1
|
Nielsen M, Morreau H, Vasen HFA, Hes FJ. MUTYH-associated polyposis (MAP). Crit Rev Oncol Hematol 2010; 79:1-16. [PMID: 20663686 DOI: 10.1016/j.critrevonc.2010.05.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/11/2010] [Accepted: 05/27/2010] [Indexed: 12/13/2022] Open
Abstract
The human mutY homologue (MUTYH) gene is responsible for inheritable polyposis and colorectal cancer. This review discusses the molecular genetic aspects of the MUTYH gene and protein, the clinical impact of mono- and biallelic MUTYH mutations and histological aspects of the MUTYH tumors. Furthermore, the relationship between MUTYH and the mismatch repair genes in colorectal cancer (CRC) families is examined. Finally, the role of other base excision repair genes in polyposis and CRC patients is discussed.
Collapse
Affiliation(s)
- Maartje Nielsen
- Department Clinical Genetics, Leiden University Medical Centre, Albinusdreef, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
2
|
Zheng JD, Hei AL, Zuo PP, Dong YL, Song XN, Takagi Y, Sekiguchi M, Cai JP. Age-related alterations in the expression of MTH2 in the hippocampus of the SAMP8 mouse with learning and memory deterioration. J Neurol Sci 2009; 287:188-96. [PMID: 19735921 DOI: 10.1016/j.jns.2009.07.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 07/31/2009] [Indexed: 12/29/2022]
Abstract
MutT-related proteins degrade 8-oxo-7,8-dihydrodeoxyguanosine triphosphate (8-oxo-dGTP), a mutagenic substrate for DNA synthesis in the nucleotide pool, thereby preventing DNA replication errors. MTH2 (Mut T homolog 2), which belongs to this family of proteins, possesses 8-oxo-7,8-dihydro-2'-deoxyguanosine triphosphatase (8-oxo-dGTPase) activity and appears to function in the protection of the genetic material from the untoward effects of endogenous oxygen radicals. To examine the roles of MTH2 in the aging process, we used the senescence-accelerated prone mouse 8 (SAMP8), which exhibits early aging syndromes and declining abilities of learning and memory. Immunohistochemical and western blot analysis revealed that the level of MTH2 protein in the hippocampus of the SAMP8 mouse progressively decreases beginning from four months after birth, whereas no such change was observed in the control senescence-accelerated resistant mouse 1 (SAMR1). Under these conditions, 8-oxoguanine accumulates in the nuclear DNA in the CA1 and CA3 subregions of the hippocampus of SAMP8 in an age-dependent manner. In SAMR1 mice, accumulation of 8-oxoguanine in the DNA was not observed. These results suggest that the MTH2 deficiency might be one of the causative factors for accelerated aging.
Collapse
Affiliation(s)
- Jun-De Zheng
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Dong Dan, Beijing 100730, PR China
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Chen H, Xu L, Qi Q, Yao Y, Zhu M, Wang Y. A haplotype variation affecting the mitochondrial transportation of hMYH protein could be a risk factor for colorectal cancer in Chinese. BMC Cancer 2008; 8:269. [PMID: 18811933 PMCID: PMC2565682 DOI: 10.1186/1471-2407-8-269] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 09/23/2008] [Indexed: 02/07/2023] Open
Abstract
Background The human MutY homolog (hMYH), a DNA glycolsylase involved in the excision repair of oxidative DNA damage, is currently studied in colorectal cancer (CRC). We previously demonstrated a haplotype variant c.53C>T/c.74G>A of hMYH (T/A) increasing the risk for gastric cancer in Chinese. However, most investigations on correlation between hMYH and CRC are conducted in Western countries and the underlying mechanism has been poorly understood. Methods To determine whether the haplotype T/A variant of hMYH was related to colorectal carcinogenesis, we performed a case-control study in 138 colorectal cancer (CRC) patients and 343 healthy controls in a Chinese population. Furthermore, the C/G for wild-type, C/A or T/G for single base variant and T/A for haplotype variant hMYH cDNAs with a flag epitope tag were cloned into pcDNA3.1+ vector and transfected into cos-7 cell line. Their subcellular localizations were determined by immunofluorescence assay. Results It was found that the frequency of haplotype variant allele was statistically higher in CRC patients than that in controls (P = 0.02, odds ratio = 5.06, 95% confidence interval = 1.26 – 20.4). Similarly, significant difference of heterozygote frequency was indicated between the two groups (P = 0.019), while no homozygote was found. In addition, immunofluorescence analysis showed that hMYH protein with haplotype T/A variation presented in both nucleus and mitochondria, in contrast to the wild-type protein only converging in mitochondria. However, neither of the single missense mutations alone changed the protein subcelluar localization. Conclusion Although preliminarily, these results suggest that: the haplotype variant allele of hMYH leads to a missense protein, which partly affects the protein mitochondrial transportation and results as nuclear localization. This observation might be responsible for the increased susceptibility to cancers, including CRC, in Chinese.
Collapse
Affiliation(s)
- Huimei Chen
- Department of Medical Genetics, Medical School, Nanjing University, Nanjing, PR China.
| | | | | | | | | | | |
Collapse
|
4
|
Ali M, Kim H, Cleary S, Cupples C, Gallinger S, Bristow R. Characterization of mutant MUTYH proteins associated with familial colorectal cancer. Gastroenterology 2008; 135:499-507. [PMID: 18534194 PMCID: PMC2761659 DOI: 10.1053/j.gastro.2008.04.035] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 04/07/2008] [Accepted: 04/30/2008] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS The human mutyh gene encodes a base excision repair protein that prevents G:C to T:A transversions in DNA. Biallelic mutations in this gene are associated with recessively inherited familial colorectal cancer. The aim of this study was to characterize the functional activity of mutant-MUTYH and single-nucleotide polymorphism (SNP)-MUTYH proteins involving familial colorectal cancer. METHODS MUTYH variants were cloned and assayed for their glycosylase and DNA binding activities using synthetic double-stranded oligonucleotide substrates by analyzing cleavage products by polyacrylamide gel electrophoresis. RESULTS In this study, we have characterized 9 missense/frameshift mutants and 2 SNPs for their DNA binding and repair activity in vitro. Two missense mutants (R260Q and G382D) were found to be partially active in both glycosylase and DNA binding, whereas 3 other missense mutants (Y165C, R231H, and P281L) were severely defective in both activities. All of the frameshift mutants (Y90X, Q377X, E466X, and 1103delC) were completely devoid of both glycosylase and DNA binding activities. One SNP (V22M) showed the same activity as wild-type MUTYH protein, but the other SNP (Q324H) was partially impaired in adenine removal. CONCLUSIONS This study of MUTYH mutants suggests that certain SNPs may be as partially dysfunctional in base excision repair as missense-MUTYH mutants and lead to colorectal carcinogenesis.
