1
|
Kim SY, Randall JR, Gu R, Nguyen QD, Davies BW. Antibacterial action, proteolytic immunity, and in vivo activity of a Vibrio cholerae microcin. Cell Host Microbe 2024; 32:1959-1971.e6. [PMID: 39260372 PMCID: PMC11563924 DOI: 10.1016/j.chom.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/24/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024]
Abstract
Microcins are small antibacterial proteins that mediate interbacterial competition. Their narrow-spectrum activity provides opportunities to discover microbiome-sparing treatments. However, microcins have been found almost exclusively in Enterobacteriaceae. Their broader existence and potential implications in other pathogens remain unclear. Here, we identify and characterize a microcin active against pathogenic Vibrio cholerae: MvcC. We show that MvcC is reliant on the outer membrane porin OmpT to cross the outer membrane. MvcC then binds the periplasmic protein OppA to reach and disrupt the cytoplasmic membrane. We demonstrate that MvcC's cognate immunity protein is a protease, which precisely cleaves MvcC to neutralize its activity. Importantly, we show that MvcC is active against diverse cholera isolates and in a mouse model of V. cholerae colonization. Our results provide a detailed analysis of a microcin outside of Enterobacteriaceae and its potential to influence V. cholerae infection.
Collapse
Affiliation(s)
- Sun-Young Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Justin R Randall
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Richard Gu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Quoc D Nguyen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Bryan W Davies
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA; John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
2
|
Kaushik S, He H, Dalbey RE. Bacterial Signal Peptides- Navigating the Journey of Proteins. Front Physiol 2022; 13:933153. [PMID: 35957980 PMCID: PMC9360617 DOI: 10.3389/fphys.2022.933153] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
In 1971, Blobel proposed the first statement of the Signal Hypothesis which suggested that proteins have amino-terminal sequences that dictate their export and localization in the cell. A cytosolic binding factor was predicted, and later the protein conducting channel was discovered that was proposed in 1975 to align with the large ribosomal tunnel. The 1975 Signal Hypothesis also predicted that proteins targeted to different intracellular membranes would possess distinct signals and integral membrane proteins contained uncleaved signal sequences which initiate translocation of the polypeptide chain. This review summarizes the central role that the signal peptides play as address codes for proteins, their decisive role as targeting factors for delivery to the membrane and their function to activate the translocation machinery for export and membrane protein insertion. After shedding light on the navigation of proteins, the importance of removal of signal peptide and their degradation are addressed. Furthermore, the emerging work on signal peptidases as novel targets for antibiotic development is described.
Collapse
|
3
|
Abstract
Biocatalysis (the use of biological molecules or materials to catalyse chemical reactions) has considerable potential. The use of biological molecules as catalysts enables new and more specific syntheses. It also meets many of the core principles of “green chemistry”. While there have been some considerable successes in biocatalysis, the full potential has yet to be realised. This results, partly, from some key challenges in understanding the fundamental biochemistry of enzymes. This review summarises four of these challenges: the need to understand protein folding, the need for a qualitative understanding of the hydrophobic effect, the need to understand and quantify the effects of organic solvents on biomolecules and the need for a deep understanding of enzymatic catalysis. If these challenges were addressed, then the number of successful biocatalysis projects is likely to increase. It would enable accurate prediction of protein structures, and the effects of changes in sequence or solution conditions on these structures. We would be better able to predict how substrates bind and are transformed into products, again leading to better enzyme engineering. Most significantly, it may enable the de novo design of enzymes to catalyse specific reactions.
Collapse
|
4
|
Inhibition of Protein Secretion in Escherichia coli and Sub-MIC Effects of Arylomycin Antibiotics. Antimicrob Agents Chemother 2019; 63:AAC.01253-18. [PMID: 30420476 DOI: 10.1128/aac.01253-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/04/2018] [Indexed: 12/31/2022] Open
Abstract
At sufficient concentrations, antibiotics effectively eradicate many bacterial infections. However, during therapy, bacteria are unavoidably exposed to lower antibiotic concentrations, and sub-MIC exposure can result in a wide variety of other effects, including the induction of virulence, which can complicate therapy, or horizontal gene transfer (HGT), which can accelerate the spread of resistance genes. Bacterial type I signal peptidase (SPase) is an essential protein that acts at the final step of the general secretory pathway. This pathway is required for the secretion of many proteins, including many required for virulence, and the arylomycins are a class of natural product antibiotics that target SPase. Here, we investigated the consequences of exposing Escherichia coli cultures to sub-MIC levels of an arylomycin. Using multidimensional protein identification technology mass spectrometry, we found that arylomycin treatment inhibits the proper extracytoplasmic localization of many proteins, both those that appear to be SPase substrates and several that do not. The identified proteins are involved in a broad range of extracytoplasmic processes and include a number of virulence factors. The effects of arylomycin on several processes required for virulence were then individually examined, and we found that, at even sub-MIC levels, the arylomycins potently inhibit flagellation, motility, biofilm formation, and the dissemination of antibiotic resistance via HGT. Thus, we conclude that the arylomycins represent promising novel therapeutics with the potential to eradicate infections while simultaneously reducing virulence and the dissemination of resistance.
Collapse
|
5
|
Abstract
Signal peptidases are the membrane bound enzymes that cleave off the amino-terminal signal peptide from secretory preproteins . There are two types of bacterial signal peptidases . Type I signal peptidase utilizes a serine/lysine catalytic dyad mechanism and is the major signal peptidase in most bacteria. Type II signal peptidase is an aspartic protease specific for prolipoproteins. This chapter will review what is known about the structure, function and mechanism of these unique enzymes.
Collapse
Affiliation(s)
- Mark Paetzel
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
6
|
Crane JM, Randall LL. The Sec System: Protein Export in Escherichia coli. EcoSal Plus 2017; 7:10.1128/ecosalplus.ESP-0002-2017. [PMID: 29165233 PMCID: PMC5807066 DOI: 10.1128/ecosalplus.esp-0002-2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, proteins found in the periplasm or the outer membrane are exported from the cytoplasm by the general secretory, Sec, system before they acquire stably folded structure. This dynamic process involves intricate interactions among cytoplasmic and membrane proteins, both peripheral and integral, as well as lipids. In vivo, both ATP hydrolysis and proton motive force are required. Here, we review the Sec system from the inception of the field through early 2016, including biochemical, genetic, and structural data.
Collapse
Affiliation(s)
- Jennine M Crane
- Department of Biochemistry, University of Missouri, Columbia, MO 65201
| | - Linda L Randall
- Department of Biochemistry, University of Missouri, Columbia, MO 65201
| |
Collapse
|
7
|
Gillespie JJ, Kaur SJ, Rahman MS, Rennoll-Bankert K, Sears KT, Beier-Sexton M, Azad AF. Secretome of obligate intracellular Rickettsia. FEMS Microbiol Rev 2014; 39:47-80. [PMID: 25168200 DOI: 10.1111/1574-6976.12084] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The genus Rickettsia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) is comprised of obligate intracellular parasites, with virulent species of interest both as causes of emerging infectious diseases and for their potential deployment as bioterrorism agents. Currently, there are no effective commercially available vaccines, with treatment limited primarily to tetracycline antibiotics, although others (e.g. josamycin, ciprofloxacin, chloramphenicol, and azithromycin) are also effective. Much of the recent research geared toward understanding mechanisms underlying rickettsial pathogenicity has centered on characterization of secreted proteins that directly engage eukaryotic cells. Herein, we review all aspects of the Rickettsia secretome, including six secretion systems, 19 characterized secretory proteins, and potential moonlighting proteins identified on surfaces of multiple Rickettsia species. Employing bioinformatics and phylogenomics, we present novel structural and functional insight on each secretion system. Unexpectedly, our investigation revealed that the majority of characterized secretory proteins have not been assigned to their cognate secretion pathways. Furthermore, for most secretion pathways, the requisite signal sequences mediating translocation are poorly understood. As a blueprint for all known routes of protein translocation into host cells, this resource will assist research aimed at uniting characterized secreted proteins with their apposite secretion pathways. Furthermore, our work will help in the identification of novel secreted proteins involved in rickettsial 'life on the inside'.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Simran J Kaur
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristen Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Khandra T Sears
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Magda Beier-Sexton
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Midorikawa T, Endow JK, Dufour J, Zhu J, Inoue K. Plastidic type I signal peptidase 1 is a redox-dependent thylakoidal processing peptidase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:592-603. [PMID: 25182596 DOI: 10.1111/tpj.12655] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/08/2014] [Accepted: 08/21/2014] [Indexed: 05/09/2023]
Abstract
Thylakoids are the photosynthetic membranes in chloroplasts and cyanobacteria. The aqueous phase inside the thylakoid known as the thylakoid lumen plays an essential role in the photosynthetic electron transport. The presence and significance of thiol-disulfide exchange in this compartment have been recognized but remain poorly understood. All proteins found free in the thylakoid lumen and some proteins associated to the thylakoid membrane require an N-terminal targeting signal, which is removed in the lumen by a membrane-bound serine protease called thylakoidal processing peptidase (TPP). TPP is homologous to Escherichia coli type I signal peptidase (SPI) called LepB. Genetic data indicate that plastidic SPI 1 (Plsp1) is the main TPP in Arabidopsis thaliana (Arabidopsis) although biochemical evidence had been lacking. Here we demonstrate catalytic activity of bacterially produced Arabidopsis Plsp1. Recombinant Plsp1 showed processing activity against various TPP substrates at a level comparable to that of LepB. Plsp1 and LepB were also similar in the pH optima, sensitivity to arylomycin variants and a preference for the residue at -3 to the cleavage site within a substrate. Plsp1 orthologs found in angiosperms contain two unique Cys residues located in the lumen. Results of processing assays suggested that these residues were redox active and formation of a disulfide bond between them was necessary for the activity of recombinant Arabidopsis Plsp1. Furthermore, Plsp1 in Arabidopsis and pea thylakoids migrated faster under non-reducing conditions than under reducing conditions on SDS-PAGE. These results underpin the notion that Plsp1 is a redox-dependent signal peptidase in the thylakoid lumen.
