1
|
Kim C, Kim H, Park JS, Park J, Oh J, Yoon J, Baek K. High-level production and purification of bioactive recombinant human activin A in Chinese hamster ovary cells. Prep Biochem Biotechnol 2024; 54:218-225. [PMID: 37222635 DOI: 10.1080/10826068.2023.2214932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Activin A, a member of the TGF-β superfamily, is a homodimer of the inhibin βΑ subunit that plays a diversity of roles in biological processes. Because of its multiple functions, significant efforts have been made to produce activin A, however, unsatisfactory results were obtained due to its low level of expression. In this study, a stable CHO cell line exhibiting high expression of rhActivin A was isolated and production of rhActivin A was achieved using the cell line from 11-day fed-batch cultures in a 7.5 L bioreactor. The production rate was 0.22 g/L, substantially higher than those reported in previous studies. The culture supernatant of the bioreactor was used to purify rhActivin A (purity: >99%, recovery rate: 47%). The purified rhActivin A exhibited biological activity, with an EC50 of 3.893 ng/mL and a specific activity of 1.38 × 103 IU/mg. The control of process-related impurities in the purified rhActivin A was successful and met the USP recommendations for use in cell therapy. Thus, our production and purification methods were appropriate for large-scale GMP-grade rhActivin A production, which can be used for various purposes including cell therapy.
Collapse
Affiliation(s)
- Changin Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, South Korea
| | | | | | - Jiwon Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, South Korea
| | - Jeongmin Oh
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, South Korea
| | | | - Kwanghee Baek
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, South Korea
| |
Collapse
|
2
|
Delgado A, Griera R, Llor N, López-Aguilar E, Busquets MA, Noé V, Ciudad CJ. Trioleyl Pyridinium, a Cationic Transfection Agent for the Lipofection of Therapeutic Oligonucleotides into Mammalian Cells. Pharmaceutics 2023; 15:pharmaceutics15020420. [PMID: 36839742 PMCID: PMC9960667 DOI: 10.3390/pharmaceutics15020420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND One of the most significant limitations that therapeutic oligonucleotides present is the development of specific and efficient delivery vectors for the internalization of nucleic acids into cells. Therefore, there is a need for the development of new transfection agents that ensure a proper and efficient delivery into mammalian cells. METHODS We describe the synthesis of 1,3,5-tris[(4-oelyl-1-pyridinio)methyl]benzene tribromide (TROPY) and proceeded to the validation of its binding capacity toward oligonucleotides, the internalization of DNA into the cells, the effect on cell viability, apoptosis, and its capability to transfect plasmid DNA. RESULTS The synthesis and chemical characterization of TROPY, which can bind DNA and transfect oligonucleotides into mammalian cells through clathrin and caveolin-mediated endocytosis, are described. Using a PPRH against the antiapoptotic survivin gene as a model, we validated that the complex TROPY-PPRH decreased cell viability in human cancer cells, increased apoptosis, and reduced survivin mRNA and protein levels. TROPY was also able to stably transfect plasmid DNA, as demonstrated by the formation of viable colonies upon the transfection of a dhfr minigene into dhfr-negative cells and the subsequent metabolic selection. CONCLUSIONS TROPY is an efficient transfecting agent that allows the delivery of therapeutic oligonucleotides, such as PPRHs and plasmid DNA, inside mammalian cells.
Collapse
Affiliation(s)
- Ana Delgado
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Rosa Griera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Núria Llor
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Ester López-Aguilar
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Maria Antònia Busquets
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Nanoscience and Nanotechnology Institute, IN2UB, University of Barcelona, 08028 Barcelona, Spain
| | - Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Nanoscience and Nanotechnology Institute, IN2UB, University of Barcelona, 08028 Barcelona, Spain
| | - Carlos J. Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Nanoscience and Nanotechnology Institute, IN2UB, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-403-4455
| |
Collapse
|
3
|
Synthesis and validation of DOPY: A new gemini dioleylbispyridinium based amphiphile for nucleic acid transfection. Eur J Pharm Biopharm 2021; 165:279-292. [PMID: 34033881 DOI: 10.1016/j.ejpb.2021.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/15/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022]
Abstract
Nucleic acids therapeutics provide a selective and promising alternative to traditional treatments for multiple genetic diseases. A major obstacle is the development of safe and efficient delivery systems. Here, we report the synthesis of the new cationic gemini amphiphile 1,3-bis[(4-oleyl-1-pyridinio)methyl]benzene dibromide (DOPY). Its transfection efficiency was evaluated using PolyPurine Reverse Hoogsteen hairpins (PPRHs), a nucleic acid tool for gene silencing and gene repair developed in our laboratory. The interaction of DOPY with PPRHs was confirmed by gel retardation assays, and it forms complexes of 155 nm. We also demonstrated the prominent internalization of PPRHs using DOPY compared to other chemical vehicles in SH-SY5Y, PC-3 and DF42 cells. Regarding gene silencing, a specific PPRH against the survivin gene delivered with DOPY decreased survivin protein levels and cell viability more effectively than with N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium methylsulfate (DOTAP) in both SH-SY5Y and PC-3 cells. We also validated the applicability of DOPY in gene repair approaches by correcting a point mutation in the endogenous locus of the dhfr gene in DF42 cells using repair-PPRHs. All these results indicate both an efficient entry and release of PPRHs at the intracellular level. Therefore, DOPY can be considered as a new lipid-based vehicle for the delivery of therapeutic oligonucleotides.
