1
|
Microenvironmentally controlled secondary structure motifs of apolipoprotein A-I derived peptides. Mol Cell Biochem 2014; 393:99-109. [PMID: 24748322 PMCID: PMC4067536 DOI: 10.1007/s11010-014-2050-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 04/02/2014] [Indexed: 11/12/2022]
Abstract
The structure of apolipoprotein A-I (apoA-I), the major protein of HDL, has been extensively studied in past years. Nevertheless, its corresponding three-dimensional structure has been difficult to obtain due to the frequent conformational changes observed depending on the microenvironment. Although the function of each helical segment of this protein remains unclear, it has been observed that the apoA-I amino (N) and carboxy-end (C) domains are directly involved in receptor-recognition, processes that determine the diameter for HDL particles. In addition, it has been observed that the high structural plasticity of these segments might be related to several amyloidogenic processes. In this work, we studied a series of peptides derived from the N- and C-terminal domains representing the most hydrophobic segments of apoA-I. Measurements carried out using circular dichroism in all tested peptides evidenced that the lipid environment promotes the formation of α-helical structures, whereas an aqueous environment facilitates a strong tendency to adopt β-sheet/disordered conformations. Electron microscopy observations showed the formation of amyloid-like structures similar to those found in other well-defined amyloidogenic proteins. Interestingly, when the apoA-I peptides were incubated under conditions that promote stable globular structures, two of the peptides studied were cytotoxic to microglia and mouse macrophage cells. Our findings provide an insight into the physicochemical properties of key segments contained in apoA-I which may be implicated in disorder-to-order transitions that in turn maintain the delicate equilibrium between both, native and abnormal conformations, and therefore control its propensity to become involved in pathological processes.
Collapse
|
2
|
Deletion of the propeptide of apolipoprotein A-I reduces protein expression but stimulates effective conversion of preβ-high density lipoprotein to α-high density lipoprotein. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)31981-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
3
|
Georgeaud V, Garcia A, Cachot D, Rolland C, Tercé F, Chap H, Collet X, Perret B, Barbaras R. Identification of an ApoA-I ligand domain that interacts with high-affinity binding sites on HepG2 cells. Biochem Biophys Res Commun 2000; 267:541-5. [PMID: 10631098 DOI: 10.1006/bbrc.1999.1990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously described the presence of two (high- and low-affinity) HDL binding sites on the hepatoma cell line (HepG2) (R. Barbaras, X. Collet, H. Chap, and B. Perret (1994) Biochemistry 33, 2335-2340]. Moreover, apoA-I, the major HDL apolipoprotein, interacts with these two binding sites, while lipid-free apoA-I binds only to the high-affinity sites. Using tryptic HDL fragments and HepG2 cell monolayers as an "affinity matrix," we identified an apoA-I peptide of 16 amino acids, spanning between residues 62 and 77, as a ligand domain. The corresponding synthetic peptide displays high-affinity (K(d) approximately 10(-7) M) and low-capacity (B(max) 8 pmol/mg of cell protein) binding components. Competition experiments with this peptide, using (125)I-labeled free apoA-I as a ligand, show that this binding corresponds to the high-affinity binding sites already described. In conclusion, we identified the apoA-I 62-77 region as a specific high-affinity ligand domain of HDL on HepG2 cells.
