1
|
Interplay between H1N1 influenza a virus infection, extracellular and intracellular respiratory tract pH, and host responses in a mouse model. PLoS One 2021; 16:e0251473. [PMID: 33979408 PMCID: PMC8115840 DOI: 10.1371/journal.pone.0251473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/27/2021] [Indexed: 01/01/2023] Open
Abstract
During influenza A virus (IAV) entry, the hemagglutinin (HA) protein is triggered by endosomal low pH to undergo irreversible structural changes that mediate membrane fusion. HA proteins from different isolates vary in the pH at which they become activated in endosomes or become irreversible inactivated if exposed to extracellular acid. Little is known about extracellular pH in the upper respiratory tracts of mammals, how pH may shift during IAV infection, and its impact on replication of viruses that vary in HA activation pH. Here, we inoculated DBA/2J mice intranasally with A/TN/1-560/2009 (H1N1) (activation pH 5.5) or a mutant containing the destabilizing mutation HA1-Y17H (pH 6.0). We measured the kinetics of extracellular pH during infection using an optical pH-sensitive microsensor probe placed in the naris, nasal sinus, soft palate, and trachea. We also measured intracellular pH of single-cell suspensions of live, primary lung epithelial cells with various wavelength pH-sensitive dyes localized to cell membranes, cytosol, endosomes, secretory vesicles, microtubules, and lysosomes. Infection with either virus decreased extracellular pH and increased intracellular pH. Peak host immune responses were observed at 2 days post infection (DPI) and peak pH changes at 5 DPI. Extracellular and intracellular pH returned to baseline by 7 DPI in mice infected with HA1-Y17H and was restored later in wildtype-infected. Overall, IAV infection altered respiratory tract pH, which in turn modulated replication efficiency. This suggests a virus-host pH feedback loop that may select for IAV strains containing HA proteins of optimal pH stability, which may be approximately pH 5.5 in mice but may differ in other species.
Collapse
|
2
|
Athmaram TN, Saraswat S, Santhosh SR, Singh AK, Suryanarayana WS, Priya R, Gopalan N, Parida M, Rao PVL, Vijayaraghavan R. Yeast expressed recombinant Hemagglutinin protein of novel H1N1 elicits neutralising antibodies in rabbits and mice. Virol J 2011; 8:524. [PMID: 22126628 PMCID: PMC3251546 DOI: 10.1186/1743-422x-8-524] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/29/2011] [Indexed: 11/25/2022] Open
Abstract
Currently available vaccines for the pandemic Influenza A (H1N1) 2009 produced in chicken eggs have serious impediments viz limited availability, risk of allergic reactions and the possible selection of sub-populations differing from the naturally occurring virus, whereas the cell culture derived vaccines are time consuming and may not meet the demands of rapid global vaccination required to combat the present/future pandemic. Hemagglutinin (HA) based subunit vaccine for H1N1 requires the HA protein in glycosylated form, which is impossible with the commonly used bacterial expression platform. Additionally, bacterial derived protein requires extensive purification and refolding steps for vaccine applications. For these reasons an alternative heterologous system for rapid, easy and economical production of Hemagglutinin protein in its glycosylated form is required. The HA gene of novel H1N1 A/California/04/2009 was engineered for expression in Pichia pastoris as a soluble secreted protein. The full length HA- synthetic gene having α-secretory tag was integrated into P. pastoris genome through homologous recombination. The resultant Pichia clones having multiple copy integrants of the transgene expressed full length HA protein in the culture supernatant. The Recombinant yeast derived H1N1 HA protein elicited neutralising antibodies both in mice and rabbits. The sera from immunised animals also exhibited Hemagglutination Inhibition (HI) activity. Considering the safety, reliability and also economic potential of Pichia expression platform, our preliminary data indicates the feasibility of using this system as an alternative for large-scale production of recombinant influenza HA protein in the face of influenza pandemic threat.
