1
|
Malcı K, Santibáñez R, Jonguitud-Borrego N, Santoyo-Garcia JH, Kerkhoven EJ, Rios-Solis L. Improved production of Taxol ® precursors in S. cerevisiae using combinatorial in silico design and metabolic engineering. Microb Cell Fact 2023; 22:243. [PMID: 38031061 PMCID: PMC10687855 DOI: 10.1186/s12934-023-02251-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Integrated metabolic engineering approaches that combine system and synthetic biology tools enable the efficient design of microbial cell factories for synthesizing high-value products. In this study, we utilized in silico design algorithms on the yeast genome-scale model to predict genomic modifications that could enhance the production of early-step Taxol® in engineered Saccharomyces cerevisiae cells. RESULTS Using constraint-based reconstruction and analysis (COBRA) methods, we narrowed down the solution set of genomic modification candidates. We screened 17 genomic modifications, including nine gene deletions and eight gene overexpressions, through wet-lab studies to determine their impact on taxadiene production, the first metabolite in the Taxol® biosynthetic pathway. Under different cultivation conditions, most single genomic modifications resulted in increased taxadiene production. The strain named KM32, which contained four overexpressed genes (ILV2, TRR1, ADE13, and ECM31) involved in branched-chain amino acid biosynthesis, the thioredoxin system, de novo purine synthesis, and the pantothenate pathway, respectively, exhibited the best performance. KM32 achieved a 50% increase in taxadiene production, reaching 215 mg/L. Furthermore, KM32 produced the highest reported yields of taxa-4(20),11-dien-5α-ol (T5α-ol) at 43.65 mg/L and taxa-4(20),11-dien-5-α-yl acetate (T5αAc) at 26.2 mg/L among early-step Taxol® metabolites in S. cerevisiae. CONCLUSIONS This study highlights the effectiveness of computational and integrated approaches in identifying promising genomic modifications that can enhance the performance of yeast cell factories. By employing in silico design algorithms and wet-lab screening, we successfully improved taxadiene production in engineered S. cerevisiae strains. The best-performing strain, KM32, achieved substantial increases in taxadiene as well as production of T5α-ol and T5αAc. These findings emphasize the importance of using systematic and integrated strategies to develop efficient yeast cell factories, providing potential implications for the industrial production of high-value isoprenoids like Taxol®.
Collapse
Affiliation(s)
- Koray Malcı
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK.
- Centre for Engineering Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK.
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| | - Rodrigo Santibáñez
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
| | - Nestor Jonguitud-Borrego
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK
- Centre for Engineering Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK
| | - Jorge H Santoyo-Garcia
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK
- Centre for Engineering Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK
| | - Eduard J Kerkhoven
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
- SciLifeLab, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs, Lyngby, Denmark
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK.
- Centre for Engineering Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK.
- School of Natural and Environmental Sciences, Molecular Biology and Biotechnology Division, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
2
|
Lin P, Fu Z, Liu X, Liu C, Bai Z, Yang Y, Li Y. Direct Utilization of Peroxisomal Acetyl-CoA for the Synthesis of Polyketide Compounds in Saccharomyces cerevisiae. ACS Synth Biol 2023; 12:1599-1607. [PMID: 37172280 DOI: 10.1021/acssynbio.2c00678] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Polyketides are a class of natural products with many applications but are mainly appealing as pharmaceuticals. Heterologous production of polyketides in the yeast Saccharomyces cerevisiae has been widely explored because of the many merits of this model eukaryotic microorganism. Although acetyl-CoA and malonyl-CoA, the precursors for polyketide synthesis, are distributed in several yeast subcellular organelles, only cytosolic synthesis of polyketides has been pursued in previous studies. In this study, we investigate polyketide synthesis by directly using acetyl-CoA in the peroxisomes of yeast strain CEN.PK2-1D. We first demonstrate that the polyketide flaviolin can be synthesized in this organelle upon peroxisomal colocalization of native acetyl-CoA carboxylase and 1,3,6,8-tetrahydroxynaphthalene synthase (a type III polyketide synthase). Next, using the synthesis of the polyketide triacetic acid lactone as an example, we show that (1) a new peroxisome targeting sequence, pPTS1, is more effective than the previously reported ePTS1 for peroxisomal polyketide synthesis; (2) engineering peroxisome proliferation is effective to boost polyketide production; and (3) peroxisomes provide an additional acetyl-CoA reservoir and extra space to accommodate enzymes so that utilizing the peroxisomal pathway plus the cytosolic pathway produces more polyketide than the cytosolic pathway alone. This research lays the groundwork for more efficient heterologous polyketide biosynthesis using acetyl-CoA pools in subcellular organelles.
Collapse
Affiliation(s)
- Pingxin Lin
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China
| | - Zhenhao Fu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China
| | - Xiuxia Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China
| | - Chunli Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yankun Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ye Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China
| |
Collapse
|
3
|
Ito T, Kajita S, Fujii M, Shinohara Y. Plasmodium Parasite Malate-Quinone Oxidoreductase Functionally Complements a Yeast Deletion Mutant of Mitochondrial Malate Dehydrogenase. Microbiol Spectr 2023; 11:e0016823. [PMID: 37036365 PMCID: PMC10269487 DOI: 10.1128/spectrum.00168-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/20/2023] [Indexed: 04/11/2023] Open
Abstract
The emergence of drug-resistant variants of malaria-causing Plasmodium parasites is a life-threatening problem worldwide. Investigation of the physiological function of individual parasite proteins is a prerequisite for a deeper understanding of the metabolic pathways required for parasite survival and therefore a requirement for the development of novel antimalarials. A Plasmodium membrane protein, malate-quinone oxidoreductase (MQO), is thought to contribute to the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC) and is an antimalarial drug target. However, there is little information on its expression and function. Here, we investigated the function of Plasmodium falciparum MQO (PfMQO) in mitochondria using a yeast heterologous expression system. Using a yeast deletion mutant of mitochondrial malate dehydrogenase (MDH1), which is expected to be functionally similar to MQO, as a background strain, we successfully constructed PfMQO-expressing yeast. We confirmed that expression of PfMQO complemented the growth defect of the MDH1 deletion, indicating that PfMQO can adopt the metabolic role of MDH1 in energy transduction for growth in the recombinant yeast. Analysis of cell fractions confirmed that PfMQO was expressed and enriched in yeast mitochondria. By measuring MQO activity, we also confirmed that PfMQO expressed in yeast mitochondria was active. Measurement of oxygen consumption rates showed that mitochondrial respiration was driven by the TCA cycle through PfMQO. In addition, we found that MQO activity was enhanced when intact mitochondria were sonicated, indicating that the malate binding site of PfMQO is located facing the mitochondrial matrix. IMPORTANCE We constructed a model organism to study the physiological role and function of P. falciparum malate-quinone oxidoreductase (PfMQO) in a yeast expression system. PfMQO is actively expressed in yeast mitochondria and functions in place of yeast mitochondrial malate dehydrogenase, which catalyzes the oxidation of malate to oxaloacetate in the TCA cycle. The catalytic site for the oxidation of malate in PfMQO, which is a membrane-bound protein, faces into the mitochondrial matrix, not the mitochondrial inner membrane space. Our findings clearly show that PfMQO is a TCA cycle enzyme and is coupled with the ETC via ubiquinone reduction.
Collapse
Affiliation(s)
- Takeshi Ito
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Sayaka Kajita
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Faculty of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Minori Fujii
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Faculty of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Yasuo Shinohara
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
4
|
Bittner E, Stehlik T, Freitag J. Sharing the wealth: The versatility of proteins targeted to peroxisomes and other organelles. Front Cell Dev Biol 2022; 10:934331. [PMID: 36225313 PMCID: PMC9549241 DOI: 10.3389/fcell.2022.934331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes are eukaryotic organelles with critical functions in cellular energy and lipid metabolism. Depending on the organism, cell type, and developmental stage, they are involved in numerous other metabolic and regulatory pathways. Many peroxisomal functions require factors also relevant to other cellular compartments. Here, we review proteins shared by peroxisomes and at least one different site within the cell. We discuss the mechanisms to achieve dual targeting, their regulation, and functional consequences. Characterization of dual targeting is fundamental to understand how peroxisomes are integrated into the metabolic and regulatory circuits of eukaryotic cells.
Collapse
Affiliation(s)
| | | | - Johannes Freitag
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
5
|
Malubhoy Z, Bahia FM, de Valk SC, de Hulster E, Rendulić T, Ortiz JPR, Xiberras J, Klein M, Mans R, Nevoigt E. Carbon dioxide fixation via production of succinic acid from glycerol in engineered Saccharomyces cerevisiae. Microb Cell Fact 2022; 21:102. [PMID: 35643577 PMCID: PMC9148483 DOI: 10.1186/s12934-022-01817-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/06/2022] [Indexed: 12/21/2022] Open
Abstract
Background The microbial production of succinic acid (SA) from renewable carbon sources via the reverse TCA (rTCA) pathway is a process potentially accompanied by net-fixation of carbon dioxide (CO2). Among reduced carbon sources, glycerol is particularly attractive since it allows a nearly twofold higher CO2-fixation yield compared to sugars. Recently, we described an engineered Saccharomyces cerevisiae strain which allowed SA production in synthetic glycerol medium with a maximum yield of 0.23 Cmol Cmol−1. The results of that previous study suggested that the glyoxylate cycle considerably contributed to SA accumulation in the respective strain. The current study aimed at improving the flux into the rTCA pathway accompanied by a higher CO2-fixation and SA yield. Results By changing the design of the expression cassettes for the rTCA pathway, overexpressing PYC2, and adding CaCO3 to the batch fermentations, an SA yield on glycerol of 0.63 Cmol Cmol−1 was achieved (i.e. 47.1% of the theoretical maximum). The modifications in this 2nd-generation SA producer improved the maximum biomass-specific glycerol consumption rate by a factor of nearly four compared to the isogenic baseline strain solely equipped with the dihydroxyacetone (DHA) pathway for glycerol catabolism. The data also suggest that the glyoxylate cycle did not contribute to the SA production in the new strain. Cultivation conditions which directly or indirectly increased the concentration of bicarbonate, led to an accumulation of malate in addition to the predominant product SA (ca. 0.1 Cmol Cmol−1 at the time point when SA yield was highest). Off-gas analysis in controlled bioreactors with CO2-enriched gas-phase indicated that CO2 was fixed during the SA production phase. Conclusions The data strongly suggest that a major part of dicarboxylic acids in our 2nd-generation SA-producer was formed via the rTCA pathway enabling a net fixation of CO2. The greatly increased capacity of the rTCA pathway obviously allowed successful competition with other pathways for the common precursor pyruvate. The overexpression of PYC2 and the increased availability of bicarbonate, the co-substrate for the PYC reaction, further strengthened this capacity. The achievements are encouraging to invest in future efforts establishing a process for SA production from (crude) glycerol and CO2. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01817-1.