Collapse
Affiliation(s)
- Mohsin Ali
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada, Applied Molecular Oncology, Ontario Cancer Institute/Princess Margaret Hospital (University Health Network) and Departments of Radiation Oncology and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Hyeja Kim
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Sean Cleary
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Claire Cupples
- Dept. of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Steven Gallinger
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada,Corresponding author: Robert Bristow MD PhD FRCPC, Radiation Medicine Program, Princess Margaret Hospital (UHN), 610 University Avenue, Toronto, Ontario, CANADA M5G2M9, Tel: 416-946-2223; Fax: 416-946-4586;
| | - Robert Bristow
- Applied Molecular Oncology, Ontario Cancer Institute/Princess Margaret Hospital (University Health Network) and Departments of Radiation Oncology and Medical Biophysics, University of Toronto, Toronto, ON, Canada,Corresponding author: Robert Bristow MD PhD FRCPC, Radiation Medicine Program, Princess Margaret Hospital (UHN), 610 University Avenue, Toronto, Ontario, CANADA M5G2M9, Tel: 416-946-2223; Fax: 416-946-4586;
| |
Collapse
|
5
|
Li X, Tao Ng MT, Wang Y, Liu X, Li T. Dumbbell-shaped circular oligonucleotides as inhibitors of human topoisomerase I. Bioorg Med Chem Lett 2007; 17:4967-71. [PMID: 17591440 DOI: 10.1016/j.bmcl.2007.06.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 06/04/2007] [Accepted: 06/07/2007] [Indexed: 10/23/2022]
Abstract
A dumbbell-shaped circular oligonucleotide containing topoisomerase I-binding sites and two mismatched base pairs in its sequence has been designed and synthesized. Our further studies demonstrate that this particularly designed oligonucleotide displays an IC(50) value of 9 nM in its inhibition on the activity of human topoisomerase I, a magnitude smaller than that of camptothecin, an anticancer drug currently in clinical use.
Collapse
Affiliation(s)
- Xinming Li
- Department of Chemistry, 3 Science Drive 3, National University of Singapore, Singapore, Singapore
| | | | | | | | | |
Collapse
|
6
|
Bai H, Lu AL. Physical and functional interactions between Escherichia coli MutY glycosylase and mismatch repair protein MutS. J Bacteriol 2006; 189:902-10. [PMID: 17114250 PMCID: PMC1797285 DOI: 10.1128/jb.01513-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli MutY and MutS increase replication fidelity by removing adenines that were misincorporated opposite 7,8-dihydro-8-oxo-deoxyguanines (8-oxoG), G, or C. MutY DNA glycosylase removes adenines from these mismatches through a short-patch base excision repair pathway and thus prevents G:C-to-T:A and A:T-to-G:C mutations. MutS binds to the mismatches and initiates the long-patch mismatch repair on daughter DNA strands. We have previously reported that the human MutY homolog (hMYH) physically and functionally interacts with the human MutS homolog, hMutSalpha (Y. Gu et al., J. Biol. Chem. 277:11135-11142, 2002). Here, we show that a similar relationship between MutY and MutS exists in E. coli. The interaction of MutY and MutS involves the Fe-S domain of MutY and the ATPase domain of MutS. MutS, in eightfold molar excess over MutY, can enhance the binding activity of MutY with an A/8-oxoG mismatch by eightfold. The MutY expression level and activity in mutS mutant strains are sixfold and twofold greater, respectively, than those for the wild-type cells. The frequency of A:T-to-G:C mutations is reduced by two- to threefold in a mutS mutY mutant compared to a mutS mutant. Our results suggest that MutY base excision repair and mismatch repair defend against the mutagenic effect of 8-oxoG lesions in a cooperative manner.
Collapse
Affiliation(s)
- Haibo Bai
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD 21201, USA
| | | |
Collapse
|
7
|
Bai H, Grist S, Gardner J, Suthers G, Wilson TM, Lu AL. Functional characterization of human MutY homolog (hMYH) missense mutation (R231L) that is linked with hMYH-associated polyposis. Cancer Lett 2006; 250:74-81. [PMID: 17081686 PMCID: PMC1907362 DOI: 10.1016/j.canlet.2006.09.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 09/22/2006] [Indexed: 12/23/2022]
Abstract
The MutY homolog (MYH) can excise adenines misincorporated opposite to guanines or 7,8-dihydro-8-oxo-guanines (8-oxoG) during DNA replication; thereby preventing G:C to T:A transversions. Germline mutations in the human MYH gene are associated with recessive inheritance of colorectal adenomatous polyposis (MAP). Here, we characterize one newly identified MAP-associated MYH missense mutation (R231L) that lies adjacent to the putative hMSH6 binding domain. The R231L mutant protein has severe defects in A/GO binding and in adenine glycosylase activities. The mutant fails to complement mutY-deficiency in Escherichia coli, but does not affect binding to hMSH6. These data support the role of the hMYH pathway in carcinogenesis.
Collapse
Affiliation(s)
- Haibo Bai
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD 21201, USA
| | - Scott Grist
- Department of Haematology and Genetic Pathology, Flinders Medical Centre and Flinders University, Adelaide, South Australia, 5042
| | - Justin Gardner
- Department of Haematology and Genetic Pathology, Flinders Medical Centre and Flinders University, Adelaide, South Australia, 5042
| | - Graeme Suthers
- South Australian Familial Cancer Service, Women’s and Children’s Hospital, Adelaide, South Australia, 5042
| | - Teresa M. Wilson
- Department of Radiation Oncology, University of Maryland, Baltimore, MD 21201, USA
- The University of Maryland Greenebaum Cancer Center, Baltimore, MD 21201, USA
| | - A-Lien Lu
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD 21201, USA
- The University of Maryland Greenebaum Cancer Center, Baltimore, MD 21201, USA
- * Corresponding author. Tel.: +1-410-706-4356; Fax: 410-706-1787. E-mail address: (A-L. Lu)
| |
Collapse
|
8
|
Pope MA, Chmiel NH, David SS. Insight into the functional consequences of hMYH variants associated with colorectal cancer: distinct differences in the adenine glycosylase activity and the response to AP endonucleases of Y150C and G365D murine MYH. DNA Repair (Amst) 2005; 4:315-25. [PMID: 15661655 DOI: 10.1016/j.dnarep.2004.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Indexed: 02/08/2023]
Abstract
Escherichia coli MutY and its eukaryotic homologues play an important role in preventing mutations by removing adenine from 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG):A mismatches. It has recently been demonstrated that inherited biallelic mutations in the genes encoding the human homologue of MutY (hMYH) are correlated with a genetic predisposition for multiple colorectal adenomas and carcinomas. The two most common hMYH variants found in patients with colorectal cancer are Y165C and G382D. In this study, we examined the equivalent variants in the murine MutY homologue (mMYH), Y150C and G365D. The Y150C mMYH enzyme showed a large decrease in the rate of adenine removal from both OG:A- and G:A-containing substrates, while G365D mMYH showed a decrease in the ability to catalyze adenine removal only with a G:A-containing substrate. Both mMYH variants exhibit a significantly decreased affinity for duplexes containing noncleavable 2'-deoxyadenosine analogues. In addition, the human apurinic/apyrimidinic endonuclease (Ape1) stimulated product formation by wild-type and G365D mMYH with an OG:A substrate under conditions of multiple-turnover ([E]<[S]). In contrast, the presence of Ape1 nearly completely inhibited adenine removal by Y150C mMYH from the OG:A mismatch substrate. The more deleterious effect of Ape1 on the glycosylase activity of Y150C relative to G365D mMYH correlated with the more compromised binding affinity of Y150C to substrate analogue duplexes. These results suggest that the equivalent hMYH variants may be significantly compromised in substrate targeting in vivo due to a decrease in binding to substrate DNA; moreover, competition with other DNA binding proteins may further reduce the effective adenine glycosylase activity in vivo.
