1
|
Li X, Guo Z, Ma X, Liu H, Wang W, Tang H. Core promoter identification and transcriptional regulation of porcine ACSL3 gene. Anim Biotechnol 2024; 35:2430383. [PMID: 39584470 DOI: 10.1080/10495398.2024.2430383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
Intramuscular fat (IMF) content is an important factor that affects the edible and processing quality of pork. Studying the transcriptional regulation mechanisms of genes affecting intramuscular fat deposition can provide theoretical support for genetic improvement in pigs. Long-chain fatty acyl-CoA synthase 3 (ACSL3), as a key enzyme in the process of lipid synthesis in mammals. However, no information about the core promoter of the ACSL3 gene and its transcriptional regulation has been reported so far. In this experiment, we successfully cloned 3112 bp of the porcine ACSL3 gene promoter region. In order to find out the core promoter of the ACSL3 gene. The results indicated that the core promoter region of the ACSL3 gene is located from -111 bp to -59 bp upstream of the transcription initiation site (TSS). To identify the interaction between SP1 and the ACSL3 gene promoter, we mutated the predicted binding sites of ACSL3 gene promoter. The results showed that the activity of the promoter was decreased by site-specific mutagenesis of the SP1 transcription factor binding site, while overexpression of SP1 increased the expression of the ACSL3 gene. In summary, our study identified a core promoter region of the porcine ACSL3 gene, and the SP1 binding site is responsible for the promoter activity.
Collapse
Affiliation(s)
- Xiaomin Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, China
| | - Zijiao Guo
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, China
| | - Xueying Ma
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, China
| | - Huixin Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, China
| | - Wenwen Wang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, China
| | - Hui Tang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, China
| |
Collapse
|
2
|
Pan HY, Ye ZW, Zheng QW, Yun F, Tu MZ, Hong WG, Chen BX, Guo LQ, Lin JF. Ergothioneine exhibits longevity-extension effect in Drosophila melanogaster via regulation of cholinergic neurotransmission, tyrosine metabolism, and fatty acid oxidation. Food Funct 2022; 13:227-241. [PMID: 34877949 DOI: 10.1039/d1fo02758a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many studies have demonstrated the protective effect of ergothioneine (EGT), the unique sulfur-containing antioxidant found in mushrooms, on several aging-related diseases. Nevertheless, to date, no single study has explored the potential role of EGT in the lifespan of animal models. We show here that EGT consistently extends fly lifespan in diverse genetic backgrounds and both sexes, as well as in a dose and gender-dependent manner. Additionally, EGT is shown to increases the climbing activity of flies, enhance acetylcholinesterase (AchE) activity, and maintain the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG)of aged flies. The increase in lifespan by EGT is gut microorganism dependent. We proposed potential mechanisms of lifespan extension in Drosophila by EGT through RNA-seq analysis: preservation of the normal status of the central nervous system via the coordination of cholinergic neurotransmission, tyrosine metabolism, and peroxisomal proteins, regulation of autophagic activity by altering the lysosomal protein CTSD, and the preservation of normal mitochondrial function through controlled substrate feeding into the tricarboxylic acid (TCA) cycle, the major energy-yielding metabolic process in cells.
Collapse
Affiliation(s)
- Hong-Yu Pan
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Zhi-Wei Ye
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Qian-Wang Zheng
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Fan Yun
- Guangzhou Alchemy Biotechnology Co., Guangzhou 510760, China
| | - Ming-Zhen Tu
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China.
| | - Wei-Guo Hong
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China.
| | - Bai-Xiong Chen
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Li-Qiong Guo
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Jun-Fang Lin
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China. .,Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| |
Collapse
|
3
|
Pridie C, Ueda K, Simmonds AJ. Rosy Beginnings: Studying Peroxisomes in Drosophila. Front Cell Dev Biol 2020; 8:835. [PMID: 32984330 PMCID: PMC7477296 DOI: 10.3389/fcell.2020.00835] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
Research using the fruit fly Drosophila melanogaster has traditionally focused on understanding how mutations affecting gene regulation or function affect processes linked to animal development. Accordingly, flies have become an essential foundation of modern medical research through repeated contributions to our fundamental understanding of how their homologs of human genes function. Peroxisomes are organelles that metabolize lipids and reactive oxygen species like peroxides. However, despite clear linkage of mutations in human genes affecting peroxisomes to developmental defects, for many years fly models were conspicuously absent from the study of peroxisomes. Now, the few early studies linking the Rosy eye color phenotype to peroxisomes in flies have been joined by a growing body of research establishing novel roles for peroxisomes during the development or function of specific tissues or cell types. Similarly, unique properties of cultured fly Schneider 2 cells have advanced our understanding of how peroxisomes move on the cytoskeleton. Here, we profile how those past and more recent Drosophila studies started to link specific effects of peroxisome dysfunction to organ development and highlight the utility of flies as a model for human peroxisomal diseases. We also identify key differences in the function and proliferation of fly peroxisomes compared to yeast or mammals. Finally, we discuss the future of the fly model system for peroxisome research including new techniques that should support identification of additional tissue specific regulation of and roles for peroxisomes.