Collapse
|
6
|
Wei Z, Xu Y, Xu Q, Cao W, Huang H, Liu H. Microbial Biosynthesis of L-Malic Acid and Related Metabolic Engineering Strategies: Advances and Prospects. Front Bioeng Biotechnol 2021; 9:765685. [PMID: 34660563 PMCID: PMC8511312 DOI: 10.3389/fbioe.2021.765685] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Malic acid, a four-carbon dicarboxylic acid, is widely used in the food, chemical and medical industries. As an intermediate of the TCA cycle, malic acid is one of the most promising building block chemicals that can be produced from renewable sources. To date, chemical synthesis or enzymatic conversion of petrochemical feedstocks are still the dominant mode for malic acid production. However, with increasing concerns surrounding environmental issues in recent years, microbial fermentation for the production of L-malic acid was extensively explored as an eco-friendly production process. The rapid development of genetic engineering has resulted in some promising strains suitable for large-scale bio-based production of malic acid. This review offers a comprehensive overview of the most recent developments, including a spectrum of wild-type, mutant, laboratory-evolved and metabolically engineered microorganisms for malic acid production. The technological progress in the fermentative production of malic acid is presented. Metabolic engineering strategies for malic acid production in various microorganisms are particularly reviewed. Biosynthetic pathways, transport of malic acid, elimination of byproducts and enhancement of metabolic fluxes are discussed and compared as strategies for improving malic acid production, thus providing insights into the current state of malic acid production, as well as further research directions for more efficient and economical microbial malic acid production.
Collapse
Affiliation(s)
- Zhen Wei
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Yongxue Xu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Qing Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wei Cao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
7
|
Pereira F, Lopes H, Maia P, Meyer B, Nocon J, Jouhten P, Konstantinidis D, Kafkia E, Rocha M, Kötter P, Rocha I, Patil KR. Model-guided development of an evolutionarily stable yeast chassis. Mol Syst Biol 2021; 17:e10253. [PMID: 34292675 PMCID: PMC8297383 DOI: 10.15252/msb.202110253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/14/2023] Open
Abstract
First-principle metabolic modelling holds potential for designing microbial chassis that are resilient against phenotype reversal due to adaptive mutations. Yet, the theory of model-based chassis design has rarely been put to rigorous experimental test. Here, we report the development of Saccharomyces cerevisiae chassis strains for dicarboxylic acid production using genome-scale metabolic modelling. The chassis strains, albeit geared for higher flux towards succinate, fumarate and malate, do not appreciably secrete these metabolites. As predicted by the model, introducing product-specific TCA cycle disruptions resulted in the secretion of the corresponding acid. Adaptive laboratory evolution further improved production of succinate and fumarate, demonstrating the evolutionary robustness of the engineered cells. In the case of malate, multi-omics analysis revealed a flux bypass at peroxisomal malate dehydrogenase that was missing in the yeast metabolic model. In all three cases, flux balance analysis integrating transcriptomics, proteomics and metabolomics data confirmed the flux re-routing predicted by the model. Taken together, our modelling and experimental results have implications for the computer-aided design of microbial cell factories.
Collapse
Affiliation(s)
- Filipa Pereira
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Life Science InstituteUniversity of MichiganAnn ArborUSA
| | - Helder Lopes
- CEB‐Centre of Biological EngineeringUniversity of MinhoCampus de GualtarBragaPortugal
| | - Paulo Maia
- Silicolife ‐ Computational Biology Solutions for the Life SciencesBragaPortugal
| | - Britta Meyer
- Johann Wolfgang Goethe‐UniversitätFrankfurt am MainGermany
| | - Justyna Nocon
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Paula Jouhten
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | | | - Eleni Kafkia
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- The Medical Research Council Toxicology UnitUniversity of CambridgeCambridgeUK
| | - Miguel Rocha
- CEB‐Centre of Biological EngineeringUniversity of MinhoCampus de GualtarBragaPortugal
| | - Peter Kötter
- Johann Wolfgang Goethe‐UniversitätFrankfurt am MainGermany
| | - Isabel Rocha
- CEB‐Centre of Biological EngineeringUniversity of MinhoCampus de GualtarBragaPortugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa (ITQB‐NOVA)OeirasPortugal
| | - Kiran R Patil
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- The Medical Research Council Toxicology UnitUniversity of CambridgeCambridgeUK
| |
Collapse
|
8
|
Gabay-Maskit S, Cruz-Zaragoza LD, Shai N, Eisenstein M, Bibi C, Cohen N, Hansen T, Yifrach E, Harpaz N, Belostotsky R, Schliebs W, Schuldiner M, Erdmann R, Zalckvar E. A piggybacking mechanism enables peroxisomal localization of the glyoxylate cycle enzyme Mdh2 in yeast. J Cell Sci 2020; 133:jcs244376. [PMID: 33177075 PMCID: PMC7758625 DOI: 10.1242/jcs.244376] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 10/26/2020] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic cells have evolved organelles that allow the compartmentalization and regulation of metabolic processes. Knowledge of molecular mechanisms that allow temporal and spatial organization of enzymes within organelles is therefore crucial for understanding eukaryotic metabolism. Here, we show that the yeast malate dehydrogenase 2 (Mdh2) is dually localized to the cytosol and to peroxisomes and is targeted to peroxisomes via association with Mdh3 and a Pex5-dependent piggybacking mechanism. This dual localization of Mdh2 contributes to our understanding of the glyoxylate cycle and provides a new perspective on compartmentalization of cellular metabolism, which is critical for the perception of metabolic disorders and aging.
Collapse
Affiliation(s)
- Shiran Gabay-Maskit
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Luis Daniel Cruz-Zaragoza
- Abteilung für Systembiochemie, Institut für Biochemie und Pathobiochemie, Medizinische Fakultät, Ruhr-Universität Bochum, Bochum D-44780, Germany
| | - Nadav Shai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Miriam Eisenstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Chen Bibi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nir Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tobias Hansen
- Abteilung für Systembiochemie, Institut für Biochemie und Pathobiochemie, Medizinische Fakultät, Ruhr-Universität Bochum, Bochum D-44780, Germany
| | - Eden Yifrach
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nofar Harpaz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ruth Belostotsky
- Division of Pediatric Nephrology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Wolfgang Schliebs
- Abteilung für Systembiochemie, Institut für Biochemie und Pathobiochemie, Medizinische Fakultät, Ruhr-Universität Bochum, Bochum D-44780, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ralf Erdmann
- Abteilung für Systembiochemie, Institut für Biochemie und Pathobiochemie, Medizinische Fakultät, Ruhr-Universität Bochum, Bochum D-44780, Germany
| | - Einat Zalckvar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
9
|
Davydenko S, Meledina T, Mittenberg A, Shabelnikov S, Vonsky M, Morozov A. Proteomics Answers Which Yeast Genes Are Specific for Baking, Brewing, and Ethanol Production. Bioengineering (Basel) 2020; 7:E147. [PMID: 33217975 PMCID: PMC7711625 DOI: 10.3390/bioengineering7040147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 11/29/2022] Open
Abstract
Yeast strains are convenient models for studying domestication processes. The ability of yeast to ferment carbon sources from various substrates and to produce ethanol and carbon dioxide is the core of brewing, winemaking, and ethanol production technologies. The present study reveals the differences among yeast strains used in various industries. To understand this, we performed a proteomic study of industrial Saccharomyces cerevisiae strains followed by a comparative analysis of available yeast genetic data. Individual protein expression levels in domesticated strains from different industries indicated modulation resulting from response to technological environments. The innovative nature of this research was the discovery of genes overexpressed in yeast strains adapted to brewing, baking, and ethanol production, typical genes for specific domestication were found. We discovered a gene set typical for brewer's yeast strains. Baker's yeast had a specific gene adapted to osmotic stress. Toxic stress was typical for yeast used for ethanol production. The data obtained can be applied for targeted improvement of industrial strains.
