1
|
Papantonis A, Swevers L, Iatrou K. Chorion genes: a landscape of their evolution, structure, and regulation. ANNUAL REVIEW OF ENTOMOLOGY 2015; 60:177-194. [PMID: 25341099 DOI: 10.1146/annurev-ento-010814-020810] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Differential regulation at the level of transcription provides a means for controlling gene expression in eukaryotes, especially during development. Insect model systems have been extensively used to decipher the molecular basis of such regulatory cascades, and one of the oldest such model systems is the regulation of chorion gene expression during ovarian follicle maturation. Recent experimental and technological advances have shed new light onto the system, allowing us to revisit it. Thus, in this review we try to summarize almost 40 years' worth of studies on chorion gene regulation while-by comparing Bombyx mori and Drosophila melanogaster models-attempting to present a comprehensive, unified model of the various regulatory aspects of choriogenesis that takes into account the evolutionary conservation and divergence of the underlying mechanisms.
Collapse
Affiliation(s)
- Argyris Papantonis
- Research Group for Systems Biology of Chromatin, Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany;
| | | | | |
Collapse
|
2
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 705] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
3
|
Ribeiro FS, de Abreu da Silva IC, Carneiro VC, Belgrano FDS, Mohana-Borges R, de Andrade Rosa I, Benchimol M, Souza NRQ, Mesquita RD, Sorgine MHF, Gazos-Lopes F, Vicentino ARR, Wu W, de Moraes Maciel R, da Silva-Neto MAC, Fantappié MR. The dengue vector Aedes aegypti contains a functional high mobility group box 1 (HMGB1) protein with a unique regulatory C-terminus. PLoS One 2012; 7:e40192. [PMID: 22802955 PMCID: PMC3388995 DOI: 10.1371/journal.pone.0040192] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/02/2012] [Indexed: 12/20/2022] Open
Abstract
The mosquito Aedes aegypti can spread the dengue, chikungunya and yellow fever viruses. Thus, the search for key molecules involved in the mosquito survival represents today a promising vector control strategy. High Mobility Group Box (HMGB) proteins are essential nuclear factors that maintain the high-order structure of chromatin, keeping eukaryotic cells viable. Outside the nucleus, secreted HMGB proteins could alert the innate immune system to foreign antigens and trigger the initiation of host defenses. In this work, we cloned and functionally characterized the HMGB1 protein from Aedes aegypti (AaHMGB1). The AaHMGB1 protein typically consists of two HMG-box DNA binding domains and an acidic C-terminus. Interestingly, AaHMGB1 contains a unique alanine/glutamine-rich (AQ-rich) C-terminal region that seems to be exclusive of dipteran HMGB proteins. AaHMGB1 is localized to the cell nucleus, mainly associated with heterochromatin. Circular dichroism analyses of AaHMGB1 or the C-terminal truncated proteins revealed α-helical structures. We showed that AaHMGB1 can effectively bind and change the topology of DNA, and that the AQ-rich and the C-terminal acidic regions can modulate its ability to promote DNA supercoiling, as well as its preference to bind supercoiled DNA. AaHMGB1 is phosphorylated by PKA and PKC, but not by CK2. Importantly, phosphorylation of AaHMGB1 by PKA or PKC completely abolishes its DNA bending activity. Thus, our study shows that a functional HMGB1 protein occurs in Aedes aegypt and we provide the first description of a HMGB1 protein containing an AQ-rich regulatory C-terminus.
Collapse
Affiliation(s)
- Fabio Schneider Ribeiro
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Isabel Caetano de Abreu da Silva
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Vitor Coutinho Carneiro
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Ronaldo Mohana-Borges
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Ivone de Andrade Rosa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Universidade Santa Úrsula, Rio de Janeiro, Brasil
| | | | - Nathalia Rocha Quintino Souza
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Rafael Dias Mesquita
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marcos Henrique Ferreira Sorgine
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Felipe Gazos-Lopes
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Amanda Roberta Revoredo Vicentino
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Wenjie Wu
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Renata de Moraes Maciel
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Mario Alberto Cardoso da Silva-Neto
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marcelo Rosado Fantappié
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- * E-mail:
| |
Collapse
|
4
|
Lecanidou R, Papantonis A. Silkmoth chorion gene regulation revisited: promoter architecture as a key player. INSECT MOLECULAR BIOLOGY 2010; 19:141-151. [PMID: 20002795 DOI: 10.1111/j.1365-2583.2009.00969.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Regulation of silkmoth chorion genes has long been used as a model system for studying differential gene expression. The large numbers of genes, their overlapping expression patterns and the overall complexity of the system hinted towards an elaborate mechanism for transcriptional control. Recent studies, however, offer evidence of a molecular pathway governed by the interplay between two general transcription factors, CCAAT enhancer binding proteins (C/EBP) and GATA, an architectural protein, high mobility group A and a chromatin remodeller, chromo-helicase/ATPase-DNA binding protein 1. In this review we present a parsimonious model that adequately describes regulation of transcription across all temporally regulated chorion genes, and propose a role for promoter architecture.