Collapse
Affiliation(s)
- C Pridie
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Kazuki Ueda
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Andrew J Simmonds
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Lai Z, Li S, Wu F, Zhou Z, Gao Y, Yu J, Lei C, Dang R. Genotypes and haplotype combination of ACSL3 gene sequence variants is associated with growth traits in Dezhou donkey. Gene 2020; 743:144600. [DOI: 10.1016/j.gene.2020.144600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 01/19/2023]
|
5
|
Baarine M, Khan M, Singh A, Singh I. Functional Characterization of IPSC-Derived Brain Cells as a Model for X-Linked Adrenoleukodystrophy. PLoS One 2015; 10:e0143238. [PMID: 26581106 PMCID: PMC4651558 DOI: 10.1371/journal.pone.0143238] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 11/01/2015] [Indexed: 01/12/2023] Open
Abstract
X-ALD is an inherited neurodegenerative disorder where mutations in the ABCD1 gene result in clinically diverse phenotypes: the fatal disorder of cerebral childhood ALD (cALD) or a milder disorder of adrenomyeloneuropathy (AMN). The various models used to study the pathobiology of X-ALD disease lack the appropriate presentation for different phenotypes of cALD vs AMN. This study demonstrates that induced pluripotent stem cells (IPSC) derived brain cells astrocytes (Ast), neurons and oligodendrocytes (OLs) express morphological and functional activities of the respective brain cell types. The excessive accumulation of saturated VLCFA, a "hallmark" of X-ALD, was observed in both AMN OLs and cALD OLs with higher levels observed in cALD OLs than AMN OLs. The levels of ELOVL1 (ELOVL Fatty Acid Elongase 1) mRNA parallel the VLCFA load in AMN and cALD OLs. Furthermore, cALD Ast expressed higher levels of proinflammatory cytokines than AMN Ast and control Ast with or without stimulation with lipopolysaccharide. These results document that IPSC-derived Ast and OLs from cALD and AMN fibroblasts mimic the respective biochemical disease phenotypes and thus provide an ideal platform to investigate the mechanism of VLCFA load in cALD OLs and VLCFA-induced inflammatory disease mechanisms of cALD Ast and thus for testing of new therapeutics for AMN and cALD disease of X-ALD.
Collapse
Affiliation(s)
- Mauhamad Baarine
- Department of Pediatrics, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Mushfiquddin Khan
- Department of Pediatrics, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Avtar Singh
- Department of Pediatrics, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Inderjit Singh
- Department of Pediatrics, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
6
|
Baarine M, Beeson C, Singh A, Singh I. ABCD1 deletion-induced mitochondrial dysfunction is corrected by SAHA: implication for adrenoleukodystrophy. J Neurochem 2015; 133:380-96. [PMID: 25393703 DOI: 10.1111/jnc.12992] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/09/2014] [Accepted: 11/07/2014] [Indexed: 01/09/2023]
Abstract
X-linked Adrenoleukodystrophy (X-ALD), an inherited peroxisomal metabolic neurodegenerative disorder, is caused by mutations/deletions in the ATP-binding cassette transporter (ABCD1) gene encoding peroxisomal ABC transporter adrenoleukodystrophy protein (ALDP). Metabolic dysfunction in X-ALD is characterized by the accumulation of very long chain fatty acids ≥ C22:0) in the tissues and plasma of patients. Here, we investigated the mitochondrial status following deletion of ABCD1 in B12 oligodendrocytes and U87 astrocytes. This study provides evidence that silencing of peroxisomal protein ABCD1 produces structural and functional perturbations in mitochondria. Activities of electron transport chain-related enzymes and of citric acid cycle (TCA cycle) were reduced; mitochondrial redox status was dysregulated and the mitochondrial membrane potential was disrupted following ABCD1 silencing. A greater reduction in ATP levels and citrate synthase activities was observed in oligodendrocytes as compared to astrocytes. Furthermore, most of the mitochondrial perturbations induced by ABCD1 silencing were corrected by treating cells with suberoylanilide hydroxamic acid, an Histone deacetylase inhibitor. These observations indicate a novel relationship between peroxisomes and mitochondria in cellular homeostasis and the importance of intact peroxisomes in relation to mitochondrial integrity and function in the cell types that participate in the pathobiology of X-ALD. These observations suggest suberoylanilide hydroxamic acid as a potential therapy for X-ALD. Schematic description of the effects of loss of peroxisomal ATP-binding cassette transporter D1 (ABCD1) gene on cellular Redox and mitochondrial activities and their correction by suberoylanilide hydroxamic acid (SAHA) treatment. Pathogenomic accumulation of very long chain fatty acids (VLCFA) as a result of loss of ABCD1 leads to dysfunctions of mitochondrial biogenesis and its activities. Treatment with SAHA corrects mitochondrial dysfunctions. These studies describe unique cooperation between mitochondria and peroxisome for cellular activities.
Collapse
Affiliation(s)
- Mauhamad Baarine
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | |
Collapse
|
7
|
Corominas J, Ramayo-Caldas Y, Castelló A, Muñoz M, Ibáñez-Escriche N, Folch JM, Ballester M. Evaluation of the porcineACSL4gene as a candidate gene for meat quality traits in pigs. Anim Genet 2012; 43:714-20. [DOI: 10.1111/j.1365-2052.2012.02335.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2011] [Indexed: 12/01/2022]
Affiliation(s)
| | | | | | - M. Muñoz
- Departamento de Mejora Genética Animal; INIA; Ctra. De la Coruña km. 7; Madrid; 28040; Spain
| | | | | | | |
Collapse
|
8
|
Yonath H, Marek-Yagel D, Resnik-Wolf H, Abu-Horvitz A, Baris HN, Shohat M, Frydman M, Pras E. X inactivation testing for identifying a non-syndromic X-linked mental retardation gene. J Appl Genet 2011; 52:437-41. [PMID: 21584729 DOI: 10.1007/s13353-011-0052-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 04/21/2011] [Accepted: 04/25/2011] [Indexed: 01/03/2023]
Abstract
The purpose of this study was to identify a gene causing non-syndromic X-linked mental retardation in an extended family, taking advantage of the X chromosome inactivation status of the females in order to determine their carrier state. X inactivation in the females was determined with the androgen receptor methylation assay; thereafter, the X chromosome was screened with evenly spaced polymorphic markers. Once initial linkage was identified, the region of interest was saturated with additional markers and the males were added to the analysis. Candidate genes were sequenced. Ten females showed skewed inactivation, while six revealed a normal inactivation pattern. A maximal lod score of 5.54 at θ = 0.00 was obtained with the marker DXS10151. Recombination events mapped the disease gene to a 17.4-Mb interval between the markers DXS10153 and DXS10157. Three candidate genes in the region were sequenced and a previously described missense mutation (P375L) was identified in the ACSL4/FACL4 gene. On the basis of the female X inactivation status, we have mapped and identified the causative mutation in a gene causing non-syndromic X-linked mental retardation.
