1
|
Barchi JJ, Strain CN. The effect of a methyl group on structure and function: Serine vs. threonine glycosylation and phosphorylation. Front Mol Biosci 2023; 10:1117850. [PMID: 36845552 PMCID: PMC9950641 DOI: 10.3389/fmolb.2023.1117850] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
A variety of glycan structures cover the surface of all cells and are involved in myriad biological processes, including but not limited to, cell adhesion and communication, protein quality control, signal transduction and metabolism, while also being intimately involved in innate and adaptive immune functions. Immune surveillance and responses to foreign carbohydrate antigens, such as capsular polysaccharides on bacteria and surface protein glycosylation of viruses, are the basis of microbial clearance, and most antimicrobial vaccines target these structures. In addition, aberrant glycans on tumors called Tumor-Associated Carbohydrate Antigens (TACAs) elicit immune responses to cancer, and TACAs have been used in the design of many antitumor vaccine constructs. A majority of mammalian TACAs are derived from what are referred to as mucin-type O-linked glycans on cell-surface proteins and are linked to the protein backbone through the hydroxyl group of either serine or threonine residues. A small group of structural studies that have compared mono- and oligosaccharides attached to each of these residues have shown that there are distinct differences in conformational preferences assumed by glycans attached to either "unmethylated" serine or ß-methylated threonine. This suggests that the linkage point of antigenic glycans will affect their presentation to the immune system as well as to various carbohydrate binding molecules (e.g., lectins). This short review, followed by our hypothesis, will examine this possibility and extend the concept to the presentation of glycans on surfaces and in assay systems where recognition of glycans by proteins and other binding partners can be defined by different attachment points that allow for a range of conformational presentations.
Collapse
Affiliation(s)
| | - Caitlin N. Strain
- Center for Cancer Research, Chemical Biology Laboratory, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
2
|
Kaur H. Characterization of glycosylation in monoclonal antibodies and its importance in therapeutic antibody development. Crit Rev Biotechnol 2021; 41:300-315. [PMID: 33430641 DOI: 10.1080/07388551.2020.1869684] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glycosylation is one of the structurally diverse and complex forms of post translational modifications observed in proteins which influence the effector functions of IgG-Fc. Although the glycosylation constitutes 2-3% of the total mass of the IgG antibody, a thorough assessment of glycoform distribution present on the antibody is a critical quality attribute (cQA) for the majority of novel and biosimilar monoclonal antibody (mAb) development. This review paper will highlight the impact of different glycoforms such as galactose, fucose, high mannose, NANA (N-acetylneuraminic acid), and NGNA (N-glycoylneuraminic acid) on the safety/immunogeneicity, efficacy/biological activity and clearance (pharmacodynamics/pharmacokinetic property (PD/PK)) of biological molecules. In addition, this paper will summarize routinely employed reliable analytical techniques such as hydrophilic interaction chromatography (HILIC), high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and mass spectrometry (MS) for characterizing and monitoring glycosylation in monoclonal antibodies (mAbs). The advantages and disadvantages of each of the methods are addressed. The scope of this review paper is limited to only N-linked and O-linked glycosylation.
Collapse
Affiliation(s)
- Harleen Kaur
- Analytical Sciences, Aurobindo Biologics, Hyderabad, India
| |
Collapse
|
3
|
Daniel EJP, las Rivas M, Lira-Navarrete E, García-García A, Hurtado-Guerrero R, Clausen H, Gerken TA. Ser and Thr acceptor preferences of the GalNAc-Ts vary among isoenzymes to modulate mucin-type O-glycosylation. Glycobiology 2020; 30:910-922. [PMID: 32304323 PMCID: PMC7581654 DOI: 10.1093/glycob/cwaa036] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/30/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022] Open
Abstract
A family of polypeptide GalNAc-transferases (GalNAc-Ts) initiates mucin-type O-glycosylation, transferring GalNAc onto hydroxyl groups of Ser and Thr residues of target substrates. The 20 GalNAc-T isoenzymes in humans are classified into nine subfamilies according to sequence similarity. GalNAc-Ts select their sites of glycosylation based on weak and overlapping peptide sequence motifs, as well prior substrate O-GalNAc glycosylation at sites both remote (long-range) and neighboring (short-range) the acceptor. Together, these preferences vary among GalNAc-Ts imparting each isoenzyme with its own unique specificity. Studies on the first identified GalNAc-Ts showed Thr acceptors were preferred over Ser acceptors; however studies comparing Thr vs. Ser glycosylation across the GalNAc-T family are lacking. Using a series of identical random peptide substrates, with single Thr or Ser acceptor sites, we determined the rate differences (Thr/Ser rate ratio) between Thr and Ser substrate glycosylation for 12 isoenzymes (representing 7 GalNAc-T subfamilies). These Thr/Ser rate ratios varied across subfamilies, ranging from ~2 to ~18 (for GalNAc-T4/GalNAc-T12 and GalNAc-T3/GalNAc-T6, respectively), while nearly identical Thr/Ser rate ratios were observed for isoenzymes within subfamilies. Furthermore, the Thr/Ser rate ratios did not appreciably vary over a series of fixed sequence substrates of different relative activities, suggesting the ratio is a constant for each isoenzyme against single acceptor substrates. Finally, based on GalNAc-T structures, the different Thr/Ser rate ratios likely reflect differences in the strengths of the Thr acceptor methyl group binding to the active site pocket. With this work, another activity that further differentiates substrate specificity among the GalNAc-Ts has been identified.
Collapse
Affiliation(s)
| | - Matilde las Rivas
- BIFI and Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, 50018, Spain
| | - Erandi Lira-Navarrete
- BIFI and Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, 50018, Spain
| | - Ana García-García
- BIFI and Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, 50018, Spain
| | - Ramon Hurtado-Guerrero
- BIFI and Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, 50018, Spain
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics (CCG), University of Copenhagen, Copenhagen N DK-2200, Denmark
- Department of Dentistry, Faculty of Health Sciences, Copenhagen Center for Glycomics (CCG), University of Copenhagen, Copenhagen N DK-2200, Denmark
- Fundación ARAID, Zaragoza, 50018, Spain
| | - Henrik Clausen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics (CCG), University of Copenhagen, Copenhagen N DK-2200, Denmark
- Department of Dentistry, Faculty of Health Sciences, Copenhagen Center for Glycomics (CCG), University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Thomas A Gerken
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Voglmeir J, Laurent N, Flitsch SL, Oelgeschläger M, Wilson IBH. Biological and biochemical properties of two Xenopus laevis N-acetylgalactosaminyltransferases with contrasting roles in embryogenesis. Comp Biochem Physiol B Biochem Mol Biol 2015; 180:40-7. [PMID: 25447273 PMCID: PMC4291152 DOI: 10.1016/j.cbpb.2014.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/14/2014] [Accepted: 10/16/2014] [Indexed: 12/20/2022]
Abstract
The biosynthesis of mucin-type O-linked glycans in animals is initiated by members of the large family of polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts), which play important roles in embryogenesis, organogenesis, adult tissue homeostasis and carcinogenesis. Until now, the mammalian forms of these enzymes have been the best characterized. However, two N-acetylgalactosaminyltransferases (xGalNAc-T6 and xGalNAc-T16) from the African clawed frog (Xenopus laevis), which are most homologous to those encoded by the human GALNT6 and GALNT16 (GALNTL1) genes, were shown to have contrasting roles in TGF-β/BMP signaling in embryogenesis. In this study we have examined these two enzymes further and show differences in their in vivo function during X. laevis embyrogenesis as evidenced by in situ hybridization and overexpression experiments. In terms of enzymatic activity, both enzymes were found to be active towards the EA2 peptide, but display differential activity towards a peptide based on the sequence of ActR-IIB, a receptor relevant to TGF-β/BMP signaling. In summary, these data demonstrate that these two enzymes from different branches of the N-acetylgalactosaminyltransferase do not only display differential substrate specificities, but also specific and distinct expression pattern and biological activities in vivo.