Collapse
|
4
|
Noé V, Ciudad CJ. Polypurine Reverse-Hoogsteen Hairpins as a Tool for Exon Skipping at the Genomic Level in Mammalian Cells. Int J Mol Sci 2021; 22:3784. [PMID: 33917446 PMCID: PMC8038689 DOI: 10.3390/ijms22073784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 01/15/2023] Open
Abstract
Therapeutic strategies for rare diseases based on exon skipping are aimed at mediating the elimination of mutated exons and restoring the reading frame of the affected protein. We explored the capability of polypurine reverse-Hoogsteen hairpins (PPRHs) to cause exon skipping in NB6 cells carrying a duplication of exon 2 of the DHFR gene that causes a frameshift abolishing DHFR activity. METHODS Different editing PPRHs were designed and transfected in NB6 cells followed by incubation in a DHFR-selective medium lacking hypoxanthine and thymidine. Surviving colonies were analyzed by DNA sequencing, RT-PCR, Western blotting and DHFR enzymatic activity. RESULTS Transfection of editing PPRHs originated colonies in the DHFR-selective medium. DNA sequencing results proved that the DHFR sequence in all these colonies corresponded to the wildtype sequence with just one copy of exon 2. In the edited colonies, the skipping of the additional exon was confirmed at the mRNA level, the DHFR protein was restored, and it showed high levels of DHFR activity. CONCLUSIONS Editing-PPRHs are able to cause exon skipping at the DNA level and could be applied as a possible therapeutic tool for rare diseases.
Collapse
Affiliation(s)
- Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences & IN2UB, University of Barcelona, 08028 Barcelona, Spain;
| | | |
Collapse
|
5
|
Cho S, Jeong G, Han N, Kim C, Park JS, Jeong Y, Baek K, Yoon J. Efficient production process of bioactive recombinant human leukemia inhibitory factor in Chinese hamster ovary cells. Protein Expr Purif 2020; 176:105744. [PMID: 32890706 DOI: 10.1016/j.pep.2020.105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/26/2022]
Abstract
The rhLIF is widely used as an essential factor in stem cell cultures for cell therapies. However, all the recombinant LIFs commercially available are expensive, and no commercially available rhLIF meet the standards recommended by USP for use in cell therapies. The current study reports the efficient production of N-glycosylated and bioactive rhLIF in CHO cells. The production rate of established rhLIF-expressing rCHO cells was approximately 0.85 g/l in 12-day fed-batch cultures using a 7.5 l bioreactor. The rhLIF protein was purified via a four-step purification procedure with approximately 57% recovery rate and greater than 99% purity. The purified rhLIF was N-glycosylated and biologically active with an EC50 of 0.167 ng/ml and a specific activity of 0.86 × 103 IU/mg. The purification procedure controlled the levels of process-related impurities below critical levels recommended by USP for cytokines used in cell therapies. The current work is the first production process of N-glycosylated and bioactive rhLIF, which can be applied to large-scale manufacture of GMP-grade rhLIF for use as an ancillary material in cell therapy.
Collapse
Affiliation(s)
- Sujin Cho
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, 17104, Republic of Korea
| | - Gookjoo Jeong
- PanGen Biotech Inc., Suwon, 16675, Republic of Korea
| | - Nara Han
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, 17104, Republic of Korea
| | - Changin Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, 17104, Republic of Korea
| | | | - Yongsu Jeong
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, 17104, Republic of Korea
| | - Kwanghee Baek
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, 17104, Republic of Korea; PanGen Biotech Inc., Suwon, 16675, Republic of Korea
| | - Jaeseung Yoon
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, 17104, Republic of Korea; PanGen Biotech Inc., Suwon, 16675, Republic of Korea.
| |
Collapse
|
6
|
Solé A, Ciudad CJ, Chasin LA, Noé V. Correction of point mutations at the endogenous locus of the dihydrofolate reductase gene using repair-PolyPurine Reverse Hoogsteen hairpins in mammalian cells. Biochem Pharmacol 2016; 110-111:16-24. [PMID: 27063945 DOI: 10.1016/j.bcp.2016.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/05/2016] [Indexed: 10/22/2022]
Abstract
Correction of point mutations that lead to aberrant transcripts, often with pathological consequences, has been the focus of considerable research. In this work, repair-PPRHs are shown to be a new powerful tool for gene correction. A repair-PPRH consists of a PolyPurine Reverse Hoogsteen hairpin core bearing an extension sequence at one end, homologous to the DNA strand to be repaired but containing the wild type nucleotide instead of the mutation. Previously, we had corrected a single-point mutation with repair-PPRHs using a mutated version of a dihydrofolate reductase (dhfr) minigene. To further evaluate the utility of these molecules, different repair-PPRHs were designed to correct insertions, deletions, substitutions and a double substitution present in a collection of mutants at the endogenous locus of the dhfr gene, the product of which is the target of the chemotherapeutic agent methotrexate. We also describe an approach to use when the point mutation is far away from the homopyrimidine target domain. This strategy consists in designing Long-Distance- and Short-Distance-Repair-PPRHs where the PPRH core is bound to the repair tail by a five-thymidine linker. Surviving colonies in a DHFR selective medium, lacking glycine and sources of purines and thymidine, were analyzed by DNA sequencing, and by mRNA, protein and enzymatic measurements, confirming that all the dhfr mutants had been corrected. These results show that repair-PPRHs can be effective tools to accomplish a permanent correction of point mutations in the DNA sequence of mutant mammalian cells.