Collapse
Affiliation(s)
- Hagith Yonath
- The Danek Gartner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Igoillo-Esteve M, Mazet M, Deumer G, Wallemacq P, Michels PAM. Glycosomal ABC transporters of Trypanosoma brucei: characterisation of their expression, topology and substrate specificity. Int J Parasitol 2010; 41:429-38. [PMID: 21163262 DOI: 10.1016/j.ijpara.2010.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 11/11/2010] [Accepted: 11/11/2010] [Indexed: 10/18/2022]
Abstract
Metabolism in trypanosomatids is compartmentalised with major pathways, notably glycolysis, present in peroxisome-like organelles called glycosomes. To date, little information is available about the transport of metabolites through the glycosomal membrane. Previously, three ATP-binding cassette (ABC) transporters, called GAT1-3 for Glycosomal ABC Transporters 1 to 3, have been identified in the glycosomal membrane of Trypanosoma brucei. Here we report that GAT1 and GAT3 are expressed both in bloodstream and procyclic form trypanosomes, whereas GAT2 is mainly or exclusively expressed in bloodstream-form cells. Protease protection experiments showed that the nucleotide-binding domain of GAT1 and GAT3 is exposed to the cytosol, indicating that these transporters mediate the ATP-dependent uptake of solutes from the cytosol into the glycosomal lumen. Depletion of GAT1 and GAT3 by RNA interference in procyclic cells grown in glucose-containing medium did not affect growth. Surprisingly, GAT1 depletion enhanced the expression of the very different GAT3 protein. Expression knockdown of GAT1, but not GAT3, in procyclic cells cultured in glucose-free medium was lethal. Depletion of GAT1 in glucose-grown procyclic cells caused a modification of the total cellular fatty-acid composition. No or only minor changes were observed in the levels of most fatty acids, including oleate (C18:1), nevertheless the linoleate (C18:2) abundance was significantly increased upon GAT1 silencing. Furthermore, glycosomes purified from procyclic wild-type cells incorporate oleoyl-CoA in a concentration- and ATP-dependent manner, whilst this incorporation was severely reduced in glycosomes from cells in which GAT1 levels had been decreased. Together, these results strongly suggest that GAT1 serves to transport primarily oleoyl-CoA, but possibly also other fatty acids, from the cytosol into the glycosomal lumen and that its depletion results in a cellular linoleate accumulation, probably due to the presence of an active oleate desaturase. The role of intraglycosomal oleoyl-CoA and its essentiality when the trypanosomes are grown in the absence of glucose, are discussed.
Collapse
Affiliation(s)
- Mariana Igoillo-Esteve
- Research Unit for Tropical Diseases, de Duve Institute and Laboratory of Biochemistry, Université catholique de Louvain, TROP 74.39, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
10
|
Drover VA. Adrenoleukodystrophy: recent advances in treatment and disease etiology. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/clp.09.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
An C, Zhang K, Gao X, Zheng Z, Shi Z, Gong P, Guo Y, Huang S, Zhang F. No association between polymorphisms in the FACL4 (fatty acid-CoA ligase 4) gene and nonspecific mental retardation in Qin-Ba mountain region of China. Neurosci Lett 2008; 441:197-200. [DOI: 10.1016/j.neulet.2008.05.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 05/20/2008] [Accepted: 05/21/2008] [Indexed: 10/22/2022]
|
12
|
Abstract
We examined the ability of erucic acid (22:1n-9) to cross the blood-brain barrier (BBB) by infusing [14-14C]22:1n-9 (170 microCi/kg, iv and icv) into awake, male rats. [1-14C]arachidonic acid (20:4n-6) [intravenous (i.v.)] was the positive control. After i.v. infusion, 0.011% of the plasma [14-14C]22:1n-9 was extracted by the brain, compared with 0.055% of the plasma [1-14C]20:4n-6. The [14-14C]22:1n-9 was extensively beta-oxidized (60%), compared with 30% for [1-14C]20:4n-6. Although 20:4n-6 was targeted primarily to phospholipid pools, 22:1n-9 was targeted to cholesteryl esters, triglycerides, and phospholipids. When [14-14C]22:1n-9 was infused directly into the fourth ventricle of the brain [intracerebroventricular (i.c.v.)] for 7 days, 60% of the tracer entered the phospholipid pools, similar to the distribution observed for [1-14C]20:4n-6. This demonstrates plasticity in the ability of the brain to esterify 22:1n-9 in an exposure-dependent manner. In i.v. and i.c.v. infused rats, a significant amount of tracer found in the phospholipid pools underwent sequential rounds of chain shortening and was found as [12-14C]20:1n-9 and [10-14C]oleic acid. These results demonstrate for the first time that intact 22:1n-9 crosses the BBB, is incorporated into specific lipid pools, and is chain-shortened.