Collapse
Affiliation(s)
- R Lecanidou
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece.
| | | |
Collapse
|
5
|
Architectural factor HMGA induces promoter bending and recruits C/EBP and GATA during silkmoth chorion gene regulation. Biochem J 2008; 416:85-97. [DOI: 10.1042/bj20081012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A protein displaying significant similarity to mammalian HMGA (high-mobility group A) proteins, but also bearing unique structural features, was isolated from silkmoth (Bombyx mori) follicular cells. This factor, named BmHMGA, exhibits specific binding preference for chorion gene promoter elements and induces DNA bending thereon. BmHMGA deploys temporal-specific interaction with transcription factors BmC/EBP (C/EBP is CCAAT/enhancer-binding protein) and BmGATAβ during follicle maturation. The respective protein complexes can be detected on chorion gene promoters in vivo, with different developmental profiles each time. Analogous interaction takes place on the putative promoter of the BmC/EBP gene, hinting towards a transcriptional circuit that is responsible for the progress of choriogenesis as a whole. Finally, transient suppression of BmHMGA expression led to down-regulation of chorion genes and the BmC/EBP gene, and revealed recruitment of BmC/EBP, BmGATAβ and TFIID (transcription factor IID)/TBP (TATA-box-binding protein) by BmHMGA. A revised model for chorion gene regulation is discussed in view of these findings.
Collapse
|
6
|
Zougman A, Wiśniewski JR. Beyond Linker Histones and High Mobility Group Proteins: Global Profiling of Perchloric Acid Soluble Proteins. J Proteome Res 2006; 5:925-34. [PMID: 16602700 DOI: 10.1021/pr050415p] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extraction with HClO(4) provides an easy method for efficient enrichment of both histone H1 and HMG proteins from a variety of tissues. Usually, the histone and the HMG proteins are the most abundant components of the extracts, however, other proteins have frequently been observed but only seldom studied in more detail. Here we describe a study aimed at global characterization of HClO(4) extractable proteins from breast cancer cell lines. We report identification of 150 unique proteins by liquid chromatography tandem mass spectrometry including almost all major histone H1 variants and canonical members of the HMG protein families. In the extracts, diverse proteins with HMG-like amino acid composition were identified and their post-translational modifications were mapped. Importantly, those include multiple proteins known or supposed to be related to cell proliferation and cancer. Since purification of these proteins as well as low abundant variants of histone and HMG proteins is difficult due to their metabolic instability, characterization of these proteins from crude extracts can facilitate studies aimed at better understanding of their function.
Collapse
|
7
|
Claus P, Bruns AF, Grothe C. Fibroblast growth factor-2(23) binds directly to the survival of motoneuron protein and is associated with small nuclear RNAs. Biochem J 2005; 384:559-65. [PMID: 15222879 PMCID: PMC1134141 DOI: 10.1042/bj20040801] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The SMN (survival of motoneuron) protein is mutated in patients with the neurodegenerative disease spinal muscular atrophy. We have shown previously that a high-molecular-mass isoform of FGF (fibroblast growth factor) 2 (FGF-2(23)) is in a complex with SMN [Claus, Doring, Gringel, Muller-Ostermeyer, Fuhlrott, Kraft and Grothe (2003) J. Biol. Chem. 278, 479-485]. FGF-2 is a neurotrophic factor for motoneurons, and is known not only as a classical extracellular growth factor, but also as a nuclear protein. In the present study, we demonstrate that SMN binds to the arginine-rich N-terminus of FGF-2(23). In turn, FGF-2(23) interacts with amino acid residues 1-90 of the human SMN protein. This sequence displays nucleic-acid-binding capacity and overlaps partially with known binding sites for Gemin2/SIP1 (SMN-interacting protein 1) and p53. Finally, as a functional consequence of FGF-2(23) binding to SMN, FGF-2(23) is in a complex with the small nuclear RNAs U2 and U4. Since SMN functions as an assembly factor for snRNPs (small nuclear ribonucleoprotein particles), these results suggest binding of FGF-2(23) to snRNPs.