Collapse
Affiliation(s)
- Anna Solé
- Department of Biochemistry and Molecular Biology, School of Pharmacy, IN2UB, University of Barcelona, 08028 Barcelona, Spain
| | - Carlos J Ciudad
- Department of Biochemistry and Molecular Biology, School of Pharmacy, IN2UB, University of Barcelona, 08028 Barcelona, Spain.
| | - Lawrence A Chasin
- Department of Biological Sciences, Columbia University, New York, NY 10027, United States
| | - Véronique Noé
- Department of Biochemistry and Molecular Biology, School of Pharmacy, IN2UB, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
7
|
Yoon S, Lee Y, Pi J, Jeong Y, Baek K, Yoon J. Overproduction of recombinant human bone morphogenetic protein-7 in Chinese hamster ovary cells. Protein Expr Purif 2015; 120:87-91. [PMID: 26711959 DOI: 10.1016/j.pep.2015.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/14/2015] [Accepted: 12/17/2015] [Indexed: 11/17/2022]
Abstract
Bone morphogenetic protein-7 is a multifunctional growth factor involved in various cellular processes such as osteogenesis, kidney and eye development, brown adipogenesis, and bone metastasis, and thus has been considered to have therapeutic potential for treating various diseases. In this study, we established a Chinese hamster ovary (CHO) cell line stably overexpressing recombinant human BMP-7 (rhBMP-7). Over the course of a 14-day fed-batch culture process in a 7.5-l bioreactor (5-l working volume) using chemically defined medium, the established cells could produce over 188 mg/l of rhBMP-7 protein. The rhBMP-7 was purified to homogeneity from the culture supernatant using a two-step chromatographic procedure that resulted in a recovery rate of approximately 55%, with protein purity greater than 95%. The purified rhBMP-7 was further demonstrated to be functionally active by measuring the proliferation of MC3T3-E1 cells, revealing a half-maximal effective concentration of 28.31 ng/ml.
Collapse
Affiliation(s)
- Sena Yoon
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Yujin Lee
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Jia Pi
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Yongsu Jeong
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Kwangehee Baek
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Jaeseung Yoon
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do 446-701, Republic of Korea.
| |
Collapse
|
8
|
Choi B, Lee Y, Pi J, Jeong Y, Baek K, Yoon J. Overproduction of recombinant human transforming growth factor beta 3 in Chinese hamster ovary cells. Protein Expr Purif 2015; 110:102-6. [DOI: 10.1016/j.pep.2015.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/14/2015] [Accepted: 02/14/2015] [Indexed: 11/30/2022]
|
9
|
Solé A, Villalobos X, Ciudad CJ, Noé V. Repair of single-point mutations by polypurine reverse Hoogsteen hairpins. Hum Gene Ther Methods 2014; 25:288-302. [PMID: 25222154 DOI: 10.1089/hgtb.2014.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Polypurine reverse Hoogsteen hairpins (PPRHs) are formed by two intramolecularly bound antiparallel homopurine domains linked by a five-thymidine loop. One of the homopurine strands binds with antiparallel orientation by Watson-Crick bonds to the polypyrimidine target sequence, forming a triplex. We had previously reported the ability of PPRHs to effectively bind dsDNA displacing the fourth strand away from the newly formed triplex. The main goal of this work was to explore the possibility of repairing a point mutation in mammalian cells using PPRHs as tools. These repair-PPRHs contain different combinations of extended sequences of DNA with the corrected nucleotide to repair the point mutation. As a model we used the dihydrofolate reductase gene. On the one hand, we demonstrate in vitro that PPRHs bind specifically to their polypyrimidine target sequence, opening the two strands of the dsDNA, and allowing the binding of a given repair oligonucleotide to the displaced strand of the DNA. Subsequently, we show at a cellular level (Chinese ovary hamster cells) that repair-PPRHs are able to correct a single-point mutation in a dihydrofolate reductase minigene bearing a nonsense mutation, both in an extrachromosomal location and when the mutated plasmid was stably transfected into the cells. Finally, this methodology was successfully applied to repair a single-point mutation at the endogenous locus, using the DA5 cell line with a deleted nucleotide in exon six of the dhfr gene.
Collapse
Affiliation(s)
- Anna Solé
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona , E08028 Barcelona, Spain
| | | | | | | |
Collapse
|
10
|
Paredes V, Park JS, Jeong Y, Yoon J, Baek K. Unstable expression of recombinant antibody during long-term culture of CHO cells is accompanied by histone H3 hypoacetylation. Biotechnol Lett 2013; 35:987-93. [PMID: 23468139 DOI: 10.1007/s10529-013-1168-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
The gradual loss of recombinant protein expression in CHO cell lines during prolonged subculture is a common issue, referred to as instability, which seriously affects the industrial production processes of therapeutic proteins. Loss of recombinant gene copies, due to the genetic instability of CHO cells, and epigenetic silencing of transgene sequences, are the main reported causes of production instability. To increase our understanding on the molecular mechanisms inherent to CHO cells involved in production instability, we explored the molecular features of stable and unstable antibody producing cell lines obtained without gene amplification, to exclude the genetic instability induced by the gene amplification process. The instability of recombinant antibody production during long-term culture was caused by a 48-53% decrease in recombinant mRNA levels without significant loss of recombinant gene copies, but accompanied by a ~45% decrease in histone H3 acetylation (H3ac). Thus, our results suggest a critical role of H3ac in the stability of recombinant protein production.
