1
|
Lovyagina ER, Luneva OG, Loktyushkin AV, Semin BK. Effect of lanthanides on oxidation of Mn 2+ cations via a high-affinity Mn-binding site in photosystem II membranes. J Inorg Biochem 2023; 244:112237. [PMID: 37105009 DOI: 10.1016/j.jinorgbio.2023.112237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/04/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
Lanthanide cations (La3+ and Tb3+) bind to the Ca-binding site of the oxygen-evolving complex in Ca-depleted PSII membranes and irreversibly inhibit the oxygen evolution. Оn the other hand, EPR measurement of Mn2+ concentration in buffer revealed that lanthanide cations inhibit the light-dependent oxidation of Mn2+ cations via the high-affinity Mn-binding site in Mn-depleted PSII membranes, which suggests that they bind to and inhibit the high-affinity Mn-binding site of the oxygen-evolving complex. The inhibition is irreversible, bound Ln3+ cation could not be washed out from the sample. Calcium ion inhibits oxidation of Mn2+ (5 μM) at very high concentration (tens mM) and the inhibition is reversible. In this work we measured the reduction rate of exogenic electron acceptor 2,6-dichlorophenolindophenol during the oxidation of Mn2+ cations in the Ca-depleted PSII and in the Ca-depleted PSII treated with lanthanides after extraction of Mn cluster from these preparations. We found that irreversible binding of the lanthanide cation to the Ca-binding site in the Ca-depleted PSII membranes leads to a partial inhibition of the high-affinity Mn-binding site.
Collapse
Affiliation(s)
- E R Lovyagina
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - O G Luneva
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - A V Loktyushkin
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - B K Semin
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia.
| |
Collapse
|
2
|
Semin BК, Davletshina LN. High-efficiency oxygen evolution by photosystem II oxygen-evolving complex containing 3Mn per reaction center. J Biol Inorg Chem 2023; 28:393-401. [PMID: 37043043 DOI: 10.1007/s00775-023-01987-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/27/2022] [Indexed: 04/13/2023]
Abstract
Ca-depleted photosystem II membranes obtained by treatment with acidic buffer do not contain Ca2+ in the Mn4CaO5 cluster but contain all extrinsic proteins protecting this cluster (PSII(-Ca/low pH)). However, unlike native photosystem II, Mn cluster in PSII(-Ca/low pH) samples is available for small-sized reductants. Using this property, we investigated the substitution possibility of Mn cation(s) with Fe cation(s) to obtain a chimeric cluster in PSII(-Ca/low pH) samples containing extrinsic proteins. We found that Fe(II) cation replaces Mn cation at pH 6.5, however, PSII(-Ca/low pH) membranes with the 3Mn1Fe chimeric cluster in the oxygen-evolving complex evolve O2 with high intensity in the presence of exogenous Ca2+. The O2 evolution rate is about 80% of the same rate in PSII(-Ca/low pH) membranes.
Collapse
Affiliation(s)
- Boris К Semin
- Department of Biophysics, Faculty of Biology, Moscow State University, Moscow, 119234, Russia.
| | - Lira N Davletshina
- Department of Biophysics, Faculty of Biology, Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
3
|
Semin BК, Davletshina LN, Goryachev SN, Seibert M. Ca 2+ effects on Fe(II) interactions with Mn-binding sites in Mn-depleted oxygen-evolving complexes of photosystem II and on Fe replacement of Mn in Mn-containing, Ca-depleted complexes. PHOTOSYNTHESIS RESEARCH 2021; 147:229-237. [PMID: 33532973 DOI: 10.1007/s11120-020-00813-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Fe(II) cations bind with high efficiency and specificity at the high-affinity (HA), Mn-binding site (termed the "blocking effect" since Fe blocks further electron donation to the site) of the oxygen-evolving complex (OEC) in Mn-depleted, photosystem II (PSII) membrane fragments (Semin et al. in Biochemistry 41:5854, 2002). Furthermore, Fe(II) cations can substitute for 1 or 2Mn cations (pH dependent) in Ca-depleted PSII membranes (Semin et al. in Journal of Bioenergetics and Biomembranes 48:227, 2016; Semin et al. in Journal of Photochemistry and Photobiology B 178:192, 2018). In the current study, we examined the effect of Ca2+ cations on the interaction of Fe(II) ions with Mn-depleted [PSII(-Mn)] and Ca-depleted [PSII(-Ca)] photosystem II membranes. We found that Ca2+ cations (about 50 mM) inhibit the light-dependent oxidation of Fe(II) (5 µM) by about 25% in PSII(-Mn) membranes, whereas inhibition of the blocking process is greater at about 40%. Blocking of the HA site by Fe cations also decreases the rate of charge recombination between QA- and YZ•+ from t1/2 = 30 ms to 46 ms. However, Ca2+ does not affect the rate during the blocking process. An Fe(II) cation (20 µM) replaces 1Mn cation in the Mn4CaO5 catalytic cluster of PSII(-Ca) membranes at pH 5.7 but 2 Mn cations at pH 6.5. In the presence of Ca2+ (10 mM) during the substitution process, Fe(II) is not able to extract Mn at pH 5.7 and extracts only 1Mn at pH 6.5 (instead of two without Ca2+). Measurements of fluorescence induction kinetics support these observations. Inhibition of Mn substitution with Fe(II) cations in the OEC only occurs with Ca2+ and Sr2+ cations, which are also able to restore oxygen evolution in PSII(-Ca) samples. Nonactive cations like La3+, Ni2+, Cd2+, and Mg2+ have no influence on the replacement of Mn with Fe. These results show that the location and/or ligand composition of one Mn cation in the Mn4CaO5 cluster is strongly affected by calcium depletion or rebinding and that bound calcium affects the redox potential of the extractable Mn4 cation in the OEC, making it resistant to reduction.
Collapse
Affiliation(s)
- B К Semin
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234.
| | - L N Davletshina
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - S N Goryachev
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - M Seibert
- Laboratory, BioEnergy Sciences and Technology Directorate, National Renewable Energy, Golden, CO, 80401, USA
| |
Collapse
|
4
|
Davletshina LN, Semin BK. pH dependence of photosystem II photoinhibition: relationship with structural transition of oxygen-evolving complex at the pH of thylakoid lumen. PHOTOSYNTHESIS RESEARCH 2020; 145:135-143. [PMID: 32602041 DOI: 10.1007/s11120-020-00769-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Ca-depleted photosystem II membranes (PSII[-Ca]) do not contain PsbP and PsbQ proteins protecting the Mn4CaO5 cluster of the PSII oxygen-evolving complex (OEC). Therefore, the Mn ions in the PSII(-Ca) membranes can be reduced by exogenous bulky reductants or the charged reductant Fe(II). We have recently found that the resistance of Mn ions in the OEC to the Fe(II) action is pH dependent and that this reductant is less effective at pH 5.7 than at pH 6.5 (Semin et al. J Photochem Photobiol B 178:192, 2018). Taking these data into account, we investigated the photoinhibition in different PSII membranes at pH 5.7 and 6.5 and found that the resistance to photoinhibition of PSII and PSII(-Ca) membranes with a Mn cluster is higher at pH 5.7 than at pH 6.5, whereas the resistance of the Mn-depleted PSII membranes is pH independent. In thylakoids, light generates the transmembrane ΔpH, leading to the acidulation of lumen that results in pH 5.7. The uncouplers (NH4Cl or nigericin) that significantly prevent acidulation increase the rate of PSII photoinhibition in thylakoids. We suggest that the structural transition in the OEC at pH 5.7 plays a role of a built-in mechanism increasing the resistance of OEC to photoinhibition under illumination, since it is accompanied by a pH decrease in lumen to 5.7. The coincidence of these pH values, i.e. lumen pH under illumination and pH of the maximal resistance of the Mn cluster to the reduction by reductants, can point at the pH-dependent mechanism of PSII self-protection from photoinactivation.
Collapse
Affiliation(s)
- L N Davletshina
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - B K Semin
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119234, Moscow, Russia.
| |
Collapse
|
5
|
Semin BК, Davletshina LN, Rubin AB. Effect of sucrose-bound polynuclear iron oxyhydroxide nanoparticles on the efficiency of electron transport in the photosystem II membranes. PHOTOSYNTHESIS RESEARCH 2019; 142:57-67. [PMID: 31098930 DOI: 10.1007/s11120-019-00647-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Effect of water-soluble and stable sucrose-bound iron oxyhydroxide nanoparticles [Fe[III] sucrose complex (FSC)] on the efficiency of electron transport in the photosystem II membranes was studied. FSC significantly increases (by a factor 1.5) the rate of light-induced oxygen evolution in the presence of alternative electron acceptor 2,6-dichloro-p-benzoquinone (DCBQ). Without DCBQ, FSC only slightly (5%) provides the oxygen evolution. Electron transport supported by pair DCBQ + FSC is inhibited by diuron. Maximum of stimulating effect was recorded at Fe(III) concentration 5 µM. In the case of another benzoquinone electron acceptor (2-phenyl-p-benzoquinone and 2,3-dimethyl-p-benzoquinone) and 2,6-dichlorophenolindophenol, stimulating effect of FSC was not observed. Incubation of PSII membranes at different concentrations with FSC is accompanied by binding of Fe(III) by membrane components but only about 50% of iron can be extracted by membranes from Fe(III) solution at pH 6.5. This result implies the heterogeneity of FSC solution in a buffer. The heterogeneity depends on pH and decreases with its rising. At pH around 9.0 Fe(III), sucrose solution is homogeneous. The study of pH effect has shown that stimulation of electron transport is induced only by iron cations which can be bound by membranes. Not extractable iron pool cannot activate electron transfer from oxygen-evolving complex to DCBQ.