Collapse
Affiliation(s)
- Peter Claus
- Department of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | | | | |
Collapse
|
8
|
Lee KB, Thomas JO. The effect of the acidic tail on the DNA-binding properties of the HMG1,2 class of proteins: insights from tail switching and tail removal. J Mol Biol 2000; 304:135-49. [PMID: 11080451 DOI: 10.1006/jmbi.2000.4206] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The high-mobility group (HMG) proteins HMG1, HMG2 and HMG2a are relatively abundant vertebrate DNA-binding and bending proteins that bind with structure specificity, rather than sequence specificity, and appear to play an architectural role in the assembly of nucleoprotein complexes. They have two homologous "HMG-box" DNA-binding domains (which show about 80 % homology) connected by a short basic linker to an acidic carboxy-terminal tail that differs in length between HMG1 and 2. To gain insights into the role of the acidic tail, we examined the DNA-binding properties of HMG1, HMG2b and HMG2a from chicken erythrocytes (corresponding to HMG1, HMG2 and HMG2a in other vertebrates). HMG1, with the longest acidic tail, is less effective than HMG2a and 2b (at a given molar input ratio) in supercoiling relaxed, closed circular DNA, in inducing ligase-mediated circularisation of an 88 bp DNA fragment, and in binding to four-way DNA junctions in a gel-shift assay. Removal of the acidic tail increases the affinity of the HMG boxes for DNA and largely abolishes the differences between the three species. Switching the acidic tail of HMG1 for that of HMG2a or 2b gives hybrid proteins with essentially the same DNA-binding properties as HMG2a, 2b. The length (and possibly sequence) of the acidic tail thus appears to be the dominant factor in mediating the differences in properties between HMG1, 2a and 2b and finely tunes the rather similar DNA-binding properties of the tandem HMG boxes, presumably to fulfill different cellular roles. The tail is essential for structure-selective DNA-binding of the HMG boxes to DNA minicircles in the presence of equimolar linear DNA, and has little effect on the affinity for this already highly distorted DNA ligand, in contrast to binding to linear and four-way junction DNA.
Collapse
Affiliation(s)
- K B Lee
- Cambridge Centre for Molecular Recognition and Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | | |
Collapse
|
9
|
Renner U, Ghidelli S, Schäfer MA, Wiśniewski JR. Alterations in titer and distribution of high mobility group proteins during embryonic development of Drosophila melanogaster. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1475:99-108. [PMID: 10806344 DOI: 10.1016/s0304-4165(00)00054-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
High mobility group proteins are thought to have an architectural function in chromatin. Here we describe changes in titers, extent of phosphorylation, and cellular distribution of the three abundant HMG proteins during embryonic development of Drosophila. The titers of the HMG proteins HMGD, HMGZ, and D1 are highest in ovaries and at the beginning of embryonic development. They decrease continuously until cellularization of the embryo. Relative to the histone H1 titer, the levels of HMGD and D1 remain almost constant during gastrulation and organogenesis, whereas the titer of HMGZ increases during late organogenesis. Up to gastrulation, the development is accompanied by dephosphorylation of D1. In contrast, HMGD and HMGZ appear to be constitutively phosphorylated. As the high extent of phosphorylation of D1 is also characteristic in ovaries, it is likely that the posttranslational modifications of this protein observed in early embryonic stages are of maternal origin. Using site specific antibodies against helices I and III of HMGD and HMGZ and against the AT-hook motif of D1, protein-specific staining patterns have been observed during embryonic development. Despite high levels of HMG proteins at the beginning of embryonic development, we were unable to detect any of these proteins in nuclei of stage 2 embryos. The accumulation of the HMG proteins correlates with the onset of transcription in stage 3. Our results argue against a proposal of a shared role of HMGD and histone H1 in Drosophila chromatin.
