorescence. Perinuclear aggregation of fluorescent mitochondria was observed when the human mitochondrial import receptor Tom20 (hTom20) was coexpressed with pOTC-GFP. Overexpression of hTom20 (not DeltahTom20, which lacks the anchor sequence) resulted in stimulated mitochondrial import of pOTC-GFP in COS-7 cells. When pOTC-GFP cDNA was microinjected into nuclei of human fibroblast cells, mitochondrial fluorescence was detected as early as 2-3 h after injection. These results show that GFP fusion protein can be used to visualize mitochondrial structures and to monitor mitochondrial protein import in a single cell in real time.
Collapse
Affiliation(s)
- M Yano
- Department of Molecular Genetics, Kumamoto University School of Medicine, Kumamoto 862, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Oatey PB, Lumb MJ, Danpure CJ. Molecular basis of the variable mitochondrial and peroxisomal localisation of alanine-glyoxylate aminotransferase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:374-85. [PMID: 8917433 DOI: 10.1111/j.1432-1033.1996.00374.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The molecular basis of the variable species-specific peroxisomal and/or mitochondrial targeting of the enzyme alanine-glyoxylate aminotransferase 1 (AGT) has been studied in human fibroblasts by confocal immunofluorescence microscopy after intranuclear microinjection of various human, rabbit, marmoset, and feline AGT cDNA constructs. The expression of full-length human and rabbit AGT cDNA led to an exclusively peroxisomal distribution of AGT. However, the distribution of feline and marmoset AGT depended on the cDNA construct injected. In both species, injection of the short cDNAs (from transcripts that occur naturally in marmoset liver but not in feline liver) led to an exclusively peroxisomal distribution. However, injection of the long cDNAs (from transcripts that occur naturally in both species) led to most of the AGT being targeted to the mitochondria and only a small, yet significant, fraction to the peroxisomes. Reintroduction of the 'ancestral' first potential translation initiation site into human AGT cDNA led to an 'ancestral' distribution of AGT (i.e. both mitochondrial and peroxisomal). Deletion of the second potential translation start site from the long feline cDNA led to a distribution that was almost entirely mitochondrial, which suggests that most peroxisomal AGT encoded by the long cDNA results from internal translation initiation from this site with the consequent loss of the N-terminal mitochondrial targeting sequence. Expression of rabbit cDNA and the short marmoset and feline cDNAs in cells selectively deficient in the import of peroxisomal matrix proteins showed that peroxisomal AGT in all these species is imported via the peroxisomal targeting sequence type 1 (PTS1) import pathway. The almost complete functional dominance of the N-terminal mitochondrial targeting sequence over the C-terminal PTS. which was not due to any direct interference of the former with peroxisomal import, was maintained even when the unusual PTS1 of AGT (KKL in human) was replaced by the prototypical PTS1 SKL. The results demonstrate that the major determinant of alanine-glyoxylate aminotransferase subcellular distribution in mammals is the presence or absence of the mitochondrial targeting sequence rather than the peroxisomal targeting sequence. Various strategies have arisen during the evolution of mammals to enable the exclusion of the mitochondrial targeting sequence from the newly synthesised polypeptide, all of which involve the use of alternative transcription and/or translation initiation sites.
