1
|
Leasure CS, Grunenwald CM, Choby JE, Sauer JD, Skaar EP. Maintenance of heme homeostasis in Staphylococcus aureus through post-translational regulation of glutamyl-tRNA reductase. J Bacteriol 2023; 205:e0017123. [PMID: 37655914 PMCID: PMC10521356 DOI: 10.1128/jb.00171-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/30/2023] [Indexed: 09/02/2023] Open
Abstract
Staphylococcus aureus is an important human pathogen responsible for a variety of infections including skin and soft tissue infections, endocarditis, and sepsis. The combination of increasing antibiotic resistance in this pathogen and the lack of an efficacious vaccine underscores the importance of understanding how S. aureus maintains metabolic homeostasis in a variety of environments, particularly during infection. Within the host, S. aureus must regulate cellular levels of the cofactor heme to support enzymatic activities without encountering heme toxicity. Glutamyl tRNA reductase (GtrR), the enzyme catalyzing the first committed step in heme synthesis, is an important regulatory node of heme synthesis in Bacteria, Archaea, and Plantae. In many organisms, heme status negatively regulates the abundance of GtrR, controlling flux through the heme synthesis pathway. We identified two residues within GtrR, H32 and R214, that are important for GtrR-heme binding. However, in strains expressing either GtrRH32A or GtrRR214A, heme homeostasis was not perturbed, suggesting an alternative mechanism of heme synthesis regulation occurs in S. aureus. In this regard, we report that heme synthesis is regulated through phosphorylation and dephosphorylation of GtrR by the serine/threonine kinase Stk1 and the phosphatase Stp1, respectively. Taken together, these results suggest that the mechanisms governing staphylococcal heme synthesis integrate both the availability of heme and the growth status of the cell. IMPORTANCE Staphylococcus aureus represents a significant threat to human health. Heme is an iron-containing enzymatic cofactor that can be toxic at elevated levels. During infection, S. aureus must control heme levels to replicate and survive within the hostile host environment. We identified residues within a heme biosynthetic enzyme that are critical for heme binding in vitro; however, abrogation of heme binding is not sufficient to perturb heme homeostasis within S. aureus. This marks a divergence from previously reported mechanisms of heme-dependent regulation of the highly conserved enzyme glutamyl tRNA reductase (GtrR). Additionally, we link cell growth arrest to the modulation of heme levels through the post-translational regulation of GtrR by the kinase Stk1 and the phosphatase Stp1.
Collapse
Affiliation(s)
- Catherine S. Leasure
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Caroline M. Grunenwald
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jacob E. Choby
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Abstract
This review summarizes research performed over the last 23 years on the genetics, enzyme structures and functions, and regulation of the expression of the genes encoding functions involved in adenosylcobalamin (AdoCbl, or coenzyme B12) biosynthesis. It also discusses the role of coenzyme B12 in the physiology of Salmonella enterica serovar Typhimurium LT2 and Escherichia coli. John Roth's seminal contributions to the field of coenzyme B12 biosynthesis research brought the power of classical and molecular genetic, biochemical, and structural approaches to bear on the extremely challenging problem of dissecting the steps of what has turned out to be one of the most complex biosynthetic pathways known. In E. coli and serovar Typhimurium, uro'gen III represents the first branch point in the pathway, where the routes for cobalamin and siroheme synthesis diverge from that for heme synthesis. The cobalamin biosynthetic pathway in P. denitrificans was the first to be elucidated, but it was soon realized that there are at least two routes for cobalamin biosynthesis, representing aerobic and anaerobic variations. The expression of the AdoCbl biosynthetic operon is complex and is modulated at different levels. At the transcriptional level, a sensor response regulator protein activates the transcription of the operon in response to 1,2-Pdl in the environment. Serovar Typhimurium and E. coli use ethanolamine as a source of carbon, nitrogen, and energy. In addition, and unlike E. coli, serovar Typhimurium can also grow on 1,2-Pdl as the sole source of carbon and energy.
Collapse
|
3
|
Jones AM, Elliott T. A purified mutant HemA protein from Salmonella enterica serovar Typhimurium lacks bound heme and is defective for heme-mediated regulation in vivo. FEMS Microbiol Lett 2010; 307:41-7. [PMID: 20412302 DOI: 10.1111/j.1574-6968.2010.01967.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Archaea, plants, and most bacteria synthesize heme using the C5 pathway, in which the first committed step is catalyzed by the enzyme glutamyl-tRNA reductase (GluTR or HemA). In some cases, an overproduced and purified HemA enzyme contains noncovalently bound heme. The enteric bacteria Salmonella enterica and Escherichia coli also synthesize heme by the C5 pathway, and the HemA protein in these bacteria is regulated by proteolysis. The enzyme is unstable during normal growth due to the action of Lon and ClpAP, but becomes stable when heme is limiting for growth. We describe a method for the overproduction of S. enterica HemA that yields a purified enzyme containing bound heme, identified as a b-type heme by spectroscopy. A mutant of HemA (C170A) does not contain heme when similarly purified. The mutant was used to test whether heme is directly involved in HemA regulation. When expressed from the S. enterica chromosome in a wild-type background, the C170A mutant allele of hemA is shown to confer an unregulated phenotype, with high levels of HemA regardless of the heme status. These results strongly suggest that the presence of bound heme targets the HemA enzyme for degradation and is required for normal regulation.