Collapse
Affiliation(s)
- Takafumi Midorikawa
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | | | | | | | | |
Collapse
|
9
|
Paetzel M. Structure and mechanism of Escherichia coli type I signal peptidase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1497-508. [PMID: 24333859 DOI: 10.1016/j.bbamcr.2013.12.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/26/2013] [Accepted: 12/04/2013] [Indexed: 12/16/2022]
Abstract
Type I signal peptidase is the enzyme responsible for cleaving off the amino-terminal signal peptide from proteins that are secreted across the bacterial cytoplasmic membrane. It is an essential membrane bound enzyme whose serine/lysine catalytic dyad resides on the exo-cytoplasmic surface of the bacterial membrane. This review discusses the progress that has been made in the structural and mechanistic characterization of Escherichia coli type I signal peptidase (SPase I) as well as efforts to develop a novel class of antibiotics based on SPase I inhibition. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Mark Paetzel
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
10
|
Bhanu MK, Kendall DA. Fluorescence spectroscopy of soluble E. coli SPase I Δ2-75 reveals conformational changes in response to ligand binding. Proteins 2013; 82:596-606. [PMID: 24115229 DOI: 10.1002/prot.24429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/28/2013] [Accepted: 09/10/2013] [Indexed: 11/07/2022]
Abstract
The bacterial Sec pathway is responsible for the translocation of secretory preproteins. During the later stages of transport, the membrane-embedded signal peptidase I (SPase I) cleaves the signal peptide from a preprotein. We used tryptophan fluorescence spectroscopy of a soluble, catalytically active E. coli SPase I Δ2-75 enzyme to study its dynamic conformational changes while in solution and when interacting with lipids and signal peptides. We generated four single Trp SPase I Δ2-75 mutants, W261, W284, W300, and W310. Based on fluorescence quenching experiments, W300 and W310 were found to be more solvent accessible than W261 and W284 in the absence of ligands. W300 and W310 inserted into lipids, consistent with their location at the enzyme's proposed membrane-interface region, while the solvent accessibilities of W261, W284, and W300 were modified in the presence of signal peptide, suggesting propagation of structural changes beyond the active site in response to peptide binding. The signal peptide binding affinity for the enzyme was measured via FRET experiments and the Kd determined to be 4.4 μM. The location of the peptide with respect to the enzyme was also established; this positioning is crucial for the peptide to gain access to the enzyme active site as it emerges from the translocon into the membrane bilayer. These studies reveal enzymatic structural changes required for preprotein proteolysis as it interacts with its two key partners, the signal peptide and membrane phospholipids.
Collapse
Affiliation(s)
- Meera K Bhanu
- Department of Molecular and Cell Biology, The University of Connecticut, Storrs, Connecticut, 06269
| | | |
Collapse
|
11
|
Membrane proteases in the bacterial protein secretion and quality control pathway. Microbiol Mol Biol Rev 2012; 76:311-30. [PMID: 22688815 DOI: 10.1128/mmbr.05019-11] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Proteolytic cleavage of proteins that are permanently or transiently associated with the cytoplasmic membrane is crucially important for a wide range of essential processes in bacteria. This applies in particular to the secretion of proteins and to membrane protein quality control. Major progress has been made in elucidating the structure-function relationships of many of the responsible membrane proteases, including signal peptidases, signal peptide hydrolases, FtsH, the rhomboid protease GlpG, and the site 1 protease DegS. These enzymes employ very different mechanisms to cleave substrates at the cytoplasmic and extracytoplasmic membrane surfaces or within the plane of the membrane. This review highlights the different ways that bacterial membrane proteases degrade their substrates, with special emphasis on catalytic mechanisms and substrate delivery to the respective active sites.
Collapse
|
12
|
Auclair SM, Bhanu MK, Kendall DA. Signal peptidase I: cleaving the way to mature proteins. Protein Sci 2011; 21:13-25. [PMID: 22031009 DOI: 10.1002/pro.757] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/12/2011] [Accepted: 10/17/2011] [Indexed: 11/07/2022]
Abstract
Signal peptidase I (SPase I) is critical for the release of translocated preproteins from the membrane as they are transported from a cytoplasmic site of synthesis to extracytoplasmic locations. These proteins are synthesized with an amino-terminal extension, the signal sequence, which directs the preprotein to the Sec- or Tat-translocation pathway. Recent evidence indicates that the SPase I cleaves preproteins as they emerge from either pathway, though the steps involved are unclear. Now that the structure of many translocation pathway components has been elucidated, it is critical to determine how these components work in concert to support protein translocation and cleavage. Molecular modeling and NMR studies have provided insight on how the preprotein docks on SPase I in preparation for cleavage. This is a key area for future work since SPase I enzymes in a variety of species have now been identified and the inhibition of these enzymes by antibiotics is being pursued. The eubacterial SPase I is essential for cell viability and belongs to a unique group of serine endoproteases which utilize a Ser-Lys catalytic dyad instead of the prototypical Ser-His-Asp triad used by eukaryotes. As such, SPase I is a desirable antimicrobial target. Advances in our understanding of how the preprotein interfaces with SPase I during the final stages of translocation will facilitate future development of inhibitors that display a high efficacy against SPase I function.
Collapse
Affiliation(s)
- Sarah M Auclair
- Department of Pharmaceutical Sciences, The University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|
13
|
Crauste C, Froeyen M, Anné J, Herdewijn P. Asymmetric Synthesis of New β-Lactam Lipopeptides as Bacterial Signal Peptidase I Inhibitors. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Rao S, Bockstael K, Nath S, Engelborghs Y, Anné J, Geukens N. Enzymatic investigation of the Staphylococcus aureus type I signal peptidase SpsB - implications for the search for novel antibiotics. FEBS J 2009; 276:3222-34. [PMID: 19438721 DOI: 10.1111/j.1742-4658.2009.07037.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus has one essential type I signal peptidase (SPase), SpsB, which has emerged as a potential target in the search for antibiotics with a new mode of action. In this framework, the biochemical properties of SpsB are described and compared with other previously characterized SPases. Two different substrates have been used to assess the in vitro processing activity of SpsB: (a) a native preprotein substrate immunodominant staphylococcal antigen A and (b) an intramolecularly quenched fluorogenic synthetic peptide based on the sequence of the SceD preprotein of Staphylococcus epidermidis for fluorescence resonance energy transfer-based analysis. Activity testing at different pH showed that the enzyme has an optimum pH of approximately 8. The pH-rate profile revealed apparent pK(a) values of 6.6 and 8.7. Similar to the other SPases, SpsB undergoes self-cleavage and, although the catalytic serine is retained in the self-cleavage product, a very low residual enzymatic activity remained. In contrast, a truncated derivative of SpsB, which was nine amino acids longer at the N-terminus compared to the self-cleavage product, retained activity. The specificity constants (k(cat)/K(m)) of the full-length and the truncated derivative were 1.85 +/- 0.13 x 10(3) m(-1).s(-1) and 59.4 +/- 6.4 m(-1).s(-1), respectively, as determined using the fluorogenic synthetic peptide substrate. These observations highlight the importance of the amino acids in the transmembrane segment and also those preceding the catalytic serine in the sequence of SpsB. Interestingly, we also found that the activity of the truncated SpsB increased in the presence of a non-ionic detergent.