Collapse
Affiliation(s)
- P B Oatey
- MRC Laboratory for Molecular Cell Biology, University College London, UK
| | | | | |
Collapse
|
14
|
|
15
|
Mattingly JR, Iriarte A, Martinez-Carrion M. Structural features which control folding of homologous proteins in cell-free translation systems. The effect of a mitochondrial-targeting presequence on aspartate aminotransferase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74317-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
16
|
Mattingly J, Youssef J, Iriarte A, Martinez-Carrion M. Protein folding in a cell-free translation system. The fate of the precursor to mitochondrial aspartate aminotransferase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53561-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Stocco D, Sodeman T. The 30-kDa mitochondrial proteins induced by hormone stimulation in MA-10 mouse Leydig tumor cells are processed from larger precursors. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55053-5] [Citation(s) in RCA: 189] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
18
|
Hartmann CM, Lindenmann JM, Christen P, Jaussi R. The precursor of mitochondrial aspartate aminotransferase is imported into mitochondria faster than the homologous cytosolic isoenzyme with the same presequence attached. Biochem Biophys Res Commun 1991; 174:1232-8. [PMID: 1996986 DOI: 10.1016/0006-291x(91)91553-o] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mitochondrial and cytosolic aspartate aminotransferase (AspAT) are homologous proteins with identically folded polypeptide chains. The cDNAs of the two isoenzymes of chicken were used to express the following proteins in yeast: the precursor of mitochondrial AspAT, mature mitochondrial AspAT, and two chimeric proteins in one of which (pc) the presequence of the precursor was attached to the entire cytosolic isoenzyme and in the other one (pmc) the N-terminal segment (amino acid residues -22 to 23) of the precursor was linked to the slightly truncated cytosolic isoenzyme (residues 34 to 412). All presequence containing proteins were imported into the mitochondria and processed to the mature form whereas mature mitochondrial AspAT remained in the cytosol. The rate of import of the authentic precursor was four times faster than that of the chimeric proteins pc and pmc, t1/2 for importation at 29 degrees C being 3, 13 and 14 min, respectively. Apparently, the mature moiety of the precursor of mitochondrial AspAT promotes importation.
Collapse
Affiliation(s)
- C M Hartmann
- Biochemisches Institut Universität Zürich, Switzerland
| | | | | | | |
Collapse
|
19
|
Abstract
Aspartate aminotransferase (AST, EC 2.6.1.1) exists in human tissues as two distinct isoenzymes, one located in the cytoplasm (c-AST), and the other in mitochondria (m-AST). Striated muscle, myocardium, and liver tissues are the main sources of AST. A growing body of information suggests that determination of AST isoenzymes in human serum is useful in evaluating damage to some of these organs. In hepatic disease, the test is used to assess liver necrosis and for determining prognosis. It may also assist in identifying patients with active alcoholic liver disease. In patients with acute myocardial infarction, measurement of AST isoenzymes provides diagnostic information that differs from that obtained by determination of total creatine kinase and lactate dehydrogenase enzymes, and their isoenzymes.
Collapse
Affiliation(s)
- M Panteghini
- Laboratorio Analisi Chimico-Cliniche, Spedali Civili, Brescia, Italy
| |
Collapse
|
20
|
Christen P, Jaussi R, Juretić N, Mehta PK, Hale TI, Ziak M. Evolutionary and biosynthetic aspects of aspartate aminotransferase isoenzymes and other aminotransferases. Ann N Y Acad Sci 1990; 585:331-8. [PMID: 2192617 DOI: 10.1111/j.1749-6632.1990.tb28065.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mitochondrial and cytosolic isoenzymes of aspartate aminotransferase are homologous proteins. Both are encoded by nuclear DNA and synthesized on free polysomes. The organization of their genes is very similar, five out of a total of eight introns are located at the same nucleotide position. A variant consensus sequence was observed at the 3' splice site of introns of genes of imported mitochondrial proteins which may reflect the existence of splicing factors specific for the genes of this particular group of nuclear-encoded proteins. To date the amino acid sequences of 22 aminotransferases are known. A rigorous analysis yielded clear evidence that aspartate, tyrosine, and histidinol-phosphate aminotransferases are homologous proteins despite their low degree of sequence identity. The evolutionary relationship among the vitamin B6-dependent enzymes in general appears less clear. Conceivably, their common structural and mechanistic features are dictated by the chemical properties of pyridoxal 5'-phosphate rather than being due to a common ancestor of their protein moieties. In agreement with this notion, the ubiquitous active-site lysine residue that forms a Schiff base with the coenzyme can be replaced in the case of aspartate aminotransferase by a histidine residue without complete loss of catalytic competence.