Collapse
Affiliation(s)
- U Renner
- III. Zoologisches Institut-Entwicklungsbiologie, Universität Göttingen, D-37073, Göttingen, Germany
| | | | | | | |
Collapse
|
10
|
Wiśniewski JR, Krohn NM, Heyduk E, Grasser KD, Heyduk T. HMG1 proteins from evolutionary distant organisms distort B-DNA conformation in similar way. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1447:25-34. [PMID: 10500240 DOI: 10.1016/s0167-4781(99)00123-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The abundant high-mobility group proteins 1/2 (HMG1/2) represent a group of potent architectural elements of chromatin. They are able to induce strong bends and untwist DNA. Here, we compared the abilities of diverse HMG1 proteins to distort the B-DNA conformation of 30-base pair DNA fragment. The DNA bending was measured in solution by monitoring fluorescence resonance energy transfer between fluorescence probes attached to opposite ends of the DNA fragment. Various insect and plant proteins which differ in size, in composition of their HMG1-box domains (HMG1-BD), and in composition of the N- and the C-terminally flanking regions were analyzed in these experiments. Despite these structural differences the extent of the induced changes in DNA conformation upon binding to various proteins was similar, as the estimated bend angle was 150+/-20 degrees for all the tested proteins. Our results suggest that a set of highly conserved residues stabilizing the tertiary structure of the HMG1-BD mainly determines the extent of DNA bending in the complex. Even extended positively charged regions flanking the HMG1-BD are apparently not able to influence this conformational distortion of DNA.
Collapse
Affiliation(s)
- J R Wiśniewski
- III. Zoologisches Institut - Entwicklungsbiologie, Universität Göttingen, Humboldtallee 34A, 37073, Göttingen, Germany.
| | | | | | | | | |
Collapse
|
11
|
Lorenz M, Hillisch A, Payet D, Buttinelli M, Travers A, Diekmann S. DNA bending induced by high mobility group proteins studied by fluorescence resonance energy transfer. Biochemistry 1999; 38:12150-8. [PMID: 10508419 DOI: 10.1021/bi990459+] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The HMG domains of the chromosomal high mobility group proteins homologous to the vertebrate HMG1 and HMG2 proteins preferentially recognize distorted DNA structures. DNA binding also induces a substantial bend. Using fluorescence resonance energy transfer (FRET), we have determined the changes in the end-to-end distance consequent on the binding of selected insect counterparts of HMG1 to two DNA fragments, one of 18 bp containing a single dA(2) bulge and a second of 27 bp with two dA(2) bulges. The observed changes are consistent with overall bend angles for the complex of the single HMG domain with one bulge and of two domains with two bulges of approximately 90-100 degrees and approximately 180-200 degrees, respectively. The former value contrasts with an inferred value of 150 degrees reported by Heyduk et al. (1) for the bend induced by a single domain. We also observe that the induced bend angle is unaffected by the presence of the C-terminal acidic region. The DNA bend of approximately 95 degrees observed in the HMG domain complexes is similar in magnitude to that induced by the TATA-binding protein (80 degrees), each monomeric unit of the integration host factor (80 degrees), and the LEF-1 HMG domain (107 degrees). We suggest this value may represent a steric limitation on the extent of DNA bending induced by a single DNA-binding motif.
Collapse
Affiliation(s)
- M Lorenz
- Institute for Molecular Biotechnology, Jena, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Wiśniewski JR, Szewczuk Z, Petry I, Schwanbeck R, Renner U. Constitutive Phosphorylation of the Acidic Tails of the High Mobility Group 1 Proteins by Casein Kinase II Alters Their Conformation, Stability, and DNA Binding Specificity. J Biol Chem 1999. [DOI: 10.1016/s0021-9258(19)72624-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Ritt C, Grimm R, Fernandez S, Alonso JC, Grasser KD. Basic and acidic regions flanking the HMG domain of maize HMGa modulate the interactions with DNA and the self-association of the protein. Biochemistry 1998; 37:2673-81. [PMID: 9485418 DOI: 10.1021/bi972620r] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The maize HMGa protein is a typical member of the family of plant chromosomal HMG1-like proteins. The HMG domain of HMGa is flanked by a basic N-terminal domain characteristic for plant HMG1-like proteins, and is linked to the acidic C-terminal domain by a short basic region. Various derivatives of the HMGa protein were expressed in Escherichia coli and purified. The individual HMG domain can functionally complement the defect of the HU-like chromatin-associated Hbsu protein in Bacillus subtilis. The basic N-terminal domain which contacts DNA enhances the affinity of the protein for linear DNA, whereas it has little effect on the structure-specific binding to DNA minicircles. The acidic C-terminal domain reduces the affinity of HMGa for linear DNA, but does not affect to the same extent the recognition of DNA structure which is an intrinsic property of the HMG domain. The efficiency of the HMGa constructs to facilitate circularization of short DNA fragments in the presence of DNA ligase is like the binding to linear DNA altered by the basic and acidic domains flanking the HMG domain, while the supercoiling activity of HMGa is only slightly influenced by the same regions. Both the basic N-terminal and the acidic C-terminal domains contribute directly to the self-association of HMGa in the presence of DNA. Collectively, these findings suggest that the intrinsic properties of the HMG domain can be modulated within the HMGa protein by the basic and acidic domains.