Collapse
Affiliation(s)
- Smitha Rao
- Laboratory of Bacteriology, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
15
|
Buzder-Lantos P, Bockstael K, Anné J, Herdewijn P. Substrate based peptide aldehyde inhibits bacterial type I signal peptidase. Bioorg Med Chem Lett 2009; 19:2880-3. [PMID: 19362478 DOI: 10.1016/j.bmcl.2009.03.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 03/11/2009] [Accepted: 03/12/2009] [Indexed: 11/26/2022]
Abstract
Bacterial type I signal peptidase is a potential target for the development of novel antibacterial agents. In this study we demonstrate that a substrate based peptide aldehyde inhibits signal peptidases with a lower IC(50) value than the lipopeptides described to date. The length of the core lipopeptide could be reduced by removing several amino acids from both termini. Conversion of this peptide to an aldehyde resulted in a molecule with an IC(50) value of 0.09microM when tested against Staphylococcus [corrected] aureus SPase I, SpsB.
Collapse
Affiliation(s)
- Peter Buzder-Lantos
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat, Belgium
| | | | | | | |
Collapse
|
16
|
Ekici OD, Paetzel M, Dalbey RE. Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration. Protein Sci 2008; 17:2023-37. [PMID: 18824507 DOI: 10.1110/ps.035436.108] [Citation(s) in RCA: 225] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Serine proteases comprise nearly one-third of all known proteases identified to date and play crucial roles in a wide variety of cellular as well as extracellular functions, including the process of blood clotting, protein digestion, cell signaling, inflammation, and protein processing. Their hallmark is that they contain the so-called "classical" catalytic Ser/His/Asp triad. Although the classical serine proteases are the most widespread in nature, there exist a variety of "nonclassical" serine proteases where variations to the catalytic triad are observed. Such variations include the triads Ser/His/Glu, Ser/His/His, and Ser/Glu/Asp, and include the dyads Ser/Lys and Ser/His. Other variations are seen with certain serine and threonine peptidases of the Ntn hydrolase superfamily that carry out catalysis with a single active site residue. This work discusses the structure and function of these novel serine proteases and threonine proteases and how their catalytic machinery differs from the prototypic serine protease class.
Collapse
Affiliation(s)
- Ozlem Doğan Ekici
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
17
|
Liu DN, Li L, Lu WP, Liu YQD, Wehmeyer KR, Bao JJ. Capillary electrophoresis with laser-induced fluorescence detection as a tool for enzyme characterization and inhibitor screening. ANAL SCI 2008; 24:333-7. [PMID: 18332539 DOI: 10.2116/analsci.24.333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An effective, rapid and economical CE/LIF (capillary electrophoresis/laser-induced fluorescence) method was developed and applied to the characterization of signal peptidase (SPase) enzyme, which is a target for the screening of new drug candidates. In this method, CE separates the product from the substrate and LIF selectively detects the fluorescence-labeled product and substrate. By measuring the increase of the product as a function of time, one can monitor the progression of the enzyme reaction. The progression curves were also used for screening inhibitors for this enzyme. The effects of various reaction conditions were also studied and discussed. In addition, this CE/LIF method was applied to the determination of the enzyme activity, the quality control of the substrate and/or enzymes, and the cross-reactivity of inhibitors to the enzyme. It can be concluded that this method is suitable for high throughput screening (HTS) assays because it can deliver fast, sensitive, quantitative, and reliable results.
Collapse
Affiliation(s)
- Dan-Ning Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | | | | | | | | | | |
Collapse
|
18
|
Kim YT, Yoshida H, Kojima M, Kurita R, Nishii W, Muramatsu T, Ito H, Park SJ, Takahashi K. The Effects of Mutations in the Carboxyl-Terminal Region on the Catalytic Activity of Escherichia coli Signal Peptidase I. J Biochem 2008; 143:237-42. [DOI: 10.1093/jb/mvm212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Li T, Froeyen M, Herdewijn P. Computational alanine scanning and free energy decomposition for E. coli type I signal peptidase with lipopeptide inhibitor complex. J Mol Graph Model 2008; 26:813-23. [PMID: 17532654 DOI: 10.1016/j.jmgm.2007.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 04/24/2007] [Accepted: 04/28/2007] [Indexed: 11/18/2022]
Abstract
A thorough investigation of different roles of Escherichia coli type I signal peptidase residues binding to lipopeptide inhibitor has been performed by a combination of computational alanine scanning mutagenesis and free energy decomposition methods. PB and GB models are both used to evaluate the binding free energy in computational alanine scanning method and only GB model can be used to decompose the binding free energy on a per-residue basis. The regression analysis between the PB and GB model and also between the computational alanine scanning and free energy decomposition have been reported with a correlation coefficient of 0.96 and 0.83, respectively, which suggest they are both in fair agreement with each other. Moreover, the contribution components from van der Waals, electrostatic interaction, non-polar and polar energy of solvation, have been determined as well as the effects of backbones and side-chains. The results indicate that Lys145 is the most important residue for the binding but also acts as a general base, activating Ser90 to increase its nucleophility, recognizing and stabilizing the binding of lipopeptide inhibitor to the E. coli SPase. The hydroxyl group of Ser88 plays a key role for the binding of the inhibitor. Ser90 contributes more to the intramolecular interaction than to the intermolecular interaction. Tyr143 and Phe84 contribute larger van der Waals interaction energies, indicating that these residues can be important for the selection based on the shape of the inhibitors. The contributions from other several interfacial residues of the E. coli SPase are also analyzed. This study can be a guide for the optimization of lipopeptide inhibitors and future design of new therapeutic agents for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Tong Li
- Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
20
|
Abstract
Pili are a major surface feature of the human pathogen Streptococcus pyogenes (group A streptococcus [GAS]). The T3 pilus is composed of a covalently linked polymer of protein T3 (formerly Orf100 or Fct3) with an ancillary protein, Cpa, attached. A putative signal peptidase, SipA (also called LepA), has been identified in several pilus gene clusters of GAS. We demonstrate that the SipA2 allele of a GAS serotype M3 strain is required for synthesis of T3 pili. Heterologous expression in Escherichia coli showed that SipA2, along with the pilus backbone protein T3 and the sortase SrtC2, is required for polymerization of the T3 protein. In addition, we found that SipA2 is also required for linkage of the ancillary pilin protein Cpa to polymerized T3. Despite partial conservation of motifs of the type I signal peptidase family proteins, SipA lacks the highly conserved and catalytically important serine and lysine residues of these enzymes. Substitution of alanine for either of the two serine residues closest to the expected location of an active site serine demonstrated that these serine residues are both dispensable for T3 polymerization. Therefore, it seems unlikely that SipA functions as a signal peptidase. However, a T3 protein mutated at the P-1 position of the signal peptide cleavage site (alanine to arginine) was unstable in the presence of SipA2, suggesting that there is an interaction between SipA and T3. A possible chaperone-like function of SipA2 in T3 pilus formation is discussed.
Collapse
|
21
|
van Roosmalen ML, Geukens N, Jongbloed JDH, Tjalsma H, Dubois JYF, Bron S, van Dijl JM, Anné J. Type I signal peptidases of Gram-positive bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1694:279-97. [PMID: 15546672 DOI: 10.1016/j.bbamcr.2004.05.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Accepted: 05/12/2004] [Indexed: 11/21/2022]
Abstract
Proteins that are exported from the cytoplasm to the periplasm and outer membrane of Gram-negative bacteria, or the cell wall and growth medium of Gram-positive bacteria, are generally synthesized as precursors with a cleavable signal peptide. During or shortly after pre-protein translocation across the cytoplasmic membrane, the signal peptide is removed by signal peptidases. Importantly, pre-protein processing by signal peptidases is essential for bacterial growth and viability. This review is focused on the signal peptidases of Gram-positive bacteria, Bacillus and Streptomyces species in particular. Evolutionary concepts, current knowledge of the catalytic mechanism, substrate specificity requirements and structural aspects are addressed. As major insights in signal peptidase function and structure have been obtained from studies on the signal peptidase LepB of Escherichia coli, similarities and differences between this enzyme and known Gram-positive signal peptidases are highlighted. Notably, while the incentive for previous research on Gram-positive signal peptidases was largely based on their role in the biotechnologically important process of protein secretion, present-day interest in these essential enzymes is primarily derived from the idea that they may serve as targets for novel anti-microbials.