Collapse
Affiliation(s)
- P Christen
- Biochemisches Institut der Universität Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
21
|
Nishi T, Nagashima F, Tanase S, Fukumoto Y, Joh T, Shimada K, Matsukado Y, Ushio Y, Morino Y. Import and Processing of Precursor to Mitochondrial Aspartate Aminotransferase. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83310-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Stoeckli ET, Lemkin PF, Kuhn TB, Ruegg MA, Heller M, Sonderegger P. Identification of proteins secreted from axons of embryonic dorsal-root-ganglia neurons. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 180:249-58. [PMID: 2924765 DOI: 10.1111/j.1432-1033.1989.tb14640.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Secretion of proteins from the growth cone has been implicated in axon growth and synapse formation and might be involved in the transmission of a variety of axon-derived regulatory signals during neurogenesis. In order to identify axonally secreted proteins, dorsal-root-ganglia neurons from chicken embryos were cultured in a compartmentalized cell culture system that allows separate access to neuronal cell somas and axons. The proteins synthesized by the neurons were metabolically labeled by addition of [35S]methionine to the compartment containing the cell somas; the proteins released from the axons were harvested from the culture medium of the axonal compartment. Two-dimensional gel electrophoresis revealed two axonally secreted proteins with apparent molecular mass of 132-140 kDa and 54-60 kDa; they were termed axonin-1 and axonin-2, respectively. Both axonins were found to be secreted from a variety of neuronal cell cultures, but not from any of the nonneuronal cultures investigated, and hence might be neuron-specific. Virtual absence of these proteins from the axonal protein pattern suggests constitutive secretion. The information acquired on coordinates and spot morphology of these proteins in two-dimensional gel electrophoresis provides a useful assay for their purification.
Collapse
|
23
|
Hartl FU, Pfanner N, Nicholson DW, Neupert W. Mitochondrial protein import. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 988:1-45. [PMID: 2642391 DOI: 10.1016/0304-4157(89)90002-6] [Citation(s) in RCA: 531] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Most mitochondrial proteins are synthesized as precursor proteins on cytosolic polysomes and are subsequently imported into mitochondria. Many precursors carry amino-terminal presequences which contain information for their targeting to mitochondria. In several cases, targeting and sorting information is also contained in non-amino-terminal portions of the precursor protein. Nucleoside triphosphates are required to keep precursors in an import-competent (unfolded) conformation. The precursors bind to specific receptor proteins on the mitochondrial surface and interact with a general insertion protein (GIP) in the outer membrane. The initial interaction of the precursor with the inner membrane requires the mitochondrial membrane potential (delta psi) and occurs at contact sites between outer and inner membranes. Completion of translocation into the inner membrane or matrix is independent of delta psi. The presequences are cleaved off by the processing peptidase in the mitochondrial matrix. In several cases, a second proteolytic processing event is performed in either the matrix or in the intermembrane space. Other modifications can occur such as the addition of prosthetic groups (e.g., heme or Fe/S clusters). Some precursors of proteins of the intermembrane space or the outer surface of the inner membrane are retranslocated from the matrix space across the inner membrane to their functional destination ('conservative sorting'). Finally, many proteins are assembled in multi-subunit complexes. Exceptions to this general import pathway are known. Precursors of outer membrane proteins are transported directly into the outer membrane in a receptor-dependent manner. The precursor of cytochrome c is directly translocated across the outer membrane and thereby reaches the intermembrane space. In addition to the general sequence of events which occurs during mitochondrial protein import, current research focuses on the molecules themselves that are involved in these processes.