Collapse
Affiliation(s)
- T N Athmaram
- Division of Virology, Defence Research and Development Establishment, Ministry of Defence (Govt, of India), Gwalior, MP-474 002, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Saelens X, Vanlandschoot P, Martinet W, Maras M, Neirynck S, Contreras R, Fiers W, Jou WM. Protection of mice against a lethal influenza virus challenge after immunization with yeast-derived secreted influenza virus hemagglutinin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:166-75. [PMID: 10091596 DOI: 10.1046/j.1432-1327.1999.00150.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The A/Victoria/3/75 (H3N2-subtype) hemagglutinin (HA) gene was engineered for expression in Pichia pastoris as a soluble secreted molecule. The HA cDNA lacking the C-terminal transmembrane anchor-coding sequence was fused to the Saccharomyces cerevisiae alpha-mating factor secretion signal and placed under control of the methanol-inducible P. pastoris alcohol oxidase 1 (AOX1) promoter. Growth of transformants on methanol-containing medium resulted in the secretion of recombinant non-cleaved soluble hemagglutinin (HA0s). Remarkably, the pH of the induction medium had an important effect on the expression level, the highest level being obtained at pH 8.0. The gel filtration profile and the reactivity against a panel of different HA-conformation specific monoclonal antibodies indicated that HA0s was monomeric. Analysis of the N-linked glycans revealed a typical P. pastoris type of glycosylation, consisting of glycans with 10-12 glycosyl residues. Mice immunized with purified soluble hemagglutinin (HA0s) showed complete protection against a challenge with 10 LD50 of mouse-adapted homologous virus (X47), whereas all control mice succumbed. Heterologous challenge with X31 virus [A/Aichi/2/68 (H3N2-subtype)], resulted in significantly higher survival rates in the immunized group compared with the control group. These results, together with the safety, reliability and economic potential of P. pastoris, as well as the flexibility and fast adaptation of the expression system may allow development of an effective recombinant influenza vaccine.
Collapse
Affiliation(s)
- X Saelens
- Department of Molecular Biology, University of Gent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Tanaka H, Takenaka H, Yamao F, Yagura T. Aphidicolin induces alterations in Golgi complex and disorganization of microtubules of HeLa cells upon long-term administration. J Cell Physiol 1998; 176:602-11. [PMID: 9699513 DOI: 10.1002/(sici)1097-4652(199809)176:3<602::aid-jcp17>3.0.co;2-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Treatment of HeLa cells with aphidicolin at 5 or 0.5 microg/ml induced cell cycle arrest at G1/S or G2/M phase, respectively, and was accompanied by unbalanced cell growth. Long-term administration of aphidicolin (more than 48 h) resulted in noticeable loss of reproductive capacity though cells were viable at the time of treatment. Immunofluorescence with anti-Golgi membrane protein monoclonal antibody (mAbG3A5) showed disfigurement of the characteristic mesh-like configuration when cells were treated for more than 48 h. Interestingly, we found that the fragmented Golgi complex formed a ring around the nucleus in more than 20% of the cells. Immunoelectron microscopy using mAbG3A5 antibody demonstrated that the stack structure of the fragmented Golgi complex in aphidicolin-arrested cells appeared partially broken up and seemed to have converted to a vesicle-like structure. Analysis using an antibody to tubulin and anticentrosome human autoimmune serum showed that alterations in the Golgi complex were induced even by the lower 0.5 microg/ml dose. These alterations were accompanied by both changes in the distribution of microtubules and an increase in the number of centrosomes. These cells lost their distinct perinuclear microtubule organizing center (MTOC). On the other hand, treatment with aphidicolin at 5 microg/ml did not induce multiplication of the centrosome although the loss of distinct MTOC was still evident. No changes took place in the Golgi complex, microtubule, or centrosome of cells treated with 0.5 microg/ml aphidicolin when cycloheximide was added simultaneously to the culture.
