1
|
Buddelmeijer N. The molecular mechanism of bacterial lipoprotein modification—How, when and why? FEMS Microbiol Rev 2015; 39:246-61. [DOI: 10.1093/femsre/fuu006] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
2
|
New Insights into the Types and Function of Proteases in Plastids. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 280:185-218. [DOI: 10.1016/s1937-6448(10)80004-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
3
|
Kocabıyık S, Demirok B. Cloning and overexpression of a thermostable signal peptide peptidase (SppA) fromThermoplasma volcaniumGSS1 inE. coli. Biotechnol J 2009; 4:1055-65. [DOI: 10.1002/biot.200800344] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
4
|
Wang P, Shim E, Cravatt B, Jacobsen R, Schoeniger J, Kim AC, Paetzel M, Dalbey RE. Escherichia coli signal peptide peptidase A is a serine-lysine protease with a lysine recruited to the nonconserved amino-terminal domain in the S49 protease family. Biochemistry 2008; 47:6361-9. [PMID: 18476724 DOI: 10.1021/bi800657p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli signal peptide peptidase A (SppA) is a serine protease which cleaves signal peptides after they have been proteolytically removed from exported proteins by signal peptidase processing. We present here results of site-directed mutagenesis studies of all the conserved serines of SppA in the carboxyl-terminal domain showing that only Ser 409 is essential for enzymatic activity. Also, we show that the serine hydrolase inhibitor FP-biotin inhibits SppA and modifies the protein but does not label the S409A mutant with an alanine substituted for the essential serine. These results are consistent with Ser 409 being directly involved in the proteolytic mechanism. Remarkably, additional site-directed mutagenesis studies showed that none of the lysines or histidine residues in the carboxyl-terminal protease domain (residues 326-549) is critical for activity, suggesting this domain lacks the general base residue required for proteolysis. In contrast, we found that E. coli SppA has a conserved lysine (K209) in the N-terminal domain (residues 56-316) that is essential for activity and important for activation of S409 for reactivity toward the FP-biotin inhibitor and is conserved in those other bacterial SppA proteins that have an N-terminal domain. We also performed alkaline phosphatase fusion experiments that establish that SppA has only one transmembrane segment (residues 29-45) with the C-terminal domain (residues 46-618) protruding into the periplasmic space. These results support the idea that E. coli SppA is a Ser-Lys dyad protease, with the Lys recruited to the amino-terminal domain that is itself not present in most known SppA sequences.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Kim AC, Oliver DC, Paetzel M. Crystal structure of a bacterial signal Peptide peptidase. J Mol Biol 2007; 376:352-66. [PMID: 18164727 DOI: 10.1016/j.jmb.2007.11.080] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 11/20/2007] [Accepted: 11/22/2007] [Indexed: 11/16/2022]
Abstract
Signal peptide peptidase (Spp) is the enzyme responsible for cleaving the remnant signal peptides left behind in the membrane following Sec-dependent protein secretion. Spp activity appears to be present in all cell types, eukaryotic, prokaryotic and archaeal. Here we report the first structure of a signal peptide peptidase, that of the Escherichia coli SppA (SppA(EC)). SppA(EC) forms a tetrameric assembly with a novel bowl-shaped architecture. The bowl has a dramatically hydrophobic interior and contains four separate active sites that utilize a Ser/Lys catalytic dyad mechanism. Our structural analysis of SppA reveals that while in many Gram-negative bacteria as well as characterized plant variants, a tandem duplication in the protein fold creates an intact active site at the interface between the repeated domains, other species, particularly Gram-positive and archaeal organisms, encode half-size, unduplicated SppA variants that could form similar oligomers to their duplicated counterparts, but using an octamer arrangement and with the catalytic residues provided by neighboring monomers. The structure reveals a similarity in the protein fold between the domains in the periplasmic Ser/Lys protease SppA and the monomers seen in the cytoplasmic Ser/His/Asp protease ClpP. We propose that SppA may, in addition to its role in signal peptide hydrolysis, have a role in the quality assurance of periplasmic and membrane-bound proteins, similar to the role that ClpP plays for cytoplasmic proteins.
Collapse
Affiliation(s)
- Apollos C Kim
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia, Canada
| | | | | |
Collapse
|
6
|
Matsumi R, Atomi H, Imanaka T. Identification of the amino acid residues essential for proteolytic activity in an archaeal signal peptide peptidase. J Biol Chem 2006; 281:10533-9. [PMID: 16484219 DOI: 10.1074/jbc.m513754200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal peptide peptidases (SPPs) are enzymes involved in the initial degradation of signal peptides after they are released from the precursor proteins by signal peptidases. In contrast to the eukaryotic enzymes that are aspartate peptidases, the catalytic mechanisms of prokaryotic SPPs had not been known. In this study on the SPP from the hyperthermophilic archaeon Thermococcus kodakaraensis (SppA(Tk)), we have identified amino acid residues that are essential for the peptidase activity of the enzyme. DeltaN54SppA(Tk), a truncated protein without the N-terminal 54 residues and putative transmembrane domain, exhibits high peptidase activity, and was used as the wild-type protein. Sixteen residues, highly conserved among archaeal SPP homologue sequences, were selected and replaced by alanine residues. The mutations S162A and K214A were found to abolish peptidase activity of the protein, whereas all other mutant proteins displayed activity to various extents. The results indicated the function of Ser(162) as the nucleophilic serine and that of Lys(214) as the general base, comprising a Ser/Lys catalytic dyad in SppA(Tk). Kinetic analyses indicated that Ser(184), His(191) Lys(209), Asp(215), and Arg(221) supported peptidase activity. Intriguingly, a large number of mutations led to an increase in activity levels of the enzyme. In particular, mutations in Ser(128) and Tyr(165) not only increased activity levels but also broadened the substrate specificity of SppA(Tk), suggesting that these residues may be present to prevent the enzyme from cleaving unintended peptide/protein substrates in the cell. A detailed alignment of prokaryotic SPP sequences strongly suggested that the majority of archaeal enzymes, along with the bacterial enzyme from Bacillus subtilis, adopt the same catalytic mechanism for peptide hydrolysis.