Collapse
Affiliation(s)
- F U Hartl
- Institut für Physiologische Chemie, Universität München, F.R.G
| | | | | | | |
Collapse
|
24
|
Flückiger J, Christen P. Degradation of the precursor of mitochondrial aspartate aminotransferase in chicken embryo fibroblasts. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68899-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Mattingly JR, Rodriguez-Berrocal FJ, Gordon J, Iriarte A, Martinez-Carrion M. Molecular cloning and in vivo expression of a precursor to rat mitochondrial aspartate aminotransferase. Biochem Biophys Res Commun 1987; 149:859-65. [PMID: 3322287 DOI: 10.1016/0006-291x(87)90487-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A 2.4 kilobase cDNA for rat mitochondrial aspartate aminotransferase (E.C. 2.6.1.1.) was isolated and sequenced. The predicted presequence is 93% homologous to the presequences of the enzyme from pig and mouse. The predicted amino acid sequence of the mature enzyme differs from that determined directly by amino acid sequencing (Huynh, Q.K., Sakakibara, R., Watanabe, T., and Wada, H. (1981) J. Biochem. (Tokyo) 90, 863-875) at 13 amino acids residues. The most important difference is at position 140 where the cDNA encodes a tryptophanyl residue rather than the previously reported glycine. This critical residue is now seen to be conserved in all aspartate aminotransferases. The coding region of this cDNA was inserted into the plasmid cloning vector pKK233-2 and used to stably express an unfused precursor in Escherichia coli JM105.
Collapse
Affiliation(s)
- J R Mattingly
- Division of Molecular Biology and Biochemistry, School of Basic Life Sciences, University of Missouri-Kansas City 64110
| | | | | | | | | |
Collapse
|
26
|
Effect of vitamin B6 on the synthesis and degradation of aspartate aminotransferase in chicken embryo fibroblasts. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)49284-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Jaussi R, Behra R, Giannattasio S, Flura T, Christen P. Expression of cDNAs encoding the precursor and the mature form of chicken mitochondrial aspartate aminotransferase in Escherichia coli. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)45222-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Ikeda Y, Keese SM, Fenton WA, Tanaka K. Biosynthesis of four rat liver mitochondrial acyl-CoA dehydrogenases: in vitro synthesis, import into mitochondria, and processing of their precursors in a cell-free system and in cultured cells. Arch Biochem Biophys 1987; 252:662-74. [PMID: 3813556 DOI: 10.1016/0003-9861(87)90072-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The synthesis, translocation, processing, and assembly of rat liver short chain acyl-CoA, medium chain acyl-CoA, long chain acyl-CoA, and isovaleryl-CoA dehydrogenases were studied. These four acyl-CoA dehydrogenases are homotetrameric flavoproteins which are located in the mitochondrial matrix. They were synthesized in a cell-free rabbit reticulocyte lysate system, programmed by rat liver polysomal RNA, as precursor polypeptides which are 2-4 kDa larger than their corresponding mature subunits (Mr 41,000-45,000). When the radiolabeled precursors were incubated with intact rat liver mitochondria, they appeared to bind tightly to the mitochondrial outer membrane. At this stage they were completely susceptible to the action of exogenous trypsin. The precursors bound to mitochondria at 0 degrees C were translocated into the mitochondria and processed when the temperature was raised to 30 degrees C. No reaction occurred when the temperature was kept at 0 degrees C, however, suggesting that the binding of the precursors is temperature independent while the subsequent steps of the pathway are energy dependent. Indeed, the translocation reaction was inhibited by compounds such as dinitrophenol and rhodamine 6G which inhibit mitochondrial energy metabolism. The newly imported (mature) enzymes were inaccessible to the proteolytic action of added trypsin. The processing of the precursors to mature subunits was proteolytically carried out in the mitochondrial matrix, and the processed mature subunits mostly assembled to their respective tetrameric forms. Newly synthesized larger precursors of each of the four acyl-CoA dehydrogenases were recovered from intact, cultured Buffalo rat liver cells in the presence of dinitrophenol. When dinitrophenol was removed in a pulse-chase protocol, the accumulated precursors were rapidly (t1/2 3-5 min) converted to their corresponding mature subunits. On the other hand, when the chase was performed in the presence of the inhibitor, the labeled precursors disappeared with t1/2 of greater than 4 h for long chain acyl-CoA dehydrogenase and 1-2 h for the other three enzyme precursors.