Collapse
Affiliation(s)
- B К Semin
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234.
| | - L N Davletshina
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - A B Rubin
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| |
Collapse
|
6
|
Photosystem II Extrinsic Proteins and Their Putative Role in Abiotic Stress Tolerance in Higher Plants. PLANTS 2018; 7:plants7040100. [PMID: 30441780 PMCID: PMC6313935 DOI: 10.3390/plants7040100] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 01/08/2023]
Abstract
Abiotic stress remains one of the major challenges in managing and preventing crop loss. Photosystem II (PSII), being the most susceptible component of the photosynthetic machinery, has been studied in great detail over many years. However, much of the emphasis has been placed on intrinsic proteins, particularly with respect to their involvement in the repair of PSII-associated damage. PSII extrinsic proteins include PsbO, PsbP, PsbQ, and PsbR in higher plants, and these are required for oxygen evolution under physiological conditions. Changes in extrinsic protein expression have been reported to either drastically change PSII efficiency or change the PSII repair system. This review discusses the functional role of these proteins in plants and indicates potential areas of further study concerning these proteins.
Collapse
|
7
|
Semin BК, Davletshina LN, Seibert M, Rubin AB. Creation of a 3Mn/1Fe cluster in the oxygen-evolving complex of photosystem II and investigation of its functional activity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2017; 178:192-200. [PMID: 29156347 DOI: 10.1016/j.jphotobiol.2017.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/28/2017] [Accepted: 11/09/2017] [Indexed: 01/04/2023]
Abstract
Extraction of Mn cations from the oxygen-evolving complex (OEC) of Ca-depleted PSII membranes (PSII[-Ca,4Mn]) by reductants like hydroquinone (H2Q) occurs with lower efficiency at acidic pH (2Mn/reaction center [RC] are extracted at pH5.7) than at neutral pH (3Mn/RC are extracted at pH6.5) [Semin et al. Photosynth. Res. 125 (2015) 95]. Fe(II) also extracts Mn cations from PSII(-Ca,4Mn), but only 2Mn/RC at pH6.5, forming a heteronuclear 2Mn/2Fe cluster [Semin and Seibert, J. Bioenerg. Biomembr. 48 (2016) 227]. Here we investigated the efficiency of Mn extraction by Fe(II) at acidic pH and found that Fe(II) cations can extract only 1Mn/RC from PSII(-Ca,4Mn) membranes at pH 5.7, forming a 3Mn/1Fe cluster. Also we found that the presence of Fe cations in a heteronuclear cluster (2Mn/2Fe) increases the resistance of the remaining Mn cations to H2Q action, since H2Q can extract Mn cations from homonuclear Mn clusters of PSII(-Ca,4Mn) and PSII(-Ca,2Mn) membranes but not from the heteronuclear cluster in PSII(-Ca,2Mn,2Fe) membranes. H2Q also cannot extract Mn from PSII membranes obtained by incubation of PSII(-Ca,4Mn) membranes with Fe(II) cations at pH5.7, which suggests the formation of a heteronuclear 3Mn/1Fe cluster in the OEC. Functional activity of PSII with a 3Mn/1Fe cluster was investigated. PSII preparations with a 3Mn/1Fe cluster in the OEC are able to photoreduce the exogenous electron acceptor 2,6-dichlorophenolindophenol, possibly due to incomplete oxidation of water molecules as is the case with PSII(-Ca,2Mn,2Fe) samples. However, in the contrast to PSII(-Ca,2Mn,2Fe) samples PSII(-Ca,3Mn,1Fe) membranes can evolve O2 at a low rate in the presence of exogenous Ca2+ (at about 27% of the rate of O2 evolution in native PSII membranes). The explanation for this phenomenon (either water splitting and production of molecular O2 by the 3Mn/1Fe cluster or apparent O2 evolution due to minor contamination of PSII(3Mn,1Fe) samples with PSII(-Ca,4Mn) membranes) is discussed.
Collapse
Affiliation(s)
- B К Semin
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia.
| | - L N Davletshina
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - M Seibert
- BioEnergy Sciences & Technology Directorate, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - A B Rubin
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
8
|
Suorsa M, Rossi F, Tadini L, Labs M, Colombo M, Jahns P, Kater MM, Leister D, Finazzi G, Aro EM, Barbato R, Pesaresi P. PGR5-PGRL1-Dependent Cyclic Electron Transport Modulates Linear Electron Transport Rate in Arabidopsis thaliana. MOLECULAR PLANT 2016; 9:271-288. [PMID: 26687812 DOI: 10.1016/j.molp.2015.12.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/01/2015] [Accepted: 12/01/2015] [Indexed: 05/05/2023]
Abstract
Plants need tight regulation of photosynthetic electron transport for survival and growth under environmental and metabolic conditions. For this purpose, the linear electron transport (LET) pathway is supplemented by a number of alternative electron transfer pathways and valves. In Arabidopsis, cyclic electron transport (CET) around photosystem I (PSI), which recycles electrons from ferrodoxin to plastoquinone, is the most investigated alternative route. However, the interdependence of LET and CET and the relative importance of CET remain unclear, largely due to the difficulties in precise assessment of the contribution of CET in the presence of LET, which dominates electron flow under physiological conditions. We therefore generated Arabidopsis mutants with a minimal water-splitting activity, and thus a low rate of LET, by combining knockout mutations in PsbO1, PsbP2, PsbQ1, PsbQ2, and PsbR loci. The resulting Δ5 mutant is viable, although mature leaves contain only ∼ 20% of wild-type naturally less abundant PsbO2 protein. Δ5 plants compensate for the reduction in LET by increasing the rate of CET, and inducing a strong non-photochemical quenching (NPQ) response during dark-to-light transitions. To identify the molecular origin of such a high-capacity CET, we constructed three sextuple mutants lacking the qE component of NPQ (Δ5 npq4-1), NDH-mediated CET (Δ5 crr4-3), or PGR5-PGRL1-mediated CET (Δ5 pgr5). Their analysis revealed that PGR5-PGRL1-mediated CET plays a major role in ΔpH formation and induction of NPQ in C3 plants. Moreover, while pgr5 dies at the seedling stage under fluctuating light conditions, Δ5 pgr5 plants are able to survive, which underlines the importance of PGR5 in modulating the intersystem electron transfer.
Collapse
Affiliation(s)
- Marjaana Suorsa
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Fabio Rossi
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Luca Tadini
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Mathias Labs
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Monica Colombo
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, 38010, San Michele all'Adige, Italy
| | - Peter Jahns
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Martin M Kater
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Dario Leister
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire & Végétale, Unité Mixte de Recherche 5168, Centre National de la Recherche Scientifique, 38054 Grenoble, France
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Roberto Barbato
- Dipartimento di Scienze dell'Ambiente e della Vita, Università del Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Paolo Pesaresi
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy.
| |
Collapse
|
9
|
Semin BK, Davletshina LN, Rubin AB. Correlation between pH dependence of O2 evolution and sensitivity of Mn cations in the oxygen-evolving complex to exogenous reductants. PHOTOSYNTHESIS RESEARCH 2015; 125:95-103. [PMID: 25975707 DOI: 10.1007/s11120-015-0155-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/05/2015] [Indexed: 06/04/2023]
Abstract
Effects of pH, Ca(2+), and Cl(-) ions on the extraction of Mn cations from oxygen-evolving complex (OEC) in Ca-depleted photosystem II (PSII(-Ca)) by exogenous reductants hydroquinone (H2Q) and H2O2 were studied. Two of 4 Mn cations are released by H2Q and H2O2 at pHs 5.7, 6.5, and 7.5, and their extraction does not depend on the presence of Ca(2+) and Cl(-) ions. One of Mn cations ("resistant" Mn cation) cannot be extracted by H2Q and H2O2 at any pH. Extraction of 4th Mn ion ("flexible" Mn cation) is sensitive to pH, Ca(2+), and Cl(-). This Mn cation is released by reductants at pH 6.5 but not at pHs 5.7 and 7.5. A pH dependence curve of the oxygen-evolving activity in PSII(-Ca) membranes (in the presence of exogenous Ca(2+)) has a bell-shaped form with the maximum at pH 6.5. Thus, the increase in the resistance of flexible Mn cation in OEC to the action of reductants at acidic and alkaline pHs coincides with the decrease in oxygen evolution activity at these pHs. Exogenous Ca(2+) protects the extraction of flexible Mn cation at pH 6.5. High concentration of Cl(-) anions (100 mM) shifts the pH optimum of oxygen evolution to alkaline region (around pH 7.5), while the pH of flexible Mn extraction is also shifted to alkaline pH. This result suggests that flexible Mn cation plays a key role in the water-splitting reaction. The obtained results also demonstrate that only one Mn cation in Mn4 cluster is under strong control of calcium. The change in the flexible Mn cation resistance to exogenous reductants in the presence of Ca(2+) suggests that Ca(2+) can control the redox potential of this cation.