Collapse
Affiliation(s)
- Rie Matsumi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | |
Collapse
|
7
|
Matsumi R, Atomi H, Imanaka T. Biochemical properties of a putative signal peptide peptidase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 2005; 187:7072-80. [PMID: 16199578 PMCID: PMC1251612 DOI: 10.1128/jb.187.20.7072-7080.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have performed the first biochemical characterization of a putative archaeal signal peptide peptidase (SppA(Tk)) from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. SppA(Tk), comprised of 334 residues, was much smaller than its counterpart from Escherichia coli (618 residues) and harbored a single predicted transmembrane domain near its N terminus. A truncated mutant protein without the N-terminal 54 amino acid residues (deltaN54SppA(Tk)) was found to be stable against autoproteolysis and was examined further. DeltaN54SppA(Tk) exhibited peptidase activity towards fluorogenic peptide substrates and was found to be highly thermostable. Moreover, the enzyme displayed a remarkable stability and preference for alkaline pH, with optimal activity detected at pH 10. DeltaN54SppA(Tk) displayed a K(m) of 240 +/- 18 microM and a V(max) of 27.8 +/- 0.7 micromol min(-1) mg(-1) towards Ala-Ala-Phe-4-methyl-coumaryl-7-amide at 80 degrees C and pH 10. The substrate specificity of the enzyme was examined in detail with a FRETS peptide library. By analyzing the cleavage products with liquid chromatography-mass spectrometry, deltaN54SppA(Tk) was found to efficiently cleave peptides with a relatively small side chain at the P-1 position and a hydrophobic or aromatic residue at the P-3 position. The positively charged Arg residue was preferred at the P-4 position, while substrates with negatively charged residues at the P-2, P-3, or P-4 position were not cleaved. When predicted signal sequences from the T. kodakaraensis genome sequence were examined, we found that the substrate specificity of deltaN54SppA(Tk) was in good agreement with its presumed role as a signal peptide peptidase in this archaeon.
Collapse
Affiliation(s)
- Rie Matsumi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | |
Collapse
|
8
|
Affiliation(s)
- Mark Paetzel
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
9
|
Jiang X, Oohira K, Iwasaki Y, Nakano H, Ichihara S, Yamane T. Reduction of protein degradation by use of protease-deficient mutants in cell-free protein synthesis system of Escherichia coli. J Biosci Bioeng 2002. [DOI: 10.1016/s1389-1723(02)80007-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Lensch M, Herrmann RG, Sokolenko A. Identification and characterization of SppA, a novel light-inducible chloroplast protease complex associated with thylakoid membranes. J Biol Chem 2001; 276:33645-51. [PMID: 11443110 DOI: 10.1074/jbc.m100506200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A new component of the chloroplast proteolytic machinery from Arabidopsis thaliana was identified as a SppA-type protease. The sequence of the mature protein, deduced from a full-length cDNA, displays 22% identity to the serine-type protease IV (SppA) from Escherichia coli and 27% identity to Synechocystis SppA1 (sll1703) but lacks the putative transmembrane spanning segments predicted from the E. coli sequence. The N-terminal sequence exhibits typical features of a cleavable chloroplast stroma-targeting sequence. The chloroplast localization of SppA was confirmed by in organello import experiments using an in vitro expression system and by immunodetection with antigen-specific antisera. Subfractionation of intact chloroplasts demonstrated that SppA is associated exclusively with thylakoid membranes, predominantly stroma lamellae, and is a part of some high molecular mass complex of about 270 kDa that exhibits proteolytic activity. Treatments with chaotropic salts and proteases showed that SppA is largely exposed to the stroma but that it behaves as an intrinsic membrane protein that may have an unusual monotopic arrangement in the thylakoids. We demonstrate that SppA is a light-inducible protease and discuss its possible involvement in the light-dependent degradation of antenna and photosystem II complexes that both involve serine-type proteases.
Collapse
Affiliation(s)
- M Lensch
- Botanisches Institut der Ludwig-Maximilians-Universität, Menzingerstrasse 67, D-80638 München, Germany
| | | | | |
Collapse
|
11
|
Temenak JJ, Anderson BE, McDonald GA. Molecular cloning, sequence and characterization of cjsT, a putative protease from Rickettsia rickettsii. Microb Pathog 2001; 30:221-8. [PMID: 11312615 DOI: 10.1006/mpat.2000.0428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cloning and sequencing of a gene from Rickettsia rickettsii which confers haemolytic activity on Escherichia coli strain TB1 is described. The open reading frame of the haemolysis-promoting gene, cjsT, is 1041 bp and encodes a putative protein with a molecular mass of 33 825 Da. CjsT has high sequence similarity to several bacterial proteases, particularly type IV signal peptidases. Cell lysates from an E. coli clone containing cjsT in pUC19 (pJON1) exhibited greater protease activity in functional assays than found in E. coli containing pUC19 alone. Disruption of the cjsT gene by insertional inactivation with a kanamycin cassette reduced both the protease and haemolytic activities conferred by cjsT. The protease inhibitors antipain and diisopropylfluorophosphate (DFP) both reduced the proteolytic activity of pJON1. The mechanism by which the R. rickettsii cjsT promotes haemolysis in E. coli remains unclear.
Collapse
Affiliation(s)
- J J Temenak
- Viral and Rickettsial Diseases Program, Naval Medical Research Center and Virus Diseases Program, Silver Spring, MD 20910, USA.
| | | | | |
Collapse
|
12
|
Cooper KW, Baneyx F. Escherichia coli FtsH (HflB) degrades a membrane-associated TolAI-II-beta-lactamase fusion protein under highly denaturing conditions. Protein Expr Purif 2001; 21:323-32. [PMID: 11237695 DOI: 10.1006/prep.2000.1378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TolAI--II--beta-lactamase, a fusion protein consisting of the inner membrane and transperiplasmic domains of TolA followed by TEM--beta-lactamase associated with the inner membrane but remained confined to the cytoplasm when expressed at high level in Escherichia coli. Although the fusion protein was resistant to proteolysis in vivo, it was hydrolyzed during preparative SDS-polyacrylamide electrophoresis and when insoluble cellular fractions unfolded with 5 M urea were subjected to microdialysis. Inhibitor profiling studies revealed that both a metallo- and serine protease were involved in TolAI--II--beta-lactamase degradation under denaturing conditions. The in vitro degradation rates of the fusion protein were not affected when insoluble fractions were harvested from a strain lacking protease IV, but were significantly reduced when microdialysis experiments were conducted with material isolated from an isogenic ftsH1 mutant. Adenine nucleotides were not required for degradation, and ATP supplementation did not accelerate the apparent rate of TolAI--II--beta-lactamase hydrolysis under denaturing conditions. Our results indicate that the metalloprotease active site of FtsH remains functional in the presence of 3--5 M urea and suggest that the ATPase and proteolytic activities of FtsH can be uncoupled if the substrate is sufficiently unstructured. Thus, a key role of the FtsH AAA module appears to be the net unfolding of bound substrates so that they can be efficiently engaged by the protease active site.