Collapse
Affiliation(s)
- V Georgeaud
- Institut Féderatif de Recherche d'Immunologie Moleculaire et Cellulaire, Hôpital Purpan, Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Huang W, Sasaki J, Matsunaga A, Han H, Li W, Koga T, Kugi M, Ando S, Arakawa K. A single amino acid deletion in the carboxy terminal of apolipoprotein A-I impairs lipid binding and cellular interaction. Arterioscler Thromb Vasc Biol 2000; 20:210-6. [PMID: 10634820 DOI: 10.1161/01.atv.20.1.210] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The carboxy-terminal region of apolipoprotein (apo) A-I has been shown by mutagenesis or synthetic peptides to play an important role in lipid binding. However, the precise functional domain of the C-terminal remains to be defined. In this study, apoA-I Nichinan, a naturally occurring human apoA-I variant with a deletion of glutamic acid 235, was expressed in Escherichia coli to examine the effect of this mutation on the functional domain of apoA-I for lipid binding and related consequences. A dimyristoyl phosphatidylcholine binding study with recombinant (r-) proapoA-I Nichinan showed a significantly slow initial rate of lipid binding. On preincubation with human plasma lipoprotein fractions (d<1.225 g/mL) at 37 degrees C for 1 hour, (125)I-labeled normal r-proapoA-I was chromatographed as a single peak at the high density lipoprotein (HDL) fraction, whereas (125)I-labeled r-proapoA-I Nichinan was chromatographed into the HDL fraction as well as the free r-proapoA-I fraction (23% of radioactivity). Circular dichroism measurements showed that the alpha-helix content of lipid-bound r-proapoA-I Nichinan was reduced, being 62% (versus 73%) of normal r-proapoA-I. Nondenaturing gradient gel electrophoresis of reconstituted HDL particles assembled with r-proapoA-I Nichinan and normal r-proapoA-I showed similar particle size. To study cholesterol efflux, human skin fibroblasts were labeled with [(3)H]cholesterol, followed by incubation with either lipid-free r-proapoA-I or DMPC/r-proapoA-I complex. Fractional cholesterol efflux from [(3)H]cholesterol-labeled fibroblasts to lipid-free r-proapoA-I Nichinan or DMPC/r-proapoA-I Nichinan complexes was significantly reduced relative to that of normal r-proapoA-I or DMPC/r-proapoA-I during the 6-hour incubation. Binding assays of human skin fibroblasts by lipid-free r-proapoA-I showed that r-proapoA-I Nichinan was 32% less bound to fibroblasts than was normal r-proapoA-I. Our data demonstrate that the deletion of glutamic acid 235 at the C-terminus substantially reduces the lipid-binding properties of r-proapoA-I Nichinan, which may cause a reduction in its capacity to interact with plasma membranes as well as to promote cholesterol efflux from cultured fibroblasts.
Collapse
Affiliation(s)
- W Huang
- Department of Internal Medicine, School of Medicine, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Sviridov D, Luong A, Pyle L, Fidge N. Effectivity of expression of mature forms of mutant human apolipoprotein A-I. Protein Expr Purif 1999; 17:231-8. [PMID: 10545271 DOI: 10.1006/prep.1999.1114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In order to probe the structural and functional properties of a central region of apolipoprotein A-I (apoA-I), we engineered mutants of the mature form of the protein and expressed them using the baculovirus/insect cell expression system. The mutations which targeted the region of apoA-I between amino acids 140 and 150 included: (i) deletion of the region 140-150 (apoA-I(Delta140-150)); (ii) substitution of arginine 149 with valine (apoA-I(R149V)); (iii) substitution of proline 143 with alanine (apoA-I(P143A)); (iv) deletion of region 63-73 (apoA-I(Delta63-73)), which has structural properties similar to 140-150; and (v) a chimeric protein substituting amino acids 140-150 with amino acids 63-73 (apoA-I(140-150 --> 63-73)). The efficiencies of synthesis were vastly different for the various mutants as follows: apoA-I(R149V) > apoA-I(140-150 --> 63-73) > apoA-I(Delta63-73) > apoA-I(P143A) > apoA-I > apoA-I(Delta140-150). About 50% of the synthesized wild type and all apoA-I mutants was retained in the cells. During expression of apoA-I(R149V) an unusual spontaneous recombination occurred. In addition to the expected mutant, another form of apoA-I with an apparent M(r) of 36K was produced which consisted of a duplication of the amino-terminal end of apoA-I, from the prepeptide through to amino acid 62, linked to the original pre-apoA-I(R149V) sequence via a 4-amino-acid linker. Despite the fact that this form of apoA-I carries two prepeptides and consequently two cleavage sites, there was little, if any, cleavage at the internal cleavage site. During expression, less than 20% of this mutant was retained in the cells. These results demonstrate that at least in the model of insect cells, the efficiency of apoA-I synthesis, processing, and secretion depends on apoA-I secondary structure and/or folding.