Collapse
Affiliation(s)
- Mikhail Y Golovko
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | | |
Collapse
|
13
|
Murphy EJ, Huang HM, Cowburn RF, Lannfelt L, Gibson GE. Phospholipid mass is increased in fibroblasts bearing the Swedish amyloid precursor mutation. Brain Res Bull 2006; 69:79-85. [PMID: 16464688 DOI: 10.1016/j.brainresbull.2005.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 10/19/2005] [Accepted: 10/27/2005] [Indexed: 11/20/2022]
Abstract
Phospholipid changes occur in brain regions affected by Alzheimer disease (AD), including a marked reduction in plasmalogens, which could diminish brain function either by directly altering signaling events or by bulk membrane effects. However, model systems for studying the dynamics of lipid biosynthesis in AD are lacking. To determine if fibroblasts bearing the Swedish amyloid precursor protein (swAPP) mutation are a useful model to study the mechanism(s) associated with altered phospholipid biosynthesis in AD, we examined the steady-state phospholipid mass and composition of fibroblasts, including plasmalogens. We found a 15% increase in total phospholipid mass, accounted for by a 24% increase in the combined total of phosphatidylethanolamine and plasmanylethanolamine mass and a 19% increase in the combined total of phosphatidylcholine (PtdCho) and plasmanycholine (PakCho) mass in the swAPP mutant bearing fibroblasts. Cholesterol mass was unchanged in these cells. The changes in phospholipid mass did not alter the cellular molar composition of the phospholipids nor the cholesterol to phospholipid ratio. While plasmalogen mass was not altered, the ratio of choline plasmalogen (PlsCho) mass to PtdCho+PakCho mass was decreased 16% and there was a 14% reduction in the proportion of PlsCho as a percent of total phospholipids in the swAPP mutant bearing fibroblasts. This change in choline plasmalogen is consistent with the reported decreases in plasmalogen proportions in affected regions of AD brain, suggesting that these cells may serve as a useful model to determine the mechanism underlying changes in plasmalogen biosynthesis in AD brain.
Collapse
Affiliation(s)
- Eric J Murphy
- Department of Pharmacology, Physiology, and Therapeutics and Department of Chemistry, School of Medicine and Health Sciences, University of North Dakota, 501 N. Columbia Road, Room 3700, Grand Forks, ND 58202-9037, USA.
| | | | | | | | | |
Collapse
|
14
|
Pohl A, Devaux PF, Herrmann A. Function of prokaryotic and eukaryotic ABC proteins in lipid transport. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1733:29-52. [PMID: 15749056 DOI: 10.1016/j.bbalip.2004.12.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 11/08/2004] [Accepted: 12/16/2004] [Indexed: 12/23/2022]
Abstract
ATP binding cassette (ABC) proteins of both eukaryotic and prokaryotic origins are implicated in the transport of lipids. In humans, members of the ABC protein families A, B, C, D and G are mutated in a number of lipid transport and metabolism disorders, such as Tangier disease, Stargardt syndrome, progressive familial intrahepatic cholestasis, pseudoxanthoma elasticum, adrenoleukodystrophy or sitosterolemia. Studies employing transfection, overexpression, reconstitution, deletion and inhibition indicate the transbilayer transport of endogenous lipids and their analogs by some of these proteins, modulating lipid transbilayer asymmetry. Other proteins appear to be involved in the exposure of specific lipids on the exoplasmic leaflet, allowing their uptake by acceptors and further transport to specific sites. Additionally, lipid transport by ABC proteins is currently being studied in non-human eukaryotes, e.g. in sea urchin, trypanosomatides, arabidopsis and yeast, as well as in prokaryotes such as Escherichia coli and Lactococcus lactis. Here, we review current information about the (putative) role of both pro- and eukaryotic ABC proteins in the various phenomena associated with lipid transport. Besides providing a better understanding of phenomena like lipid metabolism, circulation, multidrug resistance, hormonal processes, fertilization, vision and signalling, studies on pro- and eukaryotic ABC proteins might eventually enable us to put a name on some of the proteins mediating transbilayer lipid transport in various membranes of cells and organelles. It must be emphasized, however, that there are still many uncertainties concerning the functions and mechanisms of ABC proteins interacting with lipids. In particular, further purification and reconstitution experiments with an unambiguous role of ATP hydrolysis are needed to demonstrate a clear involvement of ABC proteins in lipid transbilayer asymmetry.
Collapse
Affiliation(s)
- Antje Pohl
- Humboldt-University Berlin, Institute of Biology, Invalidenstr. 42, D-10115 Berlin, Germany.
| | | | | |
Collapse
|
15
|
Affiliation(s)
- Inderjit Singh
- Medical University of South Carolina, Charleston, South Carolina 29425, USA
| |
Collapse
|
16
|
Zolman BK, Silva ID, Bartel B. The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid beta-oxidation. PLANT PHYSIOLOGY 2001. [PMID: 11706205 DOI: 10.1104/pp.010550] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Peroxisomes are important organelles in plant metabolism, containing all the enzymes required for fatty acid beta-oxidation. More than 20 proteins are required for peroxisomal biogenesis and maintenance. The Arabidopsis pxa1 mutant, originally isolated because it is resistant to the auxin indole-3-butyric acid (IBA), developmentally arrests when germinated without supplemental sucrose, suggesting defects in fatty acid beta-oxidation. Because IBA is converted to the more abundant auxin, indole-3-acetic acid (IAA), in a mechanism that parallels beta-oxidation, the mutant is likely to be IBA resistant because it cannot convert IBA to IAA. Adult pxa1 plants grow slowly compared with wild type, with smaller rosettes, fewer leaves, and shorter inflorescence stems, indicating that PXA1 is important throughout development. We identified the molecular defect in pxa1 using a map-based positional approach. PXA1 encodes a predicted peroxisomal ATP-binding cassette transporter that is 42% identical to the human adrenoleukodystrophy (ALD) protein, which is defective in patients with the demyelinating disorder X-linked ALD. Homology to ALD protein and other human and yeast peroxisomal transporters suggests that PXA1 imports coenzyme A esters of fatty acids and IBA into the peroxisome for beta-oxidation. The pxa1 mutant makes fewer lateral roots than wild type, both in response to IBA and without exogenous hormones, suggesting that the IAA derived from IBA during seedling development promotes lateral root formation.