Collapse
Affiliation(s)
- Josef Voglmeir
- Department für Chemie, Universität für Bodenkultur, Wien, Austria; Manchester Interdisciplinary Biocentre, University of Manchester, UK
| | - Nicolas Laurent
- Manchester Interdisciplinary Biocentre, University of Manchester, UK
| | - Sabine L Flitsch
- Manchester Interdisciplinary Biocentre, University of Manchester, UK
| | | | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, Wien, Austria.
| |
Collapse
|
5
|
Matsumoto Y, Zhang Q, Akita K, Nakada H, Hamamura K, Tokuda N, Tsuchida A, Matsubara T, Hori T, Okajima T, Furukawa K, Urano T, Furukawa K. pp-GalNAc-T13 induces high metastatic potential of murine Lewis lung cancer by generating trimeric Tn antigen. Biochem Biophys Res Commun 2012; 419:7-13. [PMID: 22306014 DOI: 10.1016/j.bbrc.2012.01.086] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 01/18/2012] [Indexed: 01/04/2023]
Abstract
In order to analyze the mechanisms for cancer metastasis, high metastatic sublines (H7-A, H7-Lu, H7-O, C4-sc, and C4-ly) were obtained by repeated injection of mouse Lewis lung cancer sublines H7 and C4 into C57BL/6 mice. These sublines exhibited increased proliferation and invasion activity in vitro. Ganglioside profiles exhibited lower expression of GM1 in high metastatic sublines than the parent lines. Then, we established GM1-Si-1 and GM1-Si-2 by stable silencing of GM1 synthase in H7 cells. These GM1-knockdown clones exhibited increased proliferation and invasion. Then, we explored genes that markedly altered in the expression levels by DNA microarray in the combination of C4 vs. C4-ly or H7 vs. H7 (GM1-Si). Consequently, pp-GalNAc-T13 gene was identified as up-regulated genes in the high metastatic sublines. Stable transfection of pp-GalNAc-T13 cDNA into C4 (T13-TF) resulted in increased invasion and motility. Then, immunoblotting and flow cytometry using various antibodies and lectins were performed. Only anti-trimeric Tn antibody (mAb MLS128), showed increased expression levels of trimeric Tn antigen in T13-TF clones. Moreover, immunoprecipitation/immunoblotting was performed by mAb MLS128, leading to the identification of an 80 kDa band carrying trimeric Tn antigen, i.e. Syndecan-1. Stable silencing of endogenous pp-GalNAc-T13 in C4-sc (T13-KD) revealed that primary tumors generated by subcutaneous injection of T13-KD clones showed lower coalescence to fascia and peritoneum, and significantly reduced lung metastasis than control clones. These data suggested that high expression of pp-GalNAc-T13 gene generated trimeric Tn antigen on Syndecan-1, leading to the enhanced metastasis.
Collapse
Affiliation(s)
- Yasuyuki Matsumoto
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Tenno M. Analyzing physiological function of polypeptide GalNAcT-1-deficient mice in humoral immunity. Methods Enzymol 2010; 479:173-84. [PMID: 20816166 DOI: 10.1016/s0076-6879(10)79010-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A family of polypeptide GalNAc transferases (ppGalNAcTs) initiates protein O-glycosylation. The ppGalNAcT gene family is large; at least 15 ppGalNAcT isozymes have been cloned so far and each of them may have important and distinctive physiologic functions. ppGalNAcT-1, which is highly expressed in many tissues and cell types, is the first member of the ppGalNAcT family to be cloned. In order to understand the physiologic role of ppGalNAcT-1, we generated and characterized mice lacking this isozyme. We found that ppGalNAcT-1 plays key roles in germinal center (GC) B lymphocyte apoptosis in the modulation of humoral immune response. In this chapter, in vitro and in vivo systems to assess the B lymphocyte function of ppGalNAcT-1-deficient mice are discussed. In addition, detailed information on the immunohistochemistry of GC is also described.
Collapse
Affiliation(s)
- Mari Tenno
- RIKEN Research Center for Allergy and Immunology, Tsurumi-ku, Yokohama City, Kanagawa, Japan
| |
Collapse
|
7
|
Tenno M, Ohtsubo K, Hagen FK, Ditto D, Zarbock A, Schaerli P, von Andrian UH, Ley K, Le D, Tabak LA, Marth JD. Initiation of protein O glycosylation by the polypeptide GalNAcT-1 in vascular biology and humoral immunity. Mol Cell Biol 2007; 27:8783-96. [PMID: 17923703 PMCID: PMC2169402 DOI: 10.1128/mcb.01204-07] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 09/18/2007] [Accepted: 09/25/2007] [Indexed: 12/24/2022] Open
Abstract
Core-type protein O glycosylation is initiated by polypeptide N-acetylgalactosamine (GalNAc) transferase (ppGalNAcT) activity and produces the covalent linkage of serine and threonine residues of proteins. More than a dozen ppGalNAcTs operate within multicellular organisms, and they differ with respect to expression patterns and substrate selectivity. These distinctive features imply that each ppGalNAcT may differentially modulate regulatory processes in animal development, physiology, and perhaps disease. We found that ppGalNAcT-1 plays key roles in cell and glycoprotein selective functions that modulate the hematopoietic system. Loss of ppGalNAcT-1 activity in the mouse results in a bleeding disorder which tracks with reduced plasma levels of blood coagulation factors V, VII, VIII, IX, X, and XII. ppGalNAcT-1 further supports leukocyte trafficking and residency in normal homeostatic physiology as well as during inflammatory responses, in part by providing a scaffold for the synthesis of selectin ligands expressed by neutrophils and endothelial cells of peripheral lymph nodes. Animals lacking ppGalNAcT-1 are also markedly impaired in immunoglobulin G production, coincident with increased germinal center B-cell apoptosis and reduced levels of plasma B cells. These findings reveal that the initiation of protein O glycosylation by ppGalNAcT-1 provides a distinctive repertoire of advantageous functions that support vascular responses and humoral immunity.
Collapse
Affiliation(s)
- Mari Tenno
- Howard Hughes Medical Institute, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Hang HC, Bertozzi CR. The chemistry and biology of mucin-type O-linked glycosylation. Bioorg Med Chem 2005; 13:5021-34. [PMID: 16005634 DOI: 10.1016/j.bmc.2005.04.085] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Accepted: 04/26/2005] [Indexed: 02/04/2023]
Abstract
Mucin-type O-linked glycosylation is a fundamental post-translational modification that is involved in a variety of important biological processes. However, the lack of chemical tools to study mucin-type O-linked glycosylation has hindered our molecular understanding of O-linked glycans in many biological contexts. The review discusses the significance of mucin-type O-linked glycosylation initiated by the polypeptide N-acetylgalactosaminyltransferases in biology and development of chemical tools to study these enzymes and their substrates.
Collapse
Affiliation(s)
- Howard C Hang
- Department of Chemistry, University of California, Berkeley 94720-1460, USA.
| | | |
Collapse
|
10
|
|
11
|
Freire T, FERNáNDEZ C, Chalar C, Maizels R, Alzari P, Osinaga E, Robello C. Characterization of a UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase with an unusual lectin domain from the platyhelminth parasite Echinococcus granulosus. Biochem J 2004; 382:501-10. [PMID: 15142032 PMCID: PMC1133806 DOI: 10.1042/bj20031877] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 05/06/2004] [Accepted: 05/14/2004] [Indexed: 11/17/2022]
Abstract
As part of a general project aimed at elucidating the initiation of mucin-type O-glycosylation in helminth parasites, we have characterized a novel ppGalNAc-T (UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase) from the cestode Echinococcus granulosus (Eg-ppGalNAc-T1). A full-length cDNA was isolated from a library of the tissue-dwelling larval stage of the parasite, and found to code for a 654-amino-acid protein containing all the structural features of ppGalNAc-Ts. Functional characterization of a recombinant protein lacking the transmembrane domain showed maximal activity at 28 degrees C, in the range 6.5-7.5 pH units and in the presence of Cu2+. In addition, it transferred GalNAc to a broad range of substrate peptides, derived from human mucins and O-glycosylated parasite proteins, including acceptors containing only serine or only threonine residues. Interestingly, the C-terminal region of Eg-ppGalNAc-T1 bears a highly unusual lectin domain, considerably longer than the one from other members of the family, and including only one of the three ricin B repeats generally present in ppGalNAc-Ts. Furthermore, a search for conserved domains within the protein C-terminus identified a fragment showing similarity to a recently defined domain, specialized in the binding of organic phosphates (CYTH). The role of the lectin domain in the determination of the substrate specificity of these enzymes suggests that Eg-ppGalNAc-T1 would be involved in the glycosylation of a special type of substrate. Analysis of the tissue distribution by in situ hybridization and immunohistochemistry revealed that this transferase is expressed in the hydatid cyst wall and the subtegumental region of larval worms. Therefore it could participate in the biosynthesis of O-glycosylated parasite proteins exposed at the interface between E. granulosus and its hosts.
Collapse
Affiliation(s)
- Teresa Freire
- *Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo CP 11800, Uruguay
| | - Cecilia FERNáNDEZ
- †Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh, U.K
| | - Cora Chalar
- ‡Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rick M. Maizels
- †Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh, U.K
| | - Pedro Alzari
- §Unité de Biochimie Structurale, URA 2185 CNRS, Institut Pasteur, Paris, France
| | - Eduardo Osinaga
- *Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo CP 11800, Uruguay
| | - Carlos Robello
- *Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo CP 11800, Uruguay
| |
Collapse
|
12
|
Synthesis of UDP-GalNAc analogues as probes for the study of polypeptide-α-GalNAc-transferases. Part 2. Tetrahedron Lett 2004. [DOI: 10.1016/j.tetlet.2004.04.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Busca P, Piller V, Piller F, Martin OR. Synthesis and biological evaluation of new UDP-GalNAc analogues for the study of polypeptide-alpha-GalNAc-transferases. Bioorg Med Chem Lett 2003; 13:1853-6. [PMID: 12749883 DOI: 10.1016/s0960-894x(03)00287-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of three O-methylated UDP-GalNAc analogues have been synthesised using a divergent strategy from a 3,6-di-O-pivaloyl GlcNAc derivative. The biological activity of these probes toward polypeptide-alpha-GalNAc-transferase T1 has been investigated. This study shows that this glycosyltransferase exhibits a very high substrate specificity.