Collapse
Affiliation(s)
- K W Cooper
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
13
|
Striebel HM, Kalousek F. Eukaryotic precursor proteins are processed by Escherichia coli outer membrane protein OmpP. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 262:832-9. [PMID: 10411646 DOI: 10.1046/j.1432-1327.1999.00446.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A new specific endopeptidase that cleaves eukaryotic precursor proteins has been found in Escherichia coli K but not in E. coli B strains. After purification, protein sequencing and Western blotting, the endopeptidase was shown to be identical with E. coli outer membrane protein OmpP [Kaufmann, A., Stierhof, Y.-D. & Henning, U. (1994) J. Bacteriol. 176, 359-367]. Further characterization of enzymatic properties of the new peptidase was performed. Comparison of the cleavage specificities of the newly found endopeptidase and that of rat mitochondrial processing peptidase (MPP) showed that patterns of proteolytic cleavage on the investigated precursor proteins by both enzymes are similar. By using three mitochondrial precursor proteins, the specificity assigned to OmpP previously, a cleavage position between two basic amino-acid residues, was extended to a three amino-acid recognition sequence. Positions +1 to +3 of this extended recognition site consist of an amino-acid residue with a small aliphatic side chain such as alanine or serine, a large hydrophobic residue such as leucine or valine followed by an arginine residue. Additionally, structural motifs of the substrate seem to be required for OmpP cleavage.
Collapse
Affiliation(s)
- H M Striebel
- Yale University School of Medicine, Department of Genetics, New Haven, CT, USA.
| | | |
Collapse
|
14
|
O'Keeffe T, Hill C, Ross RP. Characterization and heterologous expression of the genes encoding enterocin a production, immunity, and regulation in Enterococcus faecium DPC1146. Appl Environ Microbiol 1999; 65:1506-15. [PMID: 10103244 PMCID: PMC91214 DOI: 10.1128/aem.65.4.1506-1515.1999] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/1998] [Accepted: 01/13/1999] [Indexed: 02/05/2023] Open
Abstract
Enterocin A is a small, heat-stable, antilisterial bacteriocin produced by Enterococcus faecium DPC1146. The sequence of a 10, 879-bp chromosomal region containing at least 12 open reading frames (ORFs), 7 of which are predicted to play a role in enterocin biosynthesis, is presented. The genes entA, entI, and entF encode the enterocin A prepeptide, the putative immunity protein, and the induction factor prepeptide, respectively. The deduced proteins EntK and EntR resemble the histidine kinase and response regulator proteins of two-component signal transducing systems of the AgrC-AgrA type. The predicted proteins EntT and EntD are homologous to ABC (ATP-binding cassette) transporters and accessory factors, respectively, of several other bacteriocin systems and to proteins implicated in the signal-sequence-independent export of Escherichia coli hemolysin A. Immediately downstream of the entT and entD genes are two ORFs, the product of one of which, ORF4, is very similar to the product of the yteI gene of Bacillus subtilis and to E. coli protease IV, a signal peptide peptidase known to be involved in outer membrane lipoprotein export. Another potential bacteriocin is encoded in the opposite direction to the other genes in the enterocin cluster. This putative bacteriocin-like peptide is similar to LafX, one of the components of the lactacin F complex. A deletion which included one of two direct repeats upstream of the entA gene abolished enterocin A activity, immunity, and ability to induce bacteriocin production. Transposon insertion upstream of the entF gene also had the same effect, but this mutant could be complemented by exogenously supplied induction factor. The putative EntI peptide was shown to be involved in the immunity to enterocin A. Cloning of a 10.5-kb amplicon comprising all predicted ORFs and regulatory regions resulted in heterologous production of enterocin A and induction factor in Enterococcus faecalis, while a four-gene construct (entAITD) under the control of a constitutive promoter resulted in heterologous enterocin A production in both E. faecalis and Lactococcus lactis.
Collapse
Affiliation(s)
- T O'Keeffe
- Department of Microbiology and National Food Biotechnology Centre, University College Cork, Fermoy, Ireland
| | | | | |
Collapse
|
15
|
Panpoom S, Los DA, Murata N. Biochemical characterization of a delta12 acyl-lipid desaturase after overexpression of the enzyme in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1390:323-32. [PMID: 9487153 DOI: 10.1016/s0005-2760(97)00190-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Delta12 acyl-lipid desaturase of Synechocystis sp. PCC 6803 was overexpressed in Escherichia coli as an active enzyme. The overexpressed protein was associated with cell membranes; it represented about 10% of the total cellular protein and 25% of the total membrane protein. The enzyme in the membrane fraction exhibited strong fatty-acid desaturase activity. The desaturase in salt-washed membranes was stabilized by the presence of sorbitol. Storage of salt-washed membranes in 2 M sorbitol at 4 degrees C and at pH 7-8 for six days resulted in the loss of less than 10% of the desaturase activity. The desaturase activity had a positive temperature coefficient, a result that suggests that the increase in the desaturation of fatty acids at low temperature might not be caused by the activation of desaturases at low temperature but, rather, by the increased synthesis of desaturases de novo.
Collapse
Affiliation(s)
- S Panpoom
- Department of Molecular Biomechanics, the Graduate University for Advanced Studies, Myodaiji, Okazaki 444, Japan
| | | | | |
Collapse
|
16
|
Abstract
With the discovery of molecular chaperones and the development of heterologous gene expression techniques, protein folding in bacteria has come into focus as a potentially limiting factor in expression and as a topic of interest in its own right. Many proteins of importance in biotechnology contain disulphide bonds, which form in the Escherichia coli periplasm, but most work on protein folding in the periplasm of E. coli is very recent and is often speculative. This MicroReview gives a short overview of the possible fates of a periplasmic protein from the moment it is translocated, as well as of the E. coli proteins involved in this process. After an introduction to the specific physiological situation in the periplasm of E. coli, we discuss the proteins that might help other proteins to obtain their correctly folded conformation--disulphide isomerase, rotamase, parts of the translocation apparatus and putative periplasmic chaperones--and briefly cover the guided assembly of multi-subunit structures. Finally, our MicroReview turns to the fate of misfolded proteins: degradation by periplasmic proteases and aggregation phenomena.