Collapse
Affiliation(s)
- Svetlana Davydenko
- Innovation & Research Department, Baltika Breweries—Part of the Carlsberg Group, 6-th Verkhnij ln. 3, 194292 St. Petersburg, Russia;
| | - Tatiana Meledina
- Faculty of Biotechnologies (BioTech), ITMO University, Lomonosova st. 9, 191002 St. Petersburg, Russia;
| | - Alexey Mittenberg
- Proteomics and Mass Spectrometry Group, Cell Technologies Center, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 St. Petersburg, Russia; (A.M.); (S.S.)
| | - Sergey Shabelnikov
- Proteomics and Mass Spectrometry Group, Cell Technologies Center, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 St. Petersburg, Russia; (A.M.); (S.S.)
| | - Maksim Vonsky
- Department of State Standards and Reference Materials in the Area of Bioanalytical and Medical Measurements, D.I. Mendeleyev Institute for Metrology VNIIM, Moskovsky pr. 19, 190005 St. Petersburg, Russia;
| | - Artyom Morozov
- Faculty of Biotechnologies (BioTech), ITMO University, Lomonosova st. 9, 191002 St. Petersburg, Russia;
| |
Collapse
|
10
|
Mendes Ferreira A, Mendes-Faia A. The Role of Yeasts and Lactic Acid Bacteria on the Metabolism of Organic Acids during Winemaking. Foods 2020; 9:E1231. [PMID: 32899297 PMCID: PMC7555314 DOI: 10.3390/foods9091231] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022] Open
Abstract
The main role of acidity and pH is to confer microbial stability to wines. No less relevant, they also preserve the color and sensory properties of wines. Tartaric and malic acids are generally the most prominent acids in wines, while others such as succinic, citric, lactic, and pyruvic can exist in minor concentrations. Multiple reactions occur during winemaking and processing, resulting in changes in the concentration of these acids in wines. Two major groups of microorganisms are involved in such modifications: the wine yeasts, particularly strains of Saccharomyces cerevisiae, which carry out alcoholic fermentation; and lactic acid bacteria, which commonly conduct malolactic fermentation. This review examines various such modifications that occur in the pre-existing acids of grape berries and in others that result from this microbial activity as a means to elucidate the link between microbial diversity and wine composition.
Collapse
Affiliation(s)
- Ana Mendes Ferreira
- University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- WM&B—Wine Microbiology & Biotechnology Laboratory, Department of Biology and Environment, UTAD, 5001-801 Vila Real, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Arlete Mendes-Faia
- University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- WM&B—Wine Microbiology & Biotechnology Laboratory, Department of Biology and Environment, UTAD, 5001-801 Vila Real, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
11
|
Sakihama Y, Hidese R, Hasunuma T, Kondo A. Increased flux in acetyl-CoA synthetic pathway and TCA cycle of Kluyveromyces marxianus under respiratory conditions. Sci Rep 2019; 9:5319. [PMID: 30926897 PMCID: PMC6440987 DOI: 10.1038/s41598-019-41863-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/14/2019] [Indexed: 11/10/2022] Open
Abstract
Yeasts are extremely useful, not only for fermentation but also for a wide spectrum of fuel and chemical productions. We analyzed the overall metabolic turnover and transcript dynamics in glycolysis and the TCA cycle, revealing the difference in adaptive pyruvate metabolic response between a Crabtree-negative species, Kluyveromyces marxianus, and a Crabtree-positive species, Saccharomyces cerevisiae, during aerobic growth. Pyruvate metabolism was inclined toward ethanol production under aerobic conditions in S. cerevisiae, while increased transcript abundances of the genes involved in ethanol metabolism and those encoding pyruvate dehydrogenase were seen in K. marxianus, indicating the augmentation of acetyl-CoA synthesis. Furthermore, different metabolic turnover in the TCA cycle was observed in the two species: malate and fumarate production in S. cerevisiae was higher than in K. marxianus, irrespective of aeration; however, fluxes of both the reductive and oxidative TCA cycles were enhanced in K. marxianus by aeration, implying both the cycles contribute to efficient electron flux without producing ethanol. Additionally, decreased hexokinase activity under aerobic conditions is expected to be important for maintenance of suitable carbon flux. These findings demonstrate differences in the key metabolic trait of yeasts employing respiration or fermentation, and provide important insight into the metabolic engineering of yeasts.
Collapse
Affiliation(s)
- Yuri Sakihama
- Graduate School of Innovation, Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Ryota Hidese
- Graduate School of Innovation, Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomohisa Hasunuma
- Graduate School of Innovation, Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Akihiko Kondo
- Graduate School of Innovation, Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
12
|
Xiberras J, Klein M, Nevoigt E. Glycerol as a substrate for Saccharomyces cerevisiae based bioprocesses - Knowledge gaps regarding the central carbon catabolism of this 'non-fermentable' carbon source. Biotechnol Adv 2019; 37:107378. [PMID: 30930107 DOI: 10.1016/j.biotechadv.2019.03.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/14/2022]
Abstract
Glycerol is an interesting alternative carbon source in industrial bioprocesses due to its higher degree of reduction per carbon atom compared to sugars. During the last few years, significant progress has been made in improving the well-known industrial platform organism Saccharomyces cerevisiae with regard to its glycerol utilization capability, particularly in synthetic medium. This provided a basis for future metabolic engineering focusing on the production of valuable chemicals from glycerol. However, profound knowledge about the central carbon catabolism in synthetic glycerol medium is a prerequisite for such incentives. As a matter of fact, the current assumptions about the actual in vivo fluxes active on glycerol as the sole carbon source have mainly been based on omics data collected in complex media or were even deduced from studies with other non-fermentable carbon sources, such as ethanol or acetate. A number of uncertainties have been identified which particularly regard the role of the glyoxylate cycle, the subcellular localization of the respective enzymes, the contributions of mitochondrial transporters and the active anaplerotic reactions under these conditions. The review scrutinizes the current knowledge, highlights the necessity to collect novel experimental data using cells growing in synthetic glycerol medium and summarizes the current state of the art with regard to the production of valuable fermentation products from a carbon source that has been considered so far as 'non-fermentable' for the yeast S. cerevisiae.
Collapse
Affiliation(s)
- Joeline Xiberras
- Department of Life Sciences and Chemistry, Jacobs University gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Mathias Klein
- Department of Life Sciences and Chemistry, Jacobs University gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University gGmbH, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
13
|
Moriyama S, Nishio K, Mizushima T. Structure of glyoxysomal malate dehydrogenase (MDH3) from Saccharomyces cerevisiae. Acta Crystallogr F Struct Biol Commun 2018; 74:617-624. [PMID: 30279312 PMCID: PMC6168765 DOI: 10.1107/s2053230x18011895] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/22/2018] [Indexed: 11/10/2022] Open
Abstract
Malate dehydrogenase (MDH), a carbohydrate and energy metabolism enzyme in eukaryotes, catalyzes the interconversion of malate to oxaloacetate (OAA) in conjunction with that of nicotinamide adenine dinucleotide (NAD+) to NADH. Three isozymes of MDH have been reported in Saccharomyces cerevisiae: MDH1, MDH2 and MDH3. MDH1 is a mitochondrial enzyme and a member of the tricarboxylic acid cycle, whereas MDH2 is a cytosolic enzyme that functions in the glyoxylate cycle. MDH3 is a glyoxysomal enzyme that is involved in the reoxidation of NADH, which is produced during fatty-acid β-oxidation. The affinity of MDH3 for OAA is lower than those of MDH1 and MDH2. Here, the crystal structures of yeast apo MDH3, the MDH3-NAD+ complex and the MDH3-NAD+-OAA ternary complex were determined. The structure of the ternary complex suggests that the active-site loop is in the open conformation, differing from the closed conformations in mitochondrial and cytosolic malate dehydrogenases.
Collapse
Affiliation(s)
- Shu Moriyama
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Kazuya Nishio
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Tsunehiro Mizushima
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| |
Collapse
|
14
|
Bersch K, Lobos Matthei I, Thoms S. Multiple Localization by Functional Translational Readthrough. Subcell Biochem 2018; 89:201-219. [PMID: 30378024 DOI: 10.1007/978-981-13-2233-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In a compartmentalized cell, correct protein localization is crucial for function of virtually all cellular processes. From the cytoplasm as a starting point, proteins are imported into organelles by specific targeting signals. Many proteins, however, act in more than one cellular compartment. In this chapter, we discuss mechanisms by which proteins can be targeted to multiple organelles with a focus on a novel gene regulatory mechanism, functional translational readthrough, that permits multiple targeting of proteins to the peroxisome and other organelles. In mammals, lactate and malate dehydrogenase are the best-characterized enzymes whose targeting is controlled by functional translational readthrough.
Collapse
Affiliation(s)
- Kristina Bersch
- Department of Child and Adolescent Health, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Ignacio Lobos Matthei
- Department of Child and Adolescent Health, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Sven Thoms
- Department of Child and Adolescent Health, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| |
Collapse
|
15
|
Hofhuis J, Schueren F, Nötzel C, Lingner T, Gärtner J, Jahn O, Thoms S. The functional readthrough extension of malate dehydrogenase reveals a modification of the genetic code. Open Biol 2017; 6:rsob.160246. [PMID: 27881739 PMCID: PMC5133446 DOI: 10.1098/rsob.160246] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/21/2016] [Indexed: 01/19/2023] Open
Abstract
Translational readthrough gives rise to C-terminally extended proteins, thereby providing the cell with new protein isoforms. These may have different properties from the parental proteins if the extensions contain functional domains. While for most genes amino acid incorporation at the stop codon is far lower than 0.1%, about 4% of malate dehydrogenase (MDH1) is physiologically extended by translational readthrough and the actual ratio of MDH1x (extended protein) to ‘normal' MDH1 is dependent on the cell type. In human cells, arginine and tryptophan are co-encoded by the MDH1x UGA stop codon. Readthrough is controlled by the 7-nucleotide high-readthrough stop codon context without contribution of the subsequent 50 nucleotides encoding the extension. All vertebrate MDH1x is directed to peroxisomes via a hidden peroxisomal targeting signal (PTS) in the readthrough extension, which is more highly conserved than the extension of lactate dehydrogenase B. The hidden PTS of non-mammalian MDH1x evolved to be more efficient than the PTS of mammalian MDH1x. These results provide insight into the genetic and functional co-evolution of these dually localized dehydrogenases.