Collapse
Affiliation(s)
- Verenice Paredes
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea.
| | | | | | | | | |
Collapse
|
11
|
Overproduction of recombinant human mannose-binding lectin (MBL) in Chinese hamster ovary cells. Protein Expr Purif 2013. [DOI: 10.1016/j.pep.2012.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
de Almagro MC, Mencia N, Noé V, Ciudad CJ. Coding polypurine hairpins cause target-induced cell death in breast cancer cells. Hum Gene Ther 2011; 22:451-63. [PMID: 20942657 DOI: 10.1089/hum.2010.102] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Polypurine reverse-Hoogsteen hairpins (PPRHs) are double-stranded DNA molecules formed by two polypurine stretches linked by a pentathymidine loop, with intramolecular reverse-Hoogsteen bonds that allow a hairpin structure. PPRHs bind to polypyrimidine targets by Watson-Crick bonds maintaining simultaneously a hairpin structure due to intramolecular Hoogsteen bonds. Previously, we described the ability of Template-PPRHs to decrease mRNA levels because these PPRHs target the template DNA strand interfering with the transcription process. Now, we designed Coding-PPRHs, a new type of PPRHs that directly target the pre-mRNA. The dihydrofolate reductase (dhfr) gene was selected as a target in breast cancer therapy. These PPRHs caused a high degree of cytotoxicity and a decrease in DHFR mRNA and protein levels, but by a different mechanism of action than Template-PPRHs. Coding-PPRHs interfere with the splicing process by competing with U2 auxiliary factor 65 for binding to the polypyrimidine target sequence, leading to a lower amount of mature mRNA. These new PPRHs showed high specificity as no off-target effects were found. The application of these molecules as therapeutic tools was tested in breast cancer cells resistant to methotrexate, obtaining a noticeable cytotoxicity even though the dhfr locus was amplified. Coding-PPRHs can be considered as new molecules to decrease gene expression at the mRNA level and an alternative to other antisense molecules.
Collapse
Affiliation(s)
- M Cristina de Almagro
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, E-08028 Barcelona, Spain
| | | | | | | |
Collapse
|
13
|
Park JS, Kim H, Park J, Yu S, Kim D, Lee J, Oh H, Baek K, Yoon J. Overproduction of recombinant human hepatocyte growth factor in Chinese hamster ovary cells. Protein Expr Purif 2009; 70:231-5. [PMID: 19818855 DOI: 10.1016/j.pep.2009.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 10/05/2009] [Accepted: 10/05/2009] [Indexed: 11/16/2022]
Abstract
Hepatocyte growth factor (HGF) is a potent multi-functional protein that affects morphogenesis, cell migration, organ regeneration, and tumor invasion in various tissues, and has thus been considered to have potential as a therapeutic target in various diseases. In our current study, we established Chinese hamster ovary (CHO) cells overexpressing recombinant human HGF (rhHGF) protein and in a 5 day batch culture process using a 7.5l bioreactor (5l working volume) and serum-free medium these cells could produce over 13 mg/l of rhHGF protein. The recombinant protein was then purified to homogeneity from the culture supernatant using a two-step chromatographic procedure that resulted in about a 35% recovery rate. This purified rhHGF was found to be a mixture of inactive pro-HGF and an active heterodimeric form of this protein with a higher molecular weight than its counterpart expressed from insect cells. This finding suggests that the glycosylation of rhHGF protein in CHO cells differs from that in insect cells. Inactive pro-HGF was found to rapidly convert to the active heterodimeric form of HGF in the presence of FBS (Fetal Bovine Serum), suggesting that this process would occur also when injected into human body. We further demonstrate in cell proliferation and scattering activity assays that our purified rhHGF protein preparation is functionally active with a half-maximal effective concentration of 36.3 ng/ml.
Collapse
Affiliation(s)
- Jeong Soo Park
- Neurotech Pharmaceuticals Co. Ltd., Suwon 443-766, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
de Almagro MC, Coma S, Noé V, Ciudad CJ. Polypurine hairpins directed against the template strand of DNA knock down the expression of mammalian genes. J Biol Chem 2009; 284:11579-89. [PMID: 19261618 DOI: 10.1074/jbc.m900981200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We analyzed whether polypurine hairpins (PPRHs) had the ability to knock down gene expression. These hairpins are formed by two antiparallel purine domains linked by a loop that allows the formation of Hoogsteen bonds between both domains and Watson-Crick bonds with the target polypyrimidine sequence, forming triplex structures. To set up the experimental conditions, the human dhfr gene was used as a model. The PPRHs were designed toward the template strand of DNA. The transfection of the human breast cancer cell line SKBR3 with these template hairpins against the dhfr gene produced higher than 90% of cell mortality. Template PPRHs produced a decrease in DHFR mRNA, protein, and its corresponding enzymatic activity. In addition, the activity of DHFR PPRHs was tested against breast cancer cells resistant to methotrexate, observing high cell mortality. Given the difficulty in finding long polypyrimidine stretches, we studied how to compensate for the presence of purine interruptions in the polypyrimidine target sequence. The stability of PPRH was measured, resulting in a surprisingly long half-life of about 5 days. Finally, to test the generality of usage, template PPRHs were employed against two important genes involved in cell proliferation, telomerase and survivin, producing 80 and 95% of cell death, respectively. Taken together our results show the ability of antiparallel purine hairpins to bind the template strand of double strand DNA and to decrease gene transcription. Thus, PPRHs can be considered as a new type of molecules to modulate gene expression.