Collapse
Affiliation(s)
- Maarten L van Roosmalen
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Karla A, Lively MO, Paetzel M, Dalbey R. The Identification of Residues That Control Signal Peptidase Cleavage Fidelity and Substrate Specificity. J Biol Chem 2005; 280:6731-41. [PMID: 15598653 DOI: 10.1074/jbc.m413019200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal peptidase, which removes signal peptides from preproteins, has a substrate specificity for small uncharged residues at -1 (P1) and small or larger aliphatic residues at the -3 (P3) position. Structures of the catalytic domain with a 5S-penem inhibitor and a lipopeptide inhibitor reveal candidate residues that make up the S1 and S3 pockets that bind the P1 and P3 specificity residues of the preprotein substrate. We have used site-directed mutagenesis, mass spectrometric analysis, and in vivo and in vitro activity assays as well as molecular modeling to examine the importance of the substrate pocket residues. Generally, we find that the S1 and S3 binding sites can tolerate changes that are expected to increase or decrease the size of the pocket without large effects on activity. One residue that contributes to the high fidelity of cleavage of signal peptidase is the Ile-144 residue. Changes of the Ile-144 residue to cysteine result in cleavage at multiple sites, as determined by mass spectrometry and Edman sequencing analysis. In addition, we find that signal peptidase is able to cleave after phenylalanine at the -1 residue in a double mutant in which both Ile-86 and Ile-144 were changed to an alanine. Also, alteration of the Ile-144 and Ile-86 residues to the corresponding residues found in the homologous Imp1 protease changes the specificity to promote cleavage following a -1 Asn residue. This work shows that Ile-144 and Ile-86 contribute to the signal peptidase substrate specificity and that Ile-144 is important for the accuracy of the cleavage reaction.
Collapse
Affiliation(s)
- Andrew Karla
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
23
|
Paetzel M, Goodall JJ, Kania M, Dalbey RE, Page MGP. Crystallographic and Biophysical Analysis of a Bacterial Signal Peptidase in Complex with a Lipopeptide-based Inhibitor. J Biol Chem 2004; 279:30781-90. [PMID: 15136583 DOI: 10.1074/jbc.m401686200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report here the crystallographic and biophysical analysis of a soluble, catalytically active fragment of the Escherichia coli type I signal peptidase (SPase Delta2-75) in complex with arylomycin A2. The 2.5-A resolution structure revealed that the inhibitor is positioned with its COOH-terminal carboxylate oxygen (O45) within hydrogen bonding distance of all the functional groups in the catalytic center of the enzyme (Ser90 O-gamma, Lys145 N-zeta, and Ser88 O-gamma) and that it makes beta-sheet type interactions with the beta-strands that line each side of the binding site. Ligand binding studies, calorimetry, fluorescence spectroscopy, and stopped-flow kinetics were also used to analyze the binding mode of this unique non-covalently bound inhibitor. The crystal structure was solved in the space group P4(3)2(1)2. A detailed comparison is made to the previously published acyl-enzyme inhibitor complex structure (space group: P2(1)2(1)2) and the apo-enzyme structure (space group: P4(1)2(1)2). Together this work provides insights into the binding of pre-protein substrates to signal peptidase and will prove helpful in the development of novel antibiotics.
Collapse
Affiliation(s)
- Mark Paetzel
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6 Canada.
| | | | | | | | | |
Collapse
|
24
|
Kulanthaivel P, Kreuzman AJ, Strege MA, Belvo MD, Smitka TA, Clemens M, Swartling JR, Minton KL, Zheng F, Angleton EL, Mullen D, Jungheim LN, Klimkowski VJ, Nicas TI, Thompson RC, Peng SB. Novel lipoglycopeptides as inhibitors of bacterial signal peptidase I. J Biol Chem 2004; 279:36250-8. [PMID: 15173160 DOI: 10.1074/jbc.m405884200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal peptidase (SPase) I is responsible for the cleavage of signal peptides of many secreted proteins in bacteria. Because of its unique physiological and biochemical properties, it serves as a potential target for development of novel antibacterial agents. In this study, we report the production, isolation, and structure determination of a family of structurally related novel lipoglycopeptides from a Streptomyces sp. as inhibitors of SPase I. Detailed spectroscopic analyses, including MS and NMR, revealed that these lipoglycopeptides share a common 14-membered cyclic peptide core, an acyclic tripeptide chain, and a deoxy-alpha-mannose sugar, but differ in the degree of oxidation of the N-methylphenylglycine residue and the length and branching of the fatty acyl chain. Biochemical analysis demonstrated that these peptides are potent and competitive inhibitors of SPase I with K(i) 50 to 158 nm. In addition, they showed modest antibacterial activity against a panel of pathogenic Gram-positive and Gram-negative bacteria with minimal inhibitory concentration of 8-64 microm against Streptococcus pneumonniae and 4-8 microm against Escherichia coli. Notably, they mechanistically blocked the protein secretion in whole cells as demonstrated by inhibiting beta-lactamase release from Staphylococcus aureus. Taken together, the present discovery of a family of novel lipoglycopeptides as potent inhibitors of bacterial SPase I may lead to the development of a novel class of broad-spectrum antibiotics.
Collapse
|
25
|
Rafati S, Salmanian AH, Taheri T, Masina S, Schaff C, Taslimi Y, Fasel N. Type I signal peptidase from Leishmania is a target of the immune response in human cutaneous and visceral leishmaniasis. Mol Biochem Parasitol 2004; 135:13-20. [PMID: 15287582 DOI: 10.1016/j.molbiopara.2003.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The gene encoding type I signal peptidase (Lmjsp) has been cloned from Leishmania major. Lmjsp encodes a protein of 180 amino residues with a predicted molecular mass of 20.5 kDa. Comparison of the protein sequence with those of known type I signal peptidases indicates homology in five conserved domains A-E which are known to be important, or essential, for catalytic activity. Southern blot hybridisation analysis indicates that there is a single copy of the Lmjsp gene. A recombinant SPase protein and a synthetic peptide of the L. major signal peptidase were used to examine the presence of specific antibodies in sera from either recovered or active individuals of both cutaneous and visceral leishmaniasis. This evaluation demonstrated that sera from cutaneous and visceral forms of leishmaniasis are highly reactive to both the recombinant and synthetic signal peptidase antigens. Therefore, the Leishmania signal peptidase, albeit localised intracellularly, is a significant target of the Leishmania specific immune response and highlights its potential use for serodiagnosis of cutaneous and visceral leishmaniasis.
Collapse
MESH Headings
- Adolescent
- Amino Acid Sequence
- Animals
- Antibodies, Protozoan/blood
- Catalytic Domain
- Child
- Child, Preschool
- Cloning, Molecular
- DNA, Protozoan/chemistry
- DNA, Protozoan/isolation & purification
- Gene Dosage
- Genes, Protozoan
- Humans
- Infant
- Leishmania major/genetics
- Leishmania major/immunology
- Leishmania major/metabolism
- Leishmaniasis, Cutaneous/diagnosis
- Leishmaniasis, Cutaneous/immunology
- Leishmaniasis, Cutaneous/parasitology
- Leishmaniasis, Visceral/diagnosis
- Leishmaniasis, Visceral/immunology
- Leishmaniasis, Visceral/parasitology
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Molecular Sequence Data
- Molecular Weight
- Open Reading Frames
- Protein Structure, Tertiary
- Sequence Alignment
- Sequence Analysis, DNA
- Serine Endopeptidases/biosynthesis
- Serine Endopeptidases/genetics
- Serine Endopeptidases/immunology
Collapse
Affiliation(s)
- Sima Rafati
- Department of Immunology, Pasteur Institute of Iran, P.O. Box 11365-6699, Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
26
|
Kim YT, Kurita R, Kojima M, Nishii W, Tanokura M, Muramatsu T, Ito H, Takahashi K. Identification of arginine residues important for the activity of Escherichia coli signal peptidase I. Biol Chem 2004; 385:381-8. [PMID: 15195997 DOI: 10.1515/bc.2004.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Escherichia coil signal peptidase I (leader peptidase, SPase I) is an integral membrane serine protease that catalyzes the cleavage of signal (leader) peptides from pre-forms of membrane or secretory proteins. We previously demonstrated that E. coil SPase I was significantly inactivated by reaction with phenylglyoxal with concomitant modification of three to four of the total 17 arginine residues in the enzyme. This result indicated that several arginine residues are important for the optimal activity of the enzyme. In the present study, we have constructed 17 mutants of the enzyme by site-directed mutagenesis to investigate the role of individual arginine residues in the enzyme. Mutation of Arg127, Arg146, Arg198, Arg199, Arg226, Arg236, Arg275, Arg282, and Arg295 scarcely affected the enzyme activity in vivo and in vitro. However, the enzymatic activity toward a synthetic substrate was significantly decreased by replacements of Arg77, Arg222, Arg315, or Arg318 with alanine/lysine. The kcat values of the R77A, R77K, R222A, R222K, R315A, R318A, and R318K mutant enzymes were about 5.5-fold smaller than that of the wild-type enzyme, whereas the Km values of these mutant enzymes were almost identical with that of the wild-type. Moreover, the complementing abilities in E. Arg222, Arg315, coil IT41 were lost completely when Arg77, or Arg318 was replaced with alanine/lysine. The circular dichroism spectra and other enzymatic properties of these mutants were comparable to those of the wild-type enzyme, indicating no global conformational changes. However, the thermostability of R222A, R222K, R315A, and R318K was significantly lower compared to the wild type. Therefore, Arg77, Arg222, Arg315, and Arg318 are thought to be important for maintaining the proper and stable conformation of SPase I.