Collapse
Affiliation(s)
- Julia Hofhuis
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Fabian Schueren
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Christopher Nötzel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Thomas Lingner
- Microarray and Deep Sequencing Core Facility, University Medical Center Göttingen, University of Göttingen, 37077 Göttingen, Germany
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Sven Thoms
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
16
|
Effelsberg D, Cruz-Zaragoza LD, Schliebs W, Erdmann R. Pex9p is a new yeast peroxisomal import receptor for PTS1-containing proteins. J Cell Sci 2016; 129:4057-4066. [PMID: 27678487 DOI: 10.1242/jcs.195271] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 07/27/2016] [Indexed: 11/20/2022] Open
Abstract
Peroxisomal proteins carrying a type 1 peroxisomal targeting signal (PTS1) are recognized by the well-conserved cycling import receptor Pex5p. The yeast YMR018W gene encodes a Pex5p paralog and newly identified peroxin that is involved in peroxisomal import of a subset of matrix proteins. The new peroxin was designated Pex9p, and it interacts with the docking protein Pex14p and a subclass of PTS1-containing peroxisomal matrix enzymes. Unlike Pex5p, Pex9p is not expressed in glucose- or ethanol-grown cells, but it is strongly induced by oleate. Under these conditions, Pex9p acts as a cytosolic and membrane-bound peroxisome import receptor for both malate synthase isoenzymes, Mls1p and Mls2p. The inducible Pex9p-dependent import pathway provides a mechanism for the oleate-inducible peroxisomal targeting of malate synthases. The existence of two distinct PTS1 receptors, in addition to two PTS2-dependent import routes, contributes to the adaptive metabolic capacity of peroxisomes in response to environmental changes and underlines the role of peroxisomes as multi-purpose organelles. The identification of different import routes into peroxisomes contributes to the molecular understanding of how regulated protein targeting can alter the function of organelles according to cellular needs.
Collapse
Affiliation(s)
- Daniel Effelsberg
- Abteilung Systembiochemie, Institut für Biochemie und Pathobiochemie, Abteilung Systembiochemie, Ruhr-Universität Bochum, Bochum D-44780, Germany
| | - Luis Daniel Cruz-Zaragoza
- Abteilung Systembiochemie, Institut für Biochemie und Pathobiochemie, Abteilung Systembiochemie, Ruhr-Universität Bochum, Bochum D-44780, Germany
| | - Wolfgang Schliebs
- Abteilung Systembiochemie, Institut für Biochemie und Pathobiochemie, Abteilung Systembiochemie, Ruhr-Universität Bochum, Bochum D-44780, Germany
| | - Ralf Erdmann
- Abteilung Systembiochemie, Institut für Biochemie und Pathobiochemie, Abteilung Systembiochemie, Ruhr-Universität Bochum, Bochum D-44780, Germany
| |
Collapse
|
17
|
Identification of Multiple Cryptococcal Fungicidal Drug Targets by Combined Gene Dosing and Drug Affinity Responsive Target Stability Screening. mBio 2016; 7:mBio.01073-16. [PMID: 27486194 PMCID: PMC4981720 DOI: 10.1128/mbio.01073-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cryptococcus neoformans is a pathogenic fungus that is responsible for up to half a million cases of meningitis globally, especially in immunocompromised individuals. Common fungistatic drugs, such as fluconazole, are less toxic for patients but have low efficacy for initial therapy of the disease. Effective therapy against the disease is provided by the fungicidal drug amphotericin B; however, due to its high toxicity and the difficulty in administering its intravenous formulation, it is imperative to find new therapies targeting the fungus. The antiparasitic drug bithionol has been recently identified as having potent fungicidal activity. In this study, we used a combined gene dosing and drug affinity responsive target stability (GD-DARTS) screen as well as protein modeling to identify a common drug binding site of bithionol within multiple NAD-dependent dehydrogenase drug targets. This combination genetic and proteomic method thus provides a powerful method for identifying novel fungicidal drug targets for further development. Cryptococcosis is a neglected fungal meningitis that causes approximately half a million deaths annually. The most effective antifungal agent, amphotericin B, was developed in the 1950s, and no effective medicine has been developed for this disease since that time. A key aspect of amphotericin B’s effectiveness is thought to be because of its ability to kill the fungus (fungicidal activity), rather than just stop or slow its growth. The present study utilized a recently identified fungicidal agent, bithionol, to identify potential fungicidal drug targets that can be used in developing modern fungicidal agents. A combined protein and genetic analysis approach was used to identify a class of enzymes, dehydrogenases, that the fungus uses to maintain homeostasis with regard to sugar nutrients. Similarities in the drug target site were found that resulted in simultaneous inhibition and killing of the fungus by bithionol. These studies thus identify a common, multitarget site for antifungal development.
Collapse
|
18
|
Mechanisms and physiological impact of the dual localization of mitochondrial intermembrane space proteins. Biochem Soc Trans 2015; 42:952-8. [PMID: 25109985 DOI: 10.1042/bst20140104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Eukaryotic cells developed diverse mechanisms to guide proteins to more than one destination within the cell. Recently, the proteome of the IMS (intermembrane space) of mitochondria of yeast cells was identified showing that approximately 20% of all soluble IMS proteins are dually localized to the IMS, as well as to other cellular compartments. Half of these dually localized proteins are important for oxidative stress defence and the other half are involved in energy homoeostasis. In the present review, we discuss the mechanisms leading to the dual localization of IMS proteins and the implications for mitochondrial function.
Collapse
|
19
|
Oba T, Kusumoto K, Kichise Y, Izumoto E, Nakayama S, Tashiro K, Kuhara S, Kitagaki H. Variations in mitochondrial membrane potential correlate with malic acid production by natural isolates ofSaccharomyces cerevisiaesake strains. FEMS Yeast Res 2014; 14:789-96. [DOI: 10.1111/1567-1364.12170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/01/2014] [Accepted: 05/21/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Takahiro Oba
- Biotechnology and Food Research Institute; Fukuoka Industrial Technology Center; Kurume Fukuoka Japan
| | - Kenichi Kusumoto
- Biotechnology and Food Research Institute; Fukuoka Industrial Technology Center; Kurume Fukuoka Japan
| | - Yuki Kichise
- Department of Biochemistry and Applied Chemistry; Kurume National College of Technology; Kurume Fukuoka Japan
| | - Eiji Izumoto
- Department of Biochemistry and Applied Chemistry; Kurume National College of Technology; Kurume Fukuoka Japan
| | - Shunichi Nakayama
- Department of Fermentation Science and Technology; Faculty of Applied Bio-science; Tokyo University of Agriculture; Setagaya-ku Tokyo Japan
| | - Kosuke Tashiro
- Graduate School of Genetic Resources Technology; Kyushu University; Higashi-ku Fukuoka Japan
| | - Satoru Kuhara
- Graduate School of Genetic Resources Technology; Kyushu University; Higashi-ku Fukuoka Japan
| | | |
Collapse
|
20
|
Su J, Wang T, Wang Y, Li YY, Li H. The use of lactic acid-producing, malic acid-producing, or malic acid-degrading yeast strains for acidity adjustment in the wine industry. Appl Microbiol Biotechnol 2014; 98:2395-413. [DOI: 10.1007/s00253-014-5508-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/24/2013] [Accepted: 12/28/2013] [Indexed: 10/25/2022]
|
21
|
Kosugi S, Kiyoshi K, Oba T, Kusumoto K, Kadokura T, Nakazato A, Nakayama S. Isolation of a high malic and low acetic acid-producing sake yeast Saccharomyces cerevisiae strain screened from respiratory inhibitor 2,4-dinitrophenol (DNP)-resistant strains. J Biosci Bioeng 2013; 117:39-44. [PMID: 23867095 DOI: 10.1016/j.jbiosc.2013.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/14/2013] [Accepted: 06/14/2013] [Indexed: 11/29/2022]
Abstract
We isolated 2,4-dinitrophenol (DNP)-resistant sake yeast strains by UV mutagenesis. Among the DNP-resistant mutants, we focused on strains exhibiting high malic acid and low acetic acid production. The improved organic acid composition is unlikely to be under the control of enzyme activities related to malic and acetic acid synthesis pathways. Instead, low mitochondrial activity was observed in DNP-resistant mutants, indicating that the excess pyruvic acid generated during glycolysis is not metabolized in the mitochondria but converted to malic acid in the cytosol. In addition, the NADH/NAD(+) ratio of the DNP-resistant strains was higher than that of the parental strain K901. These results suggest that the increased NADH/NAD(+) ratio together with the low mitochondrial activity alter the organic acid composition because malic acid synthesis requires NADH, while acetic acid uses NAD(+).
Collapse
Affiliation(s)
- Shingo Kosugi
- Department of Fermentation Science and Technology, Faculty of Applied Bio-science, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan
| | - Keiji Kiyoshi
- Department of Fermentation Science and Technology, Faculty of Applied Bio-science, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan
| | - Takahiro Oba
- Biotechnology and Food Research Institute, Fukuoka Industrial Technology Center, 1465-5 Kurume, Fukuoka 839-0861, Japan
| | - Kenichi Kusumoto
- Biotechnology and Food Research Institute, Fukuoka Industrial Technology Center, 1465-5 Kurume, Fukuoka 839-0861, Japan
| | - Toshimori Kadokura
- Department of Fermentation Science and Technology, Faculty of Applied Bio-science, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan
| | - Atsumi Nakazato
- Department of Fermentation Science and Technology, Faculty of Applied Bio-science, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan
| | - Shunichi Nakayama
- Department of Fermentation Science and Technology, Faculty of Applied Bio-science, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan.