Collapse
Affiliation(s)
- D Sviridov
- Baker Medical Research Institute, Melbourne, Victoria, 8008, Australia.
| | | | | | | |
Collapse
|
6
|
Nion S, Demoor L, Boutillon C, Luchoomun J, Vanloo B, Fievet C, Castro G, Rosseneu M, Fruchart JC, Tartar A, Clavey V. Branched synthetic peptide constructs mimic cellular binding and efflux of apolipoprotein AI in reconstituted high density lipoproteins. Atherosclerosis 1998; 141:227-35. [PMID: 9862171 DOI: 10.1016/s0021-9150(98)00176-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This study investigates the suitability of the trimeric apolipoprotein (apo)AI(145-183) peptide that we recently described, to serve as a model to probe the relationship between apoAI structure and function. Three copies of the apoAI(145-183) unit, composed each of two amphipathic alpha-helical segments, were branched onto a covalent core matrix and the construct was recombined with phospholipids. A similar construct was made with the apoAI(102-140) peptide and used as a comparison with dimyristoylglycerophosphocholine (DMPC)-apoAI complexes. The DMPC-trimeric-apoAI(145-183) complexes had similar immunological reactivity with monoclonal antibodies directed against the 149-186 apoAI sequence (A44), suggesting that the A44 epitope is exposed similarly in both the synthetic peptide and the native apoAI complexes. The complexes generated with the trimeric-apoAI(145-183) bind specifically to HeLa cells with comparable affinity to the DMPC apoAI complexes; they are a good competitor for binding of apoAI to both HeLa cells and Fu5AH rat hepatoma cells; finally, these complexes promote cholesterol efflux from Fu5AH cells with an efficiency comparable with the apo AI/lipid complexes. To study LCAT activation by the trimeric apo AI(145-183) construct, complexes were prepared with dipalmitoylphosphatidylcholine (DPPC), cholesterol (C) and either the trimeric construct or apoAI. LCAT activation by the trimeric construct was much lower than by apo AI, possibly because the conformation of the trimeric 145-183 peptide in DPPC/C/peptide complexes does not mimic that of apoAI in the corresponding complexes. In comparison, the complexes generated with the multimeric apoAI(102-140) construct had a poor capacity to mimic the physico-chemical and biological properties of apoAI. The apoAI(102-140) construct had low affinity for lipid compared with the (145-183) construct. After association with lipids, it was a poor competitor of DMPC-apoAI complexes for cellular binding and had only limited capacity to promote cholesterol efflux. These results suggest trimeric constructs can serve as an appropriate models for apoAI, enabling further investigations and new experimental approaches to determine the structure-function relationship of apoAI.