Collapse
Affiliation(s)
- Patricia Busca
- Institut de Chimie Organique et Analytique, Université d'Orléans, BP 6759, 45067 Orléans, France
| | | | | | | |
Collapse
|
14
|
Williams Z, Litscher ES, Wassarman PM. Conversion of Ser to Thr residues at the sperm combining-site of mZP3 does not affect sperm receptor activity. Biochem Biophys Res Commun 2003; 301:813-8. [PMID: 12589785 DOI: 10.1016/s0006-291x(03)00044-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mammalian eggs are surrounded by a thick extracellular coat, the zona pellucida, that is composed of three glycoproteins, called ZP1-3. Sperm recognize and bind to O-linked oligosaccharides attached to Ser-332 and Ser-334 at the sperm combining-site of mouse ZP3 (mZP3). Mutation of either of these Ser residues to a small aliphatic amino acid results in the loss of sperm binding to mZP3 in vitro. Here, we converted both Ser-332 and Ser-334 to Thr residues by site-directed mutagenesis. Recombinant mutant glycoprotein made by stably transfected EC cells was purified and then assayed for its ability to inhibit binding of sperm to ovulated eggs in vitro. Results of these experiments suggest that Thr residues can replace the two evolutionarily conserved Ser residues as acceptors for essential O-linked oligosaccharides at the sperm combining-site of mZP3 without affecting the glycoprotein's sperm receptor activity.
Collapse
Affiliation(s)
- Zev Williams
- Brookdale Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | | | | |
Collapse
|
15
|
Tenno M, Saeki A, Kézdy FJ, Elhammer AP, Kurosaka A. The lectin domain of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 1 is involved in O-glycosylation of a polypeptide with multiple acceptor sites. J Biol Chem 2002; 277:47088-96. [PMID: 12364335 DOI: 10.1074/jbc.m207369200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mucin type O-glycosylation begins with the transfer of GalNAc to serine and threonine residues on proteins by a family of UDP-GalNAc:polypeptide N-acetylgalactosaminlytransferases. These enzymes all contain a lectin-like (QXW)(3) repeat sequence at the C terminus that consists of three tandem repeats (alpha, beta, and gamma). The putative lectin domain of one of the most ubiquitous isozymes, GalNAc-T1, is reportedly not functional. In this report, we have reevaluated the role of the GalNAc-T1 lectin domain. Deletion of the lectin domain resulted in a complete loss of enzymatic activity. We also found that GalNAc-T1 has two activities distinguished by their sensitivities to inhibition with free GalNAc; one activity is sensitive, and the other is resistant. In our experiments, the former activity is represented by the O-glycosylation of apomucin, an acceptor that contains multiple glycosylation sites, and the latter is represented by synthetic peptides that contain a single glycosylation site. Site-directed mutagenesis of the lectin domain selectively reduced the former activity and identified Asp(444) in the alpha repeat as the most important site for GalNAc recognition. A further reduction of the GalNAc-inhibitable activity was observed when both Asp(444) and the corresponding aspartate residues in the beta and the gamma repeats were mutated. This suggests a cooperative involvement of each repeat unit in the glycosylation of polypeptides with multiple acceptor sites.
Collapse
Affiliation(s)
- Mari Tenno
- Department of Biotechnology, Faculty of Engineering, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
| | | | | | | | | |
Collapse
|
16
|
Hendershot LL, Aeed PA, Kézdy FJ, Elhammer AP. An efficient assay for dolichyl phosphate-mannose: protein O-mannosyltransferase. Anal Biochem 2002; 307:273-9. [PMID: 12202244 DOI: 10.1016/s0003-2697(02)00059-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel method for quantifying the reaction product from dolichyl phosphoryl mannose:polypeptide mannosyltransferase (protein mannosyl transferase; PMT), was developed. The assay quantifies the amount of radioactivity incorporated into the acceptor peptide YNPTSV from dolichyl phosphoryl [3H]mannose (Dol-P-Man). A novel delivery system, large unilamellar vesicles (LUV), composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), is used to keep the poorly soluble donor substrate, Dol-P-Man, in solution. The use of LUV allows generation of truly reproducible data and, as an additional benefit, also results in a more than 10 times increase in transfer efficiency. In contrast to the solvent extraction procedures commonly used in previously described PMT assays, the assay reaction product is separated from the radioactive donor substrate on C(18) cartridges. The use of C(18) cartridges allows generation of reproducible data with a low, consistent background and also produces a significant reduction in the time and labor needed for the product workup. In a reaction mixture consisting of 100 microg POPC LUV, 9 x 10(5)cpm (approximately 15 pmol) Dol-P-Man, 100 nmol YNPTSV, and aproximately 4 microg of crude yeast microsomal extract, time-dependent formation of glycosylated product obeys Michaelis-Menten-type kinetics throughout the course of the reaction-until exhaustion of the donor substrate. The linear initial rates of the reaction allowed calculation of an apparent K(m) of 1mM, for the acceptor peptide YNPTSV. Variations in detergent concentration in the assay influence transfer efficiency, possibly through interference with the LUV-based donor substrate delivery system. Hence detergent concentrations should be kept constant.
Collapse
|
17
|
Tetaert D, Richet C, Gagnon J, Boersma A, Degand P. Studies of acceptor site specificities for three members of UDP-GalNAc:N-acetylgalactosaminyltransferases by using a synthetic peptide mimicking the tandem repeat of MUC5AC. Carbohydr Res 2001; 333:165-71. [PMID: 11448678 DOI: 10.1016/s0008-6215(01)00135-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The acceptor specificity of three major isoforms of UDP-GalNAc:polypeptide N-acetylgalactosaminyltranferases (murine recombinant proteins GaNTase-T1, -T2 and -T3) was investigated using the synthetic peptide (GTTPSPVPTTSTTSAP) containing clusters of threonine residues mimicking the mucin tandem repeat unit of MUC5AC. The O-glycosylated products obtained after in vitro reactions were fractionated by capillary electrophoresis and the purified glycopeptides were characterized by MALDI mass spectrometry (number of O-GalNAc residues) and by Edman degradation (site location). A maximum of three GalNAc residues was transferred into the MUC5AC motif peptide and the preferential order of incorporation for each GaNTase isoform was determined. Our results suggest that clusters of threonine appear to be essential for site recognition of peptide backbone by the ubiquitous GaNTases and also support the notion that the different GaNTase isoforms with varying substrate specificities are involved in a hierarchical order of O-glycosylation processing of the mucin-type O-glycoproteins.
Collapse
Affiliation(s)
- D Tetaert
- Unité Inserm no. 377, Place de Verdun, F-59045 Lille, France.
| | | | | | | | | |
Collapse
|
18
|
Silverman HS, Parry S, Sutton-Smith M, Burdick MD, McDermott K, Reid CJ, Batra SK, Morris HR, Hollingsworth MA, Dell A, Harris A. In vivo glycosylation of mucin tandem repeats. Glycobiology 2001; 11:459-71. [PMID: 11445551 DOI: 10.1093/glycob/11.6.459] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The biochemical and biophysical properties of mucins are largely determined by extensive O-glycosylation of serine- and threonine-rich tandem repeat (TR) domains. In a number of human diseases aberrant O-glycosylation is associated with variations in the properties of the cell surface-associated and secreted mucins. To evaluate in vivo the O-glycosylation of mucin TR domains, we generated recombinant chimeric mucins with TR sequences from MUC2, MUC4, MUC5AC, or MUC5B, which were substituted for the native TRs of epitope-tagged MUC1 protein (MUC1F). These hybrid mucins were extensively O-glycosylated and showed the expected association with the cell surface and release into culture media. The presence of different TR domains within the chimeric mucins appears to have limited influence on their posttranslational processing. Alterations in glycosylation were detailed by fast atom bombardment mass spectrometry and reactivity with antibodies against particular blood-group and tumor-associated carbohydrate antigens. Future applications of these chimeras will include investigations of mucin posttranslational modification in the context of disease.
Collapse
Affiliation(s)
- H S Silverman
- Paediatric Molecular Genetics, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Taguchi G, Imura H, Maeda Y, Kodaira R, Hayashida N, Shimosaka M, Okazaki M. Purification and characterization of UDP-glucose: hydroxycoumarin 7-O-glucosyltransferase, with broad substrate specificity from tobacco cultured cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 157:105-112. [PMID: 10940474 DOI: 10.1016/s0168-9452(00)00270-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The enzyme UDP-glucose: hydroxycoumarin 7-O-glucosyltransferase (CGTase), which catalyzes the formation of scopolin from scopoletin, was purified approximately 1200-fold from a culture of 2,4-D-treated tobacco cells (Nicotiana tabacum L. cv. Bright Yellow T-13) with a yield of 7%. Purification to apparent homogeneity, as judged by SDS-PAGE, was achieved by sequential anion-exchange chromatography, hydroxyapatite chromatography, gel filtration, a second round of anion-exchange chromatography, and affinity chromatography on UDP-glucuronic acid agarose. The purified enzyme had a pH optimum of 7.5, an isoelectric point (pI) of 5.0, and a molecular mass of 49 kDa. The enzyme did not require metal cofactors for activity. Its activity was inhibited by Zn(2+), Co(2+) and Cu(2+) ions, as well as by SH-blocking reagents. The K(m) values for UDP-glucose, scopoletin and esculetin were 43, 150 and 25 µM, respectively. A study of the initial rate of the reaction suggested that the reaction proceeded via a sequential mechanism. The purified enzyme preferred hydroxycoumarins as substrates but also exhibited significant activity with flavonoids. A database search using the amino terminus amino acid sequence of CGTase revealed strong homology to the amino acid sequences of other glucosyltransferases in plants.