| |
Collapse
|
22
|
Nakayama S, Tabata K, Oba T, Kusumoto K, Mitsuiki S, Kadokura T, Nakazato A. Characteristics of the high malic acid production mechanism in Saccharomyces cerevisiae sake yeast strain No. 28. J Biosci Bioeng 2012; 114:281-5. [DOI: 10.1016/j.jbiosc.2012.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 04/09/2012] [Accepted: 04/13/2012] [Indexed: 10/28/2022]
|
23
|
Suzuki Y, Murray SL, Wong KH, Davis MA, Hynes MJ. Reprogramming of carbon metabolism by the transcriptional activators AcuK and AcuM in Aspergillus nidulans. Mol Microbiol 2012; 84:942-64. [DOI: 10.1111/j.1365-2958.2012.08067.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Kabran P, Rossignol T, Gaillardin C, Nicaud JM, Neuvéglise C. Alternative splicing regulates targeting of malate dehydrogenase in Yarrowia lipolytica. DNA Res 2012; 19:231-44. [PMID: 22368181 PMCID: PMC3372373 DOI: 10.1093/dnares/dss007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alternative pre-mRNA splicing is a major mechanism contributing to the proteome complexity of most eukaryotes, especially mammals. In less complex organisms, such as yeasts, the numbers of genes that contain introns are low and cases of alternative splicing (AS) with functional implications are rare. We report the first case of AS with functional consequences in the yeast Yarrowia lipolytica. The splicing pattern was found to govern the cellular localization of malate dehydrogenase, an enzyme of the central carbon metabolism. This ubiquitous enzyme is involved in the tricarboxylic acid cycle in mitochondria and in the glyoxylate cycle, which takes place in peroxisomes and the cytosol. In Saccharomyces cerevisiae, three genes encode three compartment-specific enzymes. In contrast, only two genes exist in Y. lipolytica. One gene (YlMDH1, YALI0D16753g) encodes a predicted mitochondrial protein, whereas the second gene (YlMDH2, YALI0E14190g) generates the cytosolic and peroxisomal forms through the alternative use of two 3'-splice sites in the second intron. Both splicing variants were detected in cDNA libraries obtained from cells grown under different conditions. Mutants expressing the individual YlMdh2p isoforms tagged with fluorescent proteins confirmed that they localized to either the cytosolic or the peroxisomal compartment.
Collapse
|
25
|
da Silva BA, Sodré CL, Souza-Gonçalves AL, Aor AC, Kneipp LF, Fonseca BB, Rozental S, Romanos MTV, Sola-Penna M, Perales J, Kalume DE, dos Santos ALS. Proteomic analysis of the secretions of Pseudallescheria boydii, a human fungal pathogen with unknown genome. J Proteome Res 2011; 11:172-88. [PMID: 22142336 DOI: 10.1021/pr200875x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pseudallescheria boydii is a filamentous fungus that causes a wide array of infections that can affect practically all the organs of the human body. The treatment of pseudallescheriosis is difficult since P. boydii exhibits intrinsic resistance to the majority of antifungal drugs used in the clinic and the virulence attributes expressed by this fungus are unknown. The study of the secretion of molecules is an important approach for understanding the pathogenicity of fungi. With this task in mind, we have shown that mycelial cells of P. boydii were able to actively secrete proteins into the extracellular environment; some of them were recognized by antibodies present in the serum of a patient with pseudallescheriosis. Additionally, molecules secreted by P. boydii induced in vitro irreversible damage in pulmonary epithelial cells. Subsequently, two-dimensional gel electrophoresis combined with mass spectrometry was carried out in order to start the construction of a map of secreted proteins from P. boydii mycelial cells. The two-dimensional map showed that most of the proteins (around 100 spots) were focused at pH ranging from 4 to 7 with molecular masses ranging from 14 to >117 kDa. Fifty spots were randomly selected, of which 30 (60%) were consistently identified, while 20 (40%) spots generated peptides that showed no resemblance to any known protein from other fungi and/or MS with low quality. Notably, we identified proteins involved in metabolic pathways (energy/carbohydrate, nucleotide, and fatty acid), cell wall remodeling, RNA processing, signaling, protein degradation/nutrition, translation machinery, drug elimination and/or detoxification, protection against environmental stress, cytoskeleton/movement proteins, and immunogenic molecules. Since the genome of this fungus is not sequenced, we performed enzymatic and immunodetection assays in order to corroborate the presence of some released proteins. The identification of proteins actively secreted by P. boydii provides important new information for understanding immune modulation and provides important new perspectives on the biology of this intriguing fungus.
Collapse
Affiliation(s)
- Bianca Alcântara da Silva
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPPG), Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Scaife C, Mowlds P, Grassl J, Polden J, Daly CN, Wynne K, Dunn MJ, Clyne RK. 2-D DIGE analysis of the budding yeast pH 6-11 proteome in meiosis. Proteomics 2010; 10:4401-14. [DOI: 10.1002/pmic.201000376] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Yogev O, Pines O. Dual targeting of mitochondrial proteins: mechanism, regulation and function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1012-20. [PMID: 20637721 DOI: 10.1016/j.bbamem.2010.07.004] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 07/04/2010] [Accepted: 07/07/2010] [Indexed: 01/25/2023]
Abstract
One solution found in evolution to increase the number of cellular functions, without increasing the number of genes, is distribution of single gene products to more than one cellular compartment. It is well documented that in eukaryotic cells, molecules of one protein can be located in several subcellular locations, a phenomenon termed dual targeting, dual localization, or dual distribution. The differently localized proteins are coined in this review "echoforms" indicating repetitious forms of the same protein (echo in Greek denotes repetition) distinctly placed in the cell. This term replaces the term to "isoproteins" or "isoenzymes" which are reserved for proteins with the same activity but different amino acid sequences. Echoforms are identical or nearly identical, even though, as referred to in this review may, in some cases, surprisingly have a totally different function in the different compartments. With regard to mitochondria, our operational definition of dual targeted proteins refers to situations in which one of the echoforms is translocated through/into a mitochondrial membrane. In this review we ask how, when and why mitochondrial proteins are dual localized in the cell. We describe mechanisms of dual targeting of proteins between mitochondria and other compartments of the eukaryotic cell. In particular, we have paid attention to situations in which dual localization is regulated in time, location or function. In addition, we have attempted to provide a broader view concerning the phenomenon of dual localization of proteins by looking at mechanisms that are beyond our simple definition of dual targeting. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- Ohad Yogev
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | | |
Collapse
|
28
|
Lu Q, McAlister-Henn L. Peroxisomal localization and function of NADP+ -specific isocitrate dehydrogenases in yeast. Arch Biochem Biophys 2009; 493:125-34. [PMID: 19854152 DOI: 10.1016/j.abb.2009.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 10/19/2009] [Accepted: 10/20/2009] [Indexed: 11/17/2022]
Abstract
Yeast peroxisomal NADP(+)-specific isocitrate dehydrogenase (IDP3) contains a canonical type I peroxisomal targeting sequence (a carboxyl-terminal Cys-Lys-Leu tripeptide), and provides the NADPH required for beta-oxidation of some fatty acids in that organelle. Cytosolic yeast IDP2 carrying a PTS1 (IDP2(+CKL)) was only partially localized to peroxisomes, and the enzyme was able to function in lieu of either peroxisomal IDP3 or cytosolic IDP2. The analogous isocitrate dehydrogenase enzyme (IDPA) from Aspergillus nidulans, irrespective of the presence or absence of a putative PTS1, was found to exhibit patterns of dual compartmental distribution and of dual function in yeast similar to those observed for IDP2(+CKL). To test a potential cellular limit on peroxisomal levels, authentic yeast IDP3, which is normally strictly peroxisomal, was over-expressed. This also resulted in dual distribution and function of the enzyme in both the cytosol and in peroxisomes, supporting the possibility of a restriction on organellar amounts of IDP.
Collapse
Affiliation(s)
- Qian Lu
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | |
Collapse
|
29
|
Wolinski H, Petrovic U, Mattiazzi M, Petschnigg J, Heise B, Natter K, Kohlwein SD. Imaging-based live cell yeast screen identifies novel factors involved in peroxisome assembly. J Proteome Res 2009; 8:20-7. [PMID: 19118449 DOI: 10.1021/pr800782n] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We describe an imaging-based method in intact cells to systematically screen yeast mutant libraries for abnormal morphology and distribution of fluorescently labeled subcellular structures. In this study, chromosomally expressed green fluorescent protein (GFP) fused to the peroxisomal targeting sequence 1, consisting of serine-lysine-leucine, was introduced into 4740 viable yeast deletion mutants using a modified synthetic genetic array (SGA) technology. A benchtop robot was used to create ordered high-density arrays of GFP-expressing yeast mutants on solid media plates. Immobilized live yeast colonies were subjected to high-resolution, multidimensional confocal imaging. A software tool was designed for automated processing and quantitative analysis of acquired multichannel three-dimensional image data. The study resulted in the identification of two novel proteins, as well as of all previously known proteins required for import of proteins bearing peroxisomal targeting signal PTS1, into yeast peroxisomes. The modular method enables reliable microscopic analysis of live yeast mutant libraries in a universally applicable format on standard microscope slides, and provides a step toward fully automated high-resolution imaging of intact yeast cells.
Collapse
Affiliation(s)
- Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
30
|
Tylicki A, Ziolkowska G, Bolkun A, Siemieniuk M, Czerniecki J, Nowakiewicz A. Comparative study of the activity and kinetic properties of malate dehydrogenase and pyruvate decarboxylase from Candida albicans, Malassezia pachydermatis, and Saccharomyces cerevisiae. Can J Microbiol 2008; 54:734-41. [PMID: 18772936 DOI: 10.1139/w08-062] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Candida albicans and Malassezia pachydermatis cause human and animal infections of the skin and internal organs. We compare the properties of two enzymes, pyruvate decarboxylase (PDC) and malate dehydrogenase (MDH), from these species and from Saccharomyces cerevisiae cultivated under aerobic and anaerobic conditions to find differences between the enzymes that adapt pathogens for virulence and help us in searching for new antifungal agents. Malassezia pachydermatis did not show any growth under anaerobic conditions, as opposed to C. albicans and S. cerevisiae. Under aerobic conditions, C. albicans showed the highest growth rate. Malassezia pachydermatis, contrary to the others, did not show any PDC activity, simultaneously showing the highest MDH activity under aerobic conditions and a Km value for oxaloacetate lower than S. cerevisiae. Candida albicans and S. cerevisiae showed a strong decrease in MDH activity under anaerobic conditions. Candida albicans shows four different isoforms of MDH, while M. pachydermatis and S. cerevisiae are characterized by two and three isoforms. Candida albicans shows about a twofold lower activity of PDC but, simultaneously, almost a threefold lower Km value for pyruvate in comparison with S. cerevisiae. The PDC apoform share under aerobic conditions in C. albicans was 47%, while in S. cerevisiae was only 26%; under anaerobic conditions, the PDC apoform decreased to 12% and 8%, respectively. The properties of enzymes from C. albicans show its high metabolic flexibility (contrary to M. pachydermatis) and cause easy switching between fermentative and oxidative metabolism. This feature allows C. albicans to cause both surface and deep infections. We take into consideration the use of thiamin antimetabolites as antifungal factors that can affect both oxidative and fermentative metabolism.