Collapse
Affiliation(s)
- Boris K Semin
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119234, Moscow, Russia,
| | | | | |
Collapse
|
10
|
Semin BK, Podkovirina TE, Davletshina LN, Timofeev KN, Ivanov II, Rubin AB. The extrinsic PsbO protein modulates the oxidation/reduction rate of the exogenous Mn cation at the high-affinity Mn-binding site of Mn-depleted PSII membranes. J Bioenerg Biomembr 2015; 47:361-7. [PMID: 26183834 DOI: 10.1007/s10863-015-9618-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/07/2015] [Indexed: 11/26/2022]
Abstract
The oxidation of exogenous Mn(II) cations at the high-affinity (HA) Mn-binding site in Mn-depleted photosystem II (PSII) membranes with or without the presence of the extrinsic PsbO polypeptide was studied by EPR. The six-lines EPR spectrum of Mn(II) cation disappears in the absence of the PsbO protein in membranes under illumination, but there was no effect when PSII preparations bound the PsbO protein. Our study demonstrates that such effect is determined by significant influence of the PsbO protein on the ratio between the rates of Mn oxidation and reduction at the HA site when the membranes are illuminated.
Collapse
Affiliation(s)
- Boris K Semin
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119234, Moscow, Russia,
| | | | | | | | | | | |
Collapse
|
11
|
Bricker TM, Roose JL, Zhang P, Frankel LK. The PsbP family of proteins. PHOTOSYNTHESIS RESEARCH 2013; 116:235-50. [PMID: 23564479 DOI: 10.1007/s11120-013-9820-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/24/2013] [Indexed: 05/06/2023]
Abstract
The PsbP family of proteins consists of 11 evolutionarily related thylakoid lumenal components. These include the archetypal PsbP protein, which is an extrinsic subunit of eukaryotic photosystem II, three PsbP-like proteins (CyanoP of the prokaryotic cyanobacteria and green oxyphotobacteria, and the PPL1 and PPL2 proteins found in many eukaryotes), and seven PsbP-domain (PPD) proteins (PPD1-PPD7, most of which are found in the green plant lineage). All of these possess significant sequence and structural homologies while having very diverse functions. While the PsbP protein has been extensively studied and plays a functional role in the optimization of photosynthetic oxygen evolution at physiological calcium and chloride concentrations, the molecular functions of the other family members are poorly understood. Recent investigations have begun to illuminate the roles that these proteins play in membrane protein complex assembly/stability, hormone biosynthesis, and other metabolic processes. In this review we have examined this functional information within the context of recent advances examining the structure of these components.
Collapse
Affiliation(s)
- Terry M Bricker
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA,
| | | | | | | |
Collapse
|
12
|
Offenbacher AR, Polander BC, Barry BA. An intrinsically disordered photosystem II subunit, PsbO, provides a structural template and a sensor of the hydrogen-bonding network in photosynthetic water oxidation. J Biol Chem 2013; 288:29056-68. [PMID: 23940038 DOI: 10.1074/jbc.m113.487561] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosystem II (PSII) is a membrane-bound enzyme that utilizes solar energy to catalyze the photooxidation of water. Molecular oxygen is evolved after four sequential light-driven oxidation reactions at the Mn4CaO5 oxygen-evolving complex, producing five sequentially oxidized states, Sn. PSII is composed of 17 membrane-spanning subunits and three extrinsic subunits, PsbP, PsbQ, and PsbO. PsbO is intrinsically disordered and plays a role in facilitation of the water oxidizing cycle. Native PsbO can be removed and substituted with recombinant PsbO, thereby restoring steady-state activity. In this report, we used reaction-induced Fourier transform infrared spectroscopy to obtain information concerning the role of PsbP, PsbQ, and PsbO during the S state cycle. Light-minus-dark difference spectra were acquired, monitoring structural changes associated with each accessible flash-induced S state transition in a highly purified plant PSII preparation (Triton X-100, octylthioglucoside). A comparison of S2 minus S1 spectra revealed that removal of PsbP and PsbQ had no significant effect on the data, whereas amide frequency and intensity changes were associated with PsbO removal. These data suggest that PsbO acts as an organizational template for the PSII reaction center. To identify any coupled conformational changes arising directly from PsbO, global (13)C-PsbO isotope editing was employed. The reaction-induced Fourier transform infrared spectra of accessible S states provide evidence that PsbO spectral contributions are temperature (263 and 277 K) and S state dependent. These experiments show that PsbO undergoes catalytically relevant structural dynamics, which are coupled over long distance to hydrogen-bonding changes at the Mn4CaO5 cluster.
Collapse
Affiliation(s)
- Adam R Offenbacher
- From the School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | | | | |
Collapse
|
13
|
Popelka H, Yocum C. Probing the N-terminal sequence of spinach PsbO: evidence that essential threonine residues bind to different functional sites in eukaryotic photosystem II. PHOTOSYNTHESIS RESEARCH 2012; 112:117-128. [PMID: 22614952 DOI: 10.1007/s11120-012-9745-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/03/2012] [Indexed: 06/01/2023]
Abstract
The N-terminal ¹E-⁶L domain of the manganese-stabilizing protein (PsbO) from spinach prevents non-specific binding of the subunit to photosystem II (PSII) and deletions of the ¹E-⁷T or ¹E-¹⁵T sequences from the PsbO N-terminus reduce or impair, respectively, functional binding of PsbO to PSII (Popelkova et al., Biochemistry 42:6193-6200, 2003). The work presented here provides deeper insights into the interaction of PsbO with PSII. The data show that a single mutation, ¹⁵T → A in mature PsbO from spinach reduces the stoichiometry of its functional binding from two to one subunit per PSII and decreases reconstitution of activity to about 45 % of the wild-type control. Replacement of the ¹E-⁶L domain with ⁶M in the T15A PsbO mutant has no additional negative effect on recovery of O₂ evolution activity, but it significantly weakens both functional and nonspecific binding of the truncated mutant to PSII. These results suggest that the ¹⁵T side-chain by itself is essential for binding of one of two PsbO subunits to eukaryotic PSII and that specific PSII-binding sites for PsbO are distinguishable; one PSII-binding site does not require PsbO-¹⁵T and probably interacts with the other N-terminal domain of PsbO. Identity of the latter domain is revealed by a requirement for the presence of the ¹E-⁶L sequence that is shown here to be necessary for high-affinity binding of PsbO to PSII. When combined with previous results, the data presented here lead to a more detailed model for PsbO binding in eukaryotic PSII.
Collapse
Affiliation(s)
- Hana Popelka
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109-1048, USA.
| | | |
Collapse
|
14
|
The extrinsic proteins of Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:121-42. [PMID: 21801710 DOI: 10.1016/j.bbabio.2011.07.006] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 02/08/2023]
Abstract
In this review we examine the structure and function of the extrinsic proteins of Photosystem II. These proteins include PsbO, present in all oxygenic organisms, the PsbP and PsbQ proteins, which are found in higher plants and eukaryotic algae, and the PsbU, PsbV, CyanoQ, and CyanoP proteins, which are found in the cyanobacteria. These proteins serve to optimize oxygen evolution at physiological calcium and chloride concentrations. They also shield the Mn(4)CaO(5) cluster from exogenous reductants. Numerous biochemical, genetic and structural studies have been used to probe the structure and function of these proteins within the photosystem. We will discuss the most recent proposed functional roles for these components, their structures (as deduced from biochemical and X-ray crystallographic studies) and the locations of their proposed binding domains within the Photosystem II complex. This article is part of a Special Issue entitled: Photosystem II.
Collapse
|
15
|
Popelkova H, Yocum CF. PsbO, the manganese-stabilizing protein: Analysis of the structure–function relations that provide insights into its role in photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:179-90. [DOI: 10.1016/j.jphotobiol.2011.01.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 01/07/2023]
|
16
|
Roose JL, Yocum CF, Popelkova H. Binding Stoichiometry and Affinity of the Manganese-Stabilizing Protein Affects Redox Reactions on the Oxidizing Side of Photosystem II. Biochemistry 2011; 50:5988-98. [DOI: 10.1021/bi2008068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Johnna L. Roose
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | | |
Collapse
|
17
|
Popelkova H, Commet A, Yocum CF. Asp157 is required for the function of PsbO, the photosystem II manganese stabilizing protein. Biochemistry 2010; 48:11920-8. [PMID: 19894760 DOI: 10.1021/bi9016999] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PsbO, the photosystem II manganese stabilizing protein, contains an aspartate residue [Asp157 (spinach numbering)], which is highly conserved in eukaryotic and prokaryotic PsbOs. The homology model of the PSII-bound conformation of spinach PsbO presented here positions Asp157 in the large flexible loop of the protein. We have characterized site-directed mutants (D157N, D157E, and D157K) of spinach PsbO that were rebound to PsbO-depleted PSII to probe the role of Asp157. Structural data revealed that PsbO Asp157 mutants exhibit near-wild-type solution structure at 25 degrees C, but functional analyses of the mutants showed that these are the first genetically modified PsbO proteins from spinach that combine wild-type PSII binding behavior with significantly impaired O(2) evolution activity; all of the mutants reconstituted approximately 30% of control O(2) evolution activity. PsbO Asp157 has been proposed to be a part of a putative H(2)O/H(+) channel that links the active site of the oxygen-evolving complex with the lumen [De Las Rivas, J., and Barber, J. (2004) Photosynth. Res. 81, 329-343]. Unsuccessful attempts to use chemical rescue to enhance the activity restored by Asp157 mutants could indicate that this residue is not involved in a proton transfer network. It is shown, however, that these mutants are deficient in restoring efficient Cl(-) retention by PSII.
