1
|
Mi L, Di Pasqua AJ, Chung FL. Proteins as binding targets of isothiocyanates in cancer prevention. Carcinogenesis 2011; 32:1405-13. [PMID: 21665889 PMCID: PMC3179418 DOI: 10.1093/carcin/bgr111] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/01/2011] [Accepted: 06/05/2011] [Indexed: 01/18/2023] Open
Abstract
Isothiocyanates are versatile cancer-preventive compounds. Evidence from animal studies indicates that the anticarcinogenic activities of ITCs involve all the major stages of tumor growth: initiation, promotion and progression. Epidemiological studies have also shown that dietary intake of ITCs is associated with reduced risk of certain human cancers. A number of mechanisms have been proposed for the chemopreventive activities of ITCs. To identify the molecular targets of ITCs is a first step to understand the molecular mechanisms of ITCs. Studies in recent years have shown that the covalent binding to certain protein targets by ITCs seems to play an important role in ITC-induced apoptosis and cell growth inhibition and other cellular effects. The knowledge gained from these studies may be used to guide future design and screen of better and more efficacious compounds. In this review, we intend to cover all potential protein targets of ITCs so far studied and summarize what are known about their binding sites and the potential biological consequences. In the end, we also offer discussions to shed light onto the relationship between protein binding and reactive oxygen species generation by ITCs.
Collapse
Affiliation(s)
- Lixin Mi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | | | | |
Collapse
|
2
|
Tanoue K, Kaya S, Hayashi Y, Abe K, Imagawa T, Taniguchi K, Sakaguchi K. New evidence for ATP binding induced catalytic subunit interactions in pig kidney Na/K-ATPase. J Biochem 2006; 140:599-607. [PMID: 16987945 DOI: 10.1093/jb/mvj191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pig kidney Na/K-ATPase preparations showed a positive cooperative effect for pNPP in Na-pNPPase activity. Measurements of the Na-pNPPase activity, Na-ATPase activity and the accumulation of phosphoenzyme (EP) under conditions of pNPP saturation showed several different ATP affinities. The presence of pNPP reduced both the maximum amount of EP and Na-ATPase activity to half showing a value of 4 and a 3,700-fold reduced ATP affinity for EP formation, and a 7 and 1,300-fold reduced affinity for Na-ATPase activity. The presence of low concentrations of ATP in the phosphorylation induced a 2-fold enhancement in Na-pNPPase activity despite a reduction in available pNPP sites. However, higher concentrations of ATP inhibited the Na-pNPPase activity and a much higher concentration of ATP increased both the phosphorylation and Na-ATPase activity to the maximum levels. The maximum Na-pNPPase activity was 1.7 and 3.4-fold higher without and with ATP, respectively, than the maximum Na-ATPase activity. These data and the pNPP dependent reduction in both Na-ATPase activity and the amount of enzyme bound ATP provide new evidence to show that ATP, pNPP and ATP with pNPP, respectively, induce different subunit interactions resulting a difference in the maximum Na(+)-dependent catalytic activity in tetraprotomeric Na/K-ATPase.
Collapse
Affiliation(s)
- Kan Tanoue
- Biological Chemistry, Division of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810.
| | | | | | | | | | | | | |
Collapse
|
3
|
Teramachi S, Imagawa T, Kaya S, Taniguchi K. Replacement of several single amino acid side chains exposed to the inside of the ATP-binding pocket induces different extents of affinity change in the high and low affinity ATP-binding sites of rat Na/K-ATPase. J Biol Chem 2002; 277:37394-400. [PMID: 12138102 DOI: 10.1074/jbc.m204772200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the relationship between the high and the low affinity ATP-binding site, which appears during the Na(+)/K(+)-ATPase reaction, four amino acids were mutated, the side chains of which are exposed to inside of the ATP-binding pocket. Six mutants, F475Y, K480A, K480E, K501A, K501E, and R544A, where the numbers correspond to the pig Na(+)/K(+)-ATPase alpha-chain, were expressed in HeLa cells. The apparent affinities were determined by high affinity ATP-dependent phosphorylation and by the low affinity activation of Na(+)/K(+)-ATPase or low affinity ATP inhibition of K(+)-para-nitrophenylphosphatase (pNPPase). For the mutants K480A and K501A, little affinity change was detected for either the high affinity or the low affinity effect. In contrast, the other four mutants reduced both apparent affinities. Strikingly, R544A had a 30-fold greater effect on the high affinity ATP site than the low affinity site. For the F475Y mutant, it is likely that there was a greater effect on the low affinity site than the high affinity site, but for both F475Y and K480E the affinity for the low affinity ATP effect was reduced so much that it was not possible to estimate a K(0.5). However, both the affinities for the K480E were reduced to approximately 1/20. The turnover number of the Na(+)/K(+)-ATPase and the apparent affinity for Na(+) and pNPP was reduced slightly or not at all for these mutants, but the turnover number of K(+)-pNPPase and the apparent affinity for K(+) were increased. These and other data suggest the presence of only one ATP-binding site, which can change its conformation to accept ATP with a high and low affinity. The requirement of Arg-544 and possibly Lys-501 is more important in forming a high affinity ATP binding conformation, and Phe-475 and possibly Lys-480 are more important in forming the low affinity ATP binding conformation.