Collapse
Affiliation(s)
- G Taguchi
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, 386-8567, Nagano, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Müller S, Alving K, Peter-Katalinic J, Zachara N, Gooley AA, Hanisch FG. High density O-glycosylation on tandem repeat peptide from secretory MUC1 of T47D breast cancer cells. J Biol Chem 1999; 274:18165-72. [PMID: 10373415 DOI: 10.1074/jbc.274.26.18165] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The site-specific O-glycosylation of MUC1 tandem repeat peptides from secretory mucin of T47D breast cancer cells was analyzed. After affinity isolation on immobilized BC3 antibody, MUC1 was partially deglycosylated by enzymatic treatment with alpha-sialidase/beta-galactosidase and fragmented by proteolytic cleavage with the Arg-C-specific endopeptidase clostripain. The PAP20 glycopeptides were isolated by reversed phase high pressure liquid chromatography and subjected to the structural analyses by quadrupole time-of-flight electrospray ionization mass spectrometry and to the sequencing by Edman degradation. All five positions of the repeat peptide were revealed as O-glycosylation targets in the tumor cell, including the Thr within the DTR motif. The degree of substitution was estimated to average 4.8 glycans per repeat, which compares to 2.6 glycosylated sites per repeat for the mucin from milk (Müller, S., Goletz, S., Packer, N., Gooley, A. A., Lawson, A. M., and Hanisch, F.-G. (1997) J. Biol. Chem. 272, 24780-24793). In addition to a modification by glycosylation, the immunodominant DTR motif on T47D-MUC1 is altered by amino acid replacements (PAPGSTAPAAHGVTSAPESR), which were revealed in about 50% of PAP20 peptides. The high incidence of these replacements and their detection also in other cancer cell lines imply that the conserved tandem repeat domain of MUC1 is polymorphic with respect to the peptide sequence.
Collapse
Affiliation(s)
- S Müller
- Institute of Biochemistry, Medical Faculty of the University, Joseph-Stelzmann-Strasse 52, 50931 Köln, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Hanisch FG, Müller S, Hassan H, Clausen H, Zachara N, Gooley AA, Paulsen H, Alving K, Peter-Katalinic J. Dynamic epigenetic regulation of initial O-glycosylation by UDP-N-Acetylgalactosamine:Peptide N-acetylgalactosaminyltransferases. site-specific glycosylation of MUC1 repeat peptide influences the substrate qualities at adjacent or distant Ser/Thr positions. J Biol Chem 1999; 274:9946-54. [PMID: 10187769 DOI: 10.1074/jbc.274.15.9946] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In search of possible epigenetic regulatory mechanisms ruling the initiation of O-glycosylation by polypeptide:N-acetylgalactosaminyltransferases, we studied the influences of mono- and disaccharide substituents of glycopeptide substrates on the site-specific in vitro addition of N-acetylgalactosamine (GalNAc) residues by recombinant GalNAc-Ts (rGalNAc-T1, -T2, and -T3). The substrates were 20-mers (HGV20) or 21-mers (AHG21) of the MUC1 tandem repeat peptide carrying GalNAcalpha or Galbeta1-3GalNAcalpha at different positions. The enzymatic products were analyzed by MALDI mass spectrometry and Edman degradation for the number and sites of incorporated GalNAc. Disaccharide placed on the first position of the diad Ser-16-Thr-17 prevents glycosylation of the second, whereas disaccharide on the second position of Ser-16-Thr-17 and Thr-5-Ser-6 does not prevent GalNAc addition to the first. Multiple disaccharide substituents suppress any further glycosylation at the remaining sites. Glycosylation of Ser-16 is negatively affected by glycosylation at position -6 (Thr-10) or -10 (Ser-6) and is inhibited by disaccharide at position -11 (Thr-5), suggesting the occurrence of glycosylation-induced effects on distant acceptor sites. Kinetic studies revealed the accelerated addition of GalNAc to Ser-16 adjacent to GalNAc-substituted Thr-17, demonstrating positive regulatory effects induced by glycosylation on the monosaccharide level. These antagonistic effects of mono- and disaccharides could underlie a postulated regulatory mechanism.
Collapse
Affiliation(s)
- F G Hanisch
- Institute of Biochemistry, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hagen FK, Hazes B, Raffo R, deSa D, Tabak LA. Structure-function analysis of the UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase. Essential residues lie in a predicted active site cleft resembling a lactose repressor fold. J Biol Chem 1999; 274:6797-803. [PMID: 10037781 DOI: 10.1074/jbc.274.10.6797] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mucin-type O-glycosylation is initiated by a family of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (ppGaNTases). Based on sequence relationships with divergent proteins, the ppGaNTases can be subdivided into three putative domains: each putative domain contains a characteristic sequence motif. The 112-amino acid glycosyltransferase 1 (GT1) motif represents the first half of the catalytic unit and contains a short aspartate-any residue-histidine (DXH) or aspartate-any residue-aspartate (DXD)-like sequence. Secondary structure predictions and structural threading suggest that the GT1 motif forms a 5-stranded parallel beta-sheet flanked by 4 alpha-helices, which resembles the first domain of the lactose repressor. Four invariant carboxylates and a histidine residue are predicted to lie at the C-terminal end of three beta-strands and line the active site cleft. Site-directed mutagenesis of murine ppGaNTase-T1 reveals that conservative mutations at these 5 positions result in products with no detectable enzyme activity (D156Q, D209N, and H211D) or <1% activity (E127Q and E213Q). The second half of the catalytic unit contains a DXXXXXWGGENXE motif (positions 310-322) which is also found in beta1,4-galactosyltransferases (termed the Gal/GalNAc-T motif). Mutants of carboxylates within this motif express either no detectable activity, 1% or 2% activity (E319Q, E322Q, and D310N, respectively). Mutagenesis of highly conserved (but not invariant) carboxylates produces only modest alterations in enzyme activity. Mutations in the C-terminal 128-amino acid ricin-like lectin motif do not alter the enzyme's catalytic properties.
Collapse
Affiliation(s)
- F K Hagen
- Center for Oral Biology, Rochester Institute of Biomedical Sciences, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
23
|
Bhatia PK, Mukhopadhyay A. Protein glycosylation: implications for in vivo functions and therapeutic applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1999; 64:155-201. [PMID: 9933978 DOI: 10.1007/3-540-49811-7_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The glycosylation machinery in eukaryotic cells is available to all proteins that enter the secretory pathway. There is a growing interest in diseases caused by defective glycosylation, and in therapeutic glycoproteins produced through recombinant DNA technology route. The choice of a bioprocess for commercial production of recombinant glycoprotein is determined by a variety of factors, such as intrinsic biological properties of the protein being expressed and the purpose for which it is intended, and also the economic target. This review summarizes recent development and understanding related to synthesis of glycans, their functions, diseases, and various expression systems and characterization of glycans. The second section covers processing of N- and O-glycans and the factors that regulate protein glycosylation. The third section deals with in vivo functions of protein glycosylation, which includes protein folding and stability, receptor functioning, cell adhesion and signal transduction. Malfunctioning of glycosylation machinery and the resultant diseases are the subject of the fourth section. The next section covers the various expression systems exploited for the glycoproteins: it includes yeasts, mammalian cells, insect cells, plants and an amoeboid organism. Biopharmaceutical properties of therapeutic proteins are discussed in the sixth section. In vitro protein glycosylation and the characterization of glycan structures are the subject matters for the last two sections, respectively.
Collapse
Affiliation(s)
- P K Bhatia
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | |
Collapse
|
24
|
Mandel U, Hassan H, Therkildsen MH, Rygaard J, Jakobsen MH, Juhl BR, Dabelsteen E, Clausen H. Expression of polypeptide GalNAc-transferases in stratified epithelia and squamous cell carcinomas: immunohistological evaluation using monoclonal antibodies to three members of the GalNAc-transferase family. Glycobiology 1999; 9:43-52. [PMID: 9884405 DOI: 10.1093/glycob/9.1.43] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mucin-type O-glycosylation is initiated by a large family of UDP-GalNAc: polypeptide N -acetyl-galactosaminyltransferases (GalNAc-transferases). Individual GalNAc-transferases appear to have different functions and Northern analysis indicates that they are differently expressed in different organs. This suggests that O-glycosylation may vary with the repertoire of GalNAc-transferases expressed in a given cell. In order to study the repertoire of GalNAc-transferases in situ in tissues and changes in tumors, we have generated a panel of monoclonal antibodies (MAbs) with well defined specificity for human GalNAc-T1, -T2, and -T3. Application of this panel of novel antibodies revealed that GalNAc- transferases are differentially expressed in different cell lines, in spermatozoa, and in oral mucosa and carcinomas. For example, GalNAc-T1 and -T2 but not -T3 were highly expressed in WI38 cells, and GalNAc-T3 but not GalNAc-T1 or -T2 was expressed in spermatozoa. The expression patterns in normal oral mucosa were found to vary with cell differentiation, and for GalNAc-T2 and -T3 this was reflected in oral squamous cell carcinomas. The expression pattern of GalNAc-T1 was on the other hand changed in tumors to either total loss or expression in cytological poorly differentiated tumor cells, where the normal undifferentiated cells lacked expression. These results demonstrate that the repertoire of GalNAc-transferases is different in different cell types and vary with cellular differentiation, and malignant transformation. The implication of this is not yet fully understood, but it suggests that specific changes in sites of O-glycosylation of proteins may occur as a result of changes in the repertoire of GalNAc-transferases.