Collapse
Affiliation(s)
- M Cristina de Almagro
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Av. Diagonal 643, E-08028 Barcelona, Spain
| | | | | | | |
Collapse
|
15
|
Kim JD, Yoon Y, Hwang HY, Park JS, Yu S, Lee J, Baek K, Yoon J. Efficient Selection of Stable Chinese Hamster Ovary (CHO) Cell Lines for Expression of Recombinant Proteins by Using Human Interferon β SAR Element. Biotechnol Prog 2008; 21:933-7. [PMID: 15932276 DOI: 10.1021/bp049598v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe the development of an efficient expression system suitable for the stable expression of recombinant genes in Chinese hamster ovary (CHO) cells using the human interferon beta SAR element. The insertion of two copies of the human interferon beta SAR element at the 5' and 3' flanking regions of the beta-galactosidase reporter gene increased the frequency of beta-galactosidase positive colonies by up to 75% and enhanced beta-galactosidase expression by 15- to 20-fold after G418 selection or 30- to 40-fold at the initial stage of the MTX selection procedure. Deletion analysis showed that the whole DNA regions of the human interferon beta SAR element are required for beta-galactosidase expression enhancement. The developed expression system was also highly effective at enhancing the stable expression of two therapeutically important proteins, namely, erythropoietin (EPO) and hepatocyte growth factor (HGF). We isolated stable colonies with expression levels of 47 microg/10(6) cells/day for EPO and 13 microg/10(6) cells/day for HGF, suggesting that the developed expression system based on the human beta SAR element is suitable for expressing high levels of recombinant proteins in CHO cells.
Collapse
Affiliation(s)
- Jeong Do Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin City, Kyungki-Do 449-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kim JM, Kim JS, Park DH, Kang HS, Yoon J, Baek K, Yoon Y. Improved recombinant gene expression in CHO cells using matrix attachment regions. J Biotechnol 2004; 107:95-105. [PMID: 14711493 DOI: 10.1016/j.jbiotec.2003.09.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The use of animal cells such as Chinese hamster ovary (CHO) cells for recombinant gene expression provides many advantageous features such as proper folding and post-translational modification of the recombinant protein. However, recombinant genes introduced into animal cells are often expressed at low levels mainly due to position effects from the neighboring chromatin context. The tedious and time-consuming selection and amplification procedure has been the major hurdle for using animal cell line such as CHO cells. To improve mammalian cell expression systems, we screened a variety of matrix/scaffold attachment region (MAR/SAR) elements for their ability to insulate transgene expression from the position effects in CHO cells. We found that the human beta-globin MAR element is particularly effective as the frequency of beta-Gal positive colonies was increased by up to 80%. The expression levels of these colonies were also enhanced about seven-fold. These improvements appear to be related to the increased copy numbers and a higher efficiency of expression of the integrated genes. When this element was used to express soluble TGF-beta type II receptor (sTbetaRII) through the gene amplification system, the frequency of colonies expressing detectable amounts of sTbetaRII was much higher than that of the control vector. We could also generate high sTbetaRII producers with uniform growth properties by a simple two-step amplification process involving two concentrations of methotrexate. This eliminates the need to isolate individual colonies followed by multi-step treatments of methotrexate and thereby greatly simplifies this mammalian expression system.
Collapse
Affiliation(s)
- Jong-Mook Kim
- Mogam Biotechnology Research Institute, Yongin-City, Kyonggi-Do, South Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Peñuelas S, Alemany C, Noé V, Ciudad CJ. The expression of retinoblastoma and Sp1 is increased by low concentrations of cyclin-dependent kinase inhibitors. ACTA ACUST UNITED AC 2003; 270:4809-22. [PMID: 14653808 DOI: 10.1046/j.1432-1033.2003.03874.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined the effect of suboptimal concentrations of cyclin-dependent kinase inhibitors, which do not interfere with cell proliferation, on retinoblastoma expression in hamster (Chinese hamster ovary K1) and human (K562 and HeLa) cells. To achieve this, we used the chemical inhibitors roscovitine and olomoucine (which inhibit CDK2 preferentially), UCN-01 (which also inhibits CDK4/6) and p21 (as an intrinsic inhibitor). All chemical inhibitors and overexpression of p21 strongly induced retinoblastoma protein expression. UCN-01-mediated retinoblastoma expression was caused by an increase in both the levels of retinoblastoma mRNA and the stability of the protein. The expression of the transcription factor Sp1, a retinoblastoma-interacting protein, was also enhanced by all the cyclin-dependent kinase inhibitors tested. However, Sp1 expression was caused by an increase in the levels of Sp1 mRNA without modification in the stability of the protein. By using luciferase experiments, the transcriptional activation of both retinoblastoma and Sp1 promoters by UCN-01 was confirmed. Bisindolylmaleimide I, at concentrations causing a similar or higher inhibition of protein kinase C than UCN-01, provoked a lower activation of retinoblastoma and Sp1 expression. Finally, the effects of cyclin-dependent kinase inhibitors on dihydrofolate reductase gene expression were evaluated. Treatment with UCN-01 increased cellular dihydrofolate reductase mRNA levels, and dihydrofolate reductase enzymatic activity was enhanced by UCN-01, roscovitine, olomoucine and p21, in transient transfection experiments. These results support a mechanism for the self-regulation of retinoblastoma expression, and point to the need to establish the appropriate dose of cyclin-dependent kinase inhibitors as antiproliferative agents in anticancer treatments.