Collapse
Affiliation(s)
- Adam Tylicki
- Institute of Biology, University of Białystok, Swierkowa 20B, 15-950 Białystok, Poland.
| | | | | | | | | | | |
Collapse
|
31
|
Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol 2008; 74:2766-77. [PMID: 18344340 DOI: 10.1128/aem.02591-07] [Citation(s) in RCA: 251] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malic acid is a potential biomass-derivable "building block" for chemical synthesis. Since wild-type Saccharomyces cerevisiae strains produce only low levels of malate, metabolic engineering is required to achieve efficient malate production with this yeast. A promising pathway for malate production from glucose proceeds via carboxylation of pyruvate, followed by reduction of oxaloacetate to malate. This redox- and ATP-neutral, CO(2)-fixing pathway has a theoretical maximum yield of 2 mol malate (mol glucose)(-1). A previously engineered glucose-tolerant, C(2)-independent pyruvate decarboxylase-negative S. cerevisiae strain was used as the platform to evaluate the impact of individual and combined introduction of three genetic modifications: (i) overexpression of the native pyruvate carboxylase encoded by PYC2, (ii) high-level expression of an allele of the MDH3 gene, of which the encoded malate dehydrogenase was retargeted to the cytosol by deletion of the C-terminal peroxisomal targeting sequence, and (iii) functional expression of the Schizosaccharomyces pombe malate transporter gene SpMAE1. While single or double modifications improved malate production, the highest malate yields and titers were obtained with the simultaneous introduction of all three modifications. In glucose-grown batch cultures, the resulting engineered strain produced malate at titers of up to 59 g liter(-1) at a malate yield of 0.42 mol (mol glucose)(-1). Metabolic flux analysis showed that metabolite labeling patterns observed upon nuclear magnetic resonance analyses of cultures grown on (13)C-labeled glucose were consistent with the envisaged nonoxidative, fermentative pathway for malate production. The engineered strains still produced substantial amounts of pyruvate, indicating that the pathway efficiency can be further improved.
Collapse
|
32
|
Lu Q, Minard KI, McAlister-Henn L. Dual compartmental localization and function of mammalian NADP+-specific isocitrate dehydrogenase in yeast. Arch Biochem Biophys 2008; 472:17-25. [PMID: 18275837 DOI: 10.1016/j.abb.2008.01.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/28/2008] [Accepted: 01/31/2008] [Indexed: 11/28/2022]
Abstract
Isozymes of NADP+-specific isocitrate dehydrogenase (IDP) provide NADPH in cytosolic, mitochondrial, and peroxisomal compartments of eukaryotic cells. Analyses of purified IDP isozymes from yeast and from mouse suggest a general correspondence of pH optima for catalysis and pI values with pH values reported for resident cellular compartments. However, mouse IDP2, which partitions between cytosolic and peroxisomal compartments in mammalian cells, exhibits a broad pH optimum and an intermediate pI value. Mouse IDP2 was found to similarly colocalize in both cellular compartments when expressed in yeast at levels equivalent to those of endogenous yeast isozymes. The mouse enzyme can compensate for loss of yeast cytosolic IDP2 and of peroxisomal IDP3. Removal of the peroxisomal targeting signal of the mouse enzyme precludes both localization in peroxisomes and compensation for loss of yeast IDP3.
Collapse
Affiliation(s)
- Qian Lu
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
33
|
Sakai S, Nishide T, Munir E, Baba K, Inui H, Nakano Y, Hattori T, Shimada M. Subcellular localization of glyoxylate cycle key enzymes involved in oxalate biosynthesis of wood-destroying basidiomycete Fomitopsis palustris grown on glucose. Microbiology (Reading) 2006; 152:1857-1866. [PMID: 16735748 DOI: 10.1099/mic.0.28702-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study investigated the subcellular localization of key enzymes of the glyoxylate cycle, i.e. isocitrate lyase (ICL; EC 4.1.3.1) and malate synthase (EC 2.3.3.9), that function constitutively in coordination with oxalate biosynthesis of glucose-grownFomitopsis palustris. The ICL purified previously fromF. palustrisis termed FPICL1. Subcellular fractionation analysis of the cell homogenate by the sucrose density-gradient method showed that both key enzymes were present in peroxisomes, whereas acetyl-CoA synthase (EC 6.2.1.1) and oxalate-producing oxaloacetate acetylhydrolase (EC 3.7.1.1) were cytosolic. The peroxisomal localization of FPICL1 was further confirmed by electron microscopic and immunocytochemical analysis with anti-FPICL1 antibody. In addition, the peroxisomal target signal, composed of SKL at the C terminus of the cDNA encoding FPICL1, was found, which also suggests that FPICL1 is peroxisomal. Accordingly, it is postulated that transportation of succinate from peroxisomes to mitochondria, and vice versa, for the transportation of isocitrate or citrate, occurs in glucose-grownF. palustrisfor the constitutive metabolic coordination of the TCA and glyoxylate cycles with oxalate biosynthesis.
Collapse
Affiliation(s)
- Shunsuke Sakai
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tatsunori Nishide
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Erman Munir
- University of North Sumatra, Jl. Bioteknologi No. 1 Kampus USU, Medan 20513, Indonesia
| | - Kei'ichi Baba
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hiroshi Inui
- Department of Applied Biological Chemistry, University of Osaka Prefecture, Sakai, Osaka 599-8231, Japan
| | - Yoshihisa Nakano
- Department of Applied Biological Chemistry, University of Osaka Prefecture, Sakai, Osaka 599-8231, Japan
| | - Takefumi Hattori
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Mikio Shimada
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
34
|
Kniemeyer O, Lessing F, Scheibner O, Hertweck C, Brakhage AA. Optimisation of a 2-D gel electrophoresis protocol for the human-pathogenic fungus Aspergillus fumigatus. Curr Genet 2005; 49:178-89. [PMID: 16362819 DOI: 10.1007/s00294-005-0047-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 11/28/2005] [Accepted: 11/30/2005] [Indexed: 11/29/2022]
Abstract
Aspergillus fumigatus is the most important airborne fungal pathogen causing life-threatening infections in immunosuppressed patients. One of the important questions concerning A. fumigatus is the identification of pathogenicity determinants. To obtain a comprehensive overview about the proteins produced at different physiological conditions that are related to the infectious process a proteomic approach has been applied. Here, 2-D gel electrophoresis for filamentous fungi was optimised concerning removal of interfering compounds, protein extraction and separation methods. A trichloroacetic acid-based precipitation method of proteins with their subsequent solubilisation by the use of a combination of CHAPS with a second sulfobetaine detergent gave the best results. The optimised protocol was evaluated by the analysis of the proteomes of A. fumigatus grown on two different carbon sources, i.e., glucose and ethanol. Carbon catabolite repression has not been studied in detail at the protein level in A. fumigatus yet. In addition, growth on ethanol leads to activation of the glyoxylate cycle which was shown to be essential for pathogenesis in bacteria and fungi. In A. fumigatus, differential patterns of enzymes of the gluconeogenesis, glyoxylate cycle and ethanol degradation pathway during growth on glucose and ethanol were observed.
Collapse
Affiliation(s)
- Olaf Kniemeyer
- Department of Microbiology and Molecular Biology, Friedrich-Schiller-University, Jena, Germany
| | | | | | | | | |
Collapse
|
35
|
Abstract
Sporulation of the baker's yeast Saccharomyces cerevisiae is a response to nutrient depletion that allows a single diploid cell to give rise to four stress-resistant haploid spores. The formation of these spores requires a coordinated reorganization of cellular architecture. The construction of the spores can be broadly divided into two phases. The first is the generation of new membrane compartments within the cell cytoplasm that ultimately give rise to the spore plasma membranes. Proper assembly and growth of these membranes require modification of aspects of the constitutive secretory pathway and cytoskeleton by sporulation-specific functions. In the second phase, each immature spore becomes surrounded by a multilaminar spore wall that provides resistance to environmental stresses. This review focuses on our current understanding of the cellular rearrangements and the genes required in each of these phases to give rise to a wild-type spore.
Collapse
Affiliation(s)
- Aaron M Neiman
- Department of Biochemistry and Cell Biology, SUNY Stony Brook, Stony Brook, New York 11794-5215, USA.
| |
Collapse
|
36
|
WANG SHAOYUN, XU ZHIBIN, YE XIUYUN, RAO PINGFAN. PURIFICATION AND CHARACTERIZATION OF A MALATE DEHYDROGENASE FROM PHASEOLUS MUNGO. J Food Biochem 2005. [DOI: 10.1111/j.1745-4514.2005.00017.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Moreira dos Santos M, Raghevendran V, Kötter P, Olsson L, Nielsen J. Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments. Metab Eng 2005; 6:352-63. [PMID: 15491864 DOI: 10.1016/j.ymben.2004.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Accepted: 06/18/2004] [Indexed: 10/26/2022]
Abstract
The yeast Saccharomyces cerevisiae is an attractive cell factory, but in many cases there are constraints related with balancing the formation and consumption of redox cofactors. In this work, we studied the effect of having an additional source of NADPH in the cell. In order to do this, two strains were engineered by overexpression of malic enzyme. In one of them, malic enzyme was overexpressed as its wild-type mitochondrial form, and in the other strain a short form lacking the mitochondrial targeting sequence was overexpressed. The recombinant strains were analyzed in aerobic batch and continuous cultivations, and the basic growth characteristics were generally not affected to a great extent, even though pleiotropic effects of the manipulations could be seen by the altered in vitro activities of selected enzymes of the central metabolism. Moreover, the decreased pentose-phosphate pathway flux and the ratios of redox cofactors showed that a net transhydrogenase effect was obtained, which can be directed to the cytosol or the mitochondria. This may find application in redirecting fluxes for improving specific biotechnological applications.