Collapse
Affiliation(s)
- C Wülfing
- Biochemisches Institut, Universität Zurich, Switzerland
| | | |
Collapse
|
17
|
Kaufmann A, Stierhof YD, Henning U. New outer membrane-associated protease of Escherichia coli K-12. J Bacteriol 1994; 176:359-67. [PMID: 8288530 PMCID: PMC205058 DOI: 10.1128/jb.176.2.359-367.1994] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The gene for a new outer membrane-associated protease, designated OmpP, of Escherichia coli has been cloned and sequenced. The gene encodes a 315-residue precursor protein possessing a 23-residue signal sequence. Including conservative substitutions and omitting the signal peptides, OmpP is 87% identical to the outer membrane protease OmpT. OmpP possessed the same enzymatic activity as OmpT. Immuno-electron microscopy demonstrated the exposure of the protein at the cell surface. Digestion of intact cells with proteinase K removed 155 N-terminal residues of OmpP, while the C-terminal half remained protected. It is possible that much of this N-terminal part is cell surface exposed and carries the enzymatic activity. Synthesis of OmpP was found to be thermoregulated, as is the expression of ompT (i.e., there is a low rate of synthesis at low temperatures) and, in addition, was found to be controlled by the cyclic AMP system.
Collapse
Affiliation(s)
- A Kaufmann
- Max-Planck-Institut für Biologie, Tübingen, Germany
| | | | | |
Collapse
|
18
|
Ichihara S, Matsubara Y, Kato C, Akasaka K, Mizushima S. Molecular cloning, sequencing, and mapping of the gene encoding protease I and characterization of proteinase and proteinase-defective Escherichia coli mutants. J Bacteriol 1993; 175:1032-7. [PMID: 8432696 PMCID: PMC193016 DOI: 10.1128/jb.175.4.1032-1037.1993] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Clones carrying the gene encoding a proteinase were isolated from Clarke and Carbon's collection, using a chromogenic substrate, N-benzyloxycarbonyl-L-phenylalanine beta-naphthyl ester. The three clones isolated, pLC6-33, pLC13-1, and pLC36-46, shared the same chromosomal DNA region. A 0.9-kb Sau3AI fragment within this region was found to be responsible for the overproduction of the proteinase, and the nucleotide sequence of the region was then determined. The proteinase was purified to homogeneity from the soluble fraction of an overproducing strain possessing the cloned gene. N-terminal amino acid sequencing of the purified protein revealed that the cloned gene is the structural gene for the protein, with the protein being synthesized in precursor form with a signal peptide. On the basis of its molecular mass (20 kDa), periplasmic localization, and substrate specificity, we conclude this protein to be protease I. By using the gene cloned on a plasmid, a deletion mutant was constructed in which the gene was replaced by the kanamycin resistance gene (Kmr) on the chromosome. The Kmr gene was mapped at 11.8 min, the gene order being dnaZ-adk-ush-Kmr-purE, which is consistent with the map position of apeA, the gene encoding protease I in Salmonella typhimurium. Therefore, the gene was named apeA. Deletion of the apeA gene, either with or without deletion of other proteinases (protease IV and aminopeptidase N), did not have any effect on cell growth in the various media tested.
Collapse
Affiliation(s)
- S Ichihara
- Laboratory of Microbiology, School of Agriculture, Nagoya University, Japan
| | | | | | | | | |
Collapse
|
19
|
Abstract
In E. coli, protein degradation plays important roles in regulating the levels of specific proteins and in eliminating damaged or abnormal proteins. E. coli possess a very large number of proteolytic enzymes distributed in the cytoplasm, the inner membrane, and the periplasm, but, with few exceptions, the physiological functions of these proteases are not known. More than 90% of the protein degradation occurring in the cytoplasm is energy-dependent, but the activities of most E. coli proteases in vitro are not energy-dependent. Two ATP-dependent proteases, Lon and Clp, are responsible for 70-80% of the energy-dependent degradation of proteins in vivo. In vitro studies with Lon and Clp indicate that both proteases directly interact with substrates for degradation. ATP functions as an allosteric effector promoting an active conformation of the proteases, and ATP hydrolysis is required for rapid catalytic turnover of peptide bond cleavage in proteins. Lon and Clp show virtually no homology at the amino acid level, and thus it appears that at least two families of ATP-dependent proteases have evolved independently.
Collapse
Affiliation(s)
- M R Maurizi
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland 20892
| |
Collapse
|
20
|
Baneyx F, Ayling A, Palumbo T, Thomas D, Georgiou G. Optimization of growth conditions for the production of proteolytically-sensitive proteins in the periplasmic space of Escherichia coli. Appl Microbiol Biotechnol 1992; 36:14-20. [PMID: 1367774 DOI: 10.1007/bf00164691] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The expression of many secreted recombinant proteins in Gram-negative bacteria is limited by degradation in the periplasmic space. We have previously shown that the production of protein A-beta-lactamase, a secreted fusion protein highly sensitive to proteolysis in Escherichia coli, can be increased in mutant strains deficient in up to three cell-envelope-associated proteolytic activities. In this work we investigated the effect of fermentation conditions on suppressing any residual proteolytic activity in various protease-deficient strains. Optimal production of the fusion protein was observed in cells grown under mildly acidic conditions (5.5 less than or equal to pH less than or equal to 6.0) and a low temperatures. These conditions were shown to specifically decrease the rate of proteolysis. In addition, a further increase in production was observed in cultures supplemented with 0.5 to 0.75 mM zinc chloride. This may relate to the inhibition of a cell envelope protease by Zn2+ ions.