Collapse
Affiliation(s)
- U Mandel
- Department of Oral Diagnostics, School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Norre Alle 20, 2200 N, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Berger EG, Burger P, Borsig L, Malissard M, Felner KM, Zeng S, Dinter A. Immunodetection of glycosyltransferases: prospects and pitfalls. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 435:119-32. [PMID: 9498071 DOI: 10.1007/978-1-4615-5383-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- E G Berger
- Institute of Physiology, University of Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
26
|
Müller S, Goletz S, Packer N, Gooley A, Lawson AM, Hanisch FG. Localization of O-glycosylation sites on glycopeptide fragments from lactation-associated MUC1. All putative sites within the tandem repeat are glycosylation targets in vivo. J Biol Chem 1997; 272:24780-93. [PMID: 9312074 DOI: 10.1074/jbc.272.40.24780] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Since there is no consensus sequence directing the initial GalNAc incorporation into mucin peptides, O-glycosylation sites are not reliably predictable. We have developed a mass spectrometric sequencing strategy that allows the identification of in vivo O-glycosylation sites on mucin-derived glycopeptides. Lactation-associated MUC1 was isolated from human milk and partially deglycosylated by trifluoromethanesulfonic acid to the level of core GalNAc residues. The product was fragmented by the Arg-C-specific endopeptidase clostripain to yield tandem repeat icosapeptides starting with the PAP motif. PAP20 glycopeptides were subjected to sequencing by post-source decay matrix-assisted laser desorption ionization mass spectrometry or by solid phase Edman degradation to localize the glycosylation sites. The masses of C- or N-terminal fragments registered for the mono- to pentasubstituted PAP20 indicated that GalNAc was linked to the peptide at Ser5,Thr6 (GSTA) and Thr14 (VTSA) but contrary to previous in vitro glycosylation studies also at Thr19 and Ser15 located within the PDTR or VTSA motifs, respectively. Quantitative data from solid phase Edman sequencing revealed no preferential glycosylation of the threonines. These discrepancies between in vivo and in vitro glycosylation patterns may be explained by assuming that O-glycosylation of adjacent peptide positions is a dynamically regulated process that depends on changes of the substrate qualities induced by glycosylation at vicinal sites.
Collapse
Affiliation(s)
- S Müller
- Institute of Biochemistry, Medical Faculty of the University, 50931 Cologne, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
27
|
Wandall HH, Hassan H, Mirgorodskaya E, Kristensen AK, Roepstorff P, Bennett EP, Nielsen PA, Hollingsworth MA, Burchell J, Taylor-Papadimitriou J, Clausen H. Substrate specificities of three members of the human UDP-N-acetyl-alpha-D-galactosamine:Polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1, -T2, and -T3. J Biol Chem 1997; 272:23503-14. [PMID: 9295285 DOI: 10.1074/jbc.272.38.23503] [Citation(s) in RCA: 238] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mucin-type O-glycosylation is initiated by UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferases (GalNAc-transferases). The role each GalNAc-transferase plays in O-glycosylation is unclear. In this report we characterized the specificity and kinetic properties of three purified recombinant GalNAc-transferases. GalNAc-T1, -T2, and -T3 were expressed as soluble proteins in insect cells and purified to near homogeneity. The enzymes have distinct but partly overlapping specificities with short peptide acceptor substrates. Peptides specifically utilized by GalNAc-T2 or -T3, or preferentially by GalNAc-T1 were identified. GalNAc-T1 and -T3 showed strict donor substrate specificities for UDP-GalNAc, whereas GalNAc-T2 also utilized UDP-Gal with one peptide acceptor substrate. Glycosylation of peptides based on MUC1 tandem repeat showed that three of five potential sites in the tandem repeat were glycosylated by all three enzymes when one or five repeat peptides were analyzed. However, analysis of enzyme kinetics by capillary electrophoresis and mass spectrometry demonstrated that the three enzymes react at different rates with individual sites in the MUC1 repeat. The results demonstrate that individual GalNAc-transferases have distinct activities and the initiation of O-glycosylation in a cell is regulated by a repertoire of GalNAc-transferases.
Collapse
Affiliation(s)
- H H Wandall
- School of Dentistry, University of Copenhagen, Norre Allé 20, 2200 Copenhagen N, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yoshida A, Suzuki M, Ikenaga H, Takeuchi M. Discovery of the shortest sequence motif for high level mucin-type O-glycosylation. J Biol Chem 1997; 272:16884-8. [PMID: 9201996 DOI: 10.1074/jbc.272.27.16884] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The consensus primary amino acid sequence for mucin-type O-glycosylation sites has not been identified. To determine the shortest motif sequence required for high level mucin-type O-glycosylation, we prepared more than 100 synthetic peptides and assayed in vitro O-GalNAc transfer to serine or threonine in these peptides using a bovine colostrum UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyl transferase (O-GalNAcT). We chose the sequence PDAASAAP from human erythropoietin (hEPO) for further systematic substitutions because it accepted GalNAc and was a fairly simple sequence consisting only of four kinds of amino acids. Several substitutions showed that threonine is approximately 40-fold better than serine as the glycosylated amino acid and a proline at position +3 on the C-terminal side is very important. To define the effect of proline residues around the glycosylation site, we analyzed a series of peptides containing one to three proline residues in a parent peptide AAATAAA. The results clearly indicated that prolines at positions +1 and +3 had a positive effect. The O-GalNAc transfer level of AAATPAP was increased approximately 90-fold from AAATAAA. The deletion of amino acids from the N-terminal side of the glycosylation site suggested that five amino acids from position -1 to +3 were especially important for glycosylation. Moreover, the influence of all 20 amino acids at positions -1, +2, and +4 was analyzed. Uncharged amino acids were preferred at position -1, and small or positively charged amino acids were preferred at position +2. No preference was observed at position +4. We propose a mucin-type O-glycosylation motif, XTPXP, which may be suitable as a signal for protein O-glycosylation. The features observed in this study also appear to be very useful for prediction of mucin-type O-glycosylation sites in glycoproteins.
Collapse
Affiliation(s)
- A Yoshida
- Central Laboratories for Key Technology, Kirin Brewery Co., Ltd., 1-13-5, Fukuura, Kanazawa-ku, Yokohama 236, Japan
| | | | | | | |
Collapse
|
29
|
Gerken TA, Owens CL, Pasumarthy M. Determination of the site-specific O-glycosylation pattern of the porcine submaxillary mucin tandem repeat glycopeptide. Model proposed for the polypeptide:galnac transferase peptide binding site. J Biol Chem 1997; 272:9709-19. [PMID: 9092502 DOI: 10.1074/jbc.272.15.9709] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The heterogeneously glycosylated 81-residue tryptic tandem repeat glycopeptide from porcine submaxillary mucin (PSM) has been isolated and its glycosylation pattern determined by amino acid sequencing. Key to these studies is the ability to trim the structurally heterogeneous PSM oligosaccharide side chains to homogeneous GalNAc monosaccharide side chains by mild trifluoromethanesulfonic acid treatment. Trypsin treatment of trifluoromethanesulfonic acid-treated PSM releases the 81-residue tandem repeat as an ensemble of 81-residue glycopeptides with different glycosylation patterns. Automated amino acid sequencing using Edman degradative chemistry of the repeat was used to determine the extent of glycosylation of nearly every Ser and Thr residue. The Thr residues are all highly glycosylated within the range of 73-90%, giving an average Thr glycosylation of 83%. In contrast, the Ser residues display a wide range of glycosylations, ranging between 33 and 95%, giving an average Ser glycosylation of 74%. These data are consistent with the known elevated glycosylation of Thr peptides over Ser peptides for the porcine UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferase. It is also observed that the extent of glycosylation of the repeat correlates poorly with published predictive methods. An examination of the sequences surrounding the glycosylation sites reveals that nearly all of the highly glycosylated sites have a penultimate Gly residue, whereas those that are less highly glycosylated have medium to large side chain penultimate residues. As observed by others, glycosylation also appears to be modulated by the presence of Pro residues. On the basis of these findings we suggest that the acceptor peptide binds the transferase in a beta-like conformation and that penultimate residue side chain steric interactions may play a role in determining extent that a given Ser or Thr is glycosylated. A model for the GalNAc transferase peptide binding site is proposed.