Collapse
Affiliation(s)
- Hana Popelkova
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan,Ann Arbor, Michigan 48109-1048, USA.
| | | | | |
Collapse
|
18
|
Allahverdiyeva Y, Mamedov F, Holmström M, Nurmi M, Lundin B, Styring S, Spetea C, Aro EM. Comparison of the electron transport properties of the psbo1 and psbo2 mutants of Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1230-7. [PMID: 19486880 DOI: 10.1016/j.bbabio.2009.05.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 05/22/2009] [Accepted: 05/27/2009] [Indexed: 11/16/2022]
Abstract
Genome sequence of Arabidopsis thaliana (Arabidopsis) revealed two psbO genes (At5g66570 and At3g50820) which encode two distinct PsbO isoforms: PsbO1 and PsbO2, respectively. To get insights into the function of the PsbO1 and PsbO2 isoforms in Arabidopsis we have performed systematic and comprehensive investigations of the whole photosynthetic electron transfer chain in the T-DNA insertion mutant lines, psbo1 and psbo2. The absence of the PsbO1 isoform and presence of only the PsbO2 isoform in the psbo1 mutant results in (i) malfunction of both the donor and acceptor sides of Photosystem (PS) II and (ii) high sensitivity of PSII centers to photodamage, thus implying the importance of the PsbO1 isoform for proper structure and function of PSII. The presence of only the PsbO2 isoform in the PSII centers has consequences not only to the function of PSII but also to the PSI/PSII ratio in thylakoids. These results in modification of the whole electron transfer chain with higher rate of cyclic electron transfer around PSI, faster induction of NPQ and a larger size of the PQ-pool compared to WT, being in line with apparently increased chlororespiration in the psbo1 mutant plants. The presence of only the PsbO1 isoform in the psbo2 mutant did not induce any significant differences in the performance of PSII under standard growth conditions as compared to WT. Nevertheless, under high light illumination, it seems that the presence of also the PsbO2 isoform becomes favourable for efficient repair of the PSII complex.
Collapse
Affiliation(s)
- Yagut Allahverdiyeva
- Department of Biology, Plant Physiology and Molecular Biology, University of Turku, Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Popelkova H, Commet A, Kuntzleman T, Yocum CF. Inorganic cofactor stabilization and retention: the unique functions of the two PsbO subunits of eukaryotic photosystem II. Biochemistry 2009; 47:12593-600. [PMID: 18980383 DOI: 10.1021/bi801512s] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Eukaryotic PsbO, the photosystem II (PSII) manganese-stabilizing protein, has two N-terminal sequences that are required for binding of two copies of the protein to PSII [Popelkova, H., et al. (2002) Biochemistry 41, 10038-10045; Popelkova, H., et al. (2003) Biochemistry 42, 6193-6200]. In the work reported here, a set of selected N-terminal truncation mutants of PsbO that affect subunit binding to PSII were used to determine the effects of PsbO stoichiometry on the Mn, Ca(2+), and Cl(-) cofactors and to characterize the roles of each of the PsbO subunits in PSII function. Results of the experiments with the PsbO-depleted PSII membranes reconstituted with the PsbO deletion mutants showed that the presence of PsbO does not affect Ca(2+) retention by PSII in steady-state assays of activity, nor is it required for Ca(2+) to protect the Mn cluster against reductive inhibition in darkness. In contrast to the results with Ca(2+), PsbO increases the affinity of Cl(-) for the active site of the O(2)-evolving complex (OEC) as expected. These results together with other data on activity retention suggest that PsbO can stabilize the Mn cluster by facilitating retention of Cl(-) in the OEC. The data presented here indicate that each of two copies of PsbO has a distinctive function in PSII. Binding of the first PsbO subunit fully stabilizes the Mn cluster and enhances Cl(-) retention, while binding of the second subunit optimizes Cl(-) retention, which in turn maximizes O(2) evolution activity. Nonspecific binding of some PsbO truncation mutants to PSII has no functional significance.
Collapse
Affiliation(s)
- Hana Popelkova
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | | | | | |
Collapse
|
20
|
Castelfranco PA, Lu YK, Stemler AJ. Hypothesis: the peroxydicarbonic acid cycle in photosynthetic oxygen evolution. PHOTOSYNTHESIS RESEARCH 2007; 94:235-46. [PMID: 17484037 DOI: 10.1007/s11120-007-9134-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 01/08/2007] [Indexed: 05/15/2023]
Abstract
Peroxydicarbonic acid (Podca), a proposed intermediate in photosynthetic oxygen evolution, was synthesized electrochemically. Consistent with literature descriptions of this compound, it was shown to be a highly reactive molecule, spontaneously hydrolyzed to H2O2, as well as susceptible to oxidative and reductive decomposition. In the presence of Mn2+ or Co2+, Podca was quickly broken down with release of O2. The liberation of O2, however, was partially suppressed at high O2 concentrations. In the presence of Ca-washed photosystem II-enriched membranes lacking extrinsic proteins, Podca was decomposed with the release of O2, but only under conditions favoring photosynthetic electron flow (light plus a Hill oxidant). A model is proposed that details how peroxydicarbonic acid could act as an oxygen-evolving intermediate. The hypothesis is consistent with the well-established Kok model and with recent findings related to the chemistry of oxygen evolution.
Collapse
|
21
|
Suorsa M, Aro EM. Expression, assembly and auxiliary functions of photosystem II oxygen-evolving proteins in higher plants. PHOTOSYNTHESIS RESEARCH 2007; 93:89-100. [PMID: 17380423 DOI: 10.1007/s11120-007-9154-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 02/26/2007] [Indexed: 05/14/2023]
Abstract
The oxygen-evolving complex (OEC) of higher plant photosystem II (PSII) consists of an inorganic Mn(4)Ca cluster and three nuclear-encoded proteins, PsbO, PsbP and PsbQ. In this review, we focus on the assembly of these OEC proteins, and especially on the role of the small intrinsic PSII proteins and recently found "novel" PSII proteins in the assembly process. The numerous auxiliary functions suggested during the past few years for the OEC proteins will likewise be discussed. For example, besides being a manganese-stabilizing protein, PsbO has been found to bind calcium and GTP and possess a carbonic anhydrase activity. In addition, specific roles have been suggested for the two isoforms of the PsbO protein in Arabidopsis thaliana. PsbP and PsbQ seem to play an additional role in the formation of PSII supercomplexes and in grana stacking, besides their originally recognized role in providing a proper calcium and chloride ion concentration for water splitting.
Collapse
Affiliation(s)
- Marjaana Suorsa
- Department of Biology, Plant Physiology and Molecular Biology, University of Turku, 20014 Turku, Finland
| | | |
Collapse
|
22
|
Lu YK, Stemler AJ. Differing responses of the two forms of photosystem II carbonic anhydrase to chloride, cations, and pH. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1767:633-8. [PMID: 17320812 DOI: 10.1016/j.bbabio.2006.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 11/25/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022]
Abstract
The effects of Cl(-), Mn(2+), Ca(2+), and pH on extrinsic and intrinsic photosystem II carbonic anhydrase activity were compared. Under the conditions of our in vitro experiments, extrinsic CA activity, located on the OEC33 protein, was optimum at about 30 mM Cl(-), and strongly inhibited above this concentration. This enzyme is activated by Mn(2+) and stimulated somewhat by Ca(2+). The OEC33 showed dehydration activity that is optimum at pH 6 or below. In contrast, intrinsic CA activity found in the PSII complex after removal of extrinsic proteins was stimulated by Cl(-) up to 0.4 M. Ca(2+) appears to be the required cofactor, which implies that the location of the intrinsic CA activity is in the immediate vicinity of the CaMn(4) complex. Up to now, intrinsic CA has shown only hydration activity that is nearly pH independent.
Collapse
Affiliation(s)
- Yih-Kuang Lu
- Section of Plant Biology, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
23
|
Roose JL, Wegener KM, Pakrasi HB. The extrinsic proteins of Photosystem II. PHOTOSYNTHESIS RESEARCH 2007; 92:369-87. [PMID: 17200881 DOI: 10.1007/s11120-006-9117-1] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 11/19/2006] [Indexed: 05/13/2023]
Abstract
Years of genetic, biochemical, and structural work have provided a number of insights into the oxygen evolving complex (OEC) of Photosystem II (PSII) for a variety of photosynthetic organisms. However, questions still remain about the functions and interactions among the various subunits that make up the OEC. After a brief introduction to the individual subunits Psb27, PsbP, PsbQ, PsbR, PsbU, and PsbV, a current picture of the OEC as a whole in cyanobacteria, red algae, green algae, and higher plants will be presented. Additionally, the role that these proteins play in the dynamic life cycle of PSII will be discussed.