Collapse
Affiliation(s)
- F Baneyx
- Department of Chemical Engineering, University of Texas, Austin 78712
| | | | | | | | | |
Collapse
|
21
|
Baird L, Lipinska B, Raina S, Georgopoulos C. Identification of the Escherichia coli sohB gene, a multicopy suppressor of the HtrA (DegP) null phenotype. J Bacteriol 1991; 173:5763-70. [PMID: 1885549 PMCID: PMC208308 DOI: 10.1128/jb.173.18.5763-5770.1991] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We cloned and sequenced the sohB gene of Escherichia coli. The temperature-sensitive phenotype of bacteria that carry a Tn10 insertion in the htrA (degP) gene is relieved when the sohB gene is present in the cell on a multicopy plasmid (30 to 50 copies per cell). The htrA gene encodes a periplasmic protease required for bacterial viability only at high temperature, i.e., above 39 degrees C. The sohB gene maps to 28 min on the E. coli chromosome, precisely between the topA and btuR genes. The gene encodes a 39,000-Mr precursor protein which is processed to a 37,000-Mr mature form. Sequencing of a DNA fragment containing the gene revealed an open reading frame which could encode a protein of Mr 39,474 with a predicted signal sequence cleavage site between amino acids 22 and 23. Cleavage at this site would reduce the size of the processed protein to 37,474 Mr. The predicted protein encoded by the open reading frame has homology with the inner membrane enzyme protease IV of E. coli, which digests cleaved signal peptides. Therefore, it is possible that the sohB gene encodes a previously undiscovered periplasmic protease in E. coli that, when overexpressed, can partially compensate for the missing HtrA protein function.
Collapse
Affiliation(s)
- L Baird
- Department of Cellular, Viral and Molecular Biology, University of Utah School of Medicine, Salt Lake City 84132
| | | | | | | |
Collapse
|
22
|
Baneyx F, Georgiou G. Construction and characterization of Escherichia coli strains deficient in multiple secreted proteases: protease III degrades high-molecular-weight substrates in vivo. J Bacteriol 1991; 173:2696-703. [PMID: 2013581 PMCID: PMC207839 DOI: 10.1128/jb.173.8.2696-2703.1991] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Protease III, the product of the ptr gene, is a 110-kDa periplasmic protease with specificity towards insulin and other low-molecular-weight substrates (less than 7,000 molecular weight) in vitro (Y.-S.E. Cheng and D. Zipser, J. Biol. Chem. 254:4698-4706, 1979). Escherichia coli strains deficient in protease III were constructed by insertional inactivation of the ptr gene. This mutation did not appear to affect the function of the adjoining recB and recC genes. Expression of protein A-beta-lactamase, a protease-sensitive secreted polypeptide, was increased approximately twofold in ptr cells. A comparable increase in the half-life of protein A-beta-lactamase was observed by pulse-chase experiments, suggesting that protease III is involved in the catabolism of high-molecular-weight substrates in vivo, ptr mutants exhibited no detectable phenotypic alterations except for a slight reduction in growth rate. When the ptr mutation was transferred to a strain deficient in the secreted protease DegP, a further decrease in growth rate, as well as an additive increase in the expression of the fusion protein, was observed. A ptr degP ompT mutant strain resulted in a further increase in expression in minimal medium but not in rich medium.
Collapse
Affiliation(s)
- F Baneyx
- Department of Chemical Engineering, University of Texas, Austin 78712
| | | |
Collapse
|
23
|
Abstract
Signal peptidases, the endoproteases that remove the amino-terminal signal sequence from many secretory proteins, have been isolated from various sources. Seven signal peptidases have been purified, two from E. coli, two from mammalian sources, and three from mitochondrial matrix. The mitochondrial enzymes are soluble and function as a heterogeneous dimer. The mammalian enzymes are isolated as a complex and share a common glycosylated subunit. The bacterial enzymes are isolated as monomers and show no sequence homology with each other or the mammalian enzymes. The membrane-bound enzymes seem to require a substrate containing a consensus sequence following the -3, -1 rule of von Heijne at the cleavage site; however, processing of the substrate is strongly influenced by the hydrophobic region of the signal peptide. The enzymes appear to recognize an unknown three-dimensional motif rather than a specific amino acid sequence around the cleavage site. The matrix mitochondrial enzymes are metallo-endopeptidases; however, the other signal peptidases may belong to a unique class of proteases as they are resistant to chelators and most protease inhibitors. There are no data concerning the substrate binding site of these enzymes. In vivo, the signal peptide is rapidly degraded. Three different enzymes in Escherichia coli that can degrade a signal peptide in vitro have been identified. The intact signal peptide is not accumulated in mutants lacking these enzymes, which suggests that these peptidases individually are not responsible for the degradation of an intact signal peptide in vivo. It is speculated that signal peptidases and signal peptide hydrolases are integral components of the secretory pathway and that inhibition of the terminal steps can block translocation.
Collapse
Affiliation(s)
- I K Dev
- Division of Molecular Genetics and Microbiology, Burroughs Wellcome Co., Research Triangle Park, North Carolina 27709
| | | |
Collapse
|
24
|
Chen L, Tai PC. Effects of inhibitors of membrane signal peptide peptidase on protein translocation into membrane vesicles. Arch Microbiol 1989; 153:90-4. [PMID: 2692535 DOI: 10.1007/bf00277547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The effect of the removal of signal peptides after cleavage of precursor molecules by the signal peptidase I was examined in an in vitro translocation system with Escherichia coli membrane vesicles. The translocation of periplasmic alkaline phosphatase precursors was significantly inhibited by the protease inhibitors antipain, elastatinal and leupeptin. Antipain and leupeptin enhanced the translocation of precursors of outer membrane protein OmpA, but inhibited the processing. However, antipain did not inhibit the processing of precursors mediated by signal peptidase I in the soluble form. Moreover, the inhibition by antipain was not due to the disruption of membrane integrity, but occurred during the process of protein translocation. Since these small peptide inhibitors are known to inhibit membrane protease IV, a signal peptide peptidase, these results suggest that the hydrolysis of signal peptides is an important step in the recycles of the overall translocation process, and that the prevention of degradation of signal peptides feedback inhibits the preceding steps in the translocation pathway.