Collapse
Affiliation(s)
- Satomi Teramachi
- Department of Biological Chemistry, Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
4
|
Fernandez-Belda F, Fortea MI, Soler F. Testing the versatility of the sarcoplasmic reticulum Ca(2+)-ATPase reaction cycle when p-nitrophenyl phosphate is the substrate. J Biol Chem 2001; 276:7998-8004. [PMID: 11115502 DOI: 10.1074/jbc.m008648200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A detailed characterization of p-nitrophenyl phosphate as energy-donor substrate for the sarcoplasmic reticulum Ca(2+)-ATPase was undertaken in this study. The fact that p-nitrophenyl phosphate can be hydrolyzed in the presence or absence of Ca(2+) by the purified enzyme is consistent with the observed phenomenon of intramolecular uncoupling. Under the most favorable conditions, which include neutral pH, intact microsomal vesicles, and low free Ca(2+) in the lumen, the Ca(2+)/P(i) coupling ratio was 0.6. A rise or decrease in pH, high free Ca(2+) in the lumenal space, or the addition of dimethyl sulfoxide increase the intramolecular uncoupling. Alkaline pH and/or high free Ca(2+) in the lumen potentiate the accumulation of enzyme conformations with high Ca(2+) affinity. Acidic pH and/or dimethyl sulfoxide favor the accumulation of enzyme conformations with low Ca(2+) affinity. Under standard assay conditions, two uncoupled routes, together with a coupled route, are operative during the hydrolysis of p-nitrophenyl phosphate in the presence of Ca(2+). The prevalence of any one of the uncoupled catalytic cycles is dependent on the working conditions. The proposed reaction scheme constitutes a general model for understanding the mechanism of intramolecular energy uncoupling.
Collapse
Affiliation(s)
- F Fernandez-Belda
- Departamento de Bioquimica y Biologia Molecular A, Edificio de Veterinaria, Universidad de Murcia en Espinardo, 30071 Murcia, Spain.
| | | | | |
Collapse
|
5
|
Yokoyama T, Kaya S, Abe K, Taniguchi K, Katoh T, Yazawa M, Hayashi Y, Mârdh S. Acid-labile ATP and/or ADP/P(i) binding to the tetraprotomeric form of Na/K-ATPase accompanying catalytic phosphorylation-dephosphorylation cycle. J Biol Chem 1999; 274:31792-6. [PMID: 10542201 DOI: 10.1074/jbc.274.45.31792] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na/K-ATPase has been shown to bind 1 and 0.5 mol of (32)P/mol of alpha-chain in the presence [gamma-(32)P]ATP and [alpha-(32)P]ATP, respectively, accompanied by a maximum accumulation of 0.5 mol of ADP-sensitive phosphoenzyme (NaE1P) and potassium-sensitive phosphoenzyme (E2P). The former accumulation was followed by the slow constant liberation of P(i), but the latter was accompanied with a rapid approximately 0.25 mol of acid-labile P(i) burst. The rubidium (potassium congener)-occluded enzyme (approximately 1.7 mol of rubidium/mol of alpha-chain) completely lost rubidium on the addition of sodium + magnesium. Further addition of approximately 100 microM [gamma-(32)P]ATP and [alpha-(32)P]ATP, both induced 0.5 mol of (32)P-ATP binding to the enzyme and caused accumulation of approximately 1 mol of rubidium/mol of alpha-chain, accompanied by a rapid approximately 0.5 mol of P(i) burst with no detectable phosphoenzyme under steady state conditions. Electron microscopy of rotary-shadowed soluble and membrane-bound Na/K-ATPases and an antibody-Na/K-ATPase complex, indicated the presence of tetraprotomeric structures (alphabeta)(4). These and other data suggest that Na/K-ATP hydrolysis occurs via four parallel paths, the sequential appearance of (NaE1P:E.ATP)(2), (E2P:E.ATP:E2P:E. ADP/P(i)), and (KE2:E.ADP/P(i))(2), each of which has been previously referred to as NaE1P, E2P, and KE2, respectively.