Collapse
Affiliation(s)
- B K Zolman
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | | | |
Collapse
|
17
|
Murphy EJ, Zhang H, Sorbi S, Rapoport SI, Gibson GE. Phospholipid composition and levels are not altered in fibroblasts bearing presenilin-1 mutations. Brain Res Bull 2000; 52:207-12. [PMID: 10822162 DOI: 10.1016/s0361-9230(00)00257-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Lipid alterations have been reported in brain regions affected by Alzheimer disease (AD). The mechanisms causing these changes are poorly understood because it is difficult to study dynamic, biochemical processes in post-mortem brain. Fibroblasts derived from AD patients offer an alternative model to study disease-related alterations in lipid metabolism. Therefore, we measured the phospholipid levels and composition of fibroblasts from individuals bearing two different presenilin-1 mutations and compared these values to appropriate control fibroblasts. There were no differences between groups in phospholipid composition or in individual phospholipid levels, including the plasmalogens. Cholesterol levels and the cholesterol/phospholipid ratio were not different between presenilin-1 mutation bearing and control fibroblasts. Although these presenilin-1 mutation bearing fibroblasts have a number of biochemical changes related to AD, the absence of a change in phospholipid levels suggests that under these conditions, these cells are not useful in studying the mechanisms underlying the alterations in brain phospholipid levels associated with AD. However, these results do not preclude the possible use of other fibroblasts bearing AD-related mutations, e.g., APP mutations, to examine AD-related changes in brain lipid metabolism, or of these fibroblasts under different conditions.
Collapse
Affiliation(s)
- E J Murphy
- Section on Brain Physiology and Metabolism, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
18
|
Smith BT, Sengupta TK, Singh I. Intraperoxisomal localization of very-long-chain fatty acyl-CoA synthetase: implication in X-adrenoleukodystrophy. Exp Cell Res 2000; 254:309-20. [PMID: 10640429 DOI: 10.1006/excr.1999.4757] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
X-adrenoleukodystrophy (X-ALD) is a demyelinating disorder characterized by the accumulation of saturated very-long-chain (VLC) fatty acids (>C(22:0)) due to the impaired activity of VLC acyl-CoA synthetase (VLCAS). The gene responsible for X-ALD was found to code for a peroxisomal integral membrane protein (ALDP) that belongs to the ATP binding cassette superfamily of transporters. To understand the function of ALDP and how ALDP and VLCAS interrelate in the peroxisomal beta-oxidation of VLC fatty acids we investigated the peroxisomal topology of VLCAS protein. Antibodies raised against a peptide toward the C-terminus of VLCAS as well as against the N-terminus were used to define the intraperoxisomal localization and orientation of VLCAS in peroxisomes. Indirect immunofluorescent and electron microscopic studies show that peroxisomal VLCAS is localized on the matrix side. This finding was supported by protease protection assays and Western blot analysis of isolated peroxisomes. To further address the membrane topology of VLCAS, Western blot analysis of total membranes or integral membranes prepared from microsomes and peroxisomes indicates that VLCAS is a peripheral membrane-associated protein in peroxisomes, but an integral membrane in microsomes. Moreover, peroxisomes isolated from cultured skin fibroblasts from X-ALD patients with a mutation as well as a deletion in ALDP showed a normal amount of VLCAS. The consequence of VLCAS being localized to the luminal side of peroxisomes suggests that ALDP may be involved in stabilizing VLCAS activity, possibly through protein-protein interactions, and that loss or alterations in these interactions may account for the observed loss of peroxisomal VLCAS activity in X-ALD.
Collapse
Affiliation(s)
- B T Smith
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
19
|
Abstract
Peroxisomes are small, subcellular organelles that play a major role in lipid metabolism. Inherited disorders of peroxisomal structure and metabolism can result from defective assembly, missing protein import transporters, or individual enzyme deficiencies. Molecular studies helped by the range of disorders have now elucidated many of the pathways, including the paths of alpha-oxidation for phytanic acid and beta-oxidation for very-long-chain and branched-chain fatty acids and for bile acid synthesis. The mechanism of the transfer of substrates, intermediates, and products across the membrane is poorly understood. The carnitine system, known to transport activated acyl groups between localized coenzyme A pools, is presented. The evidence for the involvement of carnitine in the transfer of activated acyl groups to and from the peroxisomes is reviewed.
Collapse
Affiliation(s)
- R R Ramsay
- School of Biomedical Sciences, University of St. Andrews, Fife, UK.
| |
Collapse
|
20
|
Affiliation(s)
- N Shani
- Kennedy Krieger Institute, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
21
|
Logan HE, Byers DM, Ridgway ND, Cook HW. Phospholipase D activity is altered in X-linked adrenoleukodystrophy heterozygous carriers, but not in hemizygous patients. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1407:7-20. [PMID: 9639664 DOI: 10.1016/s0925-4439(98)00021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abnormalities in levels of choline and its metabolites have been reported in the lesions of brains of X-linked adrenoleukodystrophy (X-ALD) patients. We have examined the turnover of the major choline-containing phospholipid, phosphatidylcholine (PtdCho), in fibroblasts from hemizygous X-ALD, heterozygous X-ALD, Zellweger syndrome (ZW), and male and female control individuals to assess possible alterations in PtdCho metabolism mediated by activation of protein kinase C (PKC). Hydrolysis of PtdCho by phospholipase D (PLD) and resynthesis of PtdCho from labeled choline were stimulated 2- to 4-fold by PKC activation with the phorbol ester, 4beta-12-O-tetradecanoylphorbol-13-acetate (beta-TPA), in all cells except those from heterozygous X-ALD individuals. No differences in quantity or intracellular distribution of PKC activity, PKC isoforms by Western blot analysis, or of the PKC substrate, myristoylated alanine-rich C kinase substrate (MARCKS), were apparent in any of the cells. Thus, altered PtdCho metabolism was not directly linked to either of these inherited defects that result in abnormal peroxisomal functions. Further, altered responsiveness of PLD in X-ALD heterozygotes was independent of changes in PKC and MARCKS.