Collapse
Affiliation(s)
- Mary Ann Pope
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
9
|
Speina E, Arczewska KD, Gackowski D, Zielińska M, Siomek A, Kowalewski J, Oliński R, Tudek B, Kuśmierek JT. Contribution of hMTH1 to the maintenance of 8-oxoguanine levels in lung DNA of non-small-cell lung cancer patients. J Natl Cancer Inst 2005; 97:384-95. [PMID: 15741575 DOI: 10.1093/jnci/dji058] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The level of 8-oxoguanine (8-oxoG), a general marker of oxidative DNA damage, in DNA is the result of both an equilibrium between the rates of its formation and removal from DNA by DNA repair enzymes and the removal of 8-oxodGTP from the cellular nucleotide pool by hydrolysis to 8-oxodGMP, preventing its incorporation into DNA. To determine the contribution of each component to the level of 8-oxoG in DNA, we compared 8-oxoG-excising activity (encoded by hOGG1), 8-oxodGTPase activity (encoded by hMTH1), and 8-oxoG levels in DNA from tumors and surrounding normal lung tissues from non-small-cell lung cancer patients. METHODS We measured the level of 8-oxoG in DNA of 47 patients by high-performance liquid chromatography/electrochemical detection (HPLC/ECD), hOGG1 activity in tissue extracts of 56 patients by the nicking assay using an oligodeoxynucleotide containing a single 8-oxoG, and hMTH1 activity in tissue extracts of 33 patients by HPLC/UV detection. All statistical tests were two-sided. RESULTS The 8-oxoG level was lower in tumor DNA than in DNA from normal lung tissue (geometric mean: 5.81 versus 10.18 8-oxoG/10(6) G, geometric mean of difference = 1.75; P<.001). The hOGG1 activity was also lower in tumor than in normal lung tissue (geometric mean: 8.76 versus 20.91 pmol/h/mg protein, geometric mean of difference = 2.39; P<.001), whereas the hMTH1 activity was higher in tumor than in normal lung tissue (geometric mean: 28.79 versus 8.94 nmol/h/mg protein, geometric mean of difference = 0.31; P<.001). The activity of hMTH1 was three orders of magnitude higher than that of hOGG1 (nanomoles versus picomoles per hour per milligram of protein, respectively). CONCLUSIONS Several different components contribute to the maintenance of 8-oxoG levels in human DNA, with the greatest contributor being the removal of 8-oxodGTP from the cellular nucleotide pool by hMTH1.
Collapse
Affiliation(s)
- Elzbieta Speina
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pope MA, David SS. DNA damage recognition and repair by the murine MutY homologue. DNA Repair (Amst) 2005; 4:91-102. [PMID: 15533841 DOI: 10.1016/j.dnarep.2004.08.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2004] [Accepted: 08/18/2004] [Indexed: 11/29/2022]
Abstract
E. coli MutY excises adenine from duplex DNA when it is mispaired with the mutagenic oxidative lesion 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG). While E. coli MutY has been extensively studied, a detailed kinetic analysis of a mammalian MutY homologue has been inhibited by poor overexpression in bacterial hosts. This current work is the first detailed study of substrate recognition and repair of mismatched DNA by a mammalian adenine glycosylase, the murine MutY homologue (mMYH). Similar to E. coli MutY, the processing of OG:A substrates by mMYH is biphasic, indicating that product release is rate-limiting. Surprisingly, the intrinsic rates of adenine removal from both OG:A and G:A substrates by mMYH are diminished ( approximately 10-fold) compared to E. coli MutY. However, similar to E. coli MutY, the rate of adenine removal is approximately nine-fold faster with an OG:A- than a G:A-containing substrate. Interestingly, the rate of removal of 2-hydroxyadenine mispaired with OG or G in duplex DNA by mMYH was similar to the rate of adenine removal from the analogous context. In contrast, 2-hydroxyadenine removal by E. coli MutY was significantly reduced compared to adenine removal opposite both OG and G. Furthermore, dissociation constant measurements with duplexes containing noncleavable 2'-deoxyadenosine analogues indicate that mMYH is less sensitive to the structure of the base mispaired with OG or G than MutY. Though in many respects the catalytic behavior of mMYH is similar to E. coli MutY, the subtle differences may translate into differences in their in vivo functions.
Collapse
Affiliation(s)
- Mary Ann Pope
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
11
|
Cai JP, Ishibashi T, Takagi Y, Hayakawa H, Sekiguchi M. Mouse MTH2 protein which prevents mutations caused by 8-oxoguanine nucleotides. Biochem Biophys Res Commun 2003; 305:1073-7. [PMID: 12767940 DOI: 10.1016/s0006-291x(03)00864-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
MutT-related proteins degrade 8-oxo-7,8-dihydrodeoxyguanosine triphosphate (8-oxo-dGTP), a mutagenic substrate for DNA synthesis, in the nucleotide pool, thereby preventing DNA replication errors. During a search of GenBank EST database, we found a new member of MutT-related protein, MTH2, which possesses the 23-amino acid MutT module. The cloned mouse MTH2 (mMTH2) cDNA was expressed in Escherichia coli mutT(-) cells and the protein was purified. mMTH2 protein hydrolyzes 8-oxo-dGTP to 8-oxo-dGMP, with Km of 32 microM. Expression of cDNA for mMTH2 reduced significantly the elevated level of spontaneous mutation frequency of E. coli mutT(-) cells. Thus, MTH2 has a potential to protect the genetic material from the untoward effects of endogenous oxygen radicals. MTH2 could act as an MTH1 redundancy factor.
Collapse
Affiliation(s)
- Jian-Ping Cai
- Department of Biology and Frontier Research Center, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | | | | | | | | |
Collapse
|
12
|
Ishibashi T, Hayakawa H, Sekiguchi M. A novel mechanism for preventing mutations caused by oxidation of guanine nucleotides. EMBO Rep 2003; 4:479-83. [PMID: 12717453 PMCID: PMC1319193 DOI: 10.1038/sj.embor.embor838] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2003] [Revised: 03/25/2003] [Accepted: 03/31/2003] [Indexed: 12/19/2022] Open
Abstract
MutT-related proteins, including the Escherichia coli MutT and human MutT homologue 1 (MTH1) proteins, degrade 8-oxo- 7,8-dihydrodeoxyguanosine triphosphate (8-oxo-dGTP) to a monophosphate, thereby preventing mutations caused by the misincorporation of 8-oxoguanine into DNA. Here, we report that human cells have another mechanism for cleaning up the nucleotide pool to ensure accurate DNA replication. The human Nudix type 5 (NUDT5) protein hydrolyses 8-oxo-dGDP to monophosphate with a K(m) of 0.77 microM, a value considerably lower than that for ADP sugars, which were originally identified as being substrates of NUDT5. NUDT5 hydrolyses 8-oxo-dGTP only at very low levels, but is able to substitute for MutT when it is defective. When NUDT5 is expressed in E. coli mutT(-) cells, the increased frequency of spontaneous mutations is decreased to normal levels. Considering the enzymatic parameters of MTH1 and NUDT5 for oxidized guanine nucleotides, NUDT5 might have a much greater role than MTH1 in preventing the occurrence of mutations that are caused by the misincorporation of 8-oxoguanine in human cells.