Collapse
Affiliation(s)
- S Nion
- INSERM U325, Institut Pasteur de Lille et Faculté de Pharmacie, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Pussinen PJ, Jauhiainen M, Metso J, Pyle LE, Marcel YL, Fidge NH, Ehnholm C. Binding of phospholipid transfer protein (PLTP) to apolipoproteins A-I and A-II: location of a PLTP binding domain in the amino terminal region of apoA-I. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)34211-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Schmidt HH, Haas RE, Remaley A, Genschel J, Strassburg CP, Büttner C, Manns MP. In vivo kinetics as a sensitive method for testing physiologically intact human recombinant apolipoprotein A-I: comparison of three different expression systems. Clin Chim Acta 1997; 268:41-60. [PMID: 9495570 DOI: 10.1016/s0009-8981(97)00155-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In order to assess the structural and functional integrity of recombinant human apoA-I, we expressed apoA-I using three different expression systems: Baculovirus transfected Spodoptera frugiperda (Sf9) cells, stably transfected Chinese hamster ovary (CHO) cells, and transformed Escherichia coli (E. coli). Purified apoA-I from the three expression systems was radioiodinated and their catabolism was compared in normolipemic rabbits. The kinetic turnover studies of radiolabelled apoA-I in normolipemic rabbits revealed that highly purified recombinant apoA-I had an identical decay curve compared to native apoA-I, regardless whether it was purified from Sf9 cells, CHO cells, or E. coli. We also determined the association of the three recombinant apoA-I forms with both rabbit and human HDL. All three recombinant apoA-I forms were associated with HDL2 and HDL3 after injection into the rabbits and after incubation with human serum using both a Superose 6 column separation system and density gradient ultracentrifugation. The addition of the pro-segment or the addition of methionine at the amino-terminal end of apoA-I did not alter its metabolism and association to HDL. In conclusion, all studied expression systems are capable of producing high levels of physiologically intact recombinant human apoA-I. The aminoterminal addition of the prosegment of apoA-I or methionine did not alter the in vivo metabolism of apoA-I or its association to HDL.
Collapse
Affiliation(s)
- H H Schmidt
- Department of Gastroenterology and Hepatology, Medizinische Hochschule Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Pyle LE, Fidge NH, Barton PA, Luong A, Sviridov D. Production of mature human apolipoprotein A-I in a baculovirus-insect cell system: propeptide is not essential for intracellular processing but may assist rapid secretion. Anal Biochem 1997; 253:253-8. [PMID: 9367511 DOI: 10.1006/abio.1997.2371] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To achieve expression of human mature apolipoprotein A-I (apoA-I) in the baculovirus-insect cell expression system, the propeptide encoding region of full-length preproapoA-I was deleted using polymerase chain reaction and the resulting cDNA was cloned into BacPak8 plasmid. After transfection into Sf21 insect cells and plaque purification, mature human apoA-I was secreted by the infected cells into the medium as determined by immunoblotting, amino-terminal sequencing, and molecular weight determination. In both monolayer cell cultures, and in suspension cell culture, maximum expression was achieved by the fifth day. For the first 4 days, 50 to 70% of the synthesized apoA-I was retained in the cells. This intracellular apoA-I was represented by mature apoA-I as shown by immunoblotting and amino-terminal sequencing. Further incubation resulted in a sharp decrease in the cell apoA-I content without a corresponding increase in protein in the medium and most likely represents intracellular degradation of the protein. We conclude that the deletion of the propeptide, while not preventing the correct cleavage of prepeptide during intracellular processing, results in reduced secretion of mature apoA-I. The baculovirus-insect cell expression system described in this study provides a useful method for producing recombinant mature apoA-I and is a potential tool for understanding the function of propeptide in intracellular transport and secretion of apoA-I from cells.