Collapse
Affiliation(s)
- T A Gerken
- W. A. Bernbaum Center for Cystic Fibrosis Research, Case Western Reserve University, Cleveland, Ohio 44106-4948, USA.
| | | | | |
Collapse
|
30
|
Hansen JE, Lund O, Rapacki K, Brunak S. O-GLYCBASE version 2.0: a revised database of O-glycosylated proteins. Nucleic Acids Res 1997; 25:278-82. [PMID: 9016554 PMCID: PMC146398 DOI: 10.1093/nar/25.1.278] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
O-GLYCBASE is an updated database of information on glycoproteins and their O-linked glycosylation sites. Entries are compiled and revised from the literature, and from the SWISS-PROT database. Entries include information about species, sequence, glycosylation sites and glycan type. O-GLYCBASE is now fully cross-referenced to the SWISS-PROT, PIR, PROSITE, PDB, EMBL, HSSP, LISTA and MIM databases. Compared with version 1.0 the number of entries have increased by 34%. Revision of the O-glycan assignment was performed on 20% of the entries. Sequence logos displaying the acceptor specificity patterns for the GalNAc, mannose and GlcNAc transferases are shown. The O-GLYCBASE database is available through WWW or by anonymous FTP.
Collapse
Affiliation(s)
- J E Hansen
- Center for Biological Sequence Analysis, The Technical University of Denmark, Building 206, DK-2800 Lyngby, Denmark.
| | | | | | | |
Collapse
|
31
|
Brockhausen I, Toki D, Brockhausen J, Peters S, Bielfeldt T, Kleen A, Paulsen H, Meldal M, Hagen F, Tabak LA. Specificity of O-glycosylation by bovine colostrum UDP-GalNAc: polypeptide alpha-N-acetylgalactosaminyltransferase using synthetic glycopeptide substrates. Glycoconj J 1996; 13:849-56. [PMID: 8910012 DOI: 10.1007/bf00702349] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The factors determining glycosylation of mucin type glycoproteins are not well understood. In the present work, we investigated the role of the peptide moiety and of the presence of O-glycan chains on O-glycosylation by UDP-GalNAc: polypeptide alpha-N-acetylgalactosaminyl-transferase (ppGalNAc-T). We used purified ppGalNAc-T from bovine colostrum and a series of synthetic glycopeptide and peptide substrates most of which contained sequences derived from the tandem repeat region of MUC2 mucin. The rate of incorporation of GalNAc into Thr was significantly greater than toward Ser residues. The presence of one or two GalNAc-Thr moieties in the substrate significantly reduced enzyme activity, and this effect was more pronounced when the disaccharide Gal beta 1-3GalNAc was present. Thus the sequential attachment of a second GalNAc residue in the vicinity of a pre-existing GalNAc-Thr or Gal beta 1-3GalNAc-Thr occurs at a slower rate than primary glycosylation of carbohydrate-free peptide. Analysis of products by HPLC showed that the enzyme was selective in glycosylating peptides or glycopeptides with the PTTTPIST sequence in that the preferred primary glycosylation site was the third Thr from the amino-terminal end; secondary glycosylation depended on the site of the primary glycosylation. Negatively but not positively charged amino acids on the carboxy-terminal side of the putative secondary glycosylation site resulted in high activity suggesting charge-charge interactions of substrates with the enzyme. These studies indicate that O-glycosylation by bovine colostrum ppGalNAc-T is a selective process dependent on both the amino acid sequence and prior glycosylation of peptide substrates.
Collapse
Affiliation(s)
- I Brockhausen
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bennett EP, Hassan H, Clausen H. cDNA cloning and expression of a novel human UDP-N-acetyl-alpha-D-galactosamine. Polypeptide N-acetylgalactosaminyltransferase, GalNAc-t3. J Biol Chem 1996; 271:17006-12. [PMID: 8663203 DOI: 10.1074/jbc.271.29.17006] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The glycosylation of serine and threonine residues during mucin-type O-linked protein glycosylation is carried out by a family of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (GalNAc-transferase). Previously two members, GalNAc-T1 and -T2, have been isolated and the genes cloned and characterized. Here we report the cDNA cloning and expression of a novel GalNAc-transferase termed GalNAc-T3. The gene was isolated and cloned based on the identification of a GalNAc-transferase motif (61 amino acids) that is shared between GalNAc-T1 and -T2 as well as a homologous Caenorhabditis elegans gene. The cDNA sequence has a 633-amino acid coding region indicating a protein of 72.5 kDa with a type II domain structure. The overall amino acid sequence similarity with GalNAc-T1 and -T2 is approximately 45%; 12 cysteine residues that are shared between GalNAc-T1 and -T2 are also found in GalNAc-T3. GalNAc-T3 was expressed as a soluble protein without the hydrophobic transmembrane domain in insect cells using a Baculo-virus vector, and the expressed GalNAc-transferase activity showed substrate specificity different from that previously reported for GalNAc-T1 and -T2. Northern analysis of human organs revealed a very restricted expression pattern of GalNAc-T3.
Collapse
Affiliation(s)
- E P Bennett
- Faculty of Health Sciences, School of Dentistry, DK-2200 Copenhagen, Denmark
| | | | | |
Collapse
|
33
|
Roth J. Protein glycosylation in the endoplasmic reticulum and the Golgi apparatus and cell type-specificity of cell surface glycoconjugate expression: analysis by the protein A-gold and lectin-gold techniques. Histochem Cell Biol 1996; 106:79-92. [PMID: 8858368 DOI: 10.1007/bf02473203] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
High resolution immunolabeling applying the protein A-gold technique and carbohydrate cytochemistry using lectin-gold labeling on Lowicryl K4M and thawed-frozen thin sections are most useful approaches for the detection of protein antigens and lectin binding sites in intracellular organelles and the plasma membrane. They provided the basis for modern electron microscopic studies on protein glycosylation reactions and the identification of their subcellular localization as reviewed here. These studies have demonstrated organelle subcompartments and the cell type-specific compartmentation of endoplasmic reticulum and Golgi apparatus-associated glycosylation reactions. The other subject reviewed in this paper is cell surface glycoconjugates, as they are expressed in relation to specific cell types present in various organs and during cellular differentiation processes.
Collapse
Affiliation(s)
- J Roth
- Department of Pathology, University of Zürich, Switzerland
| |
Collapse
|
34
|
Salazar NA, Mondragon A, Kelly JM. Mucin-like glycoprotein genes are closely linked to members of the trans-sialidase super-family at multiple sites in the Trypanosoma cruzi genome. Mol Biochem Parasitol 1996; 78:127-36. [PMID: 8813683 DOI: 10.1016/s0166-6851(96)02617-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In Trypanosoma cruzi a cell surface enzyme with trans-sialidase (TS) activity has been implicated as an important factor in establishing infection. The enzyme is encoded by genes belonging to a large super-family which on the basis of sequence has been subdivided into 4 groups. TS mediates the transfer of sialic acid residues from host glycoconjugates to acceptor molecules on the parasite surface. To study the organisation of the TS genes we isolated several distinct cosmids from a library constructed with DNA from the T. cruzi X10.6 clone. In these cosmids, the TS genes (group I) were present either as single copies or as a direct tandem repeat. A common feature of the cosmids was the presence of a related group III gene located 10-12kb downstream of the TS gene(s) and arranged in the same orientation. In several of the cosmids we also identified a mucin-like glycoprotein gene located between the group I and group III genes. The mucin-like genes are part of a large polymorphic family and contour clamped homogeneous electric field electrophoresis (CHEFE) analysis showed that they were linked to members of the TS super-family at multiple sites in the X10.6 genome. Screening of a second cosmid library made with DNA from the CL-Brener clone confirmed this multiple linkage suggesting that it is a common feature of the species. This genetic organisation may have important functional significance since the mucin-like glycoproteins are the major cell surface acceptors of sialic acid.
Collapse
Affiliation(s)
- N A Salazar
- Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, UK
| | | | | |
Collapse
|
35
|
Abstract
The glycosylation pathway is the most important post-translational modification of a protein and is moreover a highly specific process. The majority of proteins of pharmaceutical interest are glycoproteins. Therefore, it is necessary to identify the composition, the structure, the function and the biosynthesis of the glycoproteins. The present knowledge is described here. In addition, the performed studies about structure-function relationship of the glycoproteins have shown that the oligosaccharide part of a glycoprotein confers important and specific biological roles. Thus, the modification of the structure of the glycan chains can lead to a modification of the activity of the glycoprotein. This phenomenon is encountered at the time of the production of recombinant glycoprotein in a heterologous system. Indeed, the glycosylation profile of a protein is specific to both the host cell and the culture conditions of this cell. Thus, the advantages and the drawbacks of the different host cells used for the glycosylation engineering are presented. In this way, the identification of the different specific enzymes glycosyltransferases and glycosidases involved in the glycosylation pathway is now necessary to improve the production of recombinant glycoprotein. The structure and the characteristics of these enzymes, and more particularly the oligosaccharyltransferase and the galactosyltransferase, are also described.