Collapse
Affiliation(s)
- Toru Ishibashi
- Department of Biology and Frontier Research Center, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Hiroshi Hayakawa
- Department of Medical Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Mutsuo Sekiguchi
- Department of Biology and Frontier Research Center, Fukuoka Dental College, Fukuoka 814-0193, Japan
- Present address: Biomolecular Engineering Research Institute, Suita, Osaka 565-0874, Japan
- Tel: +81 6 6872 8200; Fax: +81 6 6872 8219;
| |
Collapse
|
13
|
Abstract
8-Oxoguanine (8-oxo-7,8-dihydroguanine) is produced in DNA, as well as in nucleotide pools of cells, by reactive oxygen species normally formed during cellular metabolic processes. 8-Oxoguanine nucleotide can pair with cytosine and adenine nucleotides with an almost equal efficiency, then transversion mutation ensues. MutT protein of Escherichia coli and related mammalian protein MTH1 specifically degrade 8-oxo-dGTP to 8-oxo-dGMP, thereby preventing misincorporation of 8-oxoguanine into DNA. The bacterial and mammalian enzymes are close in their size and share a highly conserved region consisting of 23 residues with 14 identical amino acids. Following saturation mutagenesis of this region, most of these residues proved to be essential to exert 8-oxo-dGTPase activity. Gene targeting was done to establish MTH1-deficient cell lines and mice for study. When examined 18 months after birth, a greater number of tumors were formed in the lungs, livers, and stomachs of MTH1(-/-) mice, as compared with findings in wild-type mice. These proteins protect genetic information from untoward effects of threats of endogenous oxygen.
Collapse
Affiliation(s)
- Mutsuo Sekiguchi
- Biomolecular Engineering Research Institute, Suita, Osaka 565-0874, Japan.
| | | |
Collapse
|
14
|
Abstract
Recent localization of cohesin association regions along the yeast chromatin fibre suggests that compositional variability of DNA in yeast is related to the function and organization of the chromosomal loops. The bases of the loops, where the chromatin fibre is attached to the chromosomal axis, are AT-rich, bind cohesin, and are flanked by genes transcribed convergently. The hotspots of meiotic recombination are mainly found in the GC-rich parts of the loops, 'external' with respect to the chromosomal axis, frequently in the vicinity of the promoters of divergently transcribed genes. There are two possible reasons why the regions of the hotspots of recombination were enriched in GC content during evolution. One is a biased repair of recombination intermediates, and the second is a selective advantage due to an increased chromatin accessibility, which may have the carriers of GC-enriched alleles over the carriers of AT-rich alleles.
Collapse
Affiliation(s)
- Jan Filipski
- Institut J. Monod, Laboratoire de: Biochimie de la Chromatine, 2, place Jussieu, Tour 43, 75251, Paris, France.
| | | |
Collapse
|
15
|
Parlanti E, Fortini P, Macpherson P, Laval J, Dogliotti E. Base excision repair of adenine/8-oxoguanine mispairs by an aphidicolin-sensitive DNA polymerase in human cell extracts. Oncogene 2002; 21:5204-12. [PMID: 12149642 DOI: 10.1038/sj.onc.1205561] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2002] [Revised: 03/06/2002] [Accepted: 03/28/2002] [Indexed: 11/08/2022]
Abstract
Replication of DNA containing 8-oxo-7,8-dihydroguanine (8oxoG) can generate 8oxoG/A base pairs which, if uncorrected, lead to G-->T transversions. It is generally accepted that the repair of these promutagenic base pairs in human cells is initiated by the MutY DNA glycosylase homolog (hMYH). Here we provide biochemical evidence that human cell extracts perform base excision repair (BER) on both DNA strands of an 8oxoG/A mismatch. At early repair times the specificity of nucleotide incorporation indicates a preferential insertion of C opposite 8oxoG leading to the formation of 8oxoG/C pairs. This is followed by repair synthesis on the opposite DNA strand that is consistent with hOGG1-mediated correction of 8oxoG/C to G/C. Repair synthesis on either strand is completely inhibited by aphidicolin suggesting that a replicative DNA polymerase is involved in the gap filling. This is the first demonstration that repair of 8oxoG/A base pairs is by two BER events likely mediated by Poldelta/epsilon. We suggest that the Poldelta/epsilon-mediated BER is the general mode of repair when BER lesions are formed at replication forks.
Collapse
Affiliation(s)
- Eleonora Parlanti
- Laboratory of Comparative Toxicology and Ecotoxicology, Istituto Superiore di Sanita', Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | |
Collapse
|
16
|
Chang DY, Lu AL. Functional interaction of MutY homolog with proliferating cell nuclear antigen in fission yeast, Schizosaccharomyces pombe. J Biol Chem 2002; 277:11853-8. [PMID: 11805113 DOI: 10.1074/jbc.m111739200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MutY homolog (MYH) is responsible for removing adenines misincorporated on a template DNA strand containing G or 7,8-dihydro-8-oxoguanine (8-oxoG) and thus preventing G:C to T:A mutations. Human MYH has been shown to interact physically with human proliferating cell nuclear antigen (hPCNA). Here, we report that a similar interaction between SpMYH and SpPCNA occurs in the fission yeast Schizosaccharomyces pombe. Binding of SpMYH to SpPCNA was not observed when phenylalanine 444 in the PCNA binding motif of SpMYH was replaced with alanine. The F444A mutant of SpMYH expressed in yeast cells had normal adenine glycosylase and DNA binding activities. However, expression of this mutant form of SpMYH in a SpMYHDelta cell could not reduce the mutation frequency of the cell to the normal level. Moreover, SpMYH interacted with hPCNA, and SpPCNA interacted with hMYH but not with F518A/F519A mutant hMYH containing mutations in its PCNA binding motif. Although the SpMYHDelta cells expressing hMYH had partially reduced mutation frequency, the F518A/F519A mutant hMYH could not reduce the mutation frequency of SpMYHDelta cells. Thus, the interaction between SpMYH and SpPCNA is important for SpMYH biological function in mutation avoidance.
Collapse
Affiliation(s)
- Dau-Yin Chang
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
17
|
Gu Y, Parker A, Wilson TM, Bai H, Chang DY, Lu AL. Human MutY homolog, a DNA glycosylase involved in base excision repair, physically and functionally interacts with mismatch repair proteins human MutS homolog 2/human MutS homolog 6. J Biol Chem 2002; 277:11135-42. [PMID: 11801590 DOI: 10.1074/jbc.m108618200] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Adenines mismatched with guanines or 7,8-dihydro-8-oxo-deoxyguanines that arise through DNA replication errors can be repaired by either base excision repair or mismatch repair. The human MutY homolog (hMYH), a DNA glycosylase, removes adenines from these mismatches. Human MutS homologs, hMSH2/hMSH6 (hMutSalpha), bind to the mismatches and initiate the repair on the daughter DNA strands. Human MYH is physically associated with hMSH2/hMSH6 via the hMSH6 subunit. The interaction of hMutSalpha and hMYH is not observed in several mismatch repair-defective cell lines. The hMutSalpha binding site is mapped to amino acid residues 232-254 of hMYH, a region conserved in the MutY family. Moreover, the binding and glycosylase activities of hMYH with an A/7,8-dihydro-8-oxo-deoxyguanine mismatch are enhanced by hMutSalpha. These results suggest that protein-protein interactions may be a means by which hMYH repair and mismatch repair cooperate in reducing replicative errors caused by oxidized bases.