Collapse
Affiliation(s)
- H E Logan
- Department of Pediatrics, Atlantic Research Centre, Dalhousie University, 5849 University Avenue, Halifax, NS B3H 4H7, Canada
| | | | | | | |
Collapse
|
22
|
Pahan K, Khan M, Singh I. Therapy for X-adrenoleukodystrophy: normalization of very long chain fatty acids and inhibition of induction of cytokines by cAMP. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)33878-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
23
|
Piccini M, Vitelli F, Bruttini M, Pober BR, Jonsson JJ, Villanova M, Zollo M, Borsani G, Ballabio A, Renieri A. FACL4, a new gene encoding long-chain acyl-CoA synthetase 4, is deleted in a family with Alport syndrome, elliptocytosis, and mental retardation. Genomics 1998; 47:350-8. [PMID: 9480748 DOI: 10.1006/geno.1997.5104] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We observed a family in which two boys were diagnosed with Alport syndrome, elliptocytosis, and mental retardation and carried a large deletion of the Xq22.3-q23 region, encompassing the COL4A5 gene. This suggests the possibility of a new contiguous gene syndrome. In an attempt to characterize the genes contributing to this complex phenotype, we have isolated a gene encoding a new long-chain acyl-CoA synthetase (FACL4 or LACS4) from the region deleted in these patients. Among several ESTs identified by searching the human gene map database maintained at the National Center for Biotechnology Information, using the map position as a query, only one was deleted in the patients. RACE products containing the entire ORF were subsequently generated. Northern blot analysis showed a 5-kb mRNA expressed in several tissues except for liver and lung. Brain shows a longer transcript, possibly reflecting the use of a brain-specific upstream ATG start codon. FACL4 encodes a predicted protein product of 670 amino acids (711 in brain), with a remarkable level of conservation compared to the rat acyl-CoA synthetases ACS4 and brain-specific ACS3 protein sequences. We are investigating the possibility that the absence of this enzyme may play a role in the development of mental retardation or other signs associated with Alport syndrome in the family.
Collapse
Affiliation(s)
- M Piccini
- Genetica Medica, Policlinco le Scotte, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Forss-Petter S, Werner H, Berger J, Lassmann H, Molzer B, Schwab MH, Bernheimer H, Zimmermann F, Nave KA. Targeted inactivation of the X-linked adrenoleukodystrophy gene in mice. J Neurosci Res 1997; 50:829-43. [PMID: 9418970 DOI: 10.1002/(sici)1097-4547(19971201)50:5<829::aid-jnr19>3.0.co;2-w] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In its severe form, X-linked adrenoleukodystrophy (ALD) is a lethal neurologic disease of children, characterized by progressive cerebral demyelination and adrenal insufficiency. Associated with a biochemical defect of peroxisomal beta-oxidation, very long-chain fatty acids (VLCFA) build up in tissues that have a high turnover of lipids, such as central nervous system (CNS) white matter, adrenal cortex, and testis. Whether the abnormal accumulation of VLCFA is the underlying cause of demyelination or merely an associated biochemical marker is unknown. ALD is caused by mutations in the gene for a peroxisomal membrane protein (ALDP) that shares structural features with ATP-binding-cassette (ABC) transporters. To analyze the cellular function of ALDP and to obtain an animal model of this debilitating disease, we have generated transgenic mice with a targeted inactivation of the ald gene. Motor functions in ALDP-deficient mice developed at schedule, and unexpectedly, adult animals appeared unaffected by neurologic symptoms up to at least 6 months of age. Biochemical analyses demonstrated impaired beta-oxidation in mutant fibroblasts and abnormal accumulation of VLCFAs in the CNS and kidney. In 6-month-old mutants, adrenal cortex cells displayed a ballooned morphology and needle-like lipid inclusions, also found in testis and ovaries. However, lipid inclusions and demyelinating lesions in the CNS were not a feature. Thus, complete absence of ALDP expression results in a VLCFA storage disease but does not impair CNS function of young adult mice by pathologic and clinical criteria. This suggests that additional genetic or environmental conditions must be fulfilled to model the early-onset and lethality of cerebral ALD in transgenic mice.
Collapse
|
25
|
Arienti G, Carlini E, Laureti S, Brunetti P, Santeusanio F. Red blood cell ghosts are affected by adrenoleucodystrophy. Eur J Clin Invest 1996; 26:917-22. [PMID: 8911866 DOI: 10.1111/j.1365-2362.1996.tb02138.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
X-linked adrenoleucodystrophy is a disorder occurring in different clinical forms, characterized by adrenal, gonadal and nervous system dysfunction. The basis of the illness is a derangement of the peroxisomal system necessary to oxidize very long-chain fatty acids that accumulate in various tissues. The diagnosis relies on clinical signs and symptoms and on biochemical findings. The six reported cases presented idiopathic adrenal insufficiency. We measured the lipid composition of red blood cell (RBC) ghosts of patients and control subjects. The distribution of phosphorus among phospholipid classes was unaffected; we could not demonstrate any differences between the fatty acid patterns of RBC membrane, either in total lipid extracts or in separated lipid classes. However, we found an increase in total lipid (both phospholipid and cholesterol), in membrane viscosity and in the Na+/K(+)-dependent ATPase. Therefore, we report four main findings on ghosts in adrenoleucodystrophy patients: (a) very long-chain fatty acids do not accumulate; (b) the lipid-protein ratio increases; (c) fluidity decreases; and (d) the activity of ATPase increases. The last finding is proposed as a possible biochemical marker of the illness. We conclude that adrenoleucodystrophy affects deeply RBC membranes.