Collapse
Affiliation(s)
- T Yokoyama
- Biological Chemistry, Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Tsuda T, Kaya S, Yokoyama T, Hayashi Y, Taniguchi K. Half-site modification of Lys-480 of the Na+,K+-ATPase alpha-chain with pyridoxal 5'-diphospho-5'-adenosine reduces ATP-dependent phosphorylation stoichiometry from half to a quarter. J Biol Chem 1998; 273:24334-8. [PMID: 9733720 DOI: 10.1074/jbc.273.38.24334] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pig and dog kidney Na+,K+-ATPase preparations, irrespective of specific activity, showed approximately 0.5 mol of maximum phosphorylation/mol alpha-chain for ATP or acetyl phosphate (AcP) at steady state conditions. Pyridoxal 5'-diphospho-5'-adenosine (AP2PL)-treated pig kidney enzymes containing approximately 0.5 mol of AP2PL probe at Lys-480/mol (Tsuda, T., Kaya, S., Funatsu, H., Hayashi, Y., and Taniguchi, K. (1998) J. Biochem. (Tokyo) 123, 169-174) showed a quarter-site phosphorylation by ATP and half-site phosphorylation from AcP. The addition of 10 microM ATP to the Mg2+-Na+-bound AP2PL enzyme induced rapid quarter-site phosphorylation (47/s), followed by two different AP2PL fluorescence changes, a rapid decrease (29/s) and a slow increase (1.1/s). The addition of 1 mM AcP to the Mg2+-Na+-bound AP2PL enzyme induced a slow half-site phosphorylation (3/s), followed by a monophasic AP2PL fluorescence increase (1.2/s). After treatment of the AP2PL enzyme with fluorescein 5'-isothiocyanate to modify Lys-501 fully, the Mg2+-Na+-dependent phosphorylation capacity from ATP of the resulting AP2PL-fluorescein 5'-isothiocyanate enzyme was reduced to approximately 6% without significant changes in half-site phosphorylation capacity with respect to AcP, dynamic AP2PL fluorescence change by ATP and change by AcP. These data and others support the hypothesis that the functional membrane-bound Na+, K+-ATPase has tetrameric properties.
Collapse
Affiliation(s)
- T Tsuda
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060, Japan
| | | | | | | | | |
Collapse
|
7
|
Tsuda T, Kaya S, Yokoyama T, Hayashi Y, Taniguchi K. ATP and acetyl phosphate induces molecular events near the ATP binding site and the membrane domain of Na+,K+-ATPase. The tetrameric nature of the enzyme. J Biol Chem 1998; 273:24339-45. [PMID: 9733721 DOI: 10.1074/jbc.273.38.24339] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The addition of ATP to Mg2+-Na+-bound-probe labeled Na+,K+-ATPase preparations containing approximately 0.5 mol of pyridoxal 5'-diphospho-5'-adenosine (AP2PL) probe at Lys-480 and approximately 0.9 mol of fluorescein 5'-isothiocyanate (FITC) probe at Lys-501 showed a decrease and an increase in the AP2PL fluorescence intensity with neither significant ATP-dependent phosphorylation nor FITC fluorescence change. The rate constants for the fluorescence change increased nearly linearly with increasing ATP concentrations. The substitution of AcP for ATP decreased the FITC fluorescence rather monophasically, 8.5/s, which was followed by the half-site phosphorylation with same amount of components with different rate constant, 7.2 and 4.6/s, followed by a much slower increase in the two components of AP2PL fluorescence, 1.4 and 0.2/s. The addition of Na+ with increasing concentrations of ATP to the K+-bound AP2PL-FITC enzymes induced accelerations in the decrease and an increase in the AP2PL fluorescence intensity with two different increases in the FITC fluorescence intensity, showing that the same concentration of ATP is capable of inducing four different fluorescence changes. The addition of ATP to the Mg2+-Na+-bound enzymes modified with N-[p-(2-benzimidazolyl)phenyl]-maleimide (BIPM) at Cys-964 and retaining full Na+,K+-ATPase activity induced two different increases in BIPM fluorescence intensity. Each rate constant for the BIPM fluorescence change versus concentrations of ATP gave two intersecting straight lines. These data and the stoichiometries of fluorescence probe bindings and ATP- and AcP-dependent phosphorylation provide strong support for the conclusion that the functional membrane-bound Na+,K+-ATPase is a tetramer.