Collapse
Affiliation(s)
- Yong-Tae Kim
- Department of Chemistry, Aoyama Gakuin University, Sagamihara, Kanagawa 229-8558, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Rahman MS, Simser JA, Macaluso KR, Azad AF. Molecular and functional analysis of the lepB gene, encoding a type I signal peptidase from Rickettsia rickettsii and Rickettsia typhi. J Bacteriol 2003; 185:4578-84. [PMID: 12867468 PMCID: PMC165774 DOI: 10.1128/jb.185.15.4578-4584.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type I signal peptidase lepB genes from Rickettsia rickettsii and Rickettsia typhi, the etiologic agents of Rocky Mountain spotted fever and murine typhus, respectively, were cloned and characterized. Sequence analysis of the cloned lepB genes from R. rickettsii and R. typhi shows open reading frames of 801 and 795 nucleotides, respectively. Alignment analysis of the deduced amino acid sequences reveals the presence of highly conserved motifs that are important for the catalytic activity of bacterial type I signal peptidase. Reverse transcription-PCR and Northern blot analysis demonstrated that the lepB gene of R. rickettsii is cotranscribed in a polycistronic message with the putative nuoF (encoding NADH dehydrogenase I chain F), secF (encoding protein export membrane protein), and rnc (encoding RNase III) genes in a secF-nuoF-lepB-rnc cluster. The cloned lepB genes from R. rickettsii and R. typhi have been demonstrated to possess signal peptidase I activity in Escherichia coli preprotein processing in vivo by complementation assay.
Collapse
Affiliation(s)
- M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Mark Paetzel
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
29
|
de Zamaroczy M, Buckingham RH. Importation of nuclease colicins into E coli cells: endoproteolytic cleavage and its prevention by the immunity protein. Biochimie 2002; 84:423-32. [PMID: 12423785 DOI: 10.1016/s0300-9084(02)01426-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A major group of colicins comprises molecules that possess nuclease activity and kill sensitive cells by cleaving RNA or DNA. Recent data open the possibility that the tRNase colicin D, the rRNase colicin E3 and the DNase colicin E7 undergo proteolytic processing, such that only the C-terminal domain of the molecule, carrying the nuclease activity, enters the cytoplasm. The proteases responsible for the proteolytic processing remain unidentified. In the case of colicin D, the characterization of a colicin D-resistant mutant shows that the inner membrane protease LepB is involved in colicin D toxicity, but is not solely responsible for the cleavage of colicin D. The lepB mutant resistant to colicin D remains sensitive to other colicins tested (B, E1, E3 and E2), and the mutant protease retains activity towards its normal substrates. The cleavage of colicin D observed in vitro releases a C-terminal fragment retaining tRNase activity, and occurs in a region of the amino acid sequence that is conserved in other nuclease colicins, suggesting that they may also require a processing step for their cytotoxicity. The immunity proteins of both colicins D and E3 appear to have a dual role, protecting the colicin molecule against proteolytic cleavage and inhibiting the nuclease activity of the colicin. The possibility that processing is an essential step common to cell killing by all nuclease colicins, and that the immunity protein must be removed from the colicin prior to processing, is discussed.
Collapse
Affiliation(s)
- Miklos de Zamaroczy
- Institut de Biologie Physico-Chimique, CNRS, UPR 9073, 13, rue Pierre et Marie Curie 75005, Paris, France.
| | | |
Collapse
|
30
|
Paetzel M, Dalbey RE, Strynadka NCJ. Crystal structure of a bacterial signal peptidase apoenzyme: implications for signal peptide binding and the Ser-Lys dyad mechanism. J Biol Chem 2002; 277:9512-9. [PMID: 11741964 DOI: 10.1074/jbc.m110983200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report here the x-ray crystal structure of a soluble catalytically active fragment of the Escherichia coli type I signal peptidase (SPase-(Delta2-75)) in the absence of inhibitor or substrate (apoenzyme). The structure was solved by molecular replacement and refined to 2.4 A resolution in a different space group (P4(1)2(1)2) from that of the previously published acyl-enzyme inhibitor-bound structure (P2(1)2(1)2) (Paetzel, M., Dalbey, R.E., and Strynadka, N.C.J. (1998) Nature 396, 186-190). A comparison with the acyl-enzyme structure shows significant side-chain and main-chain differences in the binding site and active site regions, which result in a smaller S1 binding pocket in the apoenzyme. The apoenzyme structure is consistent with SPase utilizing an unusual oxyanion hole containing one side-chain hydroxyl hydrogen (Ser-88 OgammaH) and one main-chain amide hydrogen (Ser-90 NH). Analysis of the apoenzyme active site reveals a potential deacylating water that was displaced by the inhibitor. It has been proposed that SPase utilizes a Ser-Lys dyad mechanism in the cleavage reaction. A similar mechanism has been proposed for the LexA family of proteases. A structural comparison of SPase and members of the LexA family of proteases reveals a difference in the side-chain orientation for the general base lysine, both of which are stabilized by an adjacent hydroxyl group. To gain insight into how signal peptidase recognizes its substrates, we have modeled a signal peptide into the binding site of SPase. The model is built based on the recently solved crystal structure of the analogous enzyme LexA (Luo, Y., Pfuetzner, R. A., Mosimann, S., Paetzel, M., Frey, E. A., Cherney, M., Kim, B., Little, J. W., and Strynadka, N. C. J. (2001) Cell 106, 1-10) with its bound cleavage site region.
Collapse
Affiliation(s)
- Mark Paetzel
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3 Canada
| | | | | |
Collapse
|
31
|
Bacterial Type I Signal Peptidases. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1874-6047(02)80003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
32
|
Chloroplast and Mitochondrial Type I Signal Peptidases. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1874-6047(02)80006-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
33
|
de Zamaroczy M, Mora L, Lecuyer A, Géli V, Buckingham RH. Cleavage of colicin D is necessary for cell killing and requires the inner membrane peptidase LepB. Mol Cell 2001; 8:159-68. [PMID: 11511369 DOI: 10.1016/s1097-2765(01)00276-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Colicin D is known to kill target cells by cleaving tRNA(Arg). A colicin D-resistant mutant was selected that was altered in the inner membrane leader peptidase, LepB. The substituted residue (Asn274Lys) is located close to the catalytic site. The mutation abolishes colicin D cleavage but not the processing of exported proteins. LepB is required for colicin D cleavage, releasing a small C-terminal fragment that retains full tRNase activity. The immunity protein was found to prevent colicin D processing and furthermore masks tRNase activity, thus protecting colicin D against LepB-mediated cleavage during export. Catalytic colicins share a consensus sequence at their putative processing site. Mutations affecting normal processing of colicin D abolish cytotoxicity without affecting the in vitro tRNase activity.