Collapse
Affiliation(s)
- Johnna L Roose
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | | |
Collapse
|
24
|
Lundin B, Thuswaldner S, Shutova T, Eshaghi S, Samuelsson G, Barber J, Andersson B, Spetea C. Subsequent events to GTP binding by the plant PsbO protein: structural changes, GTP hydrolysis and dissociation from the photosystem II complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1767:500-8. [PMID: 17223069 DOI: 10.1016/j.bbabio.2006.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 10/26/2006] [Accepted: 10/28/2006] [Indexed: 10/23/2022]
Abstract
Besides an essential role in optimizing water oxidation in photosystem II (PSII), it has been reported that the spinach PsbO protein binds GTP [C. Spetea, T. Hundal, B. Lundin, M. Heddad, I. Adamska, B. Andersson, Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 1409-1414]. Here we predict four GTP-binding domains in the structure of spinach PsbO, all localized in the beta-barrel domain of the protein, as judged from comparison with the 3D-structure of the cyanobacterial counterpart. These domains are not conserved in the sequences of the cyanobacterial or green algae PsbO proteins. MgGTP induces specific changes in the structure of the PsbO protein in solution, as detected by circular dichroism and intrinsic fluorescence spectroscopy. Spinach PsbO has a low intrinsic GTPase activity, which is enhanced fifteen-fold when the protein is associated with the PSII complex in its dimeric form. GTP stimulates the dissociation of PsbO from PSII under light conditions known to also release Mn(2+) and Ca(2+) ions from the oxygen-evolving complex and to induce degradation of the PSII reaction centre D1 protein. We propose the occurrence in higher plants of a PsbO-mediated GTPase activity associated with PSII, which has consequences for the function of the oxygen-evolving complex and D1 protein turnover.
Collapse
Affiliation(s)
- Björn Lundin
- Division of Cell Biology, Linköping University, SE-581 85 Linköping, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Oxygenic photosynthesis, the principal converter of sunlight into chemical energy on earth, is catalyzed by four multi-subunit membrane-protein complexes: photosystem I (PSI), photosystem II (PSII), the cytochrome b(6)f complex, and F-ATPase. PSI generates the most negative redox potential in nature and largely determines the global amount of enthalpy in living systems. PSII generates an oxidant whose redox potential is high enough to enable it to oxidize H(2)O, a substrate so abundant that it assures a practically unlimited electron source for life on earth. During the last century, the sophisticated techniques of spectroscopy, molecular genetics, and biochemistry were used to reveal the structure and function of the two photosystems. The new structures of PSI and PSII from cyanobacteria, algae, and plants has shed light not only on the architecture and mechanism of action of these intricate membrane complexes, but also on the evolutionary forces that shaped oxygenic photosynthesis.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
26
|
Lu YK, Theg SM, Stemler AJ. Carbonic anhydrase activity of the photosystem II OEC33 protein from pea. PLANT & CELL PHYSIOLOGY 2005; 46:1944-53. [PMID: 16223737 DOI: 10.1093/pcp/pci209] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The purpose of this study was to identify the location of one of the two sources of carbonic anhydrase (CA) activity associated with the PSII complex in chloroplast membranes. We tested the hypothesis that the extrinsic 33 kDa protein, OEC33, associated with the oxygen-evolving complex (OEC), is one source of CA activity. We found that precursor OEC33 expressed in Escherichia coli exhibits CA activity, but the expressed precursors of OEC24 or OEC17 do not. The CA activity of OEC33 remained after treatment at 90 degrees C for 15 min. Additional biochemical evidence supports the hypothesis. Only those wash treatments that remove the OEC33 from PSII also remove CA activity. Both immunoblot and CA activity show that the CA tracks the OEC33, in parallel, when PSII undergoes washing at different CaCl2 concentrations. The OEC33 protein purified by HiTrap Q anion exchange chromatography has CA activity that is inhibited by an antibody against OEC33. PSII membranes washed with 1 M CaCl2 to remove OEC33 can be reconstituted either with extracted, purified, OEC33 or with the E. coli-expressed precursor OEC33. Reconstitution partially restores both oxygen evolution and CA activity. For maximal CA activity, OEC33 requires manganese as a cofactor.
Collapse
Affiliation(s)
- Yih-Kuang Lu
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | | | | |
Collapse
|
27
|
Wyman AJ, Yocum CF. Structure and activity of the photosystem II manganese-stabilizing protein: role of the conserved disulfide bond. PHOTOSYNTHESIS RESEARCH 2005; 85:359-72. [PMID: 16170637 DOI: 10.1007/s11120-005-7385-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Accepted: 05/13/2005] [Indexed: 05/04/2023]
Abstract
The 33-kDa manganese-stabilizing protein (MSP) of Photosystem II (PS II) maintains the functional stability of the Mn cluster in the enzyme's active site. This protein has been shown to possess characteristics similar to those of the intrinsically disordered, or natively unfolded proteins. Alternately it was proposed that MSP should be classified as a molten globule, based in part on the hypothesis that its lone disulfide bridge is necessary for structural stability and function in solution. A site-directed mutant MSP (C28A,C51A) that eliminates the disulfide bond reconstitutes O(2) evolution activity and binds to MSP-free PS II preparations at wild-type levels. This mutant was further characterized by incubation at 90 degrees C to determine the effect of loss of the disulfide bridge on MSP thermostability and solution structure. After heating at 90 degrees C for 20 min, C28A,C51A MSP was still able to bind to PS II preparations at molar stoichiometries similar to those of WT MSP and reconstitute O(2) evolution activity. A fraction of the protein aggregates upon heating, but after resolubilization, it regains the ability to bind to PS II and reconstitute O(2) evolution activity. Characterization of the solution structure of C28A,C51A MSP, using CD spectroscopy, UV absorption spectroscopy, and gel filtration chromatography, revealed that the mutant has a more disordered solution structure than WT MSP. The disulfide bond is therefore unnecessary for MSP function and the intrinsically disordered characteristics of MSP are not dependent on its presence. However, the disulfide bond does play a role in the solution structure of MSP in vivo, as evidenced by the lability of a C20S MSP mutation in Synechocystis 6803.
Collapse
Affiliation(s)
- Aaron J Wyman
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-1048, USA
| | | |
Collapse
|
28
|
Wyman AJ, Yocum CF. Assembly and function of the photosystem II manganese stabilizing protein: lessons from its natively unfolded behavior. PHOTOSYNTHESIS RESEARCH 2005; 84:283-8. [PMID: 16049787 DOI: 10.1007/s11120-004-7759-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 12/16/2004] [Indexed: 05/03/2023]
Abstract
The Photosystem II (PS II) manganese stabilizing protein (MSP) possesses characteristics, including thermostability, ascribed to the natively unfolded class of proteins (Lydakis-Simantiris et al. (1999) Biochemistry 38: 404-414). A site-directed mutant of MSP, C28A, C51A, which lacks the -S-S- bridge, also binds to PS II at wild-type levels and reconstitutes oxygen evolution activity [Betts et al. (1996) Biochim Biophys Acta 1274: 135-142], although the mutant protein is even more disordered in solution. Both WT and C28A, C51A MSP aggregate upon heating, but an examination of the effects of protein concentration and pH on heat-induced aggregation showed that each MSP species exhibited greater resistance to aggregation at a pH near their pI (5.2) than do either bovine serum albumin (BSA) or carbonic anhydrase, which were used as model water soluble proteins. Increases in pH above the pI of the MSPs and BSA enhanced their aggregation resistance, a behavior which can be predicted from their charge (MSP) or a combination of charge and stabilization by -S-S- bonds (BSA). In the case of aggregation resistance by MSP, this is likely to be an important factor in its ability to avoid unproductive self-association reactions in favor of formation of the protein-protein interactions that lead to formation of the functional oxygen evolving complex.
Collapse
Affiliation(s)
- Aaron J Wyman
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan-Ann Arbor, MI 48109, USA
| | | |
Collapse
|
29
|
Jiao S, Hilaire E, Guikema JA. Identification and differential accumulation of two isoforms of the CF1-beta subunit under high light stress in Brassica rapa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:883-90. [PMID: 15694282 DOI: 10.1016/j.plaphy.2004.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Accepted: 11/09/2004] [Indexed: 05/01/2023]
Abstract
The chloroplast ATP synthase coupling factor CF1 complex contains five nonidentical subunits, alpha, beta, gamma, delta, and epsilon, with a stoichiometry of 3:3:1:1:1. The beta subunit contains the catalytic site for ATP synthesis during photooxidative phosphorylation in the chloroplast. In this study, we have identified two isoforms of the CF1-beta subunit at 56 and 54 kDa in the chloroplast of Brassica rapa, through isolation/purification, proteolytic digestion and internal peptide sequencing. Examining their accumulation pattern demonstrates that both isoforms coexist during chloroplast biogenesis and in mature thylakoid membranes, but the 54 kDa isoform is more apparently upregulated by light or under light stress. LiDS-PAGE shows that the 56 kDa is a major isoform of the CF1-beta subunit under normal light conditions, and its amount was not influenced during high light or other light stress treatments. The 54 kDa isoform is a minor band at normal conditions; however, it significantly increased under excess light stresses, such as high or low light with drought and/or high temperature. Particularly, a ninefold increase was observed after 8-10 h of high light treatment with drought and high temperature. The results suggest that light stress induction of the 54 kDa CF1-beta isoform may present a positive response during chloroplast photoacclimation.