Collapse
Affiliation(s)
- Yesong Gu
- Department of Biochemistry, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
18
|
Nakabeppu Y. Regulation of intracellular localization of human MTH1, OGG1, and MYH proteins for repair of oxidative DNA damage. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 68:75-94. [PMID: 11554314 DOI: 10.1016/s0079-6603(01)68091-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In mammalian cells, more than one genome has to be maintained throughout the entire life of the cell, one in the nucleus and the other in mitochondria. It seems likely that the genomes in mitochondria are highly exposed to reactive oxygen species (ROS) as a result of their respiratory function. Human MTH1 (hMTH1) protein hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-dGTP, 8-oxo-dATP, and 2-hydroxy (OH)-dATP, thus suggesting that these oxidized nucleotides are deleterious for cells. Here, we report that a single-nucleotide polymorphism (SNP) in the human MTH1 gene alters splicing patterns of hMTH1 transcripts, and that a novel hMTH1 polypeptide with an additional mitochondrial targeting signal is produced from the altered hMTH1 mRNAs; thus, intracellular location of hMTH1 is likely to be affected by a SNP. These observations strongly suggest that errors caused by oxidized nucleotides in mitochondria have to be avoided in order to maintain the mitochondrial genome, as well as the nuclear genome, in human cells. Based on these observations, we further characterized expression and intracellular localization of 8-oxoG DNA glycosylase (hOGG1) and 2-OH-A/adenine DNA glycosylase (hMYH) in human cells. These two enzymes initiate base excision repair reactions for oxidized bases in DNA generated by direct oxidation of DNA or by incorporation of oxidized nucleotides. We describe the detection of the authentic hOGG1 and hMYH proteins in mitochondria, as well as nuclei in human cells, and how their intracellular localization is regulated by alternative splicing of each transcript.
Collapse
Affiliation(s)
- Y Nakabeppu
- Division of Neurofunctional Genomics, Medical Institute of Bioregulation, Kyushu University and CREST, Japan Science and Technology Corporation, Fukuoka, 812-8582, Japan
| |
Collapse
|
19
|
Tsuzuki T, Egashira A, Igarashi H, Iwakuma T, Nakatsuru Y, Tominaga Y, Kawate H, Nakao K, Nakamura K, Ide F, Kura S, Nakabeppu Y, Katsuki M, Ishikawa T, Sekiguchi M. Spontaneous tumorigenesis in mice defective in the MTH1 gene encoding 8-oxo-dGTPase. Proc Natl Acad Sci U S A 2001; 98:11456-61. [PMID: 11572992 PMCID: PMC58751 DOI: 10.1073/pnas.191086798] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxygen radicals, which can be produced through normal cellular metabolism, are thought to play an important role in mutagenesis and tumorigenesis. Among various classes of oxidative DNA damage, 8-oxo-7,8-dihydroguanine (8-oxoG) is most important because of its abundance and mutagenicity. The MTH1 gene encodes an enzyme that hydrolyzes 8-oxo-dGTP to monophosphate in the nucleotide pool, thereby preventing occurrence of transversion mutations. By means of gene targeting, we have established MTH1 gene-knockout cell lines and mice. When examined 18 months after birth, a greater number of tumors were formed in the lungs, livers, and stomachs of MTH1-deficient mice, as compared with wild-type mice. The MTH1-deficient mouse will provide a useful model for investigating the role of the MTH1 protein in normal conditions and under oxidative stress.
Collapse
Affiliation(s)
- T Tsuzuki
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Parker A, Gu Y, Mahoney W, Lee SH, Singh KK, Lu AL. Human homolog of the MutY repair protein (hMYH) physically interacts with proteins involved in long patch DNA base excision repair. J Biol Chem 2001; 276:5547-55. [PMID: 11092888 DOI: 10.1074/jbc.m008463200] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human MutY homolog (hMYH) is a DNA glycosylase involved in the removal of adenines or 2-hydroxyadenines misincorporated with template guanines or 7,8-dihydro-8-oxodeoxyguanines. hMYH is associated in vivo with apurinic/apyrimidinic endonuclease (APE1), proliferating cell nuclear antigen (PCNA), and replication protein A (RPA) in HeLa nuclear extracts as shown by immunoprecipitation and Western blotting. However, binding of hMYH to DNA polymerases beta and delta was not detected. By using constructs containing different portions of hMYH fused to glutathione S-transferase, we have demonstrated that the APE1-binding site is at a region around amino acid residue 300, that the PCNA binding activity is located at the C terminus, and that RPA binds to the N terminus of hMYH. A peptide consisting of residues 505-527 of hMYH that contains a conserved PCNA-binding motif binds PCNA, and subsequent amino acid substitution identified Phe-518 and Phe-519 as essential residues required for PCNA binding. RPA binds to a peptide that consists of residues 6-32 of hMYH and contains a conserved RPA-binding motif. The PCNA- and RPA-binding sites of hMYH are further confirmed by peptide and antibody titration. These results suggest that hMYH repair is a long patch base excision repair pathway.
Collapse
Affiliation(s)
- A Parker
- Department of Biochemistry and Molecular Biology, the University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Yang H, Fitz-Gibbon S, Marcotte EM, Tai JH, Hyman EC, Miller JH. Characterization of a thermostable DNA glycosylase specific for U/G and T/G mismatches from the hyperthermophilic archaeon Pyrobaculum aerophilum. J Bacteriol 2000; 182:1272-9. [PMID: 10671447 PMCID: PMC94412 DOI: 10.1128/jb.182.5.1272-1279.2000] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
U/G and T/G mismatches commonly occur due to spontaneous deamination of cytosine and 5-methylcytosine in double-stranded DNA. This mutagenic effect is particularly strong for extreme thermophiles, since the spontaneous deamination reaction is much enhanced at high temperature. Previously, a U/G and T/G mismatch-specific glycosylase (Mth-MIG) was found on a cryptic plasmid of the archaeon Methanobacterium thermoautotrophicum, a thermophile with an optimal growth temperature of 65 degrees C. We report characterization of a putative DNA glycosylase from the hyperthermophilic archaeon Pyrobaculum aerophilum, whose optimal growth temperature is 100 degrees C. The open reading frame was first identified through a genome sequencing project in our laboratory. The predicted product of 230 amino acids shares significant sequence homology to [4Fe-4S]-containing Nth/MutY DNA glycosylases. The histidine-tagged recombinant protein was expressed in Escherichia coli and purified. It is thermostable and displays DNA glycosylase activities specific to U/G and T/G mismatches with an uncoupled AP lyase activity. It also processes U/7,8-dihydro-oxoguanine and T/7,8-dihydro-oxoguanine mismatches. We designate it Pa-MIG. Using sequence comparisons among complete bacterial and archaeal genomes, we have uncovered a putative MIG protein from another hyperthermophilic archaeon, Aeropyrum pernix. The unique conserved amino acid motifs of MIG proteins are proposed to distinguish MIG proteins from the closely related Nth/MutY DNA glycosylases.