Collapse
Affiliation(s)
- G Arienti
- Istituto di Biochimica Chimica Medical, University of Perugia, Italy
| | | | | | | | | |
Collapse
|
26
|
Dawson G, Kilkus J, Siakotos AN, Singh I. Mitochondrial abnormalities in CLN2 and CLN3 forms of Batten disease. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1996; 29:227-35. [PMID: 8971698 DOI: 10.1007/bf02815004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The storage of subunit c of mitochondrial ATP synthase, other hydrophobic peptides, and autofluorescent pigment in both late infantile (CLN2) and juvenile (CLN3) neuronal ceroid lipofuscinosis, but not in infantile (CLN1), has raised the question of abnormal mitochondrial function. We now report a partial deficiency in three types of fatty acid oxidation in intact skin fibroblasts from CLN2 and CLN3 patients, but not CLN1. We observed a statistically significant 33% reduction in palmitate (beta-oxidation; mainly mitochondrial) and lignocerate (beta-oxidation; mainly peroxisomal), and a 50% reduction in phytanic acid (alpha-oxidation; mainly peroxisomal) in the absence of exogenous carnitine. In contrast, when we measured fatty acid beta-oxidation (lignoceric acid and palmitic acid), in the same human skin fibroblasts, following lysis in the presence of carnitine, we found no difference in enzyme activity among normal, CLN1, CLN2, and CLN3. However, we did observe a 40% reduction in peroxisomal particulate (bound) catalase activity in CLN1 and CLN2 fibroblasts, which typically results from organellar lipid accumulation or a membrane abnormality. However, total catalase levels were normal, and Western blot analysis of this and three other major oxidant protective enzymes (Mn-dependent superoxide dismutase [MnSOD], CuZn-dependent superoxide dismutase [CuZnSOD], and glutathione peroxidase) were normal in CLN1, CLN2, and CLN3, as well as in liver from an animal (English Setter dog) model for CLN, which shows similar pathology and subunit c storage. Our data showing differences between CLN1 and forms CLN2 and CLN3 suggest some type of mitochondrial membrane abnormality as the source of the pathology in CLN2 and CLN3.
Collapse
Affiliation(s)
- G Dawson
- Department of Pediatrics, University of Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
27
|
Pahan K, Khan M, Singh I. Phytanic acid oxidation: normal activation and transport yet defective alpha-hydroxylation of phytanic acid in peroxisomes from Refsum disease and rhizomelic chondrodysplasia punctata. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)42022-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Phytanic acid oxidation: topographical localization of phytanoyl-CoA ligase and transport of phytanic acid into human peroxisomes. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)39856-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
29
|
Vanhooren JC, Asselberghs S, Eyssen HJ, Mannaerts GP, Van Veldhoven PP. Activation of 3-methyl-branched fatty acids in rat liver. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1994; 26:1095-101. [PMID: 7988734 DOI: 10.1016/0020-711x(94)90131-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1. Subcellular fractionation of rat liver revealed that 3-methylmargaric acid, a monobranched phytanic acid analogue, can be activated by mitochondria, endoplasmic reticulum and peroxisomes. 2. Indirect data (effects of pyrophosphate and Triton X-100) suggested that the peroxisomal activation of 3-methylmargaric, 2-methylpalmitic and palmitic acid is catalyzed by different enzymes. 3. Despite many attempts, column chromatography of solubilized peroxisomal membrane proteins so far did not provide more conclusive data. On various matrices, lignoceroyl-CoA synthetase clearly eluted differently from the synthetases acting on 3-methylmargaric, 2-methylpalmitic and palmitic acid. The latter three however, tended to coelute together, although often not in an identical manner.
Collapse
|
30
|
Contreras M, Mosser J, Mandel JL, Aubourg P, Singh I. The protein coded by the X-adrenoleukodystrophy gene is a peroxisomal integral membrane protein. FEBS Lett 1994; 344:211-5. [PMID: 8187886 DOI: 10.1016/0014-5793(94)00400-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The gene for adrenoleukodystrophy (X-ALD), a peroxisomal disease characterized by excessive accumulation of very long-chain (VLC) fatty acids (> C22:0), has recently been identified by positional cloning, and it is predicted to encode a protein (ALD-P) of 745 amino acids [(1993) Nature 361, 726]. Using Western blot analysis of subcellular organelles purified by isopycnic density gradient centrifugation from X-ALD and control fibroblasts, we show that the monoclonal antibodies directed against ALD-P cross-react with a 75 kDa protein in intact peroxisomes and that ALD-P is an integral component of the peroxisomal membrane. Moreover, no signal for ALD-P was detected in peroxisomes from X-ALD patients with deletion of the ALD gene.