Collapse
Affiliation(s)
- Amy M Jones
- Department of Microbiology, Immunology and Cell Biology, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| | | |
Collapse
|
4
|
Brown MV, Reader JS, Tzima E. Mammalian aminoacyl-tRNA synthetases: Cell signaling functions of the protein translation machinery. Vascul Pharmacol 2010; 52:21-6. [DOI: 10.1016/j.vph.2009.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/20/2009] [Accepted: 11/29/2009] [Indexed: 12/01/2022]
|
5
|
Abstract
This review is concerned specifically with the structures and biosynthesis of hemes in E. coli and serovar Typhimurium. However, inasmuch as all tetrapyrroles share a common biosynthetic pathway, much of the material covered here is applicable to tetrapyrrole biosynthesis in other organisms. Conversely, much of the available information about tetrapyrrole biosynthesis has been gained from studies of other organisms, such as plants, algae, cyanobacteria, and anoxygenic phototrophs, which synthesize large quantities of these compounds. This information is applicable to E. coli and serovar Typhimurium. Hemes play important roles as enzyme prosthetic groups in mineral nutrition, redox metabolism, and gas-and redox-modulated signal transduction. The biosynthetic steps from the earliest universal precursor, 5-aminolevulinic acid (ALA), to protoporphyrin IX-based hemes constitute the major, common portion of the pathway, and other steps leading to specific groups of products can be considered branches off the main axis. Porphobilinogen (PBG) synthase (PBGS; also known as ALA dehydratase) catalyzes the asymmetric condensation of two ALA molecules to form PBG, with the release of two molecules of H2O. Protoporphyrinogen IX oxidase (PPX) catalyzes the removal of six electrons from the tetrapyrrole macrocycle to form protoporphyrin IX in the last biosynthetic step that is common to hemes and chlorophylls. Several lines of evidence converge to support a regulatory model in which the cellular level of available or free protoheme controls the rate of heme synthesis at the level of the first step unique to heme synthesis, the formation of GSA by the action of GTR.
Collapse
|
6
|
Srivastava A, Lake V, Nogaj LA, Mayer SM, Willows RD, Beale SI. The Chlamydomonas reinhardtii gtr gene encoding the tetrapyrrole biosynthetic enzyme glutamyl-trna reductase: structure of the gene and properties of the expressed enzyme. PLANT MOLECULAR BIOLOGY 2005; 58:643-58. [PMID: 16158240 DOI: 10.1007/s11103-005-6803-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 04/29/2005] [Indexed: 05/04/2023]
Abstract
Plants, algae, cyanobacteria and many other bacteria synthesize the tetrapyrrole precursor, delta-aminolevulinic acid (ALA), from glutamate by means of a tRNAGlu-mediated pathway. The enzyme glutamyl-tRNA reductase (GTR) catalyzes the first committed step in this pathway, which is the reduction of tRNA-bound glutamate to produce glutamate 1-semialdehyde. Chlamydomonas reinhardtii mRNA encoding gtr was sequenced from a cDNA and genomic libraries. The 3179-bp gtr cDNA contains a 1566-bp open reading frame that encodes a 522-amino acid polypeptide. After removal of the predicted transit peptide, the mature 480-residue GTR has a calculated molecular weight of 52,502. The deduced C. reinhardtii mature GTR amino acid sequence has more than 55% identity to a GTR sequence of Arabidopsis thaliana, and significant similarity to GTR proteins of other plants and prokaryotes. Southern blot analysis of C. reinhardtii genomic DNA indicates that C. reinhardtii has only one gtr gene. Genomic DNA sequencing revealed the presence of a small intron near the putative transit peptide cleavage site. Expression constructs for the full-length initial gtr translation product, the mature protein after transit peptide removal, and the coding sequence of the second exon were cloned into expression vector that also introduced a C-terminal His6 tag. All of these constructs were expressed in E. coli, and both the mature protein and the exon 2 translation product complemented a hemA mutation. The expressed proteins were purified by Ni-affinity column chromatography to yield active GTR. Purified mature GTR was not inhibited by heme, but heme inhibition was restored upon addition of C. reinhardtii soluble proteins.
Collapse
Affiliation(s)
- Alaka Srivastava
- Division of Biology and Medicine, Brown University, 02912, Providence, Rhode Island 02912, USA
| | | | | | | | | | | |
Collapse
|
7
|
Schauer S, Lüer C, Moser J. Large scale production of biologically active Escherichia coli glutamyl-tRNA reductase from inclusion bodies. Protein Expr Purif 2004; 31:271-5. [PMID: 14550647 DOI: 10.1016/s1046-5928(03)00184-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glutamyl-tRNA reductase catalyzes the initial step of tetrapyrrole biosynthesis in plants and prokaryotes. Recombinant Escherichia coli glutamyl-tRNA reductase was purified to apparent homogeneity from an overproducing E. coli strain by a two-step procedure yielding 5.6 mg of enzyme per gram of wet cells with a specific activity of 0.47 micromol min(-1)mg(-1). After recombinant production, denatured glutamyl-tRNA reductase from inclusion bodies was renatured by an on-column refolding procedure. Residual protein aggregates were removed using Superdex 200 gel-filtration chromatography. Solubility, specific activity, and long-term storage properties were improved compared to previous protocols. Obtained enzyme amounts of high purity now allow the research on the recognition mechanism of tRNAGlu and high-throughput inhibitor screening.