Collapse
Affiliation(s)
- Silvia Peñuelas
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Spain
| | | | | | | |
Collapse
|
18
|
Lange T, Guttmann-Raviv N, Baruch L, Machluf M, Neufeld G. VEGF162, a new heparin-binding vascular endothelial growth factor splice form that is expressed in transformed human cells. J Biol Chem 2003; 278:17164-9. [PMID: 12598527 DOI: 10.1074/jbc.m212224200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The splice forms of vascular endothelial growth factor (VEGF) differ in biological properties such as the receptor types that they recognize and their interaction with heparan sulfate proteoglycans. We have identified a new VEGF mRNA splice form encoding a VEGF species containing 162 amino acids (VEGF(162)) in human A431 ovarian carcinoma cells. This novel mRNA contains the peptides encoded by exons 1-5, 6A, 6B, and 8 of the VEGF gene. Recombinant VEGF(162) is biologically active. It induces proliferation of endothelial cells in vitro and angiogenesis in vivo as determined by the alginate bead assay. VEGF(162) binds less efficiently than VEGF(145) but more efficiently than VEGF(165) to a natural basement membrane produced by corneal endothelial cells. VEGF(138), an artificial VEGF form that contains exon 6B but lacks exons 6A and 7, did not bind to this basement membrane at all, indicating that exon 6B probably interferes with the interaction of exon 6A with heparin and heparan sulfate proteoglycans.
Collapse
Affiliation(s)
- Tali Lange
- Department of Cell Biology and Anatomy, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, PO Box 9697, 1 Efron Street, Haifa 31096, Israel
| | | | | | | | | |
Collapse
|
19
|
Noé V, Alemany C, Nicolás M, Ciudad CJ. Sp1 involvement in the 4beta-phorbol 12-myristate 13-acetate (TPA)-mediated increase in resistance to methotrexate in Chinese hamster ovary cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3163-73. [PMID: 11389717 DOI: 10.1046/j.1432-1327.2001.02198.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
4beta-Phorbol 12-myristate 13-acetate (TPA) increases the number of colonies resistant to methotrexate (MTX), mainly by amplification of the dihydrofolate reductase (dhfr) locus. We showed previously that inhibition of protein kinase C (PKC) prevents this resistance. Here, we studied the molecular changes involved in the development of TPA-mediated MTX resistance in Chinese hamster ovary (CHO) cells. TPA incubation increased the expression and activity of DHFR. Because Sp1 controls the dhfr promoter, we determined the effect of TPA on the expression of Sp1 and its binding to DNA. TPA incubation increased Sp1 binding and the levels of Sp1 protein. The latter effect was due to an increase in Sp1 mRNA. Dephosphorylation of nuclear extracts from control or TPA-treated cells reduced the binding of Sp1. Stable transfectants of PKCalpha showed increased Sp1 binding, and when treated with MTX, developed a greater number of resistant colonies than control cells. Seventy-five percent of the isolated colonies showed increased copy number for the dhfr gene. Transient expression of PKCalpha increased DHFR activity. Over-expression of Sp1 increased resistance to MTX, and inhibition of Sp1 binding by mithramycin decreased this resistance. We conclude that one mechanism by which TPA enhances MTX resistance, mainly by gene amplification, is through an increase in Sp1 expression which leads to DHFR activation.
Collapse
Affiliation(s)
- V Noé
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Spain
| | | | | | | |
Collapse
|
20
|
Noé V, Ciudad CJ, Chasin LA. Effect of differential polyadenylation and cell growth phase on dihydrofolate reductase mRNA stability. J Biol Chem 1999; 274:27807-14. [PMID: 10488126 DOI: 10.1074/jbc.274.39.27807] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have constructed tetracycline-responsive dhfr minigenes and transferred them to a Chinese hamster ovary cell DHFR-deficient deletion mutant to obtained cells in which dhfr transcription can be repressed by tetracycline (tet-off). DHFR mRNA half-life measured after the repression of transcription by tetracycline in these transfectants is about 1.5 h, which is significantly shorter than previously reported. In addition, we observed that DHFR mRNA is less stable in serum-starved cells than in exponentially growing cells. Given that the dhfr gene contains multiple polyadenylation sites, we analyzed the role of polyadenylation site usage on the stability of the resultant mRNA molecules. We found that DHFR mRNA is more stable when a strong polyadenylation site is used. Finally, we have observed that the relative lengths of the poly(A) tails for the different DHFR mRNA species correlated with their relative stability in growing versus resting cells.
Collapse
Affiliation(s)
- V Noé
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
21
|
Rodríguez M, Noé V, Alemany C, Miralles A, Bemi V, Caragol I, Ciudad CJ. Effects of anti-sense oligonucleotides directed toward dihydrofolate reductase RNA in mammalian cultured cells. Int J Cancer 1999; 81:785-92. [PMID: 10328234 DOI: 10.1002/(sici)1097-0215(19990531)81:5<785::aid-ijc20>3.0.co;2-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The effect of incubations with anti-sense phosphorothioate oligonucleotides directed toward sequences of dihydrofolate reductase (DHFR) RNA has been tested on Chinese hamster ovary cells. The selected targets were the 5'-untranslated region, the translational start, the splice sites and branch point of intron I and polyadenylation regions 1 and 3 of the DHFR RNA. To introduce the oligonucleotides, the cationic liposome DOTAP was used. The oligonucleotides most effective at causing cytotoxicity were ATNL and DTNL, both directed toward the translation-start site, at a range of concentrations between 1 and 4 microM. The minimum time for the oligonucleotide to exert its full cytotoxic effect was 3 days. Excess of oligonucleotide diminished the cytotoxic effect. Oligonucleotide uptake was monitored by the incorporation of [32P]- or fluorescein-labeled oligonucleotide and was found to depend on liposome and oligonucleotide concentrations and duration of incubation. Formation of in vitro complexes between the oligonucleotide and the liposome was also studied. Cytotoxicity was observed when the oligonucleotide was incubated with cell lines containing either the endogenous gene or co-transfected DHFR minigenes. Cell incubation with ATNL caused a time-dependent decrease in the levels of DHFR mRNA and enzymatic activity. Moreover, a cell line bearing amplification at the dhfr locus was equally affected by the action of ATNL. Human hepatoma cells were also affected by treatment with the counterpart of ATNL in the human DHFR mRNA sequence. Our results set the basis for a possible cancer therapy with anti-sense oligonucleotides using DHFR as the target.