Collapse
Affiliation(s)
- C Ritt
- Institut fur Biologie III, Albert-Ludwigs-Universitat Freiburg, Schanzlestrasse 1, D-79104 Freiburg, FRG
| | | | | | | | | |
Collapse
|
14
|
Stemmer C, Ritt C, Igloi GL, Grimm R, Grasser KD. Variability in Arabidopsis thaliana chromosomal high-mobility-group-1-like proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 250:646-52. [PMID: 9461286 DOI: 10.1111/j.1432-1033.1997.00646.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The vertebrate high-mobility-group (HMG) protein HMG1 is an abundant non-histone protein which is considered as an architectural element in chromatin. In the monocotyledonous plant maize, four different HMG1-like proteins (HMGa, HMGc1/2, HMGd) have been identified, whereas other eukaryotes usually express only two different proteins of this type. We have examined here the HMG1-like proteins of the dicotyledonous plant Arabidopsis thaliana. The isolation and analysis of cDNAs encoding five different so far uncharacterised HMG1-like proteins (now termed HMG alpha, HMG beta1/2, HMG gamma, HMG delta) from Arabidopsis indicates that the expression of multiple HMG1-like proteins is a general feature of (higher) plants. The Arabidopsis HMG1-like proteins contain an HMG domain as a common feature, but outside this conserved DNA-binding motif the amino acid sequences are significantly different indicating that this protein family displays a greater structural variability in plants than in other eukaryotes. The five HMG1-like proteins were expressed in Escherichia coli and purified. They bind with somewhat different affinity to linear double-stranded DNA. The recognition of DNA structure is evident from their preferential interaction with DNA minicircles relative to linear DNA. Reverse-transcribed PCR suggested that the five HMG1-like genes are simultaneously expressed in Arabidopsis leaves and suspension culture cells.
Collapse
Affiliation(s)
- C Stemmer
- Institut für Biologie III, Albert-Ludwigs-Universität Freiburg, Germany
| | | | | | | | | |
Collapse
|
15
|
Schwanbeck R, Wiśniewski JR. Cdc2 and mitogen-activated protein kinases modulate DNA binding properties of the putative transcriptional regulator Chironomus high mobility group protein I. J Biol Chem 1997; 272:27476-83. [PMID: 9341202 DOI: 10.1074/jbc.272.43.27476] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cells of the dipteran insect Chironomus contain a high mobility group protein that is homologous to the mammalian high mobility group proteins I/Y (HMGI/Y). These proteins facilitate the assembly of higher order nucleoprotein complexes. In proliferating cells, >30% of Chironomus HMGI was found to be phosphorylated. The phosphorylation sites were mapped to Ser3, Ser22, and Ser72 and were found to be substrates for the kinases Cdc2 (and mitogen-activated protein (MAP)), MAP, and Ca2+/phospholipid-dependent protein kinase, respectively. In mitotically arrested cells, the extent of phosphorylation at Ser3 increased, whereas phosphorylation at Ser22 remained unchanged. In nondividing cells, phosphorylation at Ser3 and Ser22 was strongly reduced. The DNA binding affinity of Chironomus HMGI was not influenced by single phosphorylation at Ser3 or Ser22. In contrast, phosphorylation at both of these sites resulted in a 10-fold weakening of the binding activity and altered the mode of protein-DNA interaction. Since both human and murine HMGI/Y proteins, similarly to the insect HMGI protein, possess phosphorylation sites for Cdc2 and MAP kinases that intersperse the AT-hook DNA-binding motifs, our results may reflect a general mechanism that regulates the properties and function of this class of putative transcriptional regulators.