Collapse
Affiliation(s)
- T Tsuda
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060, Japan
| | | | | | | | | |
Collapse
|
8
|
Ward DG, Cavieres JD. Photoinactivation of fluorescein isothiocyanate-modified Na,K-ATPase by 2'(3')-O-(2,4,6-trinitrophenyl)8-azidoadenosine 5'-diphosphate. Abolition of E1 and E2 partial reactions by sequential block of high and low affinity nucleotide sites. J Biol Chem 1998; 273:14277-84. [PMID: 9603934 DOI: 10.1074/jbc.273.23.14277] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na,K-ATPase activity of the sodium pump exhibits apparent multisite kinetics toward ATP, a feature that is inherent to the minimal enzyme unit, the alpha beta protomer. We have argued that this should arise from separate catalytic and noncatalytic sites on the alpha beta protomer as fluorescein isothiocyanate (FITC) blocks a high affinity ATP site on all alpha subunits and yet the modified Na, K-ATPase retains a low affinity response to nucleotides (Ward, D. G., and Cavieres, J. D. (1996) J. Biol. Chem. 271, 12317-12321). We now find that 2'(3')-O-(2,4,6-trinitrophenyl)8-azido-adenosine 5'-diphosphate (TNP-8N3-ADP), a high affinity photoactivatable analogue of ATP, can inhibit the K+-phosphatase activity of the FITC-modified enzyme during assays in dimmed light. The inhibition occurs with a Ki of 140 microM at 20 mM K+; it requires the adenine ring as 2'(3')-O-(2,4 6-trinitrophenyl) (TNP)-UDP or TNP-uridine are less potent and 2,4,6-trinitrobenzene-sulfonate is ineffective. Under irradiation with UV light, TNP-8N3-ADP inactivates the K+-phosphatase activity of the fluorescein-enzyme and also its phosphorylation by [32P]Pi. The photoinactivation process is stimulated by Na+ or Mg2+, and is inhibited by K+ or excess TNP-ADP. In the presence of 50 mM Na+ and 1 mM Mg2+, TNP-8N3-ADP photoinactivates with a K0.5 of 15 microM. Furthermore, TNP-8N3-ADP photoinactivates the FITC-modified, solubilized alpha beta protomers, even more effectively than the membrane-bound fluorescein-enzyme. These results strongly suggest that catalytic and allosteric ATP sites coexist on the alpha beta protomer of Na,K-ATPase.
Collapse
Affiliation(s)
- D G Ward
- Transport ATPase Laboratory, Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, LE1 9HN, United Kingdom
| | | |
Collapse
|
9
|
Tsuda T, Kaya S, Yokoyama T, Taniguchi K. Are pyridoxal and fluorescein probes in lysine residues of alpha-chain in Na+,K(+)-ATPase sensing ATP binding? Ann N Y Acad Sci 1997; 834:186-93. [PMID: 9405807 DOI: 10.1111/j.1749-6632.1997.tb52250.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Na+,K(+)-ATPase preparations from pig kidneys were treated with 50 microM pyridoxal 5'-diphospho-5'-adenosine (AP2PL) in the presence of NaCl. The resulting preparations contained 0.5 mol of the AP2PL probe at the Lys-480/mol alpha-chain. This modification reduced both Na+,K(+)-ATPase activity and the amount of Na(+)-dependent phosphoenzyme from ATP to around 50% but not that from acetyl phosphate (AcP). The addition of 1 mM AcP to the modified enzyme in the presence of Mg2+ and Na+ induced phosphorylation (3.0/s) followed by an AP2PL fluorescence increase (1.2/s). The addition of 10 microM ATP instead of AcP induced rapid phosphorylation (28/s) followed by a slow increase in fluorescence (1.0/s). When modified enzyme preparations were treated with fluorescein 5'-isothiocyanate (FITC), the phosphorylation capacity from ATP was reduced to around 5% with little influence on either the AP2PL fluorescence change by ATP or phosphorylation from AcP. The addition of increasing concentrations of ATP with 160 mM NaCl to the K(+)-bound AP2PL-FITC-labeled enzyme showed different rates for each fluorescence change and different affinities for ATP of the changes. These data and others indicate that the AP2PL probe at Lys-480 can monitor ATP binding to high- and low-affinity sites and suggest the simultaneous presence of two different low-affinity sites for ATP detected by an AP2PL probe at Lys-480 and an FITC probe at Lys-501.