Collapse
Affiliation(s)
- H Tanaka
- Department of Chemistry, Faculty of Science, Kwansei Gakuin University, Hyogo, Japan
| | | | | | | |
Collapse
|
5
|
Marino M, Corti A, Ippolito A, Cassani G, Fassina G. Effect of bench-scale culture conditions on murine IgG heterogeneity. Biotechnol Bioeng 1997; 54:17-25. [DOI: 10.1002/(sici)1097-0290(19970405)54:1<17::aid-bit2>3.0.co;2-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Vanlandschoot P, Beirnaert E, Neirynck S, Saelens X, Jou WM, Fiers W. Molecular and immunological characterization of soluble aggregated A/Victoria/3/75 (H3N2) influenza haemagglutinin expressed in insect cells. Arch Virol 1996; 141:1715-26. [PMID: 8893793 DOI: 10.1007/bf01718294] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A/Victoria/3/75 (H3N2)-derived cDNA coding for a secreted haemagglutinin (HA0s) was cloned into the polyhedrin promoter-based pVL1392 transfer vector, and a recombinant baculovirus was isolated. 5 to 10 micrograms/ml of secreted HA were obtained following infection of Spodoptera frugiperda-9 cells. Gel filtration revealed the presence in the cell supernatant of immunoreactive HA molecules with varying M(r). The high M(r) fraction (aHA0s) could be purified by Matrex Cellufine Sulphate and Lentil-lectin affinity chromatography, followed by Sephacryl S300 HR gel filtration. aHA0s consisted of aggregated, non-covalently linked subunits which were not cleaved into HA1 and HA2 polypeptides; aHA0s was highly susceptible to trypsin treatment and reacted with two low pH-specific monoclonal antibodies, suggesting that a HA0s consists of monomeric subunits. When the expression medium was adjusted to pH 8.5, no aHA0s was observed, suggesting that aggregation occurred in the cells due to a low intracellular pH. Balb/c mice immunized with purified aHA0s developed high, aHA0s-specific antibody titres. Despite these high titres, almost no binding to trimeric viral HA was observed, and immunized mice were not protected against a challenge with homologous mouse-adapted X47 virus. However, when virus was subjected to low pH, resulting in a profound conformational rearrangement, strong binding was observed. Moreover, binding to the low pH-treated HA of different drift variants, isolated between 1968 and 1989, occurred.
Collapse
Affiliation(s)
- P Vanlandschoot
- Laboratory of Molecular Biology, University of Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
7
|
Leung SO, Goldenberg DM, Dion AS, Pellegrini MC, Shevitz J, Shih LB, Hansen HJ. Construction and characterization of a humanized, internalizing, B-cell (CD22)-specific, leukemia/lymphoma antibody, LL2. Mol Immunol 1995; 32:1413-27. [PMID: 8643111 DOI: 10.1016/0161-5890(95)00080-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The murine monoclonal antibody, LL2, is a B-cell (CD22)-specific IgG2a which has been demonstrated to be clinically significant in the radioimmunodetection of non-Hodgkin's B-cell lymphoma. The antibody carries a variable region-appended glycosylation site in the light chain and is rapidly internalized upon binding to Raji target cells. Humanization of LL2 was carried out in order to develop LL2 as a diagnostic and immunotherapeutic suitable for repeated administration. Based on the extent of sequence homology, and with the aid of computer modeling, we selected the EU framework regions (FR) 1, 2 and 3, and the NEWM FR4 as the scaffold for grafting the heavy chain complementarity determining regions (CDRs), and REI FRs for that of light chains. The light chain glycosylation site, however, was not included. Construction of the CDR-grafted variable regions was accomplished by a rapid and simplified method that involved long DNA oligonucleotide synthesis and the polymerase chain reaction (PCR). The humanized LL2 (hLL2), lacking light chain variable region glycosylation, exhibited immunoreactivities that were comparable to that of chimeric LL2 (cLL2), which was shown previously to have antigen-binding properties similar to its murine counterpart, suggesting that the VK-appended oligosaccharides found in mLL2 are not necessary for antigen binding. Moreover, the hLL2 retained its ability to be internalized into Raji cells at a rate similar to its murine and chimeric counterparts.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Neoplasm/biosynthesis
- Antibodies, Neoplasm/chemistry
- Antibodies, Neoplasm/genetics
- Antibody Specificity/genetics
- Antigens, CD/genetics
- Antigens, Differentiation, B-Lymphocyte/genetics
- Base Sequence
- Cell Adhesion Molecules
- DNA Primers
- Humans
- Lectins
- Leukemia, B-Cell/genetics
- Leukemia, B-Cell/immunology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/metabolism
- Mice
- Molecular Sequence Data
- Oligonucleotides/chemical synthesis
- Polymerase Chain Reaction
- Protein Engineering
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/chemistry
- Sialic Acid Binding Ig-like Lectin 2
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- S O Leung
- Immunomedics, Inc., Morris Plains, NJ 07950, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Takeuchi K, Lamb RA. Influenza virus M2 protein ion channel activity stabilizes the native form of fowl plague virus hemagglutinin during intracellular transport. J Virol 1994; 68:911-9. [PMID: 7507186 PMCID: PMC236528 DOI: 10.1128/jvi.68.2.911-919.1994] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The influenza A/fowl plague virus/Rostock/34 hemagglutinin (HA), which is cleaved intracellularly and has a high pH threshold (pH 5.9) for undergoing its conformational change to the low-pH form, was expressed from cDNA in CV-1 and HeLa T4 cells in the absence of other influenza virus proteins. It was found, by biochemical assays, that the majority of the HA molecules were in a form indistinguishable from the low-pH form of HA. The acidotropic agent, ammonium chloride, stabilized the accumulation of HA in its native form. Coexpression of HA and the homotypic influenza virus M2 protein, which has ion channel activity, stabilized the accumulation of HA in its pH neutral (native) form, and the M2 protein ion channel blocker, amantadine, prevented the rescue of HA in its native form. These data provide direct evidence that the influenza virus M2 protein ion channel activity can affect the status of the conformational form of cleaved HA during intracellular transport.