Collapse
Affiliation(s)
- Shunxing Jiao
- Division of Biology, Ackert Hall, Kansas State University, Manhattan, KS 66506-4901, USA
| | | | | |
Collapse
|
30
|
Shutova T, Villarejo A, Zietz B, Klimov V, Gillbro T, Samuelsson G, Renger G. Comparative studies on the properties of the extrinsic manganese-stabilizing protein from higher plants and of a synthetic peptide of its C-terminus. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1604:95-104. [PMID: 12765766 DOI: 10.1016/s0005-2728(03)00025-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The present study describes a comparative analysis on the fluorescence properties of the manganese-stabilizing protein (MSP), a synthetic peptide corresponding to its C terminus and a 7:1 (molar ratio) mixture of N-acetyl-tyrosine and N-acetyl-tryptophan, respectively, together with reconstitution experiments of oxygen evolution in MSP-depleted photosystem II (PS II) membrane fragments. It is found: (i) at neutral pH, the fluorescence from Trp(241) is strongly diminished in MSP solutions, whereas it highly dominates the overall emission from the C-terminus peptide; (ii) at alkaline pH, the emission of Tyr and Trp is quenched in both, MSP and C-terminus peptide, with increasing pH but the decline curve is shifted by about two pH units towards the alkaline region in MSP; (iii) a drastically different pattern emerges in the 7:1 mixture where the Trp emission even slightly increases at high pH; (iv) the anisotropy of the fluorescence emission is wavelength-independent (310-395 nm) and indicative of one emitter type (Trp) in the C-terminus peptide and of two emitter types (Tyr, Trp) in MSP; and (v) in MSP-depleted PS II membrane fragments the oxygen evolution is restored (up to 85% of untreated control) by rebinding of MSP but not by the C-terminus peptide, however, the presence of the latter diminishes the restoration effect of MSP. A quenching mechanism of Trp fluorescence by a next neighbored tyrosinate in the peptide chain is proposed and the relevance of the C terminus of MSP briefly discussed.
Collapse
Affiliation(s)
- T Shutova
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Sweden
| | | | | | | | | | | | | |
Collapse
|
31
|
Ruan K, Xu C, Li T, Li J, Lange R, Balny C. The thermodynamic analysis of protein stabilization by sucrose and glycerol against pressure-induced unfolding. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1654-61. [PMID: 12694178 DOI: 10.1046/j.1432-1033.2003.03485.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have studied the reaction native left arrow over right arrow denatured for the 33-kDa protein isolated from photosystem II. Sucrose and glycerol have profound effects on pressure-induced unfolding. The additives shift the equilibrium to the left; they also cause a significant decrease in the standard volume change (DeltaV). The change in DeltaV was related to the sucrose and glycerol concentrations. The decrease in DeltaV varied with the additive: sucrose caused the largest effect, glycerol the smallest. The theoretical shift of the half-unfolding pressure (P1/2) calculated from the net increase in free energy by addition of sucrose and glycerol was lower than that obtained from experimental mea- surements. This indicates that the free energy change caused by preferential hydration of the protein is not the unique factor involved in the protein stabilization. The reduction in DeltaV showed a large contribution to the theoretical P1/2 shift, suggesting that the DeltaV change, caused by the sucrose or glycerol was associated with the protein stabilization. The origin of the DeltaV change is discussed. The rate of pressure-induced unfolding in the presence of sucrose or glycerol was slower than the refolding rate although both were significantly slower than that observed without any stabilizers.
Collapse
Affiliation(s)
- Kangcheng Ruan
- Laboratory of Proteomics, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Science, Chinese Academy of Sciences, Shanghai, China.
| | | | | | | | | | | |
Collapse
|
32
|
Henmi T, Yamasaki H, Sakuma S, Tomokawa Y, Tamura N, Shen JR, Yamamoto Y. Dynamic Interaction between the D1 protein, CP43 and OEC33 at the lumenal side of photosystem II in spinach chloroplasts: evidence from light-induced cross-Linking of the proteins in the donor-side photoinhibition. PLANT & CELL PHYSIOLOGY 2003; 44:451-6. [PMID: 12721387 DOI: 10.1093/pcp/pcg049] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During the donor-side photoinhibition of spinach photosystem II, the reaction center D1 protein cross-linked with the antenna chlorophyll binding protein CP43 of photosystem II lacking the oxygen-evolving complex (OEC) subunit proteins. The cross-linking did not occur upon illumination of photosystem II samples that retained the OEC33, nor when OEC33-depleted photosystem II samples were reconstituted with the OEC33 prior to illumination. These results suggest that the D1 protein, CP43 and the OEC33 are located in close proximity at the lumenal side of photosystem II, and that the OEC33 suppresses the unnecessary contact between the D1 protein and CP43. Previously we presented data showing the D1 protein located adjacent to CP43 on the stromal side of photosystem II [Ishikawa et al. (1999) BIOCHIM: Biophys. Acta 1413: 147]. The present data suggest that the spatial arrangement of the D1 protein and CP43 at the lumenal side of photosystem II in spinach chloroplasts is similar to that at the stromal side of photosystem II and is consistent with the assignment of these proteins recently proposed on the crystal structures of the photosystem II complexes from cyanobacteria [Zouni et al. (2001) Nature 409: 739, Kamiya and Shen 2003 PROC: Natl. Acad. Sci. USA, 100: 98]. Moreover, the data suggest that the binding condition and positioning of the OEC33 in the photosystem II complex from higher plants may be different from those in cyanobacteria.
Collapse
Affiliation(s)
- Takahiro Henmi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Bricker TM, Frankel LK. Carboxylate groups on the manganese-stabilizing protein are required for efficient binding of the 24 kDa extrinsic protein to photosystem II. Biochemistry 2003; 42:2056-61. [PMID: 12590593 DOI: 10.1021/bi020652v] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effects of the modification of carboxylate groups on the manganese-stabilizing protein on the binding of the 24 kDa extrinsic protein to Photosystem II were investigated. Carboxylate groups on the manganese-stabilizing protein were modified with glycine methyl ester in a reaction facilitated by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The manganese-stabilizing protein which was modified while associated with NaCl-washed membranes could bind to calcium chloride-washed PS II membranes and reconstitute oxygen evolution in a manner similar to that observed for unmodified manganese-stabilizing protein (Frankel, L.K, Cruz, J. C. and Bricker, T. M. (1999) Biochemistry 38, 14271-14278). However, PS II membranes reconstituted with this modified protein were defective in their ability to bind the extrinsic 24 kDa protein of Photosystem II. Mapping of the sites of modification was carried out by trypsin and Staphylococcus V8 protease digestion of the modified protein and analysis by MALDI mass spectrometry. These studies indicated that the domains (1)E-(71)D, (97)D-(144)D, and (180)D-(187)E are labeled when the manganese-stabilizing protein is bound to NaCl-washed Photosystem II membranes. We hypothesize that modified carboxylates, possibly residues (1)E, (32)E, (139)E, and/or (187)E, in these domains are responsible for the altered binding affinity of the 24 kDa protein observed.
Collapse
Affiliation(s)
- Terry M Bricker
- Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | |
Collapse
|
34
|
Ruan K, Li J, Liang R, Xu C, Yu Y, Lange R, Balny C. A rare protein fluorescence behavior where the emission is dominated by tyrosine: case of the 33-kDa protein from spinach photosystem II. Biochem Biophys Res Commun 2002; 293:593-7. [PMID: 12054643 DOI: 10.1016/s0006-291x(02)00247-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An abnormal fluorescence emission of protein was observed in the 33-kDa protein which is one component of the three extrinsic proteins in spinach photosystem II particle (PS II). This protein contains one tryptophan and eight tyrosine residues, belonging to a "B type protein". It was found that the 33-kDa protein fluorescence is very different from most B type proteins containing both tryptophan and tyrosine residues. For most B type proteins studied so far, the fluorescence emission is dominated by the tryptophan emission, with the tyrosine emission hardly being detected when excited at 280 nm. However, for the present 33-kDa protein, both tyrosine and tryptophan fluorescence emissions were observed, the fluorescence emission being dominated by the tyrosine residue emission upon a 280 nm excitation. The maximum emission wavelength of the 33-kDa protein tryptophan fluorescence was at 317 nm, indicating that the single tryptophan residue is buried in a very strong hydrophobic region. Such a strong hydrophobic environment is rarely observed in proteins when using tryptophan fluorescence experiments. All parameters of the protein tryptophan fluorescence such as quantum yield, fluorescence decay, and absorption spectrum including the fourth derivative spectrum were explored both in the native and pressure-denatured forms.
Collapse
Affiliation(s)
- Kangcheng Ruan
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science Chinese Academy of Sciences, 320, Yue-Yang Road, Shanghai 200031, China.
| | | | | | | | | | | | | |
Collapse
|
35
|
Lu YK, Stemler AJ. Extrinsic photosystem II carbonic anhydrase in maize mesophyll chloroplasts. PLANT PHYSIOLOGY 2002; 128:643-9. [PMID: 11842167 PMCID: PMC148926 DOI: 10.1104/pp.010643] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2001] [Revised: 08/30/2001] [Accepted: 10/26/2001] [Indexed: 05/20/2023]
Abstract
One form of carbonic anhydrase (CA) has been observed in maize (Zea mays) thylakoids and photosystem II (PSII)-enriched membranes. Here, we show that an antibody produced against a thylakoid lumen-targeted CA found in Chlamydomonas reinhardtii reacts with a single 33-kD polypeptide in maize thylakoids. With immunoblot analysis, we found that this single polypeptide could be identified only in mesophyll thylakoids and derived PSII membranes, but not in bundle sheath thylakoids. Likewise, a CA activity assay confirmed a large amount of activity in mesophyll, but not in bundle sheath membranes. Immunoblot analysis and CA activity assay showed that the maximum CA can be obtained in the supernatant of the PSII-enriched membranes washed with 1 M CaCl(2), the same procedure used to remove all extrinsic lumenal proteins from PSII. Because this CA reacts with an antibody to lumen-directed CA in C. reinhardtii, and because it can be removed with 1 M CaCl(2) wash, we refer to it tentatively as extrinsic CA. This is to distinguish it from another form of CA activity tightly bound to PSII membranes that remains after CaCl(2) wash, which has been described previously. The function of extrinsic CA is not clear. It is unlikely to have the same function as the cytoplasmic CA, which has been proposed to increase the HCO(-)(3) concentration for phosphoenolpyruvate carboxylase and the C(4) pathway. We suggest that because the extrinsic CA is associated only with thylakoids doing linear electron flow, it could function to produce the CO(2) or HCO(-)(3) needed for PSII activity.