Collapse
Affiliation(s)
- H Yang
- Department of Microbiology and Molecular Genetics and the Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
23
|
Tsai-Wu JJ, Su HT, Fang WH, Wu CH. Preparation of heteroduplex DNA containing a mismatch base pair with magnetic beads. Anal Biochem 1999; 275:127-9. [PMID: 10542120 DOI: 10.1006/abio.1999.4296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- J J Tsai-Wu
- Department of Clinical Research, National Taiwan University Hospital, Taipei, Republic of China
| | | | | | | |
Collapse
|
24
|
Wright PM, Yu J, Cillo J, Lu AL. The active site of the Escherichia coli MutY DNA adenine glycosylase. J Biol Chem 1999; 274:29011-8. [PMID: 10506150 DOI: 10.1074/jbc.274.41.29011] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli MutY is an adenine DNA glycosylase active on DNA substrates containing A/G, A/C, or A/8-oxoG mismatches. Although MutY can form a covalent intermediate with its DNA substrates, its possession of 3' apurinic lyase activity is controversial. To study the reaction mechanism of MutY, the conserved Asp-138 was mutated to Asn and the reactivity of this mutant MutY protein determined. The glycosylase activity was completely abolished in the D138N MutY mutant. The D138N mutant and wild-type MutY protein also possessed different DNA binding activities with various mismatches. Several lysine residues were identified in the proximity of the active site by analyzing the imino-covalent MutY-DNA intermediate. Mutation of Lys-157 and Lys-158 both individually and combined, had no effect on MutY activities but the K142A mutant protein was unable to form Schiff base intermediates with DNA substrates. However, the MutY K142A mutant could still bind DNA substrates and had adenine glycosylase activity. Surprisingly, the K142A mutant MutY, but not the wild-type enzyme, could promote a beta/delta-elimination on apurinic DNA. Our results suggest that Asp-138 acts as a general base to deprotonate either the epsilon-amine group of Lys-142 or to activate a water molecule and the resulting apurinic DNA then reacts with Lys-142 to form the Schiff base intermediate with DNA. With the K142A mutant, Asp-138 activates a water molecule to attack the C1' of the adenosine; the resulting apurinic DNA is cleaved through beta/delta-elimination without Schiff base formation.
Collapse
Affiliation(s)
- P M Wright
- Department of Biochemistry, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
25
|
Slupska MM, Luther WM, Chiang JH, Yang H, Miller JH. Functional expression of hMYH, a human homolog of the Escherichia coli MutY protein. J Bacteriol 1999; 181:6210-3. [PMID: 10498741 PMCID: PMC103656 DOI: 10.1128/jb.181.19.6210-6213.1999] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have previously described the hMYH cDNA and genomic clones (M. M. Slupska et al., J. Bacteriol. 178:3885-3892, 1996). Here, we report that the enzyme expressed from an hMYH cDNA clone in Escherichia coli complements the mutator phenotype in a mutY mutant and can remove A from an A. 8-hydroxydeoxyguanine mismatch and to a lesser extent can remove A from an A. G mismatch in vitro.
Collapse
Affiliation(s)
- M M Slupska
- Department of Microbiology and Molecular Genetics and the Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
26
|
Kaur B, Fraser JL, Freyer GA, Davey S, Doetsch PW. A Uve1p-mediated mismatch repair pathway in Schizosaccharomyces pombe. Mol Cell Biol 1999; 19:4703-10. [PMID: 10373519 PMCID: PMC84268 DOI: 10.1128/mcb.19.7.4703] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UV damage endonuclease (Uve1p) from Schizosaccharomyces pombe was initially described as a DNA repair enzyme specific for the repair of UV light-induced photoproducts and proposed as the initial step in an alternative excision repair pathway. Here we present biochemical and genetic evidence demonstrating that Uve1p is also a mismatch repair endonuclease which recognizes and cleaves DNA 5' to the mispaired base in a strand-specific manner. The biochemical properties of the Uve1p-mediated mismatch endonuclease activity are similar to those of the Uve1p-mediated UV photoproduct endonuclease. Mutants lacking Uve1p display a spontaneous mutator phenotype, further confirming the notion that Uve1p plays a role in mismatch repair. These results suggest that Uve1p has a surprisingly broad substrate specificity and may function as a general type of DNA repair protein with the capacity to initiate mismatch repair in certain organisms.
Collapse
Affiliation(s)
- B Kaur
- Department of Biochemistry, Graduate Program in Biochemistry and Cell and Developmental Biology, Emory University, School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
27
|
Nishioka K, Ohtsubo T, Oda H, Fujiwara T, Kang D, Sugimachi K, Nakabeppu Y. Expression and differential intracellular localization of two major forms of human 8-oxoguanine DNA glycosylase encoded by alternatively spliced OGG1 mRNAs. Mol Biol Cell 1999; 10:1637-52. [PMID: 10233168 PMCID: PMC30487 DOI: 10.1091/mbc.10.5.1637] [Citation(s) in RCA: 307] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We identified seven alternatively spliced forms of human 8-oxoguanine DNA glycosylase (OGG1) mRNAs, classified into two types based on their last exons (type 1 with exon 7: 1a and 1b; type 2 with exon 8: 2a to 2e). Types 1a and 2a mRNAs are major in human tissues. Seven mRNAs are expected to encode different polypeptides (OGG1-1a to 2e) that share their N terminus with the common mitochondrial targeting signal, and each possesses a unique C terminus. A 36-kDa polypeptide, corresponding to OGG1-1a recognized only by antibodies against the region containing helix-hairpin-helix-PVD motif, was copurified from the nuclear extract with an activity introducing a nick into DNA containing 8-oxoguanine. A 40-kDa polypeptide corresponding to a processed form of OGG1-2a was detected in their mitochondria using antibodies against its C terminus. Electron microscopic immunocytochemistry and subfractionation of the mitochondria revealed that OGG1-2a locates on the inner membrane of mitochondria. Deletion mutant analyses revealed that the unique C terminus of OGG1-2a and its mitochondrial targeting signal are essential for mitochondrial localization and that nuclear localization of OGG1-1a depends on the NLS at its C terminus.
Collapse
Affiliation(s)
- K Nishioka
- Department of Biochemistry, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
DNA repair systems act to maintain genome integrity in the face of replication errors, environmental insults, and the cumulative effects of age. More than 70 human genes directly involved in the five major pathways of DNA repair have been described, including chromosomal location and cDNA sequence. However, a great deal of information as to the precise functions of these genes and their role in human health is still lacking. Hence, we summarize what is known about these genes and their contra part in bacterial, yeast, and rodent systems and discuss their involvement in human disease. While some associations are already well understood, it is clear that additional diseases will be found which are linked to DNA repair defects or deficiencies.