Collapse
|
29
|
Biogenesis of Mammalian Mitochondria. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/b978-0-12-152515-6.50012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
30
|
Randall LL, Hardy SJ. Correlation of competence for export with lack of tertiary structure of the mature species: a study in vivo of maltose-binding protein in E. coli. Cell 1986; 46:921-8. [PMID: 3530497 DOI: 10.1016/0092-8674(86)90074-7] [Citation(s) in RCA: 392] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sensitivity to proteolytic degradation was used to monitor folding of polypeptides in vivo. A correlation between competence for export and lack of stable tertiary structure was established by comparing the kinetics of folding of mutated precursor maltose-binding protein that carries a defective leader peptide with the kinetics of folding of wild-type precursor that is competent for export. It is proposed that during export a kinetic competition exists between productive translocation and folding of precursor intracellularly into a stable conformation that is not compatible with transfer.
Collapse
|
31
|
Sharma CP, Gehring H. The precursor of mitochondrial aspartate aminotransferase is translocated into mitochondria as apoprotein. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67360-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
32
|
|
33
|
|
34
|
Behra R, Christen P. In vitro import into mitochondria of the precursor of mitochondrial aspartate aminotransferase. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)42463-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
|
36
|
Jaussi R, Cotton B, Juretić N, Christen P, Schümperli D. The primary structure of the precursor of chicken mitochondrial aspartate aminotransferase. Cloning and sequence analysis of cDNA. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)36199-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Reid GA. Chapter 7 Transport of Proteins into Mitochondria. ACTA ACUST UNITED AC 1985. [DOI: 10.1016/s0070-2161(08)60329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
38
|
Biogenesis of the mitochondrial enzyme methylmalonyl-CoA mutase. Synthesis and processing of a precursor in a cell-free system and in cultured cells. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(20)82187-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
39
|
|
40
|
Doonan S, Barra D, Bossa F. Structural and genetic relationships between cytosolic and mitochondrial isoenzymes. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1984; 16:1193-9. [PMID: 6397370 DOI: 10.1016/0020-711x(84)90216-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The most common type of genetic relationship between cytosolic and mitochondrial isoenzymes will probably be found to be divergent evolution from a common ancestral form. This is firmly established for the aspartate aminotransferases and less directly so in other cases. The two isoenzymes of aspartate aminotransferase have evolved at roughly equal rates at the level of total amino acid sequence but certain limited surface regions of the mitochondrial form have been much more highly conserved than corresponding regions in the cytosolic protein; these regions probably play a role in topogenesis of the mitochondrial isoenzyme. It is of interest that nearly all mitochondrial proteins are initially synthesised as precursors of molecular weight greater than the mature forms. In the case of aspartate aminotransferase, and possibly of other such isoenzymes, the N-terminus of the mature protein is nearly coincident with that of the cytosolic isoenzyme. Hence during evolution either the gene for the mitochondrial isoenzyme has gained an extra coding region for this N-terminal extension or, less likely, the structural gene for the cytosolic form has suffered a sizeable terminal deletion. Cytosolic and mitochondrial superoxide dismutases have not shared a common ancestral form as shown by the fact that their primary structures are completely unrelated. On the other hand, the mitochondrial and prokaryotic enzymes are clearly related. There is now, however, evidence to suggest that some prokaryotes possess a copper/zinc enzyme related to the eukaryotic cytosolic form. Hence the possibility arises that primitive prokaryotes possessed both proteins. The copper/zinc superoxide dismutase has been retained in the cytosol of eukaryotic cells and a few bacterial species.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
41
|
Doonan S, Marra E, Passarella S, Saccone C, Quagliariello E. Transport of proteins into mitochondria. INTERNATIONAL REVIEW OF CYTOLOGY 1984; 91:141-86. [PMID: 6094381 DOI: 10.1016/s0074-7696(08)61316-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