Collapse
Affiliation(s)
- R Schwanbeck
- III. Zoologisches Institut-Entwicklungsbiologie, Universität Göttingen, Humboldtallee 34A, 37073 Göttingen, Germany
| | | |
Collapse
|
16
|
Heyduk E, Heyduk T, Claus P, Wiśniewski JR. Conformational changes of DNA induced by binding of Chironomus high mobility group protein 1a (cHMG1a). Regions flanking an HMG1 box domain do not influence the bend angle of the DNA. J Biol Chem 1997; 272:19763-70. [PMID: 9242635 DOI: 10.1074/jbc.272.32.19763] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
High mobility group (HMG) proteins are thought to facilitate assembly of higher order chromatin structure through modulation of DNA conformation. In this work we investigate the bending of a 30-base pair DNA fragment induced by Chironomus HMG1 (cHMG1a), and HMGI (cHMGI) proteins. The DNA bending was measured in solution by monitoring the end-to-end distance between fluorescence probes attached to opposite ends of the DNA fragment. The distance was measured by fluorescence energy transfer using a novel europium chelate as a fluorescence donor. These measurements revealed that the end-to-end distance in the 30-base pair DNA was decreased from approximately 100 A in free DNA to approximately 50.5 A in cHMG1a. DNA complex. The most probable DNA bending angle consistent with these distance measurements is about 150 degrees. The deletion of the charged regulatory domains located close to the C terminus of the HMG1 box domain of cHMG1a protein had no effect on the induced bend angle. The ability to induce a large DNA bend distinguishes the cHMG1 from the cHMGI protein. Only small perturbation of the DNA conformation was observed upon binding of the cHMGI protein. A strong DNA bending activity of cHMG1a and its relative abundance in the cell suggests that this protein plays a very important role in modulation of chromatin structure.
Collapse
Affiliation(s)
- E Heyduk
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Medical School, St. Louis, Missouri 63104, USA
| | | | | | | |
Collapse
|
17
|
Ghidelli S, Claus P, Thies G, Wiśniewski JR. High mobility group proteins cHMG1a, cHMG1b, and cHMGI are distinctly distributed in chromosomes and differentially expressed during ecdysone dependent cell differentiation. Chromosoma 1997; 105:369-79. [PMID: 9087379 DOI: 10.1007/bf02529752] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mammalian high mobility group proteins HMGI/Y and HMG1/2 are thought to play an architectural role in assembly of nucleoprotein structures. Counterparts to these proteins have recently been found in the cells of the Dipteran insect Chironomus. In this report we investigate the distribution of three abundant HMG proteins in interphase giant chromosomes of the midge, Chironomus. By means of the indirect immunofluorescence technique the cHMG1b and cHMGI proteins were localized in chromosomal puffs, suggesting their involvement in the organization of transcriptionally active chromatin. In contrast, the highly abundant protein cHMG1a was rather uniformly distributed in the chromosomes. The cHMGI protein, but not cHMG1a or cHMG1b, was detected in nucleoli, which may indicate a role in the transcription of ribosomal genes. The regions of the interphase chromosomes containing AT-rich DNA did not contain higher levels of the cHMGI and cHMG1b proteins. A correlation between the specific location of these proteins in chromatin and their synthesis and turnover rates was observed.
Collapse
Affiliation(s)
- S Ghidelli
- III. Zoologisches Institut - Entwicklungsbiologie, Universität Göttingen, Humboldtallee 34A, D-37073 Göttingen, Germany
| | | | | | | |
Collapse
|
18
|
Payet D, Travers A. The acidic tail of the high mobility group protein HMG-D modulates the structural selectivity of DNA binding. J Mol Biol 1997; 266:66-75. [PMID: 9054971 DOI: 10.1006/jmbi.1996.0782] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
HMG-D is one of the Drosophila counterparts of the vertebrate HMG1/2 class of abundant chromosomal proteins and contains three domains: an HMG domain followed by a basic region and a short acidic carboxyterminal tail. We show that the HMG domain of HMG-D does not bind to deformed DNA structures such as DNA bulges, cis-platinated DNA or four-way junctions but does bind tightly to DNA microcircles, suggesting that in vivo the natural ligands of this domain are tightly bent DNA loops. The flanking basic region substantially increases the DNA-binding activity of the HMG domain to DNA ligands other than microcircles. We demonstrate that the acidic tail alters the structural selectivity of DNA binding by increasing the affinity for deformed DNA and decreasing the affinity for linear B-DNA. Finally, we show that the acidic tail increases the efficiency of constraining preformed negative supercoils but conversely decreases the efficiency of supercoiling relaxed DNA in the presence of topoisomerase I.