Collapse
Affiliation(s)
- M Rodríguez
- Department of Biochemistry, School of Pharmacy, University of Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Noé V, Chen C, Alemany C, Nicolás M, Caragol I, Chasin LA, Ciudad CJ. Cell-growth regulation of the hamster dihydrofolate reductase gene promoter by transcription factor Sp1. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:13-20. [PMID: 9363748 DOI: 10.1111/j.1432-1033.1997.00013.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The dihydrofolate reductase (DHFR) gene (dhfr) promoter contains cis-acting elements for the transcription factors Sp1 and E2F. Given the ability of Sp1 to activate the dhfr promoter, we have evaluated the contribution of Sp1 to the cell-growth regulation of the dhfr gene. Using gel-mobility assays performed with DNA probes from the minimal promoter of the hamster dhfr gene and nuclear extracts from cultured hamster cells (CHO K1) we show that the binding of Sp1 to the dhfr promoter is cell-growth-phase regulated. Accordingly, dhfr transcription and mRNA levels in K1 cells increase upon serum stimulation. Cytological detection of Sp1 by immunofluorescence reveals a decrease of this protein in the process leading to the G0 state, and an increase upon serum stimulation of quiescent cells. These results were confirmed by western blot analysis. It is concluded that Sp1 progressively binds to the hamster dhfr promoter after stimulation of cell proliferation, which can account for the transcriptional regulation of the dhfr gene during the cell cycle. The role of Sp1 in the specific control of dhfr during the cell cycle was confirmed in vivo using cell lines derived from dhfr-negative cells transfected with dhfr plasmids carrying either the wild-type or mutated Sp1-binding or E2F-binding sites in the dhfr minimal promoter.
Collapse
Affiliation(s)
- V Noé
- Unit of Biochemistry, School of Pharmacy, University of Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Noé V, Ciudad CJ. Protein kinase C inhibitors reduce phorbol ester-induced resistance to methotrexate in Chinese hamster ovary cells. Biochem Pharmacol 1995; 50:337-46. [PMID: 7646535 DOI: 10.1016/0006-2952(95)00147-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Phorbol 12-myristate 13-acetate (TPA) increases the number of colonies surviving methotrexate (MTX) exposure in a dose-dependent manner upon short incubation with Chinese hamster ovary (CHO) cells. Seventy percent of the isolated colonies showed increased copy number for the dihydrofolate reductase gene. EGTA prevents the increase in resistance triggered by TPA. Calcium ionophore A23187 and angiotensin II also increase this resistance, suggesting that calcium is involved in this process. Protein kinase C (PKC) from CHO cells is rapidly activated by TPA, A23187 and angiotensin II. PKC inhibitors, 1-(5-Isoquinolinylsulphonyl)-2-methyl-piperazine (H-7), glycyrrhetinic acid, staurosporine and calphostin C decrease the generation of resistant colonies to MTX upon incubation with TPA. However, 5 nM staurosporine on its own increases resistance to MTX while having the ability to translocate CHO PKC. In vitro, H-7, staurosporine and calphostin C inhibit PKC activity translocated by TPA incubation with CHO cells. We conclude that PKC, the activity of which is dependent on calcium and phospholipids, is part of the pathway that leads to development of increased resistance to MTX. Thus, inhibition of PKC prevents the appearance of this resistance. Our results suggest the possibility of using non-toxic PKC inhibitors as resistance modulators in MTX chemotherapy.