Collapse
Affiliation(s)
- M de Zamaroczy
- Institut de Biologie Physico-Chimique, CNRS, UPR 9073, 75005, Paris, France.
| | | | | | | | | |
Collapse
|
34
|
Peng SB, Zheng F, Angleton EL, Smiley D, Carpenter J, Scott JE. Development of an Internally Quenched Fluorescent Substrate and a Continuous Fluorimetric Assay for Streptococcus pneumoniae Signal Peptidase I. Anal Biochem 2001; 293:88-95. [PMID: 11373083 DOI: 10.1006/abio.2001.5102] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Signal peptidase (SPase) I is responsible for the cleavage of signal peptides of many secreted proteins in bacteria and serves as a potential target for the development of novel antibacterial agents due to its unique physiological and biochemical properties. In this paper, we describe a novel fluorogenic substrate, KLTFGTVK(Abz)PVQAIAGY(NO2)EWL, in which 2-aminobenzoic acid (Abz) and 3-nitrotyrosine (Y(NO2)) were used as the fluorescent donor and acceptor, respectively. The substrate can be cleaved by both Streptococcus pneumoniae and Escherichia coli SPase I. Upon cleavage of the fluorogenic substrate by SPase I, the fluorescent intensity increases and can be monitored continuously by spectrofluorometer. Kinetic analysis with S. pneumoniae SPase I demonstrated that the K(m) value for the substrate is 118.1 microM, and the k(cat) value is 0.032 s(-1). Mass spectrometric analysis and peptide sequencing of the two cleaved products confirmed that the cleavage occurs specifically at the predicted site. More interestingly, the positively charged lysine in the N-terminus of the substrate was demonstrated to be important for effective cleavage. Phospholipids were found to stimulate the cleavage reaction. This stimulation by phospholipids is dependent upon the N-terminal charge of the substrate, indicating that the interaction of the positively charged substrate with anionic phospholipids is important for maintaining the substrate in certain conformation for cleavage. The substrate and assay described here can be readily automated and utilized for the identification of potential antibacterial agents.
Collapse
Affiliation(s)
- S B Peng
- Infectious Diseases Research, Lilly Research Laboratories, Indianapolis, IN 46285, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Peng SB, Wang L, Moomaw J, Peery RB, Sun PM, Johnson RB, Lu J, Treadway P, Skatrud PL, Wang QM. Biochemical characterization of signal peptidase I from gram-positive Streptococcus pneumoniae. J Bacteriol 2001; 183:621-7. [PMID: 11133956 PMCID: PMC94918 DOI: 10.1128/jb.183.2.621-627.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2000] [Accepted: 10/25/2000] [Indexed: 11/20/2022] Open
Abstract
Bacterial signal peptidase I is responsible for proteolytic processing of the precursors of secreted proteins. The enzymes from gram-negative and -positive bacteria are different in structure and specificity. In this study, we have cloned, expressed, and purified the signal peptidase I of gram-positive Streptococcus pneumoniae. The precursor of streptokinase, an extracellular protein produced in pathogenic streptococci, was identified as a substrate of S. pneumoniae signal peptidase I. Phospholipids were found to stimulate the enzymatic activity. Mutagenetic analysis demonstrated that residues serine 38 and lysine 76 of S. pneumoniae signal peptidase I are critical for enzyme activity and involved in the active site to form a serine-lysine catalytic dyad, which is similar to LexA-like proteases and Escherichia coli signal peptidase I. Similar to LexA-like proteases, S. pneumoniae signal peptidase I catalyzes an intermolecular self-cleavage in vitro, and an internal cleavage site has been identified between glycine 36 and histidine 37. Sequence analysis revealed that the signal peptidase I and LexA-like proteases show sequence homology around the active sites and some common properties around the self-cleavage sites. All these data suggest that signal peptidase I and LexA-like proteases are closely related and belong to a novel class of serine proteases.
Collapse
Affiliation(s)
- S B Peng
- Infectious Diseases Research, Lilly Research Laboratories, Indianapolis, Indiana 46285, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Eisenbrandt R, Kalkum M, Lurz R, Lanka E. Maturation of IncP pilin precursors resembles the catalytic Dyad-like mechanism of leader peptidases. J Bacteriol 2000; 182:6751-61. [PMID: 11073921 PMCID: PMC111419 DOI: 10.1128/jb.182.23.6751-6761.2000] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pilus subunit, the pilin, of conjugative IncP pili is encoded by the trbC gene. IncP pilin is composed of 78 amino acids forming a ring structure (R. Eisenbrandt, M. Kalkum, E.-M. Lai, C. I. Kado, and E. Lanka, J. Biol. Chem. 274:22548-22555, 1999). Three enzymes are involved in maturation of the pilin: LepB of Escherichia coli for signal peptide removal and a yet-unidentified protease for removal of 27 C-terminal residues. Both enzymes are chromosome encoded. Finally, the inner membrane-associated IncP TraF replaces a four-amino-acid C-terminal peptide with the truncated N terminus, yielding the cyclic polypeptide. We refer to the latter process as "prepilin cyclization." We have used site-directed mutagenesis of trbC and traF to unravel the pilin maturation process. Each of the mutants was analyzed for its phenotypes of prepilin cyclization, pilus formation, donor-specific phage adsorption, and conjugative DNA transfer abilities. Effective prepilin cyclization was determined by matrix-assisted laser desorption-ionization-mass spectrometry using an optimized sample preparation technique of whole cells and trans-3-indolyl acrylic acid as a matrix. We found that several amino acid exchanges in the TrbC core sequence allow prepilin cyclization but disable the succeeding pilus assembly. We propose a mechanism explaining how the signal peptidase homologue TraF attacks a C-terminal section of the TrbC core sequence via an activated serine residue. Rather than cleaving and releasing hydrolyzed peptides, TraF presumably reacts as a peptidyl transferase, involving the N terminus of TrbC in the aminolysis of a postulated TraF-acetyl-TrbC intermediate. Under formal loss of a C-terminal tetrapeptide, a new peptide bond is formed in a concerted action, connecting serine 37 with glycine 114 of TrbC.
Collapse
Affiliation(s)
- R Eisenbrandt
- Max-Planck-Institut für Molekulare Genetik, Dahlem, D-14195 Berlin, Germany
| | | | | | | |
Collapse
|
37
|
Paetzel M, Dalbey RE, Strynadka NC. The structure and mechanism of bacterial type I signal peptidases. A novel antibiotic target. Pharmacol Ther 2000; 87:27-49. [PMID: 10924740 DOI: 10.1016/s0163-7258(00)00064-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Type I signal peptidases are essential membrane-bound serine proteases that function to cleave the amino-terminal signal peptide extension from proteins that are translocated across biological membranes. The bacterial signal peptidases are unique serine proteases that utilize a Ser/Lys catalytic dyad mechanism in place of the classical Ser/His/Asp catalytic triad mechanism. They represent a potential novel antibiotic target at the bacterial membrane surface. This review will discuss the bacterial signal peptidases that have been characterized to date, as well as putative signal peptidase sequences that have been recognized via bacterial genome sequencing. We review the investigations into the mechanism of Escherichia coli and Bacillus subtilis signal peptidase, and discuss the results in light of the recent crystal structure of the E. coli signal peptidase in complex with a beta-lactam-type inhibitor. The proposed conserved structural features of Type I signal peptidases give additional insight into the mechanism of this unique enzyme.
Collapse
Affiliation(s)
- M Paetzel
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
38
|
Klenotic PA, Carlos JL, Samuelson JC, Schuenemann TA, Tschantz WR, Paetzel M, Strynadka NC, Dalbey RE. The role of the conserved box E residues in the active site of the Escherichia coli type I signal peptidase. J Biol Chem 2000; 275:6490-8. [PMID: 10692453 DOI: 10.1074/jbc.275.9.6490] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type I signal peptidases are integral membrane proteins that function to remove signal peptides from secreted and membrane proteins. These enzymes carry out catalysis using a serine/lysine dyad instead of the prototypical serine/histidine/aspartic acid triad found in most serine proteases. Site-directed scanning mutagenesis was used to obtain a qualitative assessment of which residues in the fifth conserved region, Box E, of the Escherichia coli signal peptidase I are critical for maintaining a functional enzyme. First, we find that there is no requirement for activity for a salt bridge between the invariant Asp-273 and the Arg-146 residues. In addition, we show that the conserved Ser-278 is required for optimal activity as well as conserved salt bridge partners Asp-280 and Arg-282. Finally, Gly-272 is essential for signal peptidase I activity, consistent with it being located within van der Waals proximity to Ser-278 and general base Lys-145 side-chain atoms. We propose that replacement of the hydrogen side chain of Gly-272 with a methyl group results in steric crowding, perturbation of the active site conformation, and specifically, disruption of the Ser-90/Lys-145 hydrogen bond. A refined model is proposed for the catalytic dyad mechanism of signal peptidase I in which the general base Lys-145 is positioned by Ser-278, which in turn is held in place by Asp-280.