Collapse
Affiliation(s)
- I Meynial-Salles
- Département de Génie Biochimique et Alimentaire, INSA URA CNRS, 544 Centre de Bioingénierie Gilbert Durand, Toulouse, France
| | | |
Collapse
|
36
|
Nehrke K, Hagen FK, Tabak LA. Charge distribution of flanking amino acids influences O-glycan acquisition in vivo. J Biol Chem 1996; 271:7061-5. [PMID: 8636138 DOI: 10.1074/jbc.271.12.7061] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The elements that regulate O-glycosylation are poorly understood. We have developed a novel in vivo system to analyze the role of flanking sequence on the modification of a single well characterized O-glycosylation site derived from human von Willebrand factor (PHMAQVTVGPGL). A secreted chimeric reporter protein, containing the human von Willebrand factor sequence, an antibody recognition epitope, and a heart muscle kinase site, was engineered and expressed in COS7 and MCF-7 cells. Glycosylated and non-glycosylated forms of the immunoprecipitated reporter were resolved electrophoretically and their relative amounts quantitated. Using mutational analysis we find that the glycosylation apparatus of COS7 cells can accommodate a broad range of changes in the flanking sequence without compromising glycosylation, but that the distribution of charged amino acids flanking the O-glycosylation site can have a profound influence on glycosylation with position -1 relative to the glycosylation site being particularly sensitive. A combination of acidic residues at positions -1 and +3 almost completely eliminates glycosylation of the reporter in both COS7 and MCF-7 cells. The overall density of charged amino acids is less important since substitution of acidic residues at position -2, +1, and +2 had no effect in the level of glycosylation observed.
Collapse
Affiliation(s)
- K Nehrke
- Department of Dental Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | | | |
Collapse
|
37
|
Yoshida A, Hara T, Ikenaga H, Takeuchi M. Cloning and expression of a porcine UDP-GalNAc: polypeptide N-acetylgalactosaminyl transferase. Glycoconj J 1995; 12:824-828. [PMID: 8748160 DOI: 10.1007/bf00731244] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
By employing a bovine UDP-N-acetylgalactosamine: polypeptide N-acetylgalactosaminyl transferase (O-GalNAc transferase) cDNA as a probe, we isolated four overlapping cDNAs from a porcine lung cDNA library. Both the nucleotide sequence of the porcine cDNA and the predicted primary structure of the protein (559 amino acids) proved to be very similar to those of the bovine enzyme (95% and 99% identity, respectively). Transient expression of the clone in COS-7 cells, followed by enzymatic activity assays, demonstrated that this cDNA sequence encodes a porcine O-GalNAc transferase. The intracellular O-GalNAc transferase activity was increased approximately 100-fold by transfecting cells with the porcine cDNA.
Collapse
Affiliation(s)
- A Yoshida
- Central Laboratories for Key Technology, Kirin Brewery Co., Ltd, Fukuura, Japan
| | | | | | | |
Collapse
|
38
|
Jars MU, Osborn S, Forstrom J, MacKay VL. N- and O-glycosylation and phosphorylation of the bar secretion leader derived from the barrier protease of Saccharomyces cerevisiae. J Biol Chem 1995; 270:24810-7. [PMID: 7559601 DOI: 10.1074/jbc.270.42.24810] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A secretion leader derived from a domain of the extracellular Barrier protease of the yeast Saccharomyces cerevisiae has been expressed in wild-type and in mnn1, mnn9, and mnn1 mnn9 glycosylation mutant strains of S. cerevisiae. Structural comparison of the extracellular leader by mass spectrometry, peptide mapping, and elementary analysis proved that all strains produced a heterogeneous, heavily glycosylated polypeptide of 161 amino acids with both N- and O-glycosylation and phosphorylation. All three potential Asn N-linked sites were glycosylated to some extent with the expected structures. Neither the different growth media used nor the glycosylation mutations had significant effect on O-glycosylation with respect to both site selectivity and size of the carbohydrate structures. All 33 Ser and 21 Thr residues in the polypeptide were glycosylated at least partially, with an average of more than 2 mannoses/site. Although the mnn1 mutation blocks addition of alpha 1,3-linked mannose, the bar secretion domain expressed in the mnn1 and mnn1 mnn9 transformants unexpectedly contained some O-linked structures with at least 4 mannoses/chain. These O-linked structures were as large as when the leader was expressed in the mnn9 and wild-type strains. The bar secretion domain also had a previously undocumented phosphorylated O-linked structure.
Collapse
Affiliation(s)
- M U Jars
- ZymoGenetics, Inc., Seattle, Washington 98102, USA
| | | | | | | |
Collapse
|
39
|
White T, Bennett EP, Takio K, Sørensen T, Bonding N, Clausen H. Purification and cDNA cloning of a human UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase. J Biol Chem 1995; 270:24156-65. [PMID: 7592619 DOI: 10.1074/jbc.270.41.24156] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A UDP-GalNAc:polypeptide N-acetylgalactosaminyl-transferase (GalNAc-transferase) from human placenta was purified to apparent homogeneity using a synthetic acceptor peptide as affinity ligand. The purified GalNAc-transferase migrated as a single band with an approximate molecular weight of 52,000 by reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Based on a partial amino acid sequence, the cDNA encoding the transferase was cloned and sequenced from a cDNA library of a human cancer cell line. The cDNA sequence has a 571-amino acid coding region indicating a protein of 64.7 kDa with a type II domain structure. The deduced protein sequence showed significant similarity to a recently cloned bovine polypeptide GalNAc-transferase (Homa, F.L., Hollanders, T., Lehman, D.J., Thomsen, D.R., and Elhammer, A.P. (1993) J. Biol. Chem. 268, 12609-12616). A polymerase chain reaction construct was expressed in insect cells using a baculovirus vector. Northern analysis of eight human tissues differed clearly from that of the bovine GalNAc-transferase. Polymerase chain reaction cloning and sequencing of the human version of the bovine transferase are presented, and 98% similarity at the amino acid level was found. The data suggest that the purified human GalNAc-transferase is a novel member of a family of polypeptide GalNAc-transferases, and a nomenclature GalNAc-T1 and GalNAc-T2 is introduced to distinguish the members.
Collapse
Affiliation(s)
- T White
- Faculty of Health Sciences, School of Dentistry, University of Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
40
|
Sørensen T, White T, Wandall HH, Kristensen AK, Roepstorff P, Clausen H. UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase. Identification and separation of two distinct transferase activities. J Biol Chem 1995; 270:24166-73. [PMID: 7592620 DOI: 10.1074/jbc.270.41.24166] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Using a defined acceptor substrate peptide as an affinity chromatography ligand we have developed a purification scheme for a unique human polypeptide, UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase (GalNAc-transferase) (White, T., Bennett, E.P., Takio, K., Sørensen, T., Bonding, N., and Clausen, H. (1995) J. Biol. Chem. 270, 24156-24165). Here we report detailed studies of the acceptor substrate specificity of GalNAc-transferase purified by this scheme as well as the Gal-NAc-transferase activity, which, upon repeated affinity chromatography, evaded purification by this affinity ligand. Using a panel of acceptor peptides, a qualitative difference in specificity between these separated transferase activities in four rat organs and two human organs also revealed qualitative differences in specificity. The results support the existence of multiple Gal-NAc-transferase activities and suggest that these are differentially expressed in different organs. As the number of GalNAc-transferases existing is unknown, as is the specificity of the until now cloned and expressed GalNAc-transferases (T1 and T2), it is as yet impossible to relate the results obtained to specific enzyme proteins. The identification of acceptor peptides that can be used to discriminate GalNAc-transferase activities is an important step toward understanding the molecular basis of GalNAc O-linked glycosylation in cells and organs and in pathological conditions.
Collapse
Affiliation(s)
- T Sørensen
- Faculty of Health Sciences, School of Dentistry, University of Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
41
|
Wragg S, Hagen FK, Tabak LA. Kinetic analysis of a recombinant UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase. J Biol Chem 1995; 270:16947-54. [PMID: 7622513 DOI: 10.1074/jbc.270.28.16947] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A mammalian expression vector was designed to express a secreted soluble form of the UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase (polypeptide GalNAc transferase) with a metal binding site (HHWHHH) at the NH2 terminus. The recombinant enzyme was purified to homogeneity from COS-7 cell media by sequential chromatography on columns of NiCl2-chelating Sepharose, Affi-Gel blue, and Sephacryl S-100. Kinetic parameters of recombinant and native polypeptide GalNAc transferase were comparable for the donor UDP-GalNAc and for the peptide acceptor AcTPPP, EPO-T (PPDAATAAPLR), and HVF (PHMAQVTVGPGL). Initial velocity and product inhibition studies were carried out with purified recombinant polypeptide GalNAc transferase and the substrates UDP-GalNAc and peptide EPO-T. Initial velocity data was consistent with a sequential type mechanism in which binding of both substrates precedes product release. Product inhibition analysis using UDP showed competitive inhibition against UDP-GalNAc and a noncompetitive inhibition against peptide EPO-T. The dead end peptide analogue EPO-G (PPDAAGAAPLR) was a noncompetitive inhibitor of UDP-GalNAc and a competitive inhibitor of peptide EPO-T. Collectively, the results suggest that the most probable kinetic mechanism for the enzyme is one in which both substrates must bind in a random order prior to catalysis. Interestingly, the Km for EPO-T is similar to the Ki for EPO-G, suggesting that peptide interaction with the polypeptide GalNAc transferase does not require a hydroxyamino acid.