Collapse
Affiliation(s)
- V Noé
- Biochemistry Unit, School of Pharmacy, University of Barcelona, Pedralbes, Spain
| | | |
Collapse
|
24
|
Fischberg DJ, Bancroft C. The D2 receptor: blocked transcription in GH3 cells and cellular pathways employed by D2A to regulate prolactin promoter activity. Mol Cell Endocrinol 1995; 111:129-37. [PMID: 7556874 DOI: 10.1016/0303-7207(95)03555-l] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Although the GH3 line of somatolactotropic rat pituitary cells has proven useful for many regulation studies, the absence of functional D2 receptors on these cells long prevented their use in studies of dopaminergic action. However, it is now possible to employ GH3 cells expressing recombinant D2 receptors for such investigations. We have investigated both the level at which expression of functional D2 receptors in GH3 cells is blocked, and the cellular pathways employed by the major pituitary D2 receptor isoform, D2A, to inhibit prolactin (PRL) gene transcription. In run-off transcription assays with nuclei from either parental GH3 cells or a GH3 cell line stably expressing a D2A expression vector, Pit-1 gene transcription was detectable in either cell line, but only the latter cell line yielded detectable D2 receptor transcription, implying that the block in D2 receptor expression by GH3 cells is transcriptional. Further investigations employed GH3 cells transiently co-transfected with a D2A expression vector plus a rat PRL promoter construct (-1957)PRL-CAT. Pertussis toxin blocked repression by quinpirole, a D2 agonist, of PRL-CAT activity, demonstrating that this action is mediated by a pertussis toxin-sensitive G protein. The observations that neither of two agents expected to raise intracellular Ca2+, Bay K8644 or thyrotropin-releasing hormone, prevented quinpirole repression of PRL-CAT activity, and that the repressive effects on this construct of quinpirole and the Ca2+ channel antagonist were independent, suggested that regulation of intracellular Ca2+ levels does not play a major role in D2A-mediated repression of the PRL promoter.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D J Fischberg
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, City University of New York, NY 10029, USA
| | | |
Collapse
|
25
|
DiStefano PS, Friedman B, Radziejewski C, Alexander C, Boland P, Schick CM, Lindsay RM, Wiegand SJ. The neurotrophins BDNF, NT-3, and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons. Neuron 1992; 8:983-93. [PMID: 1375039 DOI: 10.1016/0896-6273(92)90213-w] [Citation(s) in RCA: 631] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The pattern of retrograde axonal transport of the target-derived neurotrophic molecule, nerve growth factor (NGF), correlates with its trophic actions in adult neurons. We have determined that the NGF-related neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), are also retrogradely transported by distinct populations of peripheral and central nervous system neurons in the adult. All three 125I-labeled neurotrophins are retrogradely transported to sites previously shown to contain neurotrophin-responsive neurons as assessed in vitro, such as dorsal root ganglion and basal forebrain neurons. The patterns of transport also indicate the existence of neuronal populations that selectively transport NT-3 and/or BDNF, but not NGF, such as spinal cord motor neurons, neurons in the entorhinal cortex, thalamus, and neurons within the hippocampus itself. Our observations suggest that neurotrophins are transported by overlapping as well as distinct populations of neurons when injected into a given target field. Retrograde transport may thus be predictive of neuronal types selectively responsive to either BDNF or NT-3 in the adult, as first demonstrated for NGF.
Collapse
Affiliation(s)
- P S DiStefano
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591-6707
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ciudad C, Morris A, Jeng C, Chasin L. Point mutational analysis of the hamster dihydrofolate reductase minimum promoter. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50574-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Affiliation(s)
- J L Hamlin
- Department of Biochemistry, University of Virginia School of Medicine, Charlottesville 22908
| | | |
Collapse
|
28
|
Morris AE, Jiang YJ, McChesney RE, Jackson AE, Bancroft C, Chasin LA. Use of a selectable reporter for the isolation of mammalian regulatory genes. Gene X 1990; 94:289-94. [PMID: 2258059 DOI: 10.1016/0378-1119(90)90400-l] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A general method is described for isolating the genes encoding differentiation-specific activators of transcription using genetic selection. Employing regulation of the prolactin encoding gene (PRL) as a model, we have shown that the hamster dihydrofolate reductase-encoding gene (dhfr) is an effective dominant selectable reporter in this methodology. The dhfr coding region was ligated to the rat PRL promoter, and the resultant construct was stably transfected into DHFR- Chinese hamster ovary (CHO) cells, where it had little or no activity. Transfection of these cells with plasmid DNA, containing the coding region of a pituitary-specific transcription factor (Pit-1/GHF-1) in a eukaryotic expression vector, resulted in transfectants in which activation of the chimeric construct, pPRLdhfr, had occurred, enabling these cells to be selected on the basis of their DHFR+ phenotype. Our results suggest that this strategy could be used to isolate unknown genes that regulate a variety of differentiated functions.
Collapse
Affiliation(s)
- A E Morris
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | | | | | | | | | | |
Collapse
|
29
|
Farnham PJ, Means AL. Sequences downstream of the transcription initiation site modulate the activity of the murine dihydrofolate reductase promoter. Mol Cell Biol 1990; 10:1390-8. [PMID: 2320003 PMCID: PMC362241 DOI: 10.1128/mcb.10.4.1390-1398.1990] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The murine dihydrofolate reductase gene is regulated by a bidirectional promoter that lacks a TATA box. To identify the DNA sequences required for dihydrofolate reductase transcription, the activities of various templates were determined by in vitro transcription analysis. Our data indicate that sequences both upstream and downstream of the transcription initiation site modulate the activity of the dihydrofolate reductase promoter. We have focused on two regions downstream of the transcription initiation site that are important in determining the overall efficiency of the promoter. Region 1, which included exon 1 and part of intron 1, could stimulate transcription when placed in either orientation in the normal downstream position and when inserted upstream of the transcription start site. This region could also stimulate transcription in trans when the enhancer was physically separate from the promoter. Deletion of region 2, spanning 46 nucleotides of the 5' untranslated region, reduced transcriptional activity by fivefold. DNase I footprinting reactions identified protein-binding sites in both downstream stimulatory regions. Protein bound to two sites in region 1, both of which contain an inverted CCAAT box. The protein-binding site in the 5' untranslated region has extensive homology to binding sites in promoters that both lack (simian virus 40 late) and contain (adenovirus type 2 major late promoter and c-myc) TATA boxes.
Collapse
Affiliation(s)
- P J Farnham
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison 53706
| | | |
Collapse
|