Collapse
Affiliation(s)
- Margarida Moreira dos Santos
- Center for Process Biotechnology, Technical University of Denmark, BioCentrum-DTU, Building 223, DK-2800 Lyngby, Denmark
| | | | | | | | | |
Collapse
|
38
|
Sims AH, Gent ME, Robson GD, Dunn-Coleman NS, Oliver SG. Combining transcriptome data with genomic and cDNA sequence alignments to make confident functional assignments for Aspergillus nidulans genes. ACTA ACUST UNITED AC 2004; 108:853-7. [PMID: 15449589 DOI: 10.1017/s095375620400067x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Whole genome sequencing of several filamentous ascomycetes is complete or in progress; these species, such as Aspergillus nidulans, are relatives of Saccharomyces cerevisiae. However, their genomes are much larger and their gene structure more complex, with genes often containing multiple introns. Automated annotation programs can quickly identify open reading frames for hypothetical genes, many of which will be conserved across large evolutionary distances, but further information is required to confirm functional assignments. We describe a comparative and functional genomics approach using sequence alignments and gene expression data to predict the function of Aspergillus nidulans genes. By highlighting examples of discrepancies between the automated genome annotation and cDNA or EST sequencing, we demonstrate that the greater complexity of gene structure in filamentous fungi demands independent data on gene expression and the gene sequence be used to make confident functional assignments.
Collapse
Affiliation(s)
- Andrew H Sims
- School of Biological Sciences, University of Manchester, The Michael Smith Building, Manchester M13 9PT, UK
| | | | | | | | | |
Collapse
|
39
|
Gibson N, McAlister-Henn L. Physical and genetic interactions of cytosolic malate dehydrogenase with other gluconeogenic enzymes. J Biol Chem 2003; 278:25628-36. [PMID: 12730240 DOI: 10.1074/jbc.m213231200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A truncated form (deltanMDH2) of yeast cytosolic malate dehydrogenase (MDH2) lacking 12 residues on the amino terminus was found to be inadequate for gluconeogenic function in vivo because the mutant enzyme fails to restore growth of a Deltamdh2 strain on minimal medium with ethanol or acetate as the carbon source. The DeltanMDH2 enzyme was also previously found to be refractory to the rapid glucose-induced inactivation and degradation observed for authentic MDH2. In contrast, kinetic properties measured for purified forms of MDH2 and deltanMDH2 enzymes are very similar. Yeast two-hybrid assays indicate weak interactions between MDH2 and yeast phosphoenolpyruvate carboxykinase (PCK1) and between MDH2 and fructose-1,6-bisphosphatase (FBP1). These interactions are not observed for deltanMDH2, suggesting that differences in cellular function between authentic and truncated forms of MDH2 may be related to their ability to interact with other gluconeogenic enzymes. Additional evidence was obtained for interaction of MDH2 with PCK1 using Hummel-Dreyer gel filtration chromatography, and for interactions of MDH2 with PCK1 and with FBP1 using surface plasmon resonance. Experiments with the latter technique demonstrated a much lower affinity for interaction of deltanMDH2 with PCK1 and no interaction between deltanMDH2 and FBP1. These results suggest that the interactions of MDH2 with other gluconeogenic enzymes are dependent on the amino terminus of the enzyme, and that these interactions are important for gluconeogenic function in vivo.
Collapse
Affiliation(s)
- Natalie Gibson
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | |
Collapse
|
40
|
Kunze M, Kragler F, Binder M, Hartig A, Gurvitz A. Targeting of malate synthase 1 to the peroxisomes of Saccharomyces cerevisiae cells depends on growth on oleic acid medium. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:915-22. [PMID: 11846793 DOI: 10.1046/j.0014-2956.2001.02727.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The eukaryotic glyoxylate cycle has been previously hypothesized to occur in the peroxisomal compartment, which in the yeast Saccharomyces cerevisiae additionally represents the sole site for fatty acid beta-oxidation. The subcellular location of the key glyoxylate-cycle enzyme malate synthase 1 (Mls1p), an SKL-terminated protein, was examined in yeast cells grown on different carbon sources. Immunoelectron microscopy in combination with cell fractionation showed that Mls1p was abundant in the peroxisomes of cells grown on oleic acid, whereas in ethanol-grown cells Mls1p was primarily cytosolic. This was reinforced using a green fluorescent protein (GFP)-Mls1p reporter, which entered peroxisomes solely in cells grown under oleic acid-medium conditions. Although growth of cells devoid of Mls1p on ethanol or acetate could be fully restored using a cytosolic Mls1p devoid of SKL, this construct could only partially alleviate the requirement for native Mls1p in cells grown on oleic acid. The combined results indicated that Mls1p remained in the cytosol of cells grown on ethanol, and that targeting of Mls1p to the peroxisomes was advantageous to cells grown on oleic acid as a sole carbon source.
Collapse
Affiliation(s)
- Markus Kunze
- Institut für Biochemie und Molekulare Zellbiologie der Universität Wien and Ludwig Boltzmann-Forschungsstelle für Biochemie, Vienna Biocenter, Austria
| | | | | | | | | |
Collapse
|
41
|
Szewczyk E, Andrianopoulos A, Davis MA, Hynes MJ. A single gene produces mitochondrial, cytoplasmic, and peroxisomal NADP-dependent isocitrate dehydrogenase in Aspergillus nidulans. J Biol Chem 2001; 276:37722-9. [PMID: 11483612 DOI: 10.1074/jbc.m105645200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NADP-dependent isocitrate dehydrogenase enzymes catalyze the decarboxylation of isocitrate to 2-oxoglutarate accompanied by the production of NADPH. In mammals two different genes encode mitochondrial and cytoplasmic/peroxisomal located enzymes, whereas in Saccharomyces cerevisiae three separate genes specify compartment specific enzymes. We have identified a single gene, idpA, in the filamentous fungus Aspergillus nidulans that specifies a protein with a high degree of identity to mammalian and S. cerevisiae enzymes. Northern blot analysis and reverse transcription-polymerase chain reaction revealed the presence of two idpA transcripts and two transcription start points were identified by sequencing cDNA clones and by 5'-rapid amplification of cDNA ends. The shorter transcript was found to be inducible by acetate and by fatty acids while the longer transcript was present in higher amounts during growth in glucose containing media. The longer transcript is predicted to encode a polypeptide containing an N-terminal mitochondrial targeting sequence as well as a C-terminal tripeptide (ARL) as a potential peroxisomal targeting signal. The shorter transcript is predicted to encode a polypeptide lacking the mitochondrial targeting signal but retaining the C-terminal sequence. Immunoblotting using antibody raised against S. cerevisiae Idp1p detected two polypeptides consistent with these predictions. The functions of the predicted targeting sequences were confirmed by microscopic analysis of transformants containing fluorescent protein fusion constructs. Using anti-Idp1p antibodies, protein localization to mitochondria and peroxisomes was observed during growth on glucose whereas cytoplasmic and peroxisomal localization was found upon acetate or fatty acid induction. Therefore, we have established that by the use of two transcription start points a single gene is sufficient to specify localization of NADP-dependent isocitrate dehydrogenase to three different cellular compartments in A. nidulans.
Collapse
Affiliation(s)
- E Szewczyk
- Department of Genetics, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
42
|
Roth S, Schüller HJ. Cat8 and Sip4 mediate regulated transcriptional activation of the yeast malate dehydrogenase gene MDH2 by three carbon source-responsive promoter elements. Yeast 2001; 18:151-62. [PMID: 11169757 DOI: 10.1002/1097-0061(20010130)18:2<151::aid-yea662>3.0.co;2-q] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Malate dehydrogenase isoenzymes are localized in different cellular compartments and fulfil important functions in intermediary metabolism. In the yeast Saccharomyces cerevisiae, three malate dehydrogenase genes, MDH1, MDH2 and MDH3, encoding mitochondrial, cytosolic and peroxisomal variants, have been identified. We demonstrate the importance of transcriptional activators Hap4, Cat8 and Pip2 for the carbon source-dependent regulation of MDH1, MDH2 and MDH3, respectively. The control region of the MDH2 gene required for gluconeogenic growth with C(2) substrates contains three sequence elements similar to the previously identified carbon source-responsive element (CSRE). In a synthetic test system, each of these sequences turned out to be a weak UAS element showing a strong synergism when present in multiple copies. Cumulative mutagenesis of the natural MDH2 promoter confirmed the contribution of all three elements to transcriptional derepression under non-fermentative growth conditions. The DNA-binding domains of zinc cluster proteins Cat8 and Sip4 synthesized in Escherichia coli could interact in vitro with CSRE motifs of MDH2. This result was confirmed by binding assays using protein extracts from yeast. Deregulated variants of Cat8 and Sip4 modified by heterologous transcriptional activation domains were able to alleviate glucose repression of MDH2 substantially. Although Sip4 turned out as the less effective activator, our findings demonstrate the general significance of both proteins for expression of gluconeogenic structural genes.