Collapse
Affiliation(s)
- S Wragg
- Department of Dental Research, School of Medicine and Dentistry, University of Rochester, New York 14642, USA
| | | | | |
Collapse
|
42
|
Satoh T, Abe H, Sendai Y, Iwata H, Hoshi H. Biochemical characterization of a bovine oviduct-specific sialo-glycoprotein that sustains sperm viability in vitro. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1266:117-23. [PMID: 7742375 DOI: 10.1016/0167-4889(94)00208-v] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A bovine oviduct-specific glycoprotein (BOGP) that sustained the viability of bovine spermatozoa in vitro was purified from an extract of bovine oviducts. The amino-terminal amino acid sequence of BOGP was found to be a homologous with that of oviductin, a protein from hamster that was recently characterized by Mallete and Bleau (1993: Biochem. J. 295, 437-445). Purified BOGP was characterized as a sialo-glycoprotein containing N-linked and O-linked sialo-oligosaccharides side chains with galactose, mannose, N-acetyl-D-galactosamine, N-acetyl-D-glucosamine, fucose and sialic acids in its core protein (57 kDa). Intact BOGP has a wide range of isoelectric points (pIs) from 6.5 to 3.0 but a narrow range of molecular masses around 95 kDa. On isoelectric focusing of neuraminidase-treated BOGP (AS-BOGP), a narrow band with a pI of 9.3 was observed, and the ability of AS-BOGP to maintain sperm viability was negligible. We propose that BOGP is a mucin-type sialo-glycoprotein with a molecular mass of 72 kDa that contains one N-linked and approx. 15 O-linked sialo-oligosaccharide chains. These side chains appear to be important for the maintenance of sperm viability.
Collapse
Affiliation(s)
- T Satoh
- Research Institute for the Functional Peptides, Yamagata, Japan
| | | | | | | | | |
Collapse
|
43
|
Stadie TRE, Chai W, Lawson AM, Byfield PGH, Hanisch FG. Studies on the Order and Site Specificity of GalNAc Transfer to MUC1 Tandem Repeats by UDP-GalNAc: Polypeptide N -Acetylgalactosaminyltransferase from Milk or Mammary Carcinoma Cells. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.tb20448.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Brockhausen I. Chapter 5 Biosynthesis 3. Biosynthesis of O-Glycans of the N-Acetylgalactosamine-α-Ser/Thr Linkage Type. NEW COMPREHENSIVE BIOCHEMISTRY 1995. [DOI: 10.1016/s0167-7306(08)60593-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Lesuffleur T, Zweibaum A, Real FX. Mucins in normal and neoplastic human gastrointestinal tissues. Crit Rev Oncol Hematol 1994; 17:153-80. [PMID: 7865137 DOI: 10.1016/1040-8428(94)90053-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- T Lesuffleur
- Unité de Recherches sur la Différenciation Cellulaire Intestinale, INSERM U178, Villejuif, France
| | | | | |
Collapse
|
46
|
Kaufman RJ, Swaroop M, Murtha-Riel P. Depletion of manganese within the secretory pathway inhibits O-linked glycosylation in mammalian cells. Biochemistry 1994; 33:9813-9. [PMID: 8060988 DOI: 10.1021/bi00199a001] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Proteins transiting the secretory pathway are posttranslationally modified by addition of oligosaccharides to asparagine N-linked and serine and threonine O-linked residues. The effects of divalent cation depletion on oligosaccharide processing of erythropoietin (EPO) and macrophage colony stimulating factor (M-CSF) were studied in Chinese hamster ovary cells. Treatment with A23187 did not inhibit M-CSF or EPO secretion but did inhibit addition of complex N-linked and O-linked oligosaccharides to both molecules. Similar results were obtained by treatment with thapsigargin, a potent inhibitor of the Ca(2+)-activated microsomal ATPase, indicating that the effect was due to depletion of divalent cations within the secretory pathway. Whereas addition of extracellular calcium chloride did not reverse the inhibition in complex N-linked and O-linked glycosylation, addition of manganese chloride partially reversed both defects. These results are consistent with a specific manganese requirement within the secretory pathway for the processing of complex N-linked oligosaccharides and the addition of O-linked oligosaccharides. Since there are no known specific inhibitors of O-linked glycosylation, the use of ionophores should significantly facilitate studies on the requirement and role of O-linked oligosaccharides in protein structure and function.
Collapse
Affiliation(s)
- R J Kaufman
- Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor 48109
| | | | | |
Collapse
|
47
|
Abstract
The glandular secretions of the oral cavity lining the underlying buccal mucosa are highly specialized fluids which provide lubrication, prevent mechanical damage, protect efficiently against viral and bacterial infections, and promote the clearance of external pollutants. This mucus blanket contains large glycoproteins termed mucins which contribute greatly to the viscoelastic nature of saliva and affect its complex physiological activity. The protein core of mucins consists of repetitive sequences, rich in O-glycosylated serine and threonine, and containing many helix-breaking proline residues. These features account for the extended, somewhat rigid structure of the molecule, a high hydrodynamic volume, its high buoyant density, and high viscosity. The oligosaccharide moiety of salivary mucins accounts for up to 85% of their weight. The oligosaccharide side chains exhibit an astonishing structural diversity. The isolation, composition, structure, molecular characteristics, and functional relevance of salivary mucins and their constituents is discussed in relation to recent advancements in biochemistry and molecular biology.
Collapse
Affiliation(s)
- A M Wu
- Glycoimmunochemistry Research Laboratory, Chang-Gung College of Medicine and Technology, Taoyuan, Taiwan
| | | | | |
Collapse
|
48
|
Tetaert D, Soudan B, Lo-Guidice JM, Richet C, Degand P, Boussard G, Mariller C, Spik G. Combination of high-performance anion-exchange chromatography and electrospray mass spectrometry for analysis of the in vitro O-glycosylated mucin motif peptide. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1994; 658:31-8. [PMID: 7952129 DOI: 10.1016/0378-4347(94)00223-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Reversed-phase high-performance liquid chromatography (HPLC) and high-performance anion-exchange chromatography (HPAEC) with pulsed amperometric detection were developed for the study of products obtained from the in vitro O-glycosylation of a mucin motif peptide, TTSAPTTS, the most representative sequence encoded by the human gene MUC5C. After incubation of the peptide, which is rich in clustered hydroxyamino acids, by both human colonic and gastric microsomal homogenates, the glycosylated products were separated by HPLC and HPAEC and analysed by electrospray mass spectrometry (ES-MS). The combination of HPAEC and ES-MS was the approach used for evaluating the differences between the polypeptide N-acetylgalactosaminyltransferase activity in different digestive tissues.
Collapse
|
49
|
Nishimori I, Johnson N, Sanderson S, Perini F, Mountjoy K, Cerny R, Gross M, Hollingsworth M. Influence of acceptor substrate primary amino acid sequence on the activity of human UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferase. Studies with the MUC1 tandem repeat. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)33981-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Granovsky M, Bielfeldt T, Peters S, Paulsen H, Meldal M, Brockhausen J, Brockhausen I. UDPgalactose:glycoprotein-N-acetyl-D-galactosamine 3-beta-D-galactosyltransferase activity synthesizing O-glycan core 1 is controlled by the amino acid sequence and glycosylation of glycopeptide substrates. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 221:1039-46. [PMID: 8181460 DOI: 10.1111/j.1432-1033.1994.tb18822.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In order to investigate the role of the peptide moiety of glycoproteins in the control of O-glycan biosynthesis, UDPgalactose:glycoprotein-N-acetyl-D-galactosamine 3-beta-D-galactosyltransferase (core 1 beta 3-Gal-T) from rat liver was tested for its specificity towards GalNAc-containing glycopeptide substrates. Series of glycopeptides have been synthesized by solid-phase synthesis, protected with an acetyl group on the amino terminal and an amide group on the carboxy terminal, based on variations of the repeat sequences of human intestinal mucin. Most glycopeptides were excellent substrates for core 1 beta 3-Gal-T compared to benzyl alpha-D-galactosamine as indicated by their relatively high Vmax/Km. The enzyme preferred threonine alpha-D-galactosamine Thr(GalNAc) to serine alpha-D-galactosamine. Pro on the carboxy-terminal side adjacent to Thr(GalNAc) was inhibitory. Negatively charged amino acids on either side showed a low Km; substrates with negatively charged amino acids on the amino-terminal side were highly efficient substrates, suggesting charge-charge interactions between enzyme and substrate. Gal beta 1-3GalNAc alpha residues adjacent to Thr(GalNAc) reduced the activity. Product analysis using glycopeptide substrates with three adjacent GalNAc residues showed incorporation of one, two and a small amount of three Gal residues per molecule with an uneven distribution of the potential di-galactosylated isomers. These studies indicate that, in addition to initial glycosylation, the second step in the glycosylation pathways of O-glycans is also controlled by the structure and glycosylation of the peptide core of substrates.
Collapse
Affiliation(s)
- M Granovsky
- Biochemistry Department, Research Institute, Hospital for Sick Children, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|