Collapse
Affiliation(s)
- L E Pyle
- Baker Medical Research Institute, Prahran, Victoria, 3181, Australia
| | | | | | | | | |
Collapse
|
10
|
Holvoet P, Zhao Z, Deridder E, Dhoest A, Collen D. Effects of deletion of the carboxyl-terminal domain of ApoA-I or of its substitution with helices of ApoA-II on in vitro and in vivo lipoprotein association. J Biol Chem 1996; 271:19395-401. [PMID: 8702626 DOI: 10.1074/jbc.271.32.19395] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In the present study, the lipoprotein association of apoA-I, an apoA-I (DeltaAla190-Gln243) deletion mutant and an apoA-I (Asp1-Leu189)/apoA-II (Ser12-Gln77) chimera were compared. At equilibrium, 80% of the 125I-labeled apolipoproteins associated with lipoproteins in rabbit or human plasma but with very different distribution profiles. High density lipoprotein (HDL)2,3-associated fractions were 0.60 for apoA-I, 0.30 for the chimera, and 0.15 for the deletion mutant, and corresponding very high density lipoprotein-associated fractions were 0.20, 0.50, and 0.65. Clearance curves after intravenous bolus injection of 125I-labeled apolipoproteins (3 microg/kg) in normolipemic rabbits could be adequately fitted with a sum of three exponential terms, yielding overall plasma clearance rates of 0.028 +/- 0.0012 ml.min-1 for apoA-I (mean +/- S.E.; n = 6), 0.10 +/- 0.008 ml.min-1 for the chimera (p < 0.001 versus apoA-I) and 0.38 +/- 0.022 ml.min-1 for the deletion mutant (p < 0.001 versus apoA-I and versus the chimera). Fractions that were initially cleared with a t1/2 of 3 min, most probably representing free apolipoproteins, were 0.30 +/- 0.04, 0.50 +/- 0.06 (p = 0.02 versus apoA-I), and 0.64 +/- 0.07 (p = 0.002 versus apoA-I), respectively. At 20 min after the bolus, the fractions of injected material associated with HDL2,3 were 0.55 +/- 0.06, 0.25 +/- 0.03 (p = 0.001 versus apoA-I), and 0.09 +/- 0.01 (p < 0.001 versus apoA-I and versus the chimera), respectively, whereas the fractions associated with very high density lipoprotein were 0. 15 +/- 0.006, 0.25 +/- 0.03 (p = 0.008 versus apoA-I), and 0.27 +/- 0.03 (p = 0.003 versus apoA-I), respectively. The ability of the different apolipoproteins to bind to HDL3 particles and displace apoA-I in vitro were compared. The molar ratios at which 50% of 125I-labeled apoA-I was displaced from the surface of HDL3 particles were 1:1 for apoA-I, 3:1 for the chimera and 12:1 for the deletion mutant, indicating 3- and 12-fold reductions of the affinities for HDL3 of the chimera and the deletion mutant, respectively. These data suggest that the carboxyl-terminal pair of helices of apoA-I are involved in the initial rapid binding of apoA-I to the lipid surface of HDL. Although the lipid affinity of apoA-II is higher than that of apoA-I, substitution of the carboxyl-terminal helices of apoA-I with those of apoA-II only partially restores its lipoprotein association. Thus, this substitution may affect cooperative interactions with the middle amphipathic helices of apoA-I that are critical for its specific distribution over the different HDL species.
Collapse
Affiliation(s)
- P Holvoet
- Center for Molecular and Vascular Biology, University of Leuven, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
11
|
Barrans A, Jaspard B, Barbaras R, Chap H, Perret B, Collet X. Pre-beta HDL: structure and metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1300:73-85. [PMID: 8652641 DOI: 10.1016/0005-2760(95)00236-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- A Barrans
- Institut National de la Santé et de la Recherche Médicale, Unité 326, Hôpital Purpan, Toulouse, France
| | | | | | | | | | | |
Collapse
|
12
|
Expression of a novel human apolipoprotein (apoC-IV) causes hypertriglyceridemia in transgenic mice. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)39135-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Pyle LE, Barton P, Fujiwara Y, Mitchell A, Fidge N. Secretion of biologically active human proapolipoprotein A-I in a baculovirus-insect cell system: protection from degradation by protease inhibitors. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)39716-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
Menschikowski M, Hempel U, Dinnebier G, Lattke P, Wenzel KW, Jaross W. Changes in epitope exposition of apolipoprotein A-I on the surface of high density lipoproteins after phospholipase A2 treatment. Atherosclerosis 1995; 117:159-67. [PMID: 8801861 DOI: 10.1016/0021-9150(95)05565-e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The immunoreactivity of high density lipoprotein (HDL) modified by treatment with porcine pancreatic phospholipase A2 (PLA2) was studied in a competitive radioimmunoassay using 6 different monoclonal apolipoprotein (apo) A-I antibodies. The competition tests have shown that after PLA2 treatment the immunoreactivity of selected epitopes of apo A-I changed in different ways. While the binding behavior of two epitopes remained unchanged, three epitopes exhibited decreased immunoreactivities after phospholipids hydrolysis. In contrast to the latter epitopes, the immunoreactivity of an epitope located on the cyanogen bromide fragment 4 of apo A-I increased with the degree of lipolysis. A loss of apo A-I from HDL as a consequence of PLA2-treatment did not occur as shown by the determination of the apo A-I concentration in HDL before and after treatment with PLA2. Using overlapped synthetic decapeptides it could be shown that the epitope increasingly exposed on the particle surface of PLA2-modified HDL consists of the amino acid residues 162-173 and 212-229. These residues are characterized by high hydrophobic indices as determined by hydropathy analysis. Furthermore, these regions belong partially to the proposed receptor-binding domain of apo A-I. Thus, an increased exposition of this epitope might result in elevated cellular binding affinities of HDL occurring after modification of lipoproteins by PLA2-treatment.