Collapse
Affiliation(s)
- T Tsuda
- Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
10
|
Kaplan JH, Lutsenko S, Gatto C, Daoud S, Kenney LJ. Ligand-induced conformational changes in the Na,K-ATPase alpha subunit. Ann N Y Acad Sci 1997; 834:45-55. [PMID: 9405784 DOI: 10.1111/j.1749-6632.1997.tb52224.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J H Kaplan
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland 97201-3098, USA.
| | | | | | | | | |
Collapse
|
11
|
Vilsen B. Leucine 332 at the boundary between the fourth transmembrane segment and the cytoplasmic domain of Na+,K+-ATPase plays a pivotal role in the ion translocating conformational changes. Biochemistry 1997; 36:13312-24. [PMID: 9341223 DOI: 10.1021/bi971030q] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mutants Gly330-->Ala, Leu332-->Ala, Leu332-->Pro, and Pro780-->Ala of the alpha1-isoform of rat kidney Na+,K+-ATPase were expressed in COS-1 cells to active site concentrations between 20 and 70 pmol per mg of membrane protein. The functional properties of the mutants were characterized by titrations of Na+-, K+-, and ATP-dependencies of Na+,K+-ATPase activity as well as by a series of assays measuring the K+-dependence of the steady-state phosphoenzyme level, the kinetics of dephosphorylation under a variety of conditions, and the ADP-ATP exchange activity. In mutants Gly330-->Ala, Leu332-->Ala, and Leu332-->Pro, the molecular turnover number was reduced relative to that of the wild-type Na+,K+-ATPase, and the steady-state phosphoenzyme level was high even in the presence of several millimolar K+. At a low Na+ concentration in the absence of K+, mutants Leu332-->Pro and Gly330-->Ala displayed high ADP-ATP exchange activity and formed a high level of the ADP-sensitive phosphoenzyme (E1P). The phosphoenzyme decayed slowly following a jump in salt concentration and chase with ATP and K+. Hence, the conversion of E1P to the K+-sensitive phosphoenzyme (E2P) was inhibited in mutants Leu332-->Pro and Gly330-->Ala. In the Leu332-->Ala mutant, a high level of E2P was accumulated in the absence of K+, and the ADP-ATP exchange activity was low at low Na+ concentration in the absence of K+, but rose sharply on addition of K+. Dephosphorylation experiments indicated that in the Leu332-->Ala mutant K+ induced reversal of the phosphoenzyme interconversion, forming E1P from E2P. Leu332 is therefore a pivotal residue in the conformational change. Mutants Gly330-->Ala and Pro780-->Ala displayed reduced K+ affinities relative to the wild type, determined in three independent assays.