Collapse
Affiliation(s)
- D Payet
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
19
|
Wísniewski JR, Hessler K, Claus P, Zechel K. Structural and functional consequences of mutations within the hydrophobic cores of the HMG1-box domain of the Chironomus high-mobility-group protein 1a. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:151-9. [PMID: 9030734 DOI: 10.1111/j.1432-1033.1997.0151a.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The high-mobility-group protein 1 box domain (HMG1-BD) is a structural element found in several DNA-binding proteins in eukaryotic cells. Its structure is dominated by three alpha-helices. The spatial arrangement of these helices into an L-shaped molecule is maintained by a number of apolar residues organized into a main and a secondary hydrophobic core. To analyze the significance of these residues for proper folding, conformational stability, and ability to bind and bend DNA, we have mutated the highly conserved Trp14 of the Chironomus HMG1a protein and have synthesized a series of N-terminally truncated forms. The observed alterations in DNA-binding and DNA-bending characteristics were correlated with structural consequences, as revealed by CD spectroscopy, limited trypsin digestion, and transverse urea gradient gel electrophoresis. Mutation of the Trp14 residue (Chironomus [W14A]HMG1a) and deletion of the seven N-terminal residues, respectively, which are members of the main and the secondary core of Chironomus HMG1a, both resulted in a substantial unfolding of the protein. Unexpectedly, these mutants still retained their ability to bind and bend DNA. Conformational analysis of wild-type cHMG1a and [W14A]cHMG1a showed that the proteins unfold at 2-4 M urea. In contrast, their DNA complexes persisted even at 6-8 M of the denaturant. Multiple contacts between the HMG1-BD and the DNA are probably responsible for the unusual stability of the complexes.
Collapse
Affiliation(s)
- J R Wísniewski
- III. Zoologisches Institut-Entwicklungsbiologie, Universitat Gottingen, Germany.
| | | | | | | |
Collapse
|
20
|
Neuner C, Peschke K, Frohnmeyer H. The spermatophore of the carrion beetle Thanatophilus sinuatus biochemical characterization of proteins and incorporation of radioactively labelled amino acids. Comp Biochem Physiol B Biochem Mol Biol 1996. [DOI: 10.1016/0305-0491(96)00071-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
|
22
|
Bustin M, Reeves R. High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 54:35-100. [PMID: 8768072 DOI: 10.1016/s0079-6603(08)60360-8] [Citation(s) in RCA: 568] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M Bustin
- Laboratory of Molecular Carcinogenesis, National Cancer Institute, National Institute of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
23
|
Teo SH, Grasser KD, Thomas JO. Differences in the DNA-binding properties of the HMG-box domains of HMG1 and the sex-determining factor SRY. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 230:943-50. [PMID: 7601157 DOI: 10.1111/j.1432-1033.1995.tb20640.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
High-mobility-group protein 1 (HMG1) is an abundant, non-sequence-specific, chromosomal protein with two homologous, HMG-box, DNA-binding domains, A and B, and an acidic tail. The HMG-box motif also occurs, as a single copy, in some sequence-specific transcription factors, e.g. the sex-determining factor, SRY. We have investigated whether or not there are differences in the DNA-binding properties of the isolated A and B HMG-box domains of HMG1 and SRY and whether, in the case of A and B, there might also be differences due to different sequence contexts within the native protein. The basic regions that flank the HMG1 B box, giving B', enhance its DNA-binding, supercoiling and DNA-bending activities, and promote the self-association of the DNA-bound B-box. All the HMG-box domains bind with structure specificity to four-way junctions, but the structure selectivity is significantly greater for A and the SRY box than for the HMG1 B or B' domains, as judged by competition with excess plasmid DNA. The domains self-associate to different extents on supercoiled DNA and this may explain differences in the ability to discriminate between four-way junctions and supercoiled DNA. The HMG1 A, B and B' domains constrain negative superhelical turns in DNA, but the SRY HMG box does not. Only the full B domain (B') bends DNA in a ligase-mediated circularisation assay; the minimal B box, the A domain and the SRY box do not. Thus, despite a common global fold, the HMG box appears to have been adapted to various functions in different protein contexts.
Collapse
Affiliation(s)
- S H Teo
- Cambridge Centre for Molecular Recognition, Department of Biochemistry, University of Cambridge, England
| | | | | |
Collapse
|
24
|
|
25
|
Claus P, Schulze E, Wiśniewski JR. Insect proteins homologous to mammalian high mobility group proteins I/Y (HMG I/Y). Characterization and binding to linear and four-way junction DNA. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(20)30095-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
26
|
Wiśniewski JR, Ghidelli S, Steuernagel A. Region of insect high mobility group (HMG) 1 protein homologous to helix 2 of the rat HMG1-b box is in close contact with DNA. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)62039-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
27
|
Wiśniewski JR, Schulze E, Sapetto B. DNA binding and nuclear translocation of insect high-mobility-group- protein-1 (HMG1) proteins are inhibited by phosphorylation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 225:687-93. [PMID: 7957184 DOI: 10.1111/j.1432-1033.1994.00687.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The cells of the dipteran insects Chironomus and Drosophila contain high-mobility-group proteins (HMG) that are homologous to the HMG1 proteins of mammals, but contain only one HMG1 box instead of two. The C-terminal portions of both mammalian and insect HMG1 proteins comprise many charged residues that modulate the DNA-binding affinity of the HMG1 boxes and were found in Chironomus to be substrates for protein kinase C (PKC) in vitro and in vivo. Phosphorylation of Chironomus HMG1 proteins cHMG1a and cHMG1b by PKC resulted in a tenfold and fivefold reduction, respectively, of the DNA-binding strength. Phosphorylated and unphosphorylated cHMG1a protein was labelled with fluoresceine isothiocyanate and microinjected into the cytoplasm of Chironomus salivary gland cells. The translocation of phosphorylated cHMG1a into the nuclei was found to be remarkably delayed as compared to that of the unmodified form. The distribution of HMG1 proteins between nucleus and cytoplasm is known to vary according to the cell type and the state of differentiation. Our results suggest that this distribution may be regulated by changing the efficiency of nuclear translocation and the affinity for DNA via phosphorylation and dephosphorylation.