Collapse
Affiliation(s)
- M Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine Carl Gustav Carus, Technical University of Dresden, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Lagrost L, Dengremont C, Athias A, de Geitere C, Fruchart JC, Lallemant C, Gambert P, Castro G. Modulation of cholesterol efflux from Fu5AH hepatoma cells by the apolipoprotein content of high density lipoprotein particles. Particles containing various proportions of apolipoproteins A-I and A-II. J Biol Chem 1995; 270:13004-9. [PMID: 7768892 DOI: 10.1074/jbc.270.22.13004] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The influence of apolipoproteins (apo) A-I and A-II on the ability of high density lipoproteins (HDL) to remove cholesterol from cultured Fu5AH rat hepatoma cells was studied independently on alterations in the overall structure and lipid composition of the lipoprotein particles. To this end, apoA-I was progressively replaced by apoA-II in ultracentrifugally isolated HDL3 without inducing changes in other remaining lipoprotein components. As apoA-II was progressively substituted for apoA-I in HDL3 (A-II:A-I+A-II percentage mass: 29.5, 47.6, 71.5, 97.4, and 98.9%), the rate of cholesterol efflux from Fu5AH hepatoma gradually and significantly decreased after 2 or 4 h of incubation at 37 degrees C (cholesterol efflux: 30.4 +/- 0.8, 24.1 +/- 1.0, 19.8 +/- 1.2, 15.7 +/- 1.4, and 13.4 +/- 1.3%/2h, respectively; 38.4 +/- 1.5, 29.2 +/- 0.9, 27.0 +/- 0.2, 20.4 +/- 0.4, and 17.5 +/- 1.0%/4h, respectively) (p < 0.01 with all A-II-enriched HDL3 fractions as compared with non-enriched homologues). In agreement with data obtained with total HDL3, increasing the A-II:A-I+A-II percentage mass in HDL3 particles containing initially only apoA-I (HDL3-A-I) progressively reduced cellular cholesterol efflux. After 2 h of incubation, cholesterol efflux correlated negatively with A-II:A-I+A-II percentage mass (r = -0.86; p < 0.0001; n = 20), but not with either free cholesterol:phospholipid ratio, A-I+A-II:total lipid ratio or mean size of HDL3. As determined by using Spearman rank correlation analysis, the A-II:A-I+A-II% mass ratio correlated negatively with the apparent maximal efflux (Vmax(efflux)) (rho = -0.68; p < 0.05, n = 10), but not with the HDL3 concentration required to obtain 50% of maximal efflux (Km(efflux)) (rho = -0.08; not significant, n = 10). It was concluded that the apoA-I and apoA-II content of HDL3 is one determinant of its ability to promote cholesterol efflux from Fu5AH rat hepatoma cells.