Collapse
Affiliation(s)
- L Chen
- Department of Fine Structure, Boston Biomedical Research Institute, MA 02114
| | | |
Collapse
|
25
|
|
26
|
Barua PK, Neiders ME, Topolnycky A, Zambon JJ, Birkedal-Hansen H. Purification of an 80,000-Mr glycylprolyl peptidase from Bacteroides gingivalis. Infect Immun 1989; 57:2522-8. [PMID: 2744859 PMCID: PMC313480 DOI: 10.1128/iai.57.8.2522-2528.1989] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
An enzyme from Bacteroides gingivalis SUNYAB A7A1-28 that hydrolyzes the synthetic peptide glycyl-L-proline 4-methoxy-beta-naphthylamide was purified 1,040-fold by urea extraction, gel filtration, ion-exchange chromatography, and fast protein liquid chromatography. The molecular weight of the enzyme was 80,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 75,000 as determined by gel filtration. The optimum pH for the hydrolysis of glycyl-L-proline 4-methoxy-beta-naphthylamide was 7.5 to 8.5. The enzyme activity was inhibited by the serine protease inhibitors diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride by 82.5 and 78%, respectively. The activity was also inhibited by Hg2+ (55.6%) and Zn2+ (45%).
Collapse
Affiliation(s)
- P K Barua
- Department of Stomatology and Interdisciplinary Sciences, State University of New York, Buffalo 14214
| | | | | | | | | |
Collapse
|
27
|
Abstract
The eukaryotic serine protease, rat anionic trypsin, and various mutants created by site-directed mutagenesis have been heterologously expressed in Escherichia coli. The bacterial alkaline phosphatase (phoA) promoter was used to control the expression of the enzymes in an induced or constitutive fashion. The DNA coding for the eukaryotic signal peptide of pretrypsinogen was replaced with DNA coding for the phoA signal peptide. The phoA signal peptide successfully directs the secretion of the mammalian trypsinogen to the periplasmic space of E. coli. Active trypsin was expressed in the periplasm of E. coli by deleting the DNA coding for the activation hexapeptide of the zymogen. The activity of trypsin in the periplasm suggests that the enzyme is correctly activated and has folded such that the 12 cysteine residues involved in the six disulfide bonds of rat anionic trypsin have paired correctly. A transcription terminator increased the level of expression by a factor of two. However, increasing the copy number of the plasmid decreased the levels of expression. Localization of the active enzyme in the periplasm allows rapid screening of modified trypsin activities and facilitates the purification of protein to homogeneity and subsequently to crystallinity.
Collapse
Affiliation(s)
- J R Vasquez
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143
| | | | | | | |
Collapse
|
28
|
Sugimura K, Nishihara T. Purification, characterization, and primary structure of Escherichia coli protease VII with specificity for paired basic residues: identity of protease VII and OmpT. J Bacteriol 1988; 170:5625-32. [PMID: 3056908 PMCID: PMC211661 DOI: 10.1128/jb.170.12.5625-5632.1988] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Escherichia coli cells were found to contain a novel outer membrane-associated protease, designated protease VII (K. Sugimura and N. Higashi, J. Bacteriol. 170:3650-3654, 1988). This enzyme was purified to homogeneity and exhibited an apparent molecular weight of 36,000 on sodium dodecyl sulfate gels and 180,000 on a TSK G-3000SW column in the presence of Triton X-100. It was capable of cleaving several peptides at the center of paired basic residues but not at single basic residues, implying that it is distinct from trypsinlike proteases. Protease VII was most active at pH 6.0 and was sensitive to a serine protease inhibitor, diisopropylfluorophosphate, and to the bivalent cations Zn2+, Cu2+, and Fe2+. The nucleotide sequence of a protease VII gene-carrying DNA fragment, which had been cloned by complementation analysis (K. Sugimura, Biochem. Biophys. Res. Commun. 153:753-759, 1988) was determined. It carried two putative promoter regions and a putative Shine-Dalgarno sequence in addition to the complete structural gene, which encoded pre-protease VII of 317 amino acid residues, with the N-terminal 20 residues being a signal peptide. By comparing their amino acid sequences, protease VII and OmpT, which specifically cleaves ferric enterobactin receptor protein, were found to be identical.
Collapse
Affiliation(s)
- K Sugimura
- Suntory Institute for Biomedical Research, Osaka, Japan
| | | |
Collapse
|
29
|
Abstract
The degradation of the prolipoprotein signal peptide in vitro by membranes, cytoplasmic fraction, and two purified major signal peptide peptidases from Escherichia coli was followed by reverse-phase liquid chromatography (RPLC). The cytoplasmic fraction hydrolyzed the signal peptide completely into amino acids. In contrast, many peptide fragments accumulated as final products during the cleavage by a membrane fraction. Most of the peptides were similar to the peptides formed during the cleavage of the signal peptide by the purified membrane-bound signal peptide peptidase, protease IV. Peptide fragments generated during the cleavage of the signal peptide by protease IV and a cytoplasmic enzyme, oligopeptidase A, were identified from their amino acid compositions, their retention times during RPLC, and knowledge of the amino acid sequence of the signal peptide. Both enzymes were endopeptidases, as neither dipeptides nor free amino acids were formed during the cleavage reactions. Protease IV cleaved the signal peptide predominantly in the hydrophobic segment (residues 7 to 14). Protease IV required substrates with hydrophobic amino acids at the primary and the adjacent substrate-binding sites, with a minimum of three amino acids on either side of the scissile bond. Oligopeptidase A cleaved peptides (minimally five residues) that had either alanine or glycine at the P'1 (primary binding site) or at the P1 (preceding P'1) site of the substrate. These results support the hypothesis that protease IV is the major signal peptide peptidase in membranes that initiates the degradation of the signal peptide by making endoproteolytic cuts; oligopeptidase A and other cytoplasmic enzymes further degrade the partially degraded portions of the signal peptide that may be diffused or transported back into the cytoplasm from the membranes.
Collapse
Affiliation(s)
- P Novak
- Department of Microbiology, Wellcome Research Laboratories, Research Triangle Park, North Carolina 27709
| | | |
Collapse
|
30
|
Abstract
Many newly synthesized proteins must be translocated across a membrane to reach their final destinations. Translocation requires a signal on the protein itself, a loose conformation of the protein, energy, and receptor-like components in the cytosol and on the target membrane.