Collapse
Affiliation(s)
- P A Klenotic
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Chen X, Van Valkenburgh C, Fang H, Green N. Signal peptides having standard and nonstandard cleavage sites can be processed by Imp1p of the mitochondrial inner membrane protease. J Biol Chem 1999; 274:37750-4. [PMID: 10608835 DOI: 10.1074/jbc.274.53.37750] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have performed a site-directed mutagenesis study showing that residues comprising the type I signal peptidase signature in the two catalytic subunits of the yeast inner membrane protease, Imp1p and Imp2p, are functionally important, consistent with the idea that these subunits contain a serine/lysine catalytic dyad. Previous studies have shown that Imp1p cleaves signal peptides having asparagine at the -1 position, which deviates from the typical signal peptide possessing a small uncharged amino acid at this position. To determine whether asparagine is responsible for the nonoverlapping substrate specificities exhibited by the inner membrane protease subunits, we have substituted asparagine with 19 amino acids in the Imp1p substrate i-cytochrome (cyt) b(2). The resulting signal peptides containing alanine, serine, cysteine, leucine, and methionine can be cleaved efficiently by Imp1p. The remaining mutant signal peptides are cleaved inefficiently or not at all. Surprisingly, none of the amino acid changes results in the recognition of i-cyt b(2) by Imp2p, whose natural substrate, i-cyt c(1), has alanine at the -1 position. The data demonstrate that (i) although the -1 residue is important in substrates recognized by Imp1p, signal peptides having standard and nonstandard cleavage sites can be processed by Imp1p, and (ii) a -1 asparagine does not govern the substrate specificity of the inner membrane protease subunits.
Collapse
Affiliation(s)
- X Chen
- Department of Microbiology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232-2363, USA
| | | | | | | |
Collapse
|
40
|
Perera WS, Hooper NM. Proteolytic fragmentation of the murine prion protein: role of Tyr-128 and His-177. FEBS Lett 1999; 463:273-6. [PMID: 10606736 DOI: 10.1016/s0014-5793(99)01648-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The prion protein (PrP) has been proposed to display sequence and structural similarities to membrane-anchored signal peptidases [Glockshuber et al. (1998) FEBS Lett. 426, 291-296]. We have investigated the role of Tyr-128 and His-177 in the proteolytic fragmentation of murine PrP by mutating these residues to Phe and Leu, respectively, and expressing the resultant mutants in the human neuroblastoma SH-SY5Y. Both PrP-Y128F and PrP-H177L were expressed at the cell surface as glycosyl-phosphatidylinositol-anchored forms and were localised in detergent-insoluble membrane domains similar to wild type PrP. Following deglycosylation, the 19 kDa proteolytic fragment PrP-II was present in cells expressing either mutant, indicating that Tyr-128 and His-177 are not involved in the proteolytic fragmentation of PrP.
Collapse
Affiliation(s)
- W S Perera
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds, UK
| | | |
Collapse
|
41
|
Schacht S, Van Mellaert L, Lammertyn E, Tjalsma H, van Dijl JM, Bron S, Anné J. The Sip(Sli) gene of Streptomyces lividans TK24 specifies an unusual signal peptidase with a putative C-terminal transmembrane anchor. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1999; 9:79-88. [PMID: 10520736 DOI: 10.3109/10425179809086432] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Type I signal peptidases (SPases) are a widespread family of enzymes which remove signal peptides from proteins translocated across cellular membranes. Here, we report the first isolation of a gene coding for type I signal peptidase of Streptomyces, denoted Sip(Sli). The sip(sli) gene specifies a protein of 291 amino acids. Thus Sip(Sli) is much larger (approximately 100 amino acids) than other known SPases of Gram-positive bacteria and resembles SPases of Gram-negative bacteria, showing the highest degree of similarity to an SPase of the cyanobacterium Phormidium laminosum. Sip(Sli) contains conserved serine and lysine residues, which are believed to be required for the catalytic activity. Similar to other known SPases from Gram-positive bacteria, Sip(Sli) seems to have only one N-terminal transmembrane anchor. In addition, Sip(Sli) seems to contain a second transmembrane anchor at the C-terminus, which is an unusual feature for type I signal peptidases.
Collapse
Affiliation(s)
- S Schacht
- Laboratory of Bacteriology, Rega Institute, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
42
|
VanValkenburgh C, Chen X, Mullins C, Fang H, Green N. The catalytic mechanism of endoplasmic reticulum signal peptidase appears to be distinct from most eubacterial signal peptidases. J Biol Chem 1999; 274:11519-25. [PMID: 10206957 DOI: 10.1074/jbc.274.17.11519] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many type I signal peptidases from eubacterial cells appear to contain a serine/lysine catalytic dyad. In contrast, our data show that the signal peptidase complex from the endoplasmic reticulum lacks an apparent catalytic lysine. Instead, a serine, histidine, and two aspartic acids are important for signal peptidase activity by the Sec11p subunit of the yeast signal peptidase complex. Amino acids critical to the eubacterial signal peptidases and Sec11p are, however, positioned similarly along their primary sequences, suggesting the presence of a common structural element(s) near the catalytic sites of these enzymes.
Collapse
Affiliation(s)
- C VanValkenburgh
- Department of Microbiology and Immunology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232-2363, USA
| | | | | | | | | |
Collapse
|
43
|
Henrich B, Berns G, Weinhold M, Kitzerow A, Schaal H, Hadding U. Cloning and expression of P60, a conserved surface-localized protein of Mycoplasma hominis, in Escherichia coli. Biol Chem 1998; 379:1143-50. [PMID: 9792448 DOI: 10.1515/bchm.1998.379.8-9.1143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The clp60 gene encoding P60, a conserved lipoprotein of Mycoplasma hominis, was cloned and sequenced from both the type strain PG21 and the isolate FBG. Both open reading frames were identical in length, comprising 1746 nucleotides. The deduced amino acid sequences differed in 16 out of 582 amino acids. As expected, none of these divergences mapped within the epitope that was recognized by mAb CG4 in all of the 198 isolates of M. hominis analyzed so far. This conserved epitope was narrowed down to amino acids 454 through 464 within the C terminus of P60. For the expression of the recombinant homolog P60, P60rec, in E. coli the TGA codons of clp60 were substituted for TGG codons prior to cloning of clp60 into the expression plasmid pQE41. The expression of P60rec as a fusion protein with dihydrofolate reductase carrying an N-terminal His-tag enabled the purification of large amounts of P60rec in a soluble form.
Collapse
Affiliation(s)
- B Henrich
- Institute for Medical Microbiology and Virology, and Center for Biological and Medical Research, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Glockshuber R, Hornemann S, Billeter M, Riek R, Wider G, Wüthrich K. Prion protein structural features indicate possible relations to signal peptidases. FEBS Lett 1998; 426:291-6. [PMID: 9600253 DOI: 10.1016/s0014-5793(98)00372-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transmissible spongiform encephalopathies (TSEs) in mammalian species are believed to be caused by an oligomeric isoform, PrP(Sc), of the cellular prion protein, PrP(C). One of the key questions in TSE research is how the observed accumulation of PrP(Sc), or possibly the concomitant depletion of PrP(C) can cause fatal brain damage. Elucidation of the so far unknown function of PrP(C) is therefore of crucial importance. PrP(C) is a membrane-anchored cell surface protein that possesses a so far unique three-dimensional structure. While the N-terminal segment 23-120 of PrP(C) is flexibly disordered, its C-terminal residues 121-231 form a globular domain with three alpha-helices and a two-stranded beta-sheet. Here we report the observation of structural similarities between the domain of PrP(121-231) and the soluble domains of membrane-anchored signal peptidases. At the level of the primary structure we find 23% identity and 41% similarity between residues 121-217 of the C-terminal domain of murine PrP and a catalytic domain of the rat signal peptidase. The invariant PrP residues Tyr-128 and His-177 align with the two presumed active-site residues of signal peptidases and are in close spatial proximity in the three-dimensional structure of PrP(121-231).