Collapse
Affiliation(s)
- L Lagrost
- Laboratoire de Biochimie des Lipoprotéines, INSERM CJF 93-10, Faculté de Médecine, Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Brouillette CG, Anantharamaiah GM. Structural models of human apolipoprotein A-I. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1256:103-29. [PMID: 7766689 DOI: 10.1016/0005-2760(95)00018-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
17
|
Schmidt HH, Remaley AT, Stonik JA, Ronan R, Wellmann A, Thomas F, Zech LA, Brewer HB, Hoeg JM. Carboxyl-terminal domain truncation alters apolipoprotein A-I in vivo catabolism. J Biol Chem 1995; 270:5469-75. [PMID: 7890663 DOI: 10.1074/jbc.270.10.5469] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Apolipoprotein A-I (apoA-I), the major protein of high density lipoproteins, facilitates reverse cholesterol transport from peripheral tissue to liver. To determine the structural motifs important for modulating the in vivo catabolism of human apoA-I (h-apoA-I), we generated carboxyl-terminal truncation mutants at residues 201 (apoA-I201), 217 (apoA-I217), and 226 (apoA-I226) by site-directed mutagenesis. ApoA-I was expressed in Escherichia coli as a fusion protein with the maltose binding protein, which was removed by factor Xa cleavage. The in vivo kinetic analysis of the radioiodinated apoA-I in normolipemic rabbits revealed a markedly increased rate of catabolism for the truncated forms of apoA-I. The fractional catabolic rates (FCR) of 9.10 +/- 1.28/day (+/- S.D.) for apoA-I201, 6.34 +/- 0.81/day for apoA-I217, and 4.42 +/- 0.51/day for apoA-I226 were much faster than the FCR of recombinant intact apoA-I (r-apoA-I, 0.93 +/- 0.07/day) and h-apoA-I (0.91 +/- 0.34/day). All the truncated forms of apoA-I were associated with very high density lipoproteins, whereas the intact recombinant apoA-I (r-apoA-I) and h-apoA-I associated with HDL2 and HDL3. Gel filtration chromatography revealed that in contrast to r-apoA-I, the mutant apoA-I201 associated with a phospholipid-rich rabbit apoA-I containing particle. Analysis by agarose gel electrophoresis demonstrated that the same mutant migrated in the pre-beta position, but not within the alpha position as did r-apoA-I. These results indicate that the carboxyl-terminal region (residue 227-243) of apoA-I is critical in modulating the association of apoA-I with lipoproteins and in vivo metabolism of apoA-I.
Collapse
Affiliation(s)
- H H Schmidt
- Molecular Disease Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sparrow DA, Laplaud PM, Saboureau M, Zhou G, Dolphin PJ, Gotto AM, Sparrow JT. Plasma lipid transport in the hedgehog: partial characterization of structure and function of apolipoprotein A-I. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)39882-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Weinberg RB. Identification of functional domains in the plasma apolipoproteins by analysis of inter-species sequence variability. J Lipid Res 1994. [DOI: 10.1016/s0022-2275(20)39927-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
20
|
Luchoomun J, Theret N, Clavey V, Duchateau P, Rosseneu M, Brasseur R, Denefle P, Fruchart JC, Castro GR. Structural domain of apolipoprotein A-I involved in its interaction with cells. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1212:319-26. [PMID: 7515279 DOI: 10.1016/0005-2760(94)90206-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Apolipoprotein A-I (apo A-I) is the major protein constituent of high-density lipoprotein (HDL), the lipoprotein fraction which mediates the reverse cholesterol transport. This apolipoprotein plays an important role in the binding of HDL to cells and participates in the efflux of cellular cholesterol. We have recently compared six different genetic variants of apo A-I and found that the apo A-I (Pro 165-->Arg) mutant is defective in promoting cellular cholesterol efflux from murine adipocytes and peritoneal macrophages and we have proposed that this region of apo A-I may be involved in their interaction with cells. To confirm this hypothesis, four monoclonal antibodies (mAbs) specific for apo A-I were used to study the inhibition of the interaction of palmitoyloleoylphosphatidylcholine (POPC): apoA-I complexes with HeLa cells and adipocytes. Among these antibodies, the apo A-I epitope recognized by the A44 mAb lies in the COOH terminal region (amino acid residues 149-186) including the proposed region. The antibodies A05, and A03 react with residues 25-82, 135-140, respectively and the A11 mAb corresponds to a discontinuous epitope at residues 99-105 and 126-132. Our results show clearly that the A44 and A05 mAbs reduce both the binding to HeLa cells and the cholesterol efflux from adipocytes. The inhibition of POPC: apoA-I complexes binding to both cell types is more strictly observed with the Fab fragments of monoclonal antibodies A44 and A05. Partial cotitration curves of these mAbs in a solid phase assay (RIA), indicated partial competition between these two antibodies. We propose a structural model for the POPC: apoA-I complexes where the N-terminal domain of one apo A-I molecule is in close spatial relationship with the C-terminal domain of the adjacent apo A-I molecule. We therefore suggest that the domain around amino acid 165 of apo A-I and which is recognized by mAb A44 (149-186) forms or contains some specific regions which mediate selectively the interaction with the binding site of cells and is involved in the efflux of cellular cholesterol.