Collapse
Affiliation(s)
- Z Yu
- Centre for Environmental Health, Department of Biology, University of Victoria, BC, Canada.
| | | | | | | | | |
Collapse
|
29
|
Lu AL, Fawcett WP. Characterization of the recombinant MutY homolog, an adenine DNA glycosylase, from yeast Schizosaccharomyces pombe. J Biol Chem 1998; 273:25098-105. [PMID: 9737967 DOI: 10.1074/jbc.273.39.25098] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mutY homolog (SpMYH) gene from a cDNA library of Schizosaccharomyces pombe encodes a protein of 461 amino acids that displays 28 and 31% identity to Escherichia coli MutY and human MutY homolog (MYH), respectively. Expressed SpMYH is able to complement an E. coli mutY mutant to reduce the mutation rate. Similar to E. coli MutY protein, purified recombinant SpMYH expressed in E. coli has adenine DNA glycosylase and apurinic/apyrimidinic lyase activities on A/G- and A/7,8-dihydro-8-oxoguanine (8-oxoG)-containing DNA. However, both enzymes have different salt requirements and slightly different substrate specificities. SpMYH has greater glycosylase activity on 2-aminopurine/G and A/2-aminopurine but weaker activity on A/C than E. coli MutY. Both enzymes also have different substrate binding affinity and catalytic parameters. Although SpMYH has great affinity to A/8-oxoG-containing DNA as MutY, the binding affinity to A/G-containing DNA is substantially lower for SpMYH than MutY. SpMYH has similar reactivity to both A/G- and A/8-oxoG-containing DNA; however, MutY cleaves A/G-containing DNA about 3-fold more efficiently than it does A/8-oxoG-containing DNA. Thus, SpMYH is the functional eukaryotic MutY homolog responsible for reduction of 8-oxoG mutational effect.
Collapse
Affiliation(s)
- A L Lu
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland 21201, USA.
| | | |
Collapse
|
30
|
Bill CA, Duran WA, Miselis NR, Nickoloff JA. Efficient repair of all types of single-base mismatches in recombination intermediates in Chinese hamster ovary cells. Competition between long-patch and G-T glycosylase-mediated repair of G-T mismatches. Genetics 1998; 149:1935-43. [PMID: 9691048 PMCID: PMC1460289 DOI: 10.1093/genetics/149.4.1935] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Repair of all 12 single-base mismatches in recombination intermediates was investigated in Chinese hamster ovary cells. Extrachromosomal recombination was stimulated by double-strand breaks in regions of shared homology. Recombination was predicted to occur via single-strand annealing, yielding heteroduplex DNA (hDNA) with a single mismatch. Nicks were expected on opposite strands flanking hDNA, equidistant from the mismatch. Unlike studies of covalently closed artificial hDNA substrates, all mismatches were efficiently repaired, consistent with a nick-driven repair process. The average repair efficiency for all mispairs was 92%, with no significant differences among mispairs. There was significant strand-independent repair of G-T --> G-C, with a slightly greater bias in a CpG context. Repair of C-A was also biased (toward C-G), but no A-C --> G-C bias was found, a possible sequence context effect. No other mismatches showed evidence of biased repair, but among hetero-mismatches, the trend was toward retention of C or G vs. A or T. Repair of both T-T and G-T mismatches was much less efficient in mismatch repair-deficient cells (approximately 25%), and the residual G-T repair was completely biased toward G-C. Our data indicate that single-base mismatches in recombination intermediates are substrates for at least two competing repair systems.
Collapse
Affiliation(s)
- C A Bill
- Department of Cancer Biology, Harvard University School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
31
|
Affiliation(s)
- B J Glassner
- Cancer Cell Biology, Division of Toxicology, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
32
|
Igarashi H, Tsuzuki T, Kakuma T, Tominaga Y, Sekiguchi M. Organization and expression of the mouse MTH1 gene for preventing transversion mutation. J Biol Chem 1997; 272:3766-72. [PMID: 9013634 DOI: 10.1074/jbc.272.6.3766] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
An enzyme, 8-oxo-7,8-dihydrodeoxyguanosine triphosphatase (8-oxo-dGTPase), is present in various organisms and plays an important role in the control of spontaneous mutagenesis. The enzyme hydrolyzes 8-oxo-dGTP, an oxidized form of dGTP, to 8-oxo-dGMP, thereby preventing the occurrence of A:T to C:G transversion, caused by misincorporation. We isolated the mouse genomic sequence encoding the enzyme and elucidated its structure. The gene, named MTH1 for mutT homologue 1, is composed of at least five exons and spans approximately 9 kilobase pairs. A genomic region containing the pseudogene was also isolated. The promoter region for the gene is GC-rich, contains many AP-1 and AP-2 recognition sequences, and lacks a typical TATA box. Primer extension and S1 mapping analyses revealed the existence of multiple transcription initiation sites, among which a major site was defined as +1. The putative promoter region was placed upstream of the chloramphenicol acetyltransferase reporter gene, and control of expression of the gene was examined by introducing the construct into mouse NIH 3T3 cells. Deletion analysis indicated that a sequence from -321 to +9 carries the basic promoter activity while an adjacent region, spanning from +352 to +525 stimulates the frequency of transcription.
Collapse
Affiliation(s)
- H Igarashi
- Department of Biochemistry, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-82, Japan
| | | | | | | | | |
Collapse
|
33
|
Kakuma T, Nishida J, Tsuzuki T, Sekiguchi M. Mouse MTH1 protein with 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphatase activity that prevents transversion mutation. cDNA cloning and tissue distribution. J Biol Chem 1995; 270:25942-8. [PMID: 7592783 DOI: 10.1074/jbc.270.43.25942] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
8-Oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP) is formed in the nucleotide pool of a cell during normal cellular metabolism, and when it is incorporated into DNA causes mutation. Organisms possess 8-oxo-dGTPase, an enzyme that specifically degrades 8-oxo-dGTP to 8-oxo-dGMP. We isolated cDNA for mouse 8-oxo-dGTPase, using as a probe human MTH1 (Escherichia coli mutT homolog) cDNA. The nucleotide sequence of the cDNA revealed that the mouse MTH1 protein (molecular weight of 17,896) comprises 156 amino acid residues. When the cDNA for mouse 8-oxo-dGTPase was expressed in E. coli mutT- mutant cells devoid of their own 8-oxo-dGTPase activity, an 18-kDa protein, which is cross-reactive with an anti-human MTH1 antibody, was formed. In such cells, the level of spontaneous mutation frequency that was elevated reverted to normal. High levels of 8-oxo-dGTPase activity were found in liver, thymus, and large intestine, whereas all other organs examined contained smaller amounts of the enzyme. In embryonic stem cells, an exceedingly high level of the enzyme was present.
Collapse
Affiliation(s)
- T Kakuma
- Department of Biochemistry, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
34
|
Yao M, Kow YW. Strand-specific cleavage of mismatch-containing DNA by deoxyinosine 3'-endonuclease from Escherichia coli. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31706-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Dahlhaus M, Almstadt E, Appel KE. The pentachlorophenol metabolite tetrachloro-p-hydroquinone induces the formation of 8-hydroxy-2-deoxyguanosine in liver DNA of male B6C3F1 mice. Toxicol Lett 1994; 74:265-74. [PMID: 7871550 DOI: 10.1016/0378-4274(94)90085-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Tetrachloro-p-hydroquinone (TCHQ), the major metabolite of pentachlorophenol (PCP) in mammalian systems, is known to autoxidize to its semiquinone radical under physiological conditions. In this way, PCP could present a potent source of reactive oxygen species (ROS) during metabolization. ROS contribute to numerous modifications of DNA. Formation of 8-hydroxy-2'-deoxyguanosine (8-OH-dG), a product of hydroxyl radical attack on DNA, is monitored as a marker of a major genetic lesion induced by agents which produce oxygen radicals. We studied the properties of TCHQ for the induction of oxidative DNA damage in vivo. Male B6C3F1 mice were fed a diet containing TCHQ for 2 and 4 weeks. These experiments resulted in an enhancement of about 50% of the 8-OH-dG portion in liver DNA after administration of 300 mg TCHQ/kg body wt./day for 2 weeks. Control levels did not change over the periods of 2 and 4 weeks, respectively. In contrast to these results, a single i.p. injection of 20 or 50 mg/kg body wt. did not affect the 8-OH-dG content after 6 and 24 h, respectively. These data may support a possible contribution of ROS to the carcinogenicity of PCP.