Collapse
Affiliation(s)
- R Glockshuber
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule-Hönggerberg, Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
45
|
Zhong W, Benkovic SJ. Development of an internally quenched fluorescent substrate for Escherichia coli leader peptidase. Anal Biochem 1998; 255:66-73. [PMID: 9448843 DOI: 10.1006/abio.1997.2471] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Escherichia coli leader peptidase, an integral membrane protein, is responsible for the cleavage of the signal sequence of many exported proteins. Recent studies suggest that it is a novel serine protease that utilizes a serine-lysine catalytic dyad. In an effort to further understand the mechanism of this enzyme, an internally quenched fluorescent peptide substrate incorporating the leader peptidase cleavage site of maltose binding protein signal peptide, Y(NO2)-F-S-A-S-A-L-A-K-I-K(Abz) (anthraniloyl), was designed and synthesized. In the intact peptide, the fluorescence of the anthraniloyl group is quenched by the 3-nitrotyrosine. This quenched fluorescence is liberated upon cleavage of the peptide by the leader peptidase, resulting in increased fluorescence that could then be monitored fluorometrically. The designed substrate can be cleaved effectively by E. coli leader peptidase as detected by both HPLC and fluorescent spectroscopy. Mass spectra of cleavage products demonstrated that the cleavage occurs at the predicted site (A-K). The cleavage of the peptide substrate has a linear dependence on the enzyme concentration (0.1 to 1.9 microM) and the kcat/K(m) was calculated to be 71.1 M-1 s-1. These data are comparable with the unmodified peptide substrate. This report represents the first direct continuous assay based on fluorescence resonance energy transfer for E. coli leader peptidase.
Collapse
Affiliation(s)
- W Zhong
- Department of Chemistry, Pennsylvania State University, University Park 16802, USA
| | | |
Collapse
|
46
|
Haase J, Lanka E. A specific protease encoded by the conjugative DNA transfer systems of IncP and Ti plasmids is essential for pilus synthesis. J Bacteriol 1997; 179:5728-35. [PMID: 9294428 PMCID: PMC179460 DOI: 10.1128/jb.179.18.5728-5735.1997] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
TraF, an essential component of the conjugative transfer apparatus of the broad-host-range plasmid RP4 (IncP), which is located at the periplasmic side of the cytoplasmic membrane, encodes a specific protease. The traF gene products of IncP and Ti plasmids show extensive similarities to prokaryotic and eukaryotic signal peptidases. Mutational analysis of RP4 TraF revealed that the mechanism of the proteolytic cleavage reaction resembles that of signal and LexA-like peptidases. Among the RP4 transfer functions, the product of the Tra2 gene, trbC, was identified as a target for the TraF protease activity. TrbC is homologous to VirB2 of Ti plasmids and thought to encode the RP4 prepilin. The maturation of TrbC involves three processing reactions: (i) the removal of the N-terminal signal peptide by Escherichia coli signal peptidase I (Lep), (ii) a proteolytic cleavage at the C terminus by an as yet unidentified host cell enzyme, and (iii) C-terminal processing by TraF. The third reaction of the maturation process is critical for conjugative transfer, pilus synthesis, and the propagation of the donor-specific bacteriophage PRD1. Thus, cleavage of TrbC by TraF appears to be one of the initial steps in a cascade of processes involved in export of the RP4 pilus subunit and pilus assembly mediated by the RP4 mating pair formation function.
Collapse
Affiliation(s)
- J Haase
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | |
Collapse
|
47
|
Zhang YB, Greenberg B, Lacks SA. Analysis of a Streptococcus pneumoniae gene encoding signal peptidase I and overproduction of the enzyme. Gene 1997; 194:249-55. [PMID: 9272867 DOI: 10.1016/s0378-1119(97)00198-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The spi gene of Streptococcus pneumoniae was cloned and its nucleotide sequence was determined. It encodes a protein of 204 amino acids that is homologous to bacterial signal peptidase I proteins. The S. pneumoniae protein contains all of the conserved amino acid sequence motifs previously identified in this enzyme from both prokaryotic and eukaryotic sources. Sequence comparisons revealed several additional motifs characteristic of the enzyme. The cloned S. pneumoniae gene complemented an Escherichia coli mutant defective in its leader peptidase gene. Expression of the spi gene in S. pneumoniae appeared to be essential for viability. The cloned gene was shown to produce a polypeptide of approximately 20 kDa. Overproduction of the S. pneumoniae spi gene in an E. coli expression system gave a native protein product, soluble in the presence of a non-ionic detergent, which should be amenable to structural determination.
Collapse
Affiliation(s)
- Y B Zhang
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | |
Collapse
|
48
|
Dalbey RE, Lively MO, Bron S, van Dijl JM. The chemistry and enzymology of the type I signal peptidases. Protein Sci 1997; 6:1129-38. [PMID: 9194173 PMCID: PMC2143710 DOI: 10.1002/pro.5560060601] [Citation(s) in RCA: 190] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The discovery that proteins exported from the cytoplasm are typically synthesized as larger precursors with cleavable signal peptides has focused interest on the peptidases that remove the signal peptides. Here, we review the membrane-bound peptidases dedicated to the processing of protein precursors that are found in the plasma membrane of prokaryotes and the endoplasmic reticulum, the mitochondrial inner membrane, and the chloroplast thylakoidal membrane of eukaryotes. These peptidases are termed type I signal (or leader) peptidases. They share the unusual feature of being resistant to the general inhibitors of the four well-characterized peptidase classes. The eukaryotic and prokaryotic signal peptidases appear to belong to a single peptidase family. This review emphasizes the evolutionary concepts, current knowledge of the catalytic mechanism, and substrate specificity requirements of the signal peptidases.
Collapse
Affiliation(s)
- R E Dalbey
- Department of Chemistry, Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
49
|
Fang H, Mullins C, Green N. In addition to SEC11, a newly identified gene, SPC3, is essential for signal peptidase activity in the yeast endoplasmic reticulum. J Biol Chem 1997; 272:13152-8. [PMID: 9148930 DOI: 10.1074/jbc.272.20.13152] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Among the three characterized subunits comprising the signal peptidase complex of the yeast Saccharomyces cerevisiae (Sec11p, Spc1p, and Spc2p), only Sec11p is essential for cell growth, signal peptide cleavage, and signal peptidase-dependent protein degradation. Here we report the cloning of the SPC3 gene encoding the homolog to mammalian signal peptidase subunit SPC22/23. We find that Spc3p is also required for cell growth and signal peptidase activity within the yeast endoplasmic reticulum.
Collapse
Affiliation(s)
- H Fang
- Department of Microbiology and Immunology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232-2363, USA
| | | | | |
Collapse
|
50
|
Paetzel M, Strynadka NC, Tschantz WR, Casareno R, Bullinger PR, Dalbey RE. Use of site-directed chemical modification to study an essential lysine in Escherichia coli leader peptidase. J Biol Chem 1997; 272:9994-10003. [PMID: 9092541 DOI: 10.1074/jbc.272.15.9994] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Escherichia coli leader peptidase, which catalyzes the cleavage of signal peptides from pre-proteins, is an essential, integral membrane serine peptidase that has its active site residing in the periplasmic space. It contains a conserved lysine residue that has been proposed to act as the general base, abstracting the proton from the side chain hydroxyl group of the nucleophilic serine 90. To help elucidate the role of the essential lysine 145 in the activity of E. coli leader peptidase, we have combined site-directed mutagenesis and chemical modification methods to introduce unnatural amino acid side chains at the 145-position. We show that partial activity can be restored to an inactive K145C leader peptidase mutant by reacting it with 2-bromoethylamine.HBr to produce a lysine analog (gamma-thia-lysine) at the 145-position. Modification with the reagents 3-bromopropylamine.HBr and 2-mercaptoethylamine also allowed for partial restoration of activity showing that there is some flexibility in the length requirements of this essential residue. Modification with (2-bromoethyl)trimethylammonium.Br to form a positively charged, nontitratable side chain at the 145-position failed to restore activity to the inactive K145C leader peptidase mutant. This result, along with an inactive K145R mutant result, supports the claim that the lysine side chain at the 145-position is essential due to its ability to form a hydrogen bond(s) or to act as a general base rather than because of an ability to form a critical salt bridge. We find that leader peptidase processes the pre-protein substrate, pro-OmpA nuclease A, with maximum efficiency at pH 9.0, and apparent pKa values for titratable groups at approximately 8.7 and 9.3 are revealed. We show that the lysine modifier maleic anhydride inhibits leader peptidase by reacting with lysine 145. The results of this study are consistent with the hypothesis that the lysine at the 145-position of leader peptidase functions as the active site general base. A model of the active site region of leader peptidase is presented based on the structure of the E. coli UmuD', and a mechanism for bacterial leader peptidase is proposed.
Collapse
Affiliation(s)
- M Paetzel
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|