Collapse
Affiliation(s)
- M Contreras
- Department of Pediatrics, Medical University of South Carolina, Charleston 29425
| | | | | | | | | |
Collapse
|
31
|
Singh I, Pahan K, Singh AK, Barbosa E. Refsum disease: a defect in the alpha-oxidation of phytanic acid in peroxisomes. J Lipid Res 1993. [DOI: 10.1016/s0022-2275(20)35738-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
32
|
Pahan K, Cofer J, Baliga P, Singh I. Identification of phytanoyl-CoA ligase as a distinct acyl-CoA ligase in peroxisomes from cultured human skin fibroblasts. FEBS Lett 1993; 322:101-4. [PMID: 8482375 DOI: 10.1016/0014-5793(93)81546-c] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Phytanic acid accumulates in excessive amounts in Refsum disease, a rare neurological disorder, due to a defect in its alpha-oxidation enzyme system in peroxisomes. The activation of phytanic acid to phytanoyl-CoA by phytanoyl-CoA ligase is a prerequisite for its alpha-oxidation. The studies described in this manuscript report that phytanoyl-CoA ligase in peroxisomes is an enzyme distinct from the previously reported acyl-CoA ligases.
Collapse
Affiliation(s)
- K Pahan
- Department of Pediatrics, Medical University of South Carolina, Charleston 29425
| | | | | | | |
Collapse
|
33
|
Mosser J, Douar AM, Sarde CO, Kioschis P, Feil R, Moser H, Poustka AM, Mandel JL, Aubourg P. Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature 1993; 361:726-30. [PMID: 8441467 DOI: 10.1038/361726a0] [Citation(s) in RCA: 810] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Adrenoleukodystrophy (ALD) is an X-linked disease affecting 1/20,000 males either as cerebral ALD in childhood or as adrenomyeloneuropathy (AMN) in adults. Childhood ALD is the more severe form, with onset of neurological symptoms between 5-12 years of age. Central nervous system demyelination progresses rapidly and death occurs within a few years. AMN is a milder form of the disease with onset at 15-30 years of age and a more progressive course. Adrenal insufficiency (Addison's disease) may remain the only clinical manifestation of ALD. The principal biochemical abnormality of ALD is the accumulation of very-long-chain fatty acids (VLCFA) because of impaired beta-oxidation in peroxisomes. The normal oxidation of VLCFA-CoA in patients' fibroblasts suggested that the gene coding for the VLCFA-CoA synthetase could be a candidate gene for ALD. Here we use positional cloning to identify a gene partially deleted in 6 of 85 independent patients with ALD. In familial cases, the deletions segregated with the disease. An identical deletion was detected in two brothers presenting with different clinical ALD phenotypes. Candidate exons were identified by computer analysis of genomic sequences and used to isolate complementary DNAs by exon connection and screening of cDNA libraries. The deduced protein sequence shows significant sequence identity to a peroxisomal membrane protein of M(r) 70K that is involved in peroxisome biogenesis and belongs to the 'ATP-binding cassette' superfamily of transporters.
Collapse
Affiliation(s)
- J Mosser
- Laboratoire de Génétique Moléculaire des Eucaryotes du CNRS, INSERM Unité 184, Institut de Chimie Biologique, Faculté de Médecine, Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
This article summarizes our current knowledge of the metabolic pathways present in mammalian peroxisomes. Emphasis is placed on those aspects that are not covered by other articles in this issue: peroxisomal enzyme content and topology; the peroxisomal beta-oxidation system; substrates of peroxisomal beta-oxidation such as very-long-chain fatty acids, branched fatty acids, dicarboxylic fatty acids, prostaglandins and xenobiotics; the role of peroxisomes in the metabolism of purines, polyamines, amino acids, glyoxylate and reactive oxygen products such as hydrogen peroxide, superoxide anions and epoxides.
Collapse
Affiliation(s)
- G P Mannaerts
- Afdeling Farmacologie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Belgium
| | | |
Collapse
|
35
|
Aubourg P, Mosser J, Douar AM, Sarde CO, Lopez J, Mandel JL. Adrenoleukodystrophy gene: unexpected homology to a protein involved in peroxisome biogenesis. Biochimie 1993; 75:293-302. [PMID: 8507690 DOI: 10.1016/0300-9084(93)90089-b] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Adrenoleukodystrophy (ALD) is an X-linked peroxisomal disorder characterized by a progressive demyelination of the central nervous system and adrenal insufficiency. Clinical phenotypes of different severity are frequently observed within the same kindred. ALD is characterized biochemically by the accumulation of very-long-chain fatty acids (VLCFA) due to an impairment in the beta-oxidation of these fatty acids in peroxisome. From the observation that oxidation of VLCFA-CoA is normal in fibroblasts from patients with ALD, it was concluded that the gene coding for VLCFA-CoA synthetase was a candidate gene for ALD. Using positional cloning strategies, we have identified a gene which was found partially deleted in 7% of 85 independent patients with ALD. The predicted protein (ALDP) sequence shows significant homology to the 70-kDa peroxisomal membrane protein which is involved in peroxisome biogenesis and belongs to the 'ATP binding' superfamily of transporters. ALDP thus encodes a putative peroxisomal transporter molecule which may be involved in the import or anchoring of VLCFA-CoA synthetase.
Collapse
Affiliation(s)
- P Aubourg
- INSERM Unité 342, Hôpital Saint Vincent de Paul, Paris, France
| | | | | | | | | | | |
Collapse
|
36
|
Singh I, Lazo O, Kalipada P, Singh AK. Phytanic acid alpha-oxidation in human cultured skin fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1180:221-4. [PMID: 1463774 DOI: 10.1016/0925-4439(92)90072-u] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We studied the oxidation of [1-14C]phytanic acid, 3-methyl substituted fatty acid, to pristanic acid and 14CO2 in human skin fibroblasts. The specific activity for alpha-oxidation of phytanic acid in peroxisomes was 29- and 124-fold higher than mitochondria and endoplasmic reticulum. This finding demonstrates for the first time the presence of fatty acid alpha-oxidation enzyme system in peroxisomes.
Collapse
Affiliation(s)
- I Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston 29425
| | | | | | | |
Collapse
|