Collapse
Affiliation(s)
- B Vilsen
- Department of Physiology, University of Aarhus, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
12
|
Kane DJ, Fendler K, Grell E, Bamberg E, Taniguchi K, Froehlich JP, Clarke RJ. Stopped-flow kinetic investigations of conformational changes of pig kidney Na+,K+-ATPase. Biochemistry 1997; 36:13406-20. [PMID: 9341234 DOI: 10.1021/bi970598w] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The kinetics of Na+-dependent partial reactions of the Na+,K+-ATPase were investigated via the stopped-flow technique using the fluorescent labels RH421 and BIPM. After the enzyme is mixed with MgATP, both labels give almost identical kinetic responses. Under the chosen experimental conditions two exponential time functions are necessary to fit the data. The dominant fast phase, 1/tau1 approximately 180 s-1 (saturating [ATP] and [Na+], pH 7.4 and 24 degrees C), is attributed to phosphorylation of the enzyme and a subsequent conformational change (E1ATP(Na+)3 --> E2P(Na+)3 + ADP). The rate of the phosphorylation reaction measured by the acid quenched-flow technique was 190 s-1 at 100 microM ATP, suggesting that phosphorylation controls the kinetics of the RH421 signal and that the conformational change is very fast (>/=600 s-1). The rate of the RH421 signal was optimal at pH 7.5. The Na+ concentration dependence of 1/tau1 showed half-saturation at a Na+ concentration of 8-10 mM with positive cooperativity involved in the occupation of the Na+ binding sites. The apparent dissociation constant of the high affinity ATP binding site determined from the ATP concentration dependence of 1/tau1 was 7.0 (+/-0.6) microM, while the apparent Kd for the low affinity site and the rate constant for the E2 to E1 conformational change evaluated in the absence of Mg2+ were 143 (+/-17) microM and </= 28 s-1. At RH421 concentrations in the micromolar range, a decrease in the value of 1/tau1 is observed. On the basis of rapid quenched-flow measurements, this inhibition can be attributed to a reaction step subsequent to phosphorylation. This accounts for previously observed kinetic discrepancies between RH421 and BIPM.
Collapse
Affiliation(s)
- D J Kane
- Department of Biophysical Chemistry, Max-Planck-Institut für Biophysik, Kennedyallee 70, D-60596 Frankfurt am Main, Germany,
| | | | | | | | | | | | | |
Collapse
|
13
|
Wang G, Perlin DS. Probing energy coupling in the yeast plasma membrane H+-ATPase with acetyl phosphate. Arch Biochem Biophys 1997; 344:309-15. [PMID: 9264544 DOI: 10.1006/abbi.1997.0213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The energy-rich compound acetyl phosphate (ACP) was examined as a substrate for energy-linked reactions by the yeast plasma membrane H+-ATPase. The hydrolysis of ACP was sensitive to inhibition by vanadate with an IC50 approximately 1 microM, which is comparable to the level obtained in the presence of ATP. A Km of 8.29 +/- 0.65 mM for the hydrolysis of ACP was approximately 10-fold higher than that obtained for ATP, while Vmax values of 8.66 +/- 0.29 and 7.23 +/- 0.34 micromol Pi mg(-1) min(-1) were obtained with ATP and ACP, respectively. ACP formed a phosphorylated intermediate that was efficiently chased with hydroxylamine. Both ACP and ATP effectively protected the enzyme from trypsin-induced inactivation and formed identical tryptic digestion patterns, suggesting that ACP mimics the formation of conformational intermediates induced by ATP. However, unlike ATP, ACP was unable to drive proton transport by H+-ATPase. In addition, a pma1-S368F mutant enzyme that is highly insensitive to inhibition by vanadate in the presence of ATP was largely sensitive to vanadate in the presence of ACP. These results are interpreted in terms of a reverse, short-circuit pathway of the normal P-type ATPase kinetic pathway, in which the formation of E2P by-passes the E1P high-energy intermediate. In this pathway, ACP favors the formation of an E2P conformational state, which can interact with classical inhibitors like vanadate, but possesses insufficient free energy to drive proton transport by the H+-ATPase.