Collapse
Affiliation(s)
- K Verner
- University of Basel, Switzerland
| | | |
Collapse
|
31
|
Abstract
Human gamma interferon produced by recombinant Escherichia coli was degraded by endogenous protease after cell disruption. Specific cleavages took place at the center of two pairs of basic amino acids (Lys-131-Arg-132 and Arg-142-Arg-143) in the C-terminal region, giving rise to products with molecular weights of 17,500 and 16,000. The proteolytic activity was associated with the outer membrane of E. coli. It was insensitive to the protease inhibitors diisopropylfluorophosphate, phenylmethylsulfonyl fluoride, tosyl-L-lysine chloro-methyl ketone, EDTA, and p-chloromercuribenzoate. Benzamidine and the bivalent cations Zn2+ and Cu2+ inhibited the activity. Dynorphin A(1-13) (Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-Leu-Lys) was a good substrate and was preferentially cleaved at the center of Arg-6-Arg-7. Neither the amino nor carboxyl sides of Arg-9 and Lys-11 were digested. These results indicate that the protease specifically cleaves the peptide bond between consecutive basic residues and therefore is different from the known membrane enzymes, proteases IV, V, and VI. We have designated this new enzyme protease VII.
Collapse
Affiliation(s)
- K Sugimura
- Suntory Institute for Biomedical Research, Osaka, Japan
| | | |
Collapse
|
32
|
Gentz R, Kuys Y, Zwieb C, Taatjes D, Taatjes H, Bannwarth W, Stueber D, Ibrahimi I. Association of degradation and secretion of three chimeric polypeptides in Escherichia coli. J Bacteriol 1988; 170:2212-20. [PMID: 3129403 PMCID: PMC211109 DOI: 10.1128/jb.170.5.2212-2220.1988] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We investigated the stability of fusion proteins composed of the signal peptide of the heat-labile enterotoxin of Escherichia coli and three polypeptides: the bacterial cytoplasmic chloramphenicol acetyltransferase, the mouse dihydrofolate reductase, and human immune interferon. We demonstrate that these proteins are rapidly degraded as a result of being targeted to the secretion apparatus of E. coli, with the extent of degradation varying among the three fusion proteins. Four lines of experimental evidence are presented in support of this suggestion. First, the chimeric polypeptides containing a functional signal peptide were detected in low amounts in vivo. When a mutation was introduced in the signal peptide, resulting in lack of recognition by the secretion apparatus, the chimeric proteins accumulated at high levels in the cytoplasm of the cell. Second, both the wild-type and mutant polypeptides accumulated in a purified and reconstituted in vitro translation system from E. coli and were equally susceptible to digestion by an exogenous protease. Third, the chimeric polypeptides lacking the signal peptide accumulated in a stable form in vivo. Fourth, the precursors of the proteins containing a functional signal peptide accumulated in a secA ts mutant at the restrictive temperature when secretion was blocked, suggesting that degradation is tightly linked to the secretion apparatus.
Collapse
Affiliation(s)
- R Gentz
- F. Hoffmann La Roche & Co. A.G., Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Grodberg J, Dunn JJ. ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J Bacteriol 1988; 170:1245-53. [PMID: 3277950 PMCID: PMC210899 DOI: 10.1128/jb.170.3.1245-1253.1988] [Citation(s) in RCA: 550] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Bacteriophage T7 RNA polymerase is stable in Escherichia coli but very susceptible to cleavage by at least one endoprotease after cell lysis. The major source of this endoprotease activity was found to be localized to the outer membrane of the cell. A rapid whole-cell assay was developed to screen different strains for the presence of this proteolytic activity. Using this assay, we identified some common laboratory strains that totally lack the protease. Genetic and Southern analyses of these null strains allowed us to conclude that the protease that cleaves T7 RNA polymerase is OmpT (formerly termed protein a), a known outer membrane endoprotease, and that the null phenotype results from deletion of the OmpT structural gene. A recombinant plasmid carrying the ompT gene enables these deletion strains to synthesize OmpT and converts them to a protease-positive phenotype. The plasmid led to overproduction of OmpT protein and protease activity in the E. coli K-12 and B strains we used, but only weak expression in the E. coli C strain, C1757. This strain-dependent difference in ompT expression was investigated with respect to the known influence of envZ on OmpT synthesis. A small deletion in the ompT region of the plasmid greatly diminishes the amount of OmpT protein and plasmid-encoded protease present in outer membranes. Use of ompT deletion strains for production of T7 RNA polymerase from the cloned gene has made purification of intact T7 RNA polymerase routine. Such strains may be useful for purification of other proteins expressed in E. coli.
Collapse
Affiliation(s)
- J Grodberg
- Department of Microbiology, State University of New York at Stony Brook 11794
| | | |
Collapse
|
35
|
Abstract
In the course of examining the turnover of enzymes and proteins subject to catabolite inhibition and/or catabolite repression in Escherichia coli, we have observed at least three novel calcium- or manganese-activated proteolytic activities restricted to the periplasmic space. The occurrence and level of these proteolytic activities vary with the stage of cell growth and carbon source. Each of these proteases are neutral metalloendoproteases capable of degrading test substrates such as casein, insulin, globin, and protamine and appear to be unique when compared with the known periplasmic proteases in E. coli. One of these proteases (designated protease VII) has been purified to homogeneity and characterized in regard to subunit structure, sensitivity to protease inhibitors and metal ions, and substrate specificity. Immunological and genetic approaches are being employed to determine if these novel proteases arise from a common gene product. The physiological role of these proteases remains to be established.
Collapse
Affiliation(s)
- R A Cook
- Department of Biochemistry, University of Western Ontario, London, Canada
| |
Collapse
|
36
|
Suzuki T, Itoh A, Ichihara S, Mizushima S. Characterization of the sppA gene coding for protease IV, a signal peptide peptidase of Escherichia coli. J Bacteriol 1987; 169:2523-8. [PMID: 3294796 PMCID: PMC212110 DOI: 10.1128/jb.169.6.2523-2528.1987] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The sppA gene codes for protease IV, a signal peptide peptidase of Escherichia coli. Using the gene cloned on a plasmid, we constructed an E. coli strain carrying the ampicillin resistance gene near the chromosomal sppA gene and an sppA deletion strain in which the deleted portion was replaced by the kanamycin resistance gene. Using these strains, we mapped the sppA gene at 38.5 min on the chromosome, the gene order being katE-xthA-sppA-pncA. Although digestion of the signal peptide that accumulated in the cell envelope fraction was considerably slower in the deletion mutant than in the sppA+ strain, it was still significant, suggesting the participation of another envelope protease(s) in signal peptide digestion.