Collapse
Affiliation(s)
- S Roth
- Institut für Genetik und Biochemie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | | |
Collapse
|
43
|
|
44
|
Zomer AW, Michels PA, Opperdoes FR. Molecular characterisation of Trypanosoma brucei alkyl dihydroxyacetone-phosphate synthase. Mol Biochem Parasitol 1999; 104:55-66. [PMID: 10589981 DOI: 10.1016/s0166-6851(99)00141-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alkyl dihydroxyacetone-phosphate synthase is the second enzyme of the ether-lipid biosynthetic pathway which is responsible for the introduction of the ether linkage between a fatty alcohol and a glycerol present in a subclass of phospholipids, the plasmalogens and possibly in glycolipid membrane anchors. In this study the gene coding for alkyl dihydroxyacetone-phosphate synthase was isolated from Trypanosoma brucei. Southern blot analysis of total genomic DNA suggested the presence of a single copy gene. The analysis, together with sequencing of different cDNA clones showed that the two alleles of the gene differ in only one nucleotide. The gene encodes a protein of 612 amino acids with a calculated molecular mass of 68,891, not counting the initiator methionine. It carries a type-1 peroxisomal targeting signal (a C-terminal tripeptide--AHL) and a calculated overall positive charge of +10. The gene was expressed in a bacterial system and the corresponding protein carrying a His-tag was purified. The recombinant alkyl dihydroxyacetone-phosphate synthase and the enzyme isolated directly from the glycosomes of bloodstream-form trypanosomes have comparable kinetics. The Km for hexadecanol was 42 microM, while approximately 100 microM of palmitoyl dihydroxyacetone phosphate (DHAP) was necessary for optimal activity. Sodium chloride inhibited both the His-tagged protein and the enzyme isolated from the glycosomes of bloodstream-form and insect stage T. brucei.
Collapse
Affiliation(s)
- A W Zomer
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Catholic University of Louvain, Brussels, Belgium
| | | | | |
Collapse
|
45
|
Onishi Y, Kuroda M, Yasueda H, Saito A, Sono-Koyama E, Tunasawa S, Hashida-Okado T, Yagihara T, Uchida K, Yamaguchi H, Akiyama K, Kato I, Takesako K. Two-dimensional electrophoresis of Malassezia allergens for atopic dermatitis and isolation of Mal f 4 homologs with mitochondrial malate dehydrogenase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:148-54. [PMID: 10103045 DOI: 10.1046/j.1432-1327.1999.00247.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The yeast Malassezia furfur is a natural inhabitant of the human skin microflora that induces an allergic reaction in atopic dermatitis. To identify allergens of M. furfur, we separated a crude preparation of M. furfur antigens as discrete spots by 2-D PAGE and detected IgE-binding proteins using sera of atopic dermatitis patients. We identified the known allergens, Mal f 2 and Mal f 3, and determined N-terminal amino acid sequences of six new IgE-binding proteins including Mal f 4. The cDNA and genomic DNA encoding Mal f 4 were cloned and sequenced. The gene was mitochondrial malate dehydrogenase and encoded Mal f 4 composed of 315 amino acids and a signal sequence of 27 amino acids. We purified Mal f 4, which had a molecular mass of 35 kDa from a membrane fraction of a lysate of cultured cells. Thirty of 36 M. furfur-allergic atopic dermatitis patients (83.3%) had elevated serum levels of IgE to purified Mal f 4, indicating that Mal f 4 is a major allergen. There was a significant correlation of the Phadebas RAST unit values of Mal f 4 and the crude antigen, but not between Mal f 4 and the known allergen Mal f 2.
Collapse
Affiliation(s)
- Y Onishi
- Biotechnology Research Laboratories, Takara Shuzo Co. Ltd, Shiga, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
van den Berg MA, de Jong-Gubbels P, Steensma HY. Transient mRNA responses in chemostat cultures as a method of defining putative regulatory elements: application to genes involved in Saccharomyces cerevisiae acetyl-coenzyme A metabolism. Yeast 1998; 14:1089-104. [PMID: 9778795 DOI: 10.1002/(sici)1097-0061(19980915)14:12<1089::aid-yea312>3.0.co;2-k] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To identify common regulatory sequences in the promoters of genes, transcription of 31 genes of Saccharomyces cerevisiae was analysed during the transient response to a glucose pulse in a chemostat culture. mRNA levels were monitored during the subsequent excess glucose, ethanol and acetate phases, while other conditions were kept constant. This setup allowed a direct comparison between regulation by glucose, ethanol and acetate. Genes with identical regulation patterns were grouped to identify regulatory elements in the promoters. In respect to regulation on glucose four classes were identified: no transcription under any of the conditions tested, no difference in regulation on glucose, induced on glucose and repressed on glucose. In addition, genes were found that were repressed or induced on ethanol or acetate. Sequence alignment of genes with similar regulation patterns revealed five new, putative regulatory promoter elements. (i) The glucose-inducible fermentation genes PDC1 and ADH1 share the sequence ATACCTTCSTT. (ii) Acetate-repression might be mediated by the decamer CCCGAG RGGA, present in the promoters of ACS2 and ACR1. (iii) A specific element (CCWTTSRNCCG) for the glyoxylate cycle was present in seven genes studied: CIT2, ICL1, MLS1, MDH2, CAT2, ACR1 and ACH1. These genes were derepressed on ethanol or acetate. (iv) The sequence ACGTSCRGAATGA was found in the promoters of the partially ethanol-repressed genes ACS1 and YAT1. (v) Ethanol induction, as seen for ACS2, ADH3 and MDH1, might be mediated via the sequence CGGSGCCGRAG.
Collapse
MESH Headings
- Acetates/metabolism
- Acetyl Coenzyme A/drug effects
- Acetyl Coenzyme A/genetics
- Acetyl Coenzyme A/metabolism
- Blotting, Northern
- Culture Media/pharmacology
- DNA, Fungal/drug effects
- DNA, Fungal/genetics
- Ethanol/metabolism
- Fermentation
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Fungal/drug effects
- Genes, Fungal/drug effects
- Genes, Fungal/genetics
- Glyoxylates/metabolism
- Kinetics
- RNA, Messenger/analysis
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- Regulatory Sequences, Nucleic Acid/drug effects
- Regulatory Sequences, Nucleic Acid/genetics
- Saccharomyces cerevisiae/drug effects
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
Collapse
Affiliation(s)
- M A van den Berg
- Kluyver Institute for Biotechnology, Delft University of Technology, The Netherlands
| | | | | |
Collapse
|
47
|
Mikulásová D, Kollárová M, Miginiac-Maslow M, Decottignies P, Jacquot JP, Kutejová E, Mernik N, Egyudová I, Musrati R, Horecká T. Purification and characterization of the malate dehydrogenase from Streptomyces aureofaciens. FEMS Microbiol Lett 1998; 159:299-305. [PMID: 9503625 DOI: 10.1111/j.1574-6968.1998.tb12875.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The malate dehydrogenase (MDH) from Streptomyces aureofaciens was purified to homogeneity and its physical and biochemical properties were studied. Its amino-terminal sequence perfectly matched the amino-terminal sequence of the MDH from Streptomyces atratus whose biochemical characteristics have never been determined. The molecular mass of the native enzyme, estimated by size-exclusion chromatography, was 70 kDa. The protein was a homodimer, with a 38-kDa subunit molecular mass. It showed a strong specificity for NADH and was much more efficient for the reduction of oxaloacetate than for the oxidation of malate, with a pH optimum of 8. Unlike MDHs from other sources, it was not inhibited by excess oxaloacetate. This first complete functional characterization of an MDH from Streptomyces shows that the enzyme is very similar in many respects to other bacterial MDHs with the notable exception of a lack of inhibition by excess substrate.
Collapse
Affiliation(s)
- D Mikulásová
- Department of Biochemistry, Faculty of Sciences, Comenius University, Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Ocheretina O, Scheibe R. Cloning and sequence analysis of cDNAs encoding plant cytosolic malate dehydrogenase. Gene 1997; 199:145-8. [PMID: 9358050 DOI: 10.1016/s0378-1119(97)00361-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Here we report the first complete sequence of plant cytosolic malate dehydrogenase (EC 1.1.1.37). The phylogenetic relationships between malate dehydrogenases from different cell compartments are discussed. The constructed phylogenetic tree shows that cytosolic NAD-MDH and chloroplast NADP-MDH have evolved through gene duplication of the pre-existing nuclear gene.
Collapse
Affiliation(s)
- O Ocheretina
- Pflanzenphysiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, Germany
| | | |
Collapse
|
50
|
Small WC, McAlister-Henn L. Metabolic effects of altering redundant targeting signals for yeast mitochondrial malate dehydrogenase. Arch Biochem Biophys 1997; 344:53-60. [PMID: 9244381 DOI: 10.1006/abbi.1997.0179] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Eukaryotic cells contain highly homologous isozymes of malate dehydrogenase which catalyze the same reaction in different cellular compartments. To examine whether the metabolic functions of these isozymes are interchangeable, we have altered the cellular localization of mitochondrial malate dehydrogenase (MDH1) in yeast. Since a previous study showed that removal of the targeting presequence from MDH1 does not prevent mitochondrial import in vivo, we tested the role of a putative cryptic targeting sequence near the amino terminus of the mature polypeptide. Three residues in this region were changed to residues present in analogous positions in the other two yeast MDH isozymes. Alone, these replacements did not affect activity or localization of MDH1 but, in combination with deletion of the presequence, prevented mitochondrial import in vivo. Measurable levels of the resulting cytosolic form of MDH1 were low with expression from a centromere-based plasmid but were comparable to normal cellular levels with expression from a multicopy plasmid. The cytosolic form of MDH1 restored the ability of a deltaMDH1 disruption strain to grow on ethanol or acetate, suggesting that mitochondrial localization of MDH1 is not essential for its function in the TCA cycle. This TCA cycle function observed for the cytosolic form of MDH1 is unique to that isozyme since overexpression of MDH2 and of a cytosolic form of MDH3 in a deltaMDH1 strain failed to restore growth. Finally, only partial restoration of growth of a deltaMDH2 disruption mutant was attained with the cytosolic form of MDH1, suggesting that MDH2 may also have unique metabolic functions.
Collapse
Affiliation(s)
- W C Small
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284, USA
| | | |
Collapse
|