Collapse
Affiliation(s)
- G Wang
- Public Health Research Institute, New York, New York 10016, USA
| | | |
Collapse
|
14
|
Suzuki K, Post RL. Equilibrium of phosphointermediates of sodium and potassium ion transport adenosine triphosphatase: action of sodium ion and Hofmeister effect. J Gen Physiol 1997; 109:537-54. [PMID: 9154903 PMCID: PMC2217063 DOI: 10.1085/jgp.109.5.537] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/1997] [Accepted: 02/07/1997] [Indexed: 02/04/2023] Open
Abstract
Sodium and potassium ion transport adenosine triphosphatase accepts and donates a phosphate group in the course of its reaction sequence. The phosphorylated enzyme has two principal reactive states, E1P and E2P. E1P is formed reversibly from ATP in the presence of Na+ and is precursor to E2P, which equilibrates with P(i) in the presence of K+. We studied equilibrium between these states at 4 degrees C and the effect of Na+ on it. To optimize the reaction system we used a Hofmeister effect, replacing the usual anion, chloride, with a chaotropic anion, usually nitrate. We phosphorylated enzyme from canine kidney with [32P]ATP. We estimated interconversion rate constants for the reaction E1P <--> E2P and their ratio. To estimate rate constants we terminated phosphorylation and observed decay kinetics. We observed E1P or E2P selectively by adding K+ or ADP respectively. K+ dephosphorylates E2P leaving E1P as observable species; ADP dephosphorylates E1P leaving E2P as observable species. We fitted a 2-pool model comprising two reactive species or a twin 2-pool model, comprising a pair of independent 2-pool models, to the data and obtained interconversion and hydrolysis rate constants for each state. Replacing Na+ with Tris+ or lysine+ did not change the ratio of interconversion rate constants between E1P and E2P. Thus Na+ binds about equally strongly to E1P and E2P. This conclusion is consistent with a model of Pedemonte (1988. J. Theor. Biol. 134:165-182.). We found that Na+ affected another equilibrium, that of transphosphorylation between ATP x dephosphoenzyme and ADP x E1P. We used the reactions and model of Pickart and Jencks (1982. J. Biol. Chem. 257:5319-5322.) to generate and fit data. Decreasing the concentration of Na+ 10-fold shifted the equilibrium constant 10-fold favoring ADP x E1P over ATP x dephosphoenzyme. Thus Na+ can dissociate from E1P x Na3. Furthermore, we found two characteristics of Hofmeister effects on this enzyme.
Collapse
Affiliation(s)
- K Suzuki
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee 37232-0615, USA
| | | |
Collapse
|
15
|
The ATP Binding Sites of P-Type ION Transport ATPases: Properties, Structure, Conformations, and Mechanism of Energy Coupling. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s1569-2558(08)60152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
16
|
Lin SH, Faller LD. Estimation of the distance change between cysteine-457 and the nucleotide binding site when sodium pump changes conformation from E1 to E2 by fluorescence energy transfer measurements. Biochemistry 1996; 35:8419-28. [PMID: 8679600 DOI: 10.1021/bi960407+] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The first indication of the size of a conformational change implicated in ion transport by sodium pump has been obtained by measuring the change in efficiency of fluorescence energy transfer between two specific locations on the alpha-subunit. The donor (5'-(iodoacetamido)fluorescein) attaches covalently to cysteine-457, and the acceptor (2'(or 3')-O-(trinitrophenyl)adenosine 5'-triphosphate) binds reversibly to the active site. The acceptor binds nearly 2 orders of magnitude tighter to the Na+ than to the K+ conformation of the enzyme and quenches donor fluorescence more efficiently in the Na+ than in the K+ conformation. The estimated distance between donor and acceptor, assuming random orientation of their emission and absorption dipoles, increases 2.9 +/- 0.6 A when the enzyme changes from the Na+ to the K+ conformation. Stopped-flow measurements of the change in fluorescence energy transfer efficiency with time when the doubly-labeled pump is mixed with Na+ or K+ demonstrate that the donor/acceptor pair reports the change between the E1 and E2 conformations of unphosphorylated enzyme. The observed first-order rate constant for the change in energy transfer efficiency depends sigmoidally on [K+] and inversely on [Na+], and both rate and amplitude data for the change in energy transfer efficiency can be fit with the same values of the rate and ion-dissociation constants as published data for the conformational change between E1 and E2 obtained by singly labeling the enzyme with fluorophores that report changes in protein microenvironment. The prerequisite for successfully measuring the distance change and equating the protein rearrangement with a step in the catalysis-transport cycle is that the donor by itself does not report the conformational change.