Collapse
Affiliation(s)
- Yih-Kuang Lu
- Section of Plant Biology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
36
|
Ruan K, Xu C, Yu Y, Li J, Lange R, Bec N, Balny C. Pressure-exploration of the 33-kDa protein from the spinach photosystem II particle. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2742-50. [PMID: 11322896 DOI: 10.1046/j.1432-1327.2001.02171.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The 33-kDa protein isolated from the spinach photosystem II particle is an ideal model to explore high-pressure protein-unfolding. The protein has a very low free energy as previously reported by chemical unfolding studies, suggesting that it must be easy to modulate its unfolding transition by rather mild pressure. Moreover, the protein molecule consists of only one tryptophan residue (Trp241) and eight tyrosine residues, which can be conveniently used to probe the protein conformation and structural changes under pressure using either fluorescence spectroscopy or fourth derivative UV absorbance spectroscopy. The different experimental methods used in the present study indicate that at 20 degrees C and pH 6, the 33-kDa protein shows a reversible two-state unfolding transition from atmospheric pressure to about 180 MPa. This value is much lower than those found for the unfolding of most proteins studied so far. The unfolding transition induces a large red shift of the maximum fluorescence emission of 34 nm (from 316 nm to 350 nm). The change in standard free energy (DeltaGo) and in volume (DeltaV) for the transition at pH 6.0 and 20 degrees C are -14.6 kJ.mol-1 and -120 mL.mol-1, respectively, in which the DeltaGo value is consistent with that obtained by chemical denaturation. We found that pressure-induced protein unfolding is promoted by elevated temperatures, which seem largely attributed to the decrease in the absolute value of DeltaGo (only a minor variation was observed for the DeltaV value). However, the promotion of the unfolding by alkaline pH seems mainly related to the increase in DeltaV without any significant changes in DeltaGo. It was also found that NaCl significantly protects the protein from pressure-induced unfolding. In the presence of 1 M NaCl, the pressure needed to induce the half-unfold of the protein is shifted to a higher value (shift of 75 MPa) in comparison with that observed without NaCl. Interestingly, in the presence of NaCl, the value of DeltaV is significantly reduced whilst that of DeltaGo remains as before. The unfolding-refolding kinetics of the protein has also been studied by pressure-jump, in which it was revealed that both reactions are a two-state transition process with a relatively slow relaxation time of about 102 s.
Collapse
Affiliation(s)
- K Ruan
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Hong SK, Pawlikowski SA, Vander Meulen KA, Yocum CF. The oxidation state of the photosystem II manganese cluster influences the structure of manganese stabilizing protein. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1504:262-74. [PMID: 11245790 DOI: 10.1016/s0005-2728(00)00255-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure of photosystem II membranes to trypsin that has been treated to inhibit chymotrypsin activity produces limited hydrolysis of manganese stabilizing protein. Exposure to chymotrypsin under the same conditions yields substantial digestion of the protein. Further probing of the unusual insensitivity of manganese stabilizing protein to trypsin hydrolysis reveals that increasing the temperature from 4 to 25 degrees C will cause some acceleration in the rate of proteolysis. However, addition of low (100 microM) concentrations of NH2OH, that are sufficient to reduce, but not destroy, the photosystem II Mn cluster, causes a change in PS II-bound manganese stabilizing protein that causes it to be rapidly digested by trypsin. Immunoblot analyses with polyclonal antibodies directed against the N-terminus of the protein, or against the entire sequence show that trypsin cleavage produces two distinct peptide fragments estimated to be in the 17-20 kDa range, consistent with proposals that there are 2 mol of the protein/mol photosystem II. The correlation of trypsin sensitivity with Mn redox state(s) in photosystem II suggest that manganese stabilizing protein may interact either directly with Mn, or alternatively, that the polypeptide is bound to another protein of the photosystem II reaction center that is intimately involved in binding and redox activity of Mn.
Collapse
Affiliation(s)
- S K Hong
- Department of Biology and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | | | | | |
Collapse
|
38
|
Dai X, Yu Y, Zhang R, Yu X, He P, Xu C. Relationship among Photosystem II carbonic anhydrase, extrinsic polypeptides and manganese cluster. ACTA ACUST UNITED AC 2001. [DOI: 10.1007/bf03183276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Debus RJ. Amino acid residues that modulate the properties of tyrosine Y(Z) and the manganese cluster in the water oxidizing complex of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1503:164-86. [PMID: 11115632 DOI: 10.1016/s0005-2728(00)00221-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic site for photosynthetic water oxidation is embedded in a protein matrix consisting of nearly 30 different polypeptides. Residues from several of these polypeptides modulate the properties of the tetrameric Mn cluster and the redox-active tyrosine residue, Y(Z), that are located at the catalytic site. However, most or all of the residues that interact directly with Y(Z) and the Mn cluster appear to be contributed by the D1 polypeptide. This review summarizes our knowledge of the environments of Y(Z) and the Mn cluster as obtained from the introduction of site-directed, deletion, and other mutations into the photosystem II polypeptides of the cyanobacterium Synechocystis sp. PCC 6803 and the green alga Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- R J Debus
- Department of Biochemistry, University of California, Riverside, CA 92521-0129, USA.
| |
Collapse
|
40
|
Kuhl H, Rögner M, Van Breemen JF, Boekema EJ. Localization of cyanobacterial photosystem II donor-side subunits by electron microscopy and the supramolecular organization ofphotosystem II in the thylakoid membrane. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:453-9. [PMID: 10561585 DOI: 10.1046/j.1432-1327.1999.00877.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A large set of electron microscopy projections of photosystem II (PSII) dimers isolated from the cyanobacterium Synechococcus elongatus was characterized by single particle image analysis. In addition to previously published maps at lower resolution [Boekema, E.J., Hankamer, B., Bald, D., Kruip, J., Nield, J., Boonstra, A.F., Barber, J. & Rögner, M. (1995) Proc. Natl Acad. Sci. USA 92, 175-179], the new side-view projections show densities of all three lumenal extrinsic proteins, i.e. the 33-kDa, 12-kDa and the cytochrome c-550 subunit encoded by psbO, psbU and psbV, respectively. Analysis of the size and shape of the top-view projections revealed a small number of photosystem II particles of about double the size of the usual dimers. Size and quantity of these 'double dimers' correlates with a small fraction of 1000-kDa particles found with HPLC-size-exclusion chromatographic analysis. Because many cyanobacteria contain dimeric photosystem II complexes arranged in rows within the membrane, the double dimers can be considered as the breakdown fragments of these rows. Their analysis enabled the detection of the arrangement of photosystem II within the rows, in which the dimers interact with other dimers mostly with their tips, leaving a rather open center at the interfaces of two dimers. The dimers have a repeating distance of only 11.7 nm. As a consequence, the phycobilisomes, located on top of PSII and functioning in light-harvesting, must be closely packed or almost touch each other, in a manner similar to a recently suggested model [Bald, D., Kruip, J. & Rögner, M. (1996) Photosynthesis Res. 49, 103-118].
Collapse
Affiliation(s)
- H Kuhl
- Lehrstuhl für Biochemie der Pflazen, Fakultät für Biologie, Ruhr-Universität Bochum, Germany
| | | | | | | |
Collapse
|
41
|
Ouellette AJ, Anderson LB, Barry BA. Amine binding and oxidation at the catalytic site for photosynthetic water oxidation. Proc Natl Acad Sci U S A 1998; 95:2204-9. [PMID: 9482863 PMCID: PMC19295 DOI: 10.1073/pnas.95.5.2204] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/1997] [Accepted: 12/31/1997] [Indexed: 02/06/2023] Open
Abstract
Photosynthetic water oxidation occurs at the Mn-containing catalytic site of photosystem II (PSII). By the use of 14C-labeled amines and SDS-denaturing PAGE, covalent adducts derived from primary amines and the PSII subunits, CP47, D2/D1, and the Mn-stabilizing protein, can be observed. When PSII contains the 18- and 24-kDa extrinsic proteins, which restrict access to the active site, no 14C labeling is obtained. NaCl, but not Na2SO4, competes with 14C labeling in Mn-containing PSII preparations, and the concentration dependence of this competition parallels the activation of oxygen evolution. Formation of 14C-labeled adducts is observed in the presence or in the absence of a functional manganese cluster. However, no significant Cl- effect on 14C labeling is observed in the absence of the Mn cluster. Isolation and quantitation of the 14C-labeled aldehyde product, produced from [14C]benzylamine, gives yields of 1. 8 +/- 0.3 mol/mol PSII and 2.9 +/- 0.2 mol/mol in Mn-containing and Mn-depleted PSII, respectively. The corresponding specific activities are 0.40 +/- 0.07 micromol(micromol PSII-hr)-1 and 0.64 +/- 0.04 micromol(micromol PSII-hr)-1. Cl- suppresses the production of [14C]benzaldehyde in Mn-containing PSII, but does not suppress the production in Mn-depleted preparations. Control experiments show that these oxidation reactions do not involve the redox-active tyrosines, D and Z. Our results suggest the presence of one or more activated carbonyl groups in protein subunits that form the active site of PSII.