There is still much that is obscure concerning the transport of proteins into or through the mitochondrial membrane systems. In addition, as pointed out previously, it is unlikely that the details of the process are the same for proteins destined for different compartments of the organelle. A brief summary of the process for matrix proteins might be as follows: The proteins are synthesized on free polysomes as precursors of higher molecular weight than the native forms. These precursors are liberated into the cell cytosol and subsequently translocated into the mitochondria. This timing might be different in yeast under some circumstances, synthesis being completed in association with the mitochondria. The precursors interact with a receptor in the outer mitochondrial membrane interaction being mediated by the presequences of the precursors. The presequences therefore act as addressing signals as well as possibly playing a role in one or all of (a) solubilization of precursors, (b) prevention of premature assembly into multimeric structures, or (c) maintenance of nonnative configurations required for transport. Interaction occurs with a second receptor, this time in the inner membrane of the mitochondria, interaction being with multiple sites in the polypeptide chain. Transport across the inner membrane then occurs, this transport depending on a transmembrane electrochemical gradient of which the proton component is the essential part. Transport is accompanied or followed by proteolysis of the prepiece, and formation of the native structure. While steps 1 and 2 of this sequence can be considered well established, the remaining steps are still poorly understood or purely hypothetical. Nevertheless, this sequence of events is consistent with known facts about the process and provides a framework for future investigations.
Collapse
|
42
|
Abstract
Aminotransferases are ubiquitous enzymes of mammalian cells and several are of important diagnostic use. The application of aspartate aminotransferase activity measurements in serum from individuals suffering from myocardial infarction brought about a new dimension in clinical laboratory testing in the 1950s. This review focuses on measurement techniques for aspartate aminotransferase and their application (a subsequent article will review other aminotransferases). Assay techniques measuring enzyme activity are direct spectrophotometric measurements, manometric techniques, assays using dye substances, coupled enzyme techniques, and radiometric procedures. Of these procedures, the one employing malate dehydrogenase and NADH is the most important and is covered in particular detail. The estimation of the mitochondrial isoenzyme of aspartate aminotransferase is also of clinical interest, in particular for estimating severity of disease or in specific applications (e.g., chronic alcoholism). Methods reviewed for estimation of this enzyme are electrophoresis, chromatography, differential kinetic behavior, and immunochemical separation. Determination of the enzyme protein by techniques independent of its catalytic activity are also reviewed.
Collapse
|
43
|
Smith DD, Campbell JW. Subcellular location of chicken brain glutamine synthetase and comparison with chicken liver mitochondrial glutamine synthetase. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)44168-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Skoda RC, Jaussi R, Christen P. Vinblastine inhibits the maturation of the precursor of mitochondrial aspartate aminotransferase. Vincristine and six other cytoskeleton inhibitors do not show this effect. Biochem Biophys Res Commun 1983; 115:144-52. [PMID: 6137215 DOI: 10.1016/0006-291x(83)90981-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cytoskeleton inhibitors were tested in chicken embryo fibroblast cultures for possible effects on the import of the precursor of mitochondrial aspartate aminotransferase into mitochondria. Vinblastine (50 microM) increased the steady-state pool of the precursor 2.5-fold in pulse experiments with [35S]methionine. If the precursor was accumulated during a pulse in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) and then chased under diluting CCCP, vinblastine (50 microM) prolonged the half-life of the precursor from 0.5 min in the control to 3 min. Other cytoskeleton inhibitors, i.e. vincristine (25 to 150 microM), colchicine (50 microM), nocodazole (50 microM), podophyllotoxin (50 microM), taxol (45 microM), cytochalasin D (20 microM) and phalloidin (25 microM) did not show this effect. The observed inhibition by vinblastine does not seem to relate to its action on microtubuli.
Collapse
|
45
|
Graf-Hausner U, Wilson KJ, Christen P. The covalent structure of mitochondrial aspartate aminotransferase from chicken. Identification of segments of the polypeptide chain invariant specifically in the mitochondrial isoenzyme. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32129-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|