Collapse
Affiliation(s)
- S H Lin
- Department of Medicine, University of California Los Angeles School of Medicine, USA
| | | |
Collapse
|
17
|
Chapter 1 Primary ion pumps. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1569-2582(96)80055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
Kaya S, Tsuda T, Hagiwara K, Fukui T, Taniguchi K. Pyridoxal 5'-phosphate probes at Lys-480 can sense the binding of ATP and the formation of phosphoenzymes in Na+,K(+)-ATPase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37301-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Taniguchi K, Mårdh S. Reversible changes in the fluorescence energy transfer accompanying formation of reaction intermediates in probe-labeled (Na+,K+)-ATPase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82297-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
20
|
Robinson JD, Pratap PR. Indicators of conformational changes in the Na+/K(+)-ATPase and their interpretation. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1154:83-104. [PMID: 8389590 DOI: 10.1016/0304-4157(93)90018-j] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- J D Robinson
- Department of Pharmacology State University of New York Health Science Center, Syracuse 13210
| | | |
Collapse
|
21
|
Asano S, Kamiya S, Takeguchi N. The energy transduction mechanism is different among P-type ion-transporting ATPases. Acetyl phosphate causes uncoupling between hydrolysis and ion transport in H+,K(+)-ATPase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50468-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
22
|
Berberián G, Beaugé L. Phosphorylation of Na,K-ATPase by acetyl phosphate and inorganic phosphate. Sidedness of Na+, K+ and nucleotide interactions and related enzyme conformations. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1063:217-25. [PMID: 1849429 DOI: 10.1016/0005-2736(91)90374-h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effects of K+, Na+ and nucleotides (ATP or ADP) on the steady-state phosphorylation from [32P]Pi (0.5 and 1 mM) and acetyl [32P]phosphate (AcP) (5 mM) were studied in membrane fragments and in proteoliposomes with partially purified pig kidney Na,K-ATPase incorporated. The experiments were carried out at 20 degrees C and pH 7.0. In broken membranes, the Pi-induced phosphoenzyme levels were reduced to 40% by 10 mM K+ and to 20% by 10 mM K+ plus 1 mM ADP (or ATP); in the presence of 50 mM Na+, no E-P formation was detected. On the other hand, with AcP, the E-P formation was reduced by 10 mM K+ but was 30% increased by 50 mM Na+. In proteoliposomes E-P formation from Pi was (i) not influenced by 5-10 mM K+cyt or 100 mM Na+ext, (ii) about 50% reduced by 5, 10 or 100 mM K+ext and (iii) completely prevented by 50 mM Na+cyt. Enzyme phosphorylation from AcP was 30% increased by 10 mM K+cyt or 50 mM Na+cyt; these E-P were 50% reduced by 10-100 mM K+ext. However, E-P formed from AcP without K+cyt or Na+cyt was not affected by extracellular K+. Fluorescence changes of fluorescein isothiocyanate labelled membrane fragments, indicated that E-P from AcP corresponded to an E2 state in the presence of 10 mM Na+ or 2 mM K+ but to an E1 state in the absence of both cations. With pNPP, the data indicated an E1 state in the absence of Na+ and K+ and also in the presence of 20 mM Na+, and an E2 form in the presence of 5 mM K+. These results suggest that, although with some similarities, the reversible Pi phosphorylation and the phosphatase activity of the Na,K-ATPase do not share the whole reaction pathway.
Collapse
Affiliation(s)
- G Berberián
- División de Biofisica, Instituto de Investigación Médica Mercedes y Martín Ferreyra, Córdoba, Argentina
| | | |
Collapse
|
23
|
Asano S, Mizutani M, Hayashi T, Morita N, Takeguchi N. Reversible inhibitions of gastric H+,K(+)-ATPase by scopadulcic acid B and diacetyl scopadol. New biochemical tools of H+,K(+)-ATPase. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)45685-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
Pedemonte CH, Kaplan JH. Chemical modification as an approach to elucidation of sodium pump structure-function relations. THE AMERICAN JOURNAL OF PHYSIOLOGY 1990; 258:C1-23. [PMID: 2154108 DOI: 10.1152/ajpcell.1990.258.1.c1] [Citation(s) in RCA: 190] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chemical modification of specific residues in enzymes, with the characterization of the type of inhibition and properties of the modified activity, is an established approach in structure-function studies of proteins. This strategy has become more productive in recent years with the advances made in obtaining primary sequence information from gene-cloning technologies. This article discusses the application of chemical modification procedures to the study of the Na(+)-K(+)-ATPase protein. A wide array of information has become available about the kinetics, enzyme structure, and various conformational states as a result of the combined use of inhibitors, ligands, modifiers, and proteolytic enzymes. We will review a variety of reagents and approaches that have been employed to arrive at structure-function correlates and discuss critically the limits and ambiguities in the type of information obtained from these methodologies. Chemical modification of the Na(+)-pump protein has already provided a body of data and will, we anticipate, guide the efforts of mutagenesis studies in the future when suitable expression systems become available.
Collapse
Affiliation(s)
- C H Pedemonte
- Department of Physiology, University of Pennsylvania, Philadelphia 19104-6085
| | | |
Collapse
|