Collapse
Affiliation(s)
- J Luchoomun
- Service d'Etude et de Recherche sur les Lipoprotéines et l'Athérosclérose, INSERM U325, Institut Pasteur, Lille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pieters MN, Schouten D, Van Berkel TJ. In vitro and in vivo evidence for the role of HDL in reverse cholesterol transport. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1225:125-34. [PMID: 8280780 DOI: 10.1016/0925-4439(94)90069-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- M N Pieters
- Division of Biopharmaceutics, Leiden-Amsterdam Center for Drug Research, Sylvius Laboratories, University of Leiden, The Netherlands
| | | | | |
Collapse
|
22
|
Vadiveloo PK, Allan CM, Murray BJ, Fidge NH. Interaction of apolipoprotein AII with the putative high-density lipoprotein receptor. Biochemistry 1993; 32:9480-5. [PMID: 8396433 DOI: 10.1021/bi00087a028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
There is strong evidence to indicate that binding of HDL by cells is due to recognition of apoproteins residing on the surface of the lipoprotein by the putative HDL receptor(s). Although both of the major HDL apoproteins, AI and AII, are recognized by the putative receptor, the nature of the binding interaction and the domains of the apoproteins involved are largely unknown. Previous data from this laboratory led to the proposal of a model to explain how HDL particles containing AII interacted with the HDL receptor in a different manner as compared to HDL particles which contain apoAI but not apoAII [Vadiveloo, P. K., & Fidge, N. H. (1992) Biochem. J. 284, 145-151]. The model predicted that each chain of the apoAII homodimer contained a binding domain capable of interacting with the HDL receptor. This model was tested in the current study by preparing apoAII monomers, complexing them with phospholipid, and determining the ability of these complexes to bind to putative HDL receptors in rat liver plasma membranes (RLPM) and bovine aortic endothelial cell membranes (BAECM) by ligand blotting. The data showed that these complexes were bound by HB1 and HB2 from RLPM, and to the 110-kDa HDL binding protein from BAECM, providing critical evidence to support the model. Further investigation into the binding interaction revealed that apoAII complexed with phospholipid (apoAII-PC) bound more than delipidated apoAII, which bound more than delipidated apoAII monomers. Thus, optimum binding required the presence of lipid.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P K Vadiveloo
- Baker Medical Research Institute, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
23
|
Dalton M, Swaney J. Structural and functional domains of apolipoprotein A-I within high density lipoproteins. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36510-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
24
|
von Eckardstein A, Castro G, Wybranska I, Theret N, Duchateau P, Duverger N, Fruchart J, Ailhaud G, Assmann G. Interaction of reconstituted high density lipoprotein discs containing human apolipoprotein A-I (ApoA-I) variants with murine adipocytes and macrophages. Evidence for reduced cholesterol efflux promotion by apoA-I(Pro165–>Arg). J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53819-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|