Collapse
Affiliation(s)
- J R Wiśniewski
- Third Department of Zoology--Developmental Biology, University of Göttingen, Germany
| | | | | |
Collapse
|
28
|
Wiśniewski J, Schulze E. High affinity interaction of dipteran high mobility group (HMG) proteins 1 with DNA is modulated by COOH-terminal regions flanking the HMG box domain. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34117-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
29
|
Grasser KD, Wohlfarth T, Bäumlein H, Feix G. Comparative analysis of chromosomal HMG proteins from monocotyledons and dicotyledons. PLANT MOLECULAR BIOLOGY 1993; 23:619-625. [PMID: 8219095 DOI: 10.1007/bf00019309] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chromosomal high-mobility-group (HMG) proteins occur ubiquitously in eukaryotes and their common structural and biochemical features indicate a critical role. In this context, we compared structural and functional aspects of HMG proteins from the monocotyledonous plant maize and the dicotyledonous plant Vicia faba. Besides biochemical similarities and immunological differences found between these proteins, the isolation and characterization of a cDNA encoding the V. faba homologue of the maize HMGa protein revealed great similarities between these two proteins, including the HMG-box DNA-binding motif and an acidic domain. Therefore, like the maize HMGa protein, the V. faba HMG protein belongs to the vertebrate HMG1 family, which consists of HMG proteins and transcription factors of various eukaryotes.
Collapse
Affiliation(s)
- K D Grasser
- Institut für Biologie III, Albert-Ludwigs-Universität Freiburg, Germany
| | | | | | | |
Collapse
|
30
|
Zheng CC, Bui AQ, O'Neill SD. Abundance of an mRNA encoding a high mobility group DNA-binding protein is regulated by light and an endogenous rhythm. PLANT MOLECULAR BIOLOGY 1993; 23:813-823. [PMID: 8251634 DOI: 10.1007/bf00021536] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A cDNA clone encoding an HMG1 protein from Pharbitis nil was characterized with regard to its sequence, genomic organization and regulation in response to photoperiodic treatments that control floral induction. The HMG1 cDNA contains an open reading frame of 432 nucleotides encoding a 144 amino acid protein of approximately 16 kDa. The predicted polypeptide has the characteristic conserved motifs of the HMG1 and HMG2 class of proteins including an N-terminal basic region, one of two HMG-box domains, and a polyacidic carboxy terminus. Within the HMG-box region, Pharbitis HMG1 deduced amino acid sequence shares 47%, 67% and 69% identity with its animal, maize, and soybean counterparts, respectively. Southern blot hybridization analysis suggests that HMG1 is a member of a multigene family. Analysis of mRNA abundance indicates that the HMG1 gene is expressed to higher levels in dark-grown tissue, such as roots, and at lower levels in light-grown tissue, such as cotyledons and stems. Following the transition to darkness, the levels of HMG1 mRNA in cotyledons were initially stable, however, after a lag time of 8 h or more, HMG1 mRNA increased in abundance to a peak level at 20 h. A second peak in mRNA levels was observed about 24 h later, indicating that the expression of the HMG1 gene is regulated by an endogenous circadian rhythm. Abundance of the HMG1 mRNA during a dark period was dramatically affected by brief light exposure (night break), a treatment which inhibits floral induction. These data indicate that the expression of HMG1 is regulated by both an endogenous rhythm and the light/dark cycle and are consistent with a role for HMG1 in maintaining patterns of circadian-regulated gene expression activated upon the transition from light to darkness.
Collapse
Affiliation(s)
- C C Zheng
- Division of Biological Sciences, University of California at Davis 95616
| | | | | |
Collapse
|