Collapse
Affiliation(s)
- M Dahlhaus
- Abteilung für Pflanzenbehandlungs-, Schädlingsbekämpfungs- und Holzschutzmittel, Max von Pettenkofer-Institut, Berlin, Germany
| | | | | |
Collapse
|
36
|
Pasta F, Sicard MA. Hyperrecombination in pneumococcus: A/G to C.G repair and requirement for DNA polymerase I. Mutat Res 1994; 315:113-22. [PMID: 7520994 DOI: 10.1016/0921-8777(94)90012-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
During pneumococcal transformation, we had previously described that the ami36 mutation, which results from a C.G to A.T transversion, induces a large excess of wild-type recombinants in two point crosses. Upon donor-recipient DNA recombination, two heteroduplexes are generated by this mutation: A36/G+ and C+/T36. In two point crosses, hyperrecombination is observed only when transformation leads to the A/G mismatch. Here, we have studied the separate evolution of A36/G+ and C+/T36 heterozygotes created upon transformation of an ami36 mutant strain with artificial heteroduplex DNAs. We found that the A36/G+ mismatch leads to a preferential generation of wild-type progeny as compared with the complementary C+/T36 mismatch. This result suggests that A/G carrying transformants partly behave as wild-type homozygotes. The only way to account for such behavior is an excision repair correcting some A/G mispairs created upon transformation into C.G pairs. Moreover, we show that hyperrecombination triggered by ami36 is strongly reduced in a DNA polymerase I deficient strain. This strengthens the fact of DNA repair synthesis, which should be therefore prominently due to DNA polymerase I.
Collapse
Affiliation(s)
- F Pasta
- Laboratoire de Microbiologie et Génétique cellulaire du C.N.R.S., Université Paul Sabatier, Toulouse, France
| | | |
Collapse
|
37
|
Cunningham RP, Ahern H, Xing D, Thayer MM, Tainer JA. Structure and function of Escherichia coli endonuclease III. Ann N Y Acad Sci 1994; 726:215-22. [PMID: 8092678 DOI: 10.1111/j.1749-6632.1994.tb52818.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- R P Cunningham
- Department of Biological Sciences, State University of New York, Albany 12222
| | | | | | | | | |
Collapse
|
38
|
|
39
|
Rasouli-Nia A, Mirzayans R, Paterson MC, Day RS. On the quantitative relationship between O6-methylguanine residues in genomic DNA and production of sister-chromatid exchanges, mutations and lethal events in a Mer- human tumor cell line. Mutat Res 1994; 314:99-113. [PMID: 7510369 DOI: 10.1016/0921-8777(94)90074-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
O6-Methylguanine (m6G) is an altered base produced in DNA by SN1 methylating agents such as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). This lesion is repaired by the protein O6-methylguanine-DNA methyltransferase (MGMT) in normal human cell lines, but is not repaired in certain human tumor lines that are termed Mex- or Mer-. Compared with repair-proficient cell lines, such repair-deficient tumor lines are hypersensitive to the production by MNNG of sister-chromatid exchanges (SCE), mutations and lethality. We report here that MNNG treatment produces 1 SCE for every 42 +/- 10 m6G formed in the genome of Mer- tumor cells, 1 6TG-resistant mutant for every 8 (range of 5-14) m6G produced statistically in the coding region of the hypoxanthine phosphoribosyltransferase gene, and 1 lethal event per 6650 +/- 1200 m6G. In addition, in vitro base mismatch incision at m6G: BrU pairs was similar to that at m6G: T pairs, the lesions that likely initiate SCE production. We conclude that m6G residues in genomic DNA are very recombinogenic as well as highly mutagenic in Mer- human tumor cells. The results are interpreted in terms of the relationship between methylation-induced SCE and G: T mismatch recognition.
Collapse
Affiliation(s)
- A Rasouli-Nia
- Department of Medicine, Cross Cancer Institute, Edmonton, Canada
| | | | | | | |
Collapse
|
40
|
Radicella JP, Clark EA, Chen S, Fox MS. Patch length of localized repair events: role of DNA polymerase I in mutY-dependent mismatch repair. J Bacteriol 1993; 175:7732-6. [PMID: 8244947 PMCID: PMC206937 DOI: 10.1128/jb.175.23.7732-7736.1993] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In vivo experiments with heteroduplex lambda genomes show that the MutY mismatch repair system of Escherichia coli defines an average repair tract that is shorter than 27 nucleotides and longer than 9 nucleotides and extends 3' from the corrected adenine. The phenotype of a mutant defective in DNA polymerase I shows that this enzyme plays a significant, though not an essential, role in the in vivo repair of apurinic sites generated by this system. Evidence is presented that in the absence of polymerase I the repair tracts are modestly longer than in the polA+ extending in the 5' direction from the corrected adenine, suggesting a role for another DNA polymerase.
Collapse
Affiliation(s)
- J P Radicella
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|
41
|
|
42
|
Bessho T, Tano K, Kasai H, Ohtsuka E, Nishimura S. Evidence for two DNA repair enzymes for 8-hydroxyguanine (7,8-dihydro-8-oxoguanine) in human cells. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36531-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Affiliation(s)
- J Tchou
- Department of Pharmacological Sciences, State University of New York, Stony Brook 11794-8651
| | | |
Collapse
|
44
|
Michaels ML, Miller JH. The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). J Bacteriol 1992; 174:6321-5. [PMID: 1328155 PMCID: PMC207574 DOI: 10.1128/jb.174.20.6321-6325.1992] [Citation(s) in RCA: 546] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- M L Michaels
- Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90024
| | | |
Collapse
|
45
|
Abstract
A novel method for identifying DNA point mutations has been developed by using mismatch repair enzymes. The high specificity of the Escherichia coli MutY protein has permitted the development of a reliable and sensitive method for the detection and characterization of point mutations in the human genome. The MutY protein is involved in a repair pathway that can convert A/G or A/C mismatches to C/G or G/C basepairs, respectively. A/G or A/C mismatches formed by hybridization between two amplified genomic DNA samples or between specific DNA probes and target DNA are nicked at the mispaired adenine strand by MutY protein. As little as 1% of the mutant sequence can be detected by the mismatch repair enzyme cleavage (MREC) method in a mixture of normal and mutated DNAs (e.g., mutant cells are only present in 1% of the normal cell background). By using different probes, the assay also can determine the nucleotide sequence of the mutation. We have applied this method to detect single-base substitutions in human oncogenes.
Collapse
Affiliation(s)
- A L Lu
- Department of Biological Chemistry, School of Medicine, University of Maryland, Baltimore 21201
| | | |
Collapse
|