Collapse
|
37
|
Palmer SM, St John AC. Characterization of a membrane-associated serine protease in Escherichia coli. J Bacteriol 1987; 169:1474-9. [PMID: 3549688 PMCID: PMC211970 DOI: 10.1128/jb.169.4.1474-1479.1987] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Three membrane-associated proteolytic activities in Escherichia coli were resolved by DEAE-cellulose chromatography from detergent extracts of the total envelope fraction. On the basis of substrate specificity for the hydrolysis of chromogenic amino acid ester substrates, the first two eluting activities were determined previously to be protease V and protease IV, respectively (M. Pacaud, J. Bacteriol. 149:6-14, 1982). The third proteolytic activity eluting from the DEAE-cellulose column was further purified by affinity chromatography on benzamidine-Sepharose 6B. We termed this enzyme protease VI. Protease VI did not hydrolyze any of the chromogenic substrates used in the detection of protease IV and protease V. However, all three enzymes generated acid-soluble fragments from a mixture of E. coli membrane proteins which were biosynthetically labeled with radioactive amino acids. The activity of protease VI was sensitive to serine protease inhibitors. Using [3H]diisopropylfluorophosphate as an active-site labeling reagent, we determined that protease VI has an apparent molecular weight of 43,000 in polyacrylamide gels. All three membrane-associated serine proteases were insensitive to inhibition by Ecotin, and endogenous, periplasmic inhibitor of trypsin.
Collapse
|
38
|
Fujimura S, Nakamura T. Isolation and characterization of a protease from Bacteroides gingivalis. Infect Immun 1987; 55:716-20. [PMID: 3546137 PMCID: PMC260399 DOI: 10.1128/iai.55.3.716-720.1987] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A protease was purified from Bacteroides gingivalis ATCC 33277 culture fluid by sequential procedures including ammonium sulfate precipitation, ion-exchange chromatography, and isoelectric focusing. The enzyme was active against benzoyl-L-arginine-p-nitroanilide, carbobenzoxy-L-phenylalanyl-L-valyl-L-arginine-p-nitroanilide azoalbumin, azocasein, azocoll, and p-tosyl-L-arginine methyl ester. The molecular weight of the enzyme was about 300,000 as determined by gel filtration. Its isoelectric point was 5.0. The maximum activity was found at pH 7.5, and the optimum temperature for activity was between 40 and 45 degrees C. The apparent Km value for benzoyl-L-arginine-p-nitroanilide was 2 mM. The enzyme was inhibited by sulfhydryl group-blocking reagents, tosyl-L-lysine chloromethyl ketone, and EDTA. Soybean trypsin inhibitor and diisopropylfluorophosphate were not inhibitory.
Collapse
|
39
|
Roseman J, Levine R. Purification of a protease from Escherichia coli with specificity for oxidized glutamine synthetase. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61623-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Fricke B, Jahreis G, Sorger H, Aurich H. [Proteases in different membrane fractions of Acinetobacter calcoaceticus]. J Basic Microbiol 1987; 27:75-81. [PMID: 3309254 DOI: 10.1002/jobm.3620270204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Distinct protease activities were found in membrane fractions from Acinetobacter calcoaceticus grown on acetate-NH4+ medium until early stationary phase. Mechanical or enzymatic cell disintegration followed by membrane fractionation through sucrose gradient revealed higher activities in the outer membrane than in the cytoplasmic membrane. Using azocasein and synthetic p-nitroanilides as substrates we found very low proteinase activities in intracytoplasmic membrane fractions. However, these fractions contained a significant aminopeptidase activity which was absent from cell envelope membranes. Peptidolytic activities in intracytoplasmic membranes of gram-negative bacteria have not been described before.
Collapse
Affiliation(s)
- B Fricke
- Institut für Biochemie, Bereich Medizin der Martin-Luther-Universität, Halle, Saale, DDR
| | | | | | | |
Collapse
|
41
|
Limited proteolysis of IIIGlc, a regulatory protein of the phosphoenolpyruvate:glycose phosphotransferase system, by membrane-associated enzymes from Salmonella typhimurium and Escherichia coli. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67047-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
42
|
O'Connor SP, Cleary PP. Localization of the streptococcal C5a peptidase to the surface of group A streptococci. Infect Immun 1986; 53:432-4. [PMID: 3525415 PMCID: PMC260894 DOI: 10.1128/iai.53.2.432-434.1986] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Immunofluorescent staining was used to determine that the streptococcal C5a peptidase (SCP) exists as a cell surface antigen on group A streptococci. The ability of hyperimmune serum to neutralize cell-associated SCP activity provided further evidence for the location of SCP. Quantification of SCP during growth in vitro by indirect enzyme-linked immunosorbent assay showed that approximately 90% of the measurable antigen is cell bound.
Collapse
|
43
|
Ichihara S, Suzuki T, Suzuki M, Mizushima S. Molecular cloning and sequencing of the sppA gene and characterization of the encoded protease IV, a signal peptide peptidase, of Escherichia coli. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67669-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Localization and purification of two enzymes from Escherichia coli capable of hydrolyzing a signal peptide. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)42489-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
45
|
|
46
|
|
47
|
Braun V, Fischer E, Hantke K, Heller K, Rotering H. Functional aspects of gram-negative cell surfaces. Subcell Biochem 1985; 11:103-80. [PMID: 3904084 DOI: 10.1007/978-1-4899-1698-3_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
48
|
Abstract
This article is intended to give an overview of the most significant facts in the area of intracellular proteolysis. It begins with general considerations on the importance and nature of the intracellular proteolytic processes and examples are given of what takes place during both the extensive proteolysis and the limited cleavage of the cellular proteins. We have mentioned the intracellular proteases that have been identified and their established role since the knowledge of the proteases involved in important to understand the mechanisms of these processes.
Collapse
|
49
|
Ichihara S, Beppu N, Mizushima S. Protease IV, a cytoplasmic membrane protein of Escherichia coli, has signal peptide peptidase activity. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)42778-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
50
|
Morona R, Reeves P. Detection of several diisopropylfluorophosphate-binding proteins in the outer membrane ofEscherichia coliK-12. FEMS Microbiol Lett 1984. [DOI: 10.1111/j.1574-6968.1984.tb01058.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|