Collapse
Affiliation(s)
- A J Ouellette
- Department of Biochemistry, University of Minnesota, St. Paul, MN 55108, USA
| | | | | |
Collapse
|
42
|
Hankamer B, Barber J, Boekema EJ. STRUCTURE AND MEMBRANE ORGANIZATION OF PHOTOSYSTEM II IN GREEN PLANTS. ACTA ACUST UNITED AC 1997; 48:641-671. [PMID: 15012277 DOI: 10.1146/annurev.arplant.48.1.641] [Citation(s) in RCA: 211] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photosystem II (PSII) is the pigment protein complex embedded in the thylakoid membrane of higher plants, algae, and cyanobacteria that uses solar energy to drive the photosynthetic water-splitting reaction. This chapter reviews the primary, secondary, tertiary, and quaternary structures of PSII as well as the function of its constituent subunits. The understanding of in vivo organization of PSII is based in part on freeze-etched and freeze-fracture images of thylakoid membranes. These images show a resolution of about 40-50 A and so provide information mainly on the localization, heterogeneity, dimensions, and shapes of membrane-embedded PSII complexes. Higher resolution of about 15-40 A has been obtained from single particle images of isolated PSII complexes of defined and differing subunit composition and from electron crystallography of 2-D crystals. Observations are discussed in terms of the oligomeric state and subunit organization of PSII and its antenna components.
Collapse
Affiliation(s)
- Ben Hankamer
- Wolfson Laboratories, Department of Biochemistry, Imperial College of Science, Technology and Medicine, London SW7 2AY, United Kingdom, Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen, NL-9747 AG The Netherlands
| | | | | |
Collapse
|
43
|
Affiliation(s)
- A Seidler
- Séction de Bioénergétique (CNRS URA 1290), Département de Biologie Cellulaire et Moléculaire, CEA Saclay, Gif-sur-Yvette, France
| |
Collapse
|
44
|
Betts SD, Ross JR, Hall KU, Pichersky E, Yocum CF. Functional reconstitution of photosystem II with recombinant manganese-stabilizing proteins containing mutations that remove the disulfide bridge. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1274:135-42. [PMID: 8664305 DOI: 10.1016/0005-2728(96)00023-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The 33-kDa extrinsic subunit of PSII stabilizes the O2-evolving tetranuclear Mn cluster and accelerates O2 evolution. We have used site-directed mutagenesis to replace one or both Cys residues in spinach MSP with Ala. Previous experiments using native and reduced MSP led to the conclusion that a disulfide bridge between these two cysteines is essential both for its binding and its functional properties. We report here that the disulfide bridge, though essential for MSP stability, is otherwise dispensible. The mutation C51A by itself had a delayed effect on MSP function: [C51A]MSP restored normal rates of O2 evolution to PSII but was defective in stabilizing this activity during extended illumination. In contrast, the Cys-free double mutant, [C28A,C51A]MSP, was functionally identical to the wild-type protein. Based on results presented here, we propose a light-dependent interaction between MSP and PSII that occurs only during the redox cycling of the Mn cluster and which is destabilized by the single mutation, C51A.
Collapse
Affiliation(s)
- S D Betts
- Department of Biology, University of Michigan, Ann Arbor 48109, USA
| | | | | | | | | |
Collapse
|
45
|
Ahmed A, Tajmir-Riahi HA, Carpentier R. A quantitative secondary structure analysis of the 33 kDa extrinsic polypeptide of photosystem II by FTIR spectroscopy. FEBS Lett 1995; 363:65-8. [PMID: 7729557 DOI: 10.1016/0014-5793(95)00282-e] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In chloroplast photosystem II, the extrinsic polypeptide of 33 kDa is involved in the stabilization the Mn cluster in charge of water splitting and in the fulfilment of the Ca(2+)-cofactor requirement for oxygen evolution. The conformational analysis of the purified 33 kDa extrinsic polypeptide was carried out using FTIR spectroscopy with its self-deconvolution and second derivative resolution enhancement as well as curve-fitting procedures. The FTIR spectroscopic results showed that the isolated polypeptide is characterized by a major proportion beta-sheet conformation (36%) with 27% alpha-helix, 24% turn, and 13% beta-antiparallel structures.
Collapse
Affiliation(s)
- A Ahmed
- Centre de recherche en photobiophysique, Université du Québec a Trois-Rivières, Canada
| | | | | |
Collapse
|
46
|
Xu Q, Nelson J, Bricker TM. Secondary structure of the 33 kDa, extrinsic protein of Photosystem II: a far-UV circular dichroism study. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1188:427-31. [PMID: 7803456 DOI: 10.1016/0005-2728(94)90065-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The 33 kDa extrinsic protein of Photosystem II is an important component of the oxygen-evolving apparatus which functions to stabilize the manganese cluster at physiological chloride concentrations and to lower the calcium requirement for oxygen evolution. Chou-Fasman analysis of the amino-acid sequence of this protein suggests that this component contains a high proportion of alpha-helical structure and only relatively small amounts of beta-sheet structure. A computational study using more sophisticated techniques (Beauregard, M. (1992) Environ. Exp. Bot. 32, 411-429) concluded that the protein contained little periodically ordered secondary structure. In this study, we have directly measured the relative proportions of secondary structure present in the 33 kDa protein using far-ultraviolet circular dichroism spectroscopy. Our results indicate that, in solution, this protein contains a large proportion of beta-sheet structure (38%) and relatively small amounts of alpha-helical structure (9%). A structural model of the 33 kDa protein based on a constrained Chou-Fasman analysis (Teeter, M.M. and Whitlow, M (1988) Proteins 4, 262-273) is presented.
Collapse
Affiliation(s)
- Q Xu
- Division of Biology, Kansas State University, Manhattan 66506
| | | | | |
Collapse
|
47
|
Engels DH, Lott A, Schmid GH, Pistorius EK. Inactivation of the water-oxidizing enzyme in manganese stabilizing protein-free mutant cells of the cyanobacteria Synechococcus PCC7942 and Synechocystic PCC6803 during dark incubation and conditions leading to photoactivation. PHOTOSYNTHESIS RESEARCH 1994; 42:227-244. [PMID: 24306564 DOI: 10.1007/bf00018265] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/1994] [Accepted: 10/21/1994] [Indexed: 06/02/2023]
Abstract
The previously constructed MSP (manganese stabilizing protein-psbO gene product)-free mutant of Synechococcus PCC7942 (Bockholt R, Masepohl B and Pistorius E K (1991) FEBS Lett 294: 59-63) and a newly constructed MSP-free mutant of Synechocystis PCC6803 were investigated with respect to the inactivation of the water-oxidizing enzyme during dark incubation. O2 evolution in the MSP-free mutant cells, when measured with a sequence of short saturating light flashes, was practically zero after an extended dark adaptation, while O2 evolution in the corresponding wild type cells remained nearly constant. It could be shown that this inactivation could be reversed by photoactivation. With isolated thylakoid membranes from the MSP-free mutant of PCC7942, it could be demonstrated that photoactivation required illumination in the presence of Mn(2+) and Ca(2+), while Cl(-) addition was not required under our experimental conditions. Moreover, an extended analysis of the kinetic properties of the water-oxidizing enzyme (kinetics of the S3→(S4)→S0 transition, S-state distribution, deactivation kinetics) in wild type and mutant cells of Synechococcus PCC7942 and Synechocystis PCC6803 was performed, and the events possibly leading to the reversible inactivation of the water-oxidizing enzyme in the mutant cells are discussed. We could also show that the water-oxidizing enzyme in the MSP-free mutant cells is more sensitive to inhibition by added NH4Cl-suggesting that NH3 might be a physiological inhibitor of the water oxidizing enzyme in the absence of MSP.
Collapse
Affiliation(s)
- D H Engels
- Biologie VIII: Zellphysiologie, Universität Bielefeld, Postfach 100131, D-33501, Bielefeld, Germany
| | | | | | | |
Collapse
|
48
|
Betts SD, Hachigian TM, Pichersky E, Yocum CF. Reconstitution of the spinach oxygen-evolving complex with recombinant Arabidopsis manganese-stabilizing protein. PLANT MOLECULAR BIOLOGY 1994; 26:117-30. [PMID: 7948862 DOI: 10.1007/bf00039525] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The psbO gene of cyanobacteria, green algae and higher plants encodes the precursor of the 33 kDa manganese-stabilizing protein (MSP), a water-soluble subunit of photosystem II (PSII). Using a pET-T7 cloning/expression system, we have expressed in Escherichia coli a full-length cDNA clone of psbO from Arabidopsis thaliana. Upon induction, high levels of the precursor protein accumulated in cells grown with vigorous aeration. In cells grown under weak aeration, the mature protein accumulated upon induction. In cells grown with moderate aeration, the ratio of precursor to mature MSP decreased as the optical density at induction increased. Both forms of the protein accumulated as inclusion bodies from which the mature protein could be released under mildly denaturing conditions that did not release the precursor. Renatured Arabidopsis MSP was 87% as effective as isolated spinach MSP in restoring O2 evolution activity to MSP-depleted PSII membranes from spinach; however, the heterologous protein binds to spinach PSIIs with about half the affinity of the native protein. We also report a correction to the previously published DNA sequence of Arabidopsis psbO (Ko et al., Plant Mol Biol 14 (1990) 217-227).
Collapse
Affiliation(s)
- S D Betts
- Department of Biology, University of Michigan, Ann Arbor 48109
| | | | | | | |
Collapse
|
49
|
|