Collapse
Affiliation(s)
- K Takeuchi
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500
| | | |
Collapse
|
9
|
Borys MC, Linzer DI, Papoutsakis ET. Culture pH affects expression rates and glycosylation of recombinant mouse placental lactogen proteins by Chinese hamster ovary (CHO) cells. BIO/TECHNOLOGY (NATURE PUBLISHING COMPANY) 1993; 11:720-4. [PMID: 7763675 DOI: 10.1038/nbt0693-720] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glycosylation patterns and specific expression rates of the recombinant protein mouse placental lactogen-I (mPL-I) by Chinese hamster ovary (CHO) cells varied significantly over the extracellular pH (pHe) range of 6.1 to 8.7. The maximum specific mPL-I expression rates occurred between pHe 7.6 and 8.0. The pHe effect on protein expression was confirmed using a different CHO cell expressing the unglycosylated recombinant protein mouse placental lactogen-II (mPL-II). Decreases in the extent of glycosylation of mPL-I were observed at low (below 6.9) and high (above 8.2) pHe values. The pHe dependent variations in mPL-I accumulation in the supernatant as well as in glycosylation patterns were not the result of enzymatic degradation in the culture medium.
Collapse
Affiliation(s)
- M C Borys
- Department of Chemical Engineering, Northwestern University, Evanston, IL 60208
| | | | | |
Collapse
|
10
|
|
11
|
Modulation of the carbohydrate moiety of thyroglobulin by thyrotropin and calcium in Fisher rat thyroid line-5 cells. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)46037-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Kuroda K, Veit M, Klenk HD. Retarded processing of influenza virus hemagglutinin in insect cells. Virology 1991; 180:159-65. [PMID: 1984645 DOI: 10.1016/0042-6822(91)90019-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
When expressed in Spodoptera frugiperda cells by a baculovirus vector, the hemagglutinin of fowl plague virus has been found to contain palmitic acid in covalent hydroxylamine-sensitive linkage, indicating that these cells have the capacity to acylate foreign proteins at cysteine residues. Centrifugation on sucrose density gradients and immune precipitation with conformation-specific antibodies were used to compare trimerization of the hemagglutinin in insect cells and in fowl plague virus-infected MDCK cells. Trimerization of the hemagglutinin was incomplete in insect cells, and the kinetics of this reaction were about three times slower than in vertebrate cells. Similarly, post-translational proteolytic cleavage occurred in insect cells with a half-time of 90 min, and a substantial fraction of the hemagglutinin persisted in uncleaved form. In contrast, hemagglutinin was almost completely cleaved in MDCK cells, and the half-time of cleavage was only 30 min. The data indicate that in insect cells trimerization and, as a result, the subsequent processing steps of the hemagglutinin, are retarded and less efficient. The possible roles of aberrant glycosylation, acidic milieu, and lack of other influenza virus proteins in hemagglutinin trimerization are discussed.
Collapse
Affiliation(s)
- K Kuroda
- Institut für Virologie, Philipps-Universität, Marburg, Germany
| | | | | |
Collapse
|
13
|
Abstract
Cultured mammalian cells are being used to produce proteins for therapeutic and diagnostic use because of their ability to perform complex post-translational modifications, including glycosylation. The oligosaccharide moieties can play an important role in defining several biological properties of glycoproteins, including clearance rate, immunogenicity, and biological specific activity. There is a growing interest in defining the factors that influence glycosylation, including the cell culture environment. In this review we organize the published data from in vitro cell culture and tissue culture studies that demonstrate direct effects of the culture environment on N-linked glycosylation.
Collapse
Affiliation(s)
- C F Goochee
- Department of Chemical Engineering, Stanford University, CA 94305-5025
| | | |
Collapse
|