Collapse
Affiliation(s)
- Stefan Schauer
- Institute of Microbiology, Technical University Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany
| | | | | |
Collapse
|
8
|
Schauer S, Chaturvedi S, Randau L, Moser J, Kitabatake M, Lorenz S, Verkamp E, Schubert WD, Nakayashiki T, Murai M, Wall K, Thomann HU, Heinz DW, Inokuchi H, Söll D, Jahn D. Escherichia coli glutamyl-tRNA reductase. Trapping the thioester intermediate. J Biol Chem 2002; 277:48657-63. [PMID: 12370189 DOI: 10.1074/jbc.m206924200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the first step of tetrapyrrole biosynthesis in Escherichia coli, glutamyl-tRNA reductase (GluTR, encoded by hemA) catalyzes the NADPH-dependent reduction of glutamyl-tRNA to glutamate-1-semialdehyde. Soluble homodimeric E. coli GluTR was made by co-expressing the hemA gene and the chaperone genes dnaJK and grpE. During Mg(2+)-stimulated catalysis, the reactive sulfhydryl group of Cys-50 in the E. coli enzyme attacks the alpha-carbonyl group of the tRNA-bound glutamate. The resulting thioester intermediate was trapped and detected by autoradiography. In the presence of NADPH, the end product, glutamate-1-semialdehyde, is formed. In the absence of NADPH, E. coli GluTR exhibited substrate esterase activity. The in vitro synthesized unmodified glutamyl-tRNA was an acceptable substrate for E. coli GluTR. Eight 5-aminolevulinic acid auxotrophic E. coli hemA mutants were genetically selected, and the corresponding mutations were determined. Most of the recombinant purified mutant GluTR enzymes lacked detectable activity. Based on the Methanopyrus kandleri GluTR structure, the positions of the amino acid exchanges are close to the catalytic domain (G7D, E114K, R314C, S22L/S164F, G44C/S105N/A326T, G106N, S145F). Only GluTR G191D (affected in NADPH binding) revealed esterase but no reductase activity.
Collapse
Affiliation(s)
- Stefan Schauer
- Institute of Microbiology, Technical University Braunschweig, Spielmannstrasse 7, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The conserved residues of glutamyl tRNA reductase (GTR) from Hordeum vulgare (GTRhorvu) were found from an alignment/pile-up of 24 homologous sequences found using BLAST searches. A multiple alignment of sequences was used to obtain a prediction of the secondary structure of the GTR's. This secondary structure was submitted to the THREADER program to find possible homologous 3D structures. To help select the template for predicting the fold for GTRhorvu, we employed both molecular-biological and biochemical information about GTRhorvu. After fitting the secondary structure of GTRhorvu to the selected template, the MODELLER program was used to determine the fold for GTRhorvu. This model was built using the B subunit of succinyl CoA synthetase, 1scuB, as a template for the 3D structure of GTRhorvu. From the predicted structure, possible regions were identified for the binding of glutamyl-tRNA, NADPH and a heme inhibitor. The predicted structure was used to propose a detailed biochemical mechanism for the GTR, involving Mg catalyzed thioester formation and reduction by NADPH to glutamate-1-semialdehyde. Sites for these reactions are identified. The predicted structure has been deposited in the Brookhaven database as ID 1b61.
Collapse
Affiliation(s)
- S S Brody
- Department of Physiology, Carlsberg Research Center, Copenhagen, Denmark.
| | | | | |
Collapse
|
10
|
Moser J, Lorenz S, Hubschwerlen C, Rompf A, Jahn D. Methanopyrus kandleri glutamyl-tRNA reductase. J Biol Chem 1999; 274:30679-85. [PMID: 10521455 DOI: 10.1074/jbc.274.43.30679] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The initial reaction of tetrapyrrole formation in archaea is catalyzed by a NADPH-dependent glutamyl-tRNA reductase (GluTR). The hemA gene encoding GluTR was cloned from the extremely thermophilic archaeon Methanopyrus kandleri and overexpressed in Escherichia coli. Purified recombinant GluTR is a tetrameric enzyme with a native M(r) = 190,000 +/- 10,000. Using a newly established enzyme assay, a specific activity of 0.75 nmol h(-1) mg(-1) at 56 degrees C with E. coli glutamyl-tRNA as substrate was measured. A temperature optimum of 90 degrees C and a pH optimum of 8.1 were determined. Neither heme cofactor, nor flavin, nor metal ions were required for GluTR catalysis. Heavy metal compounds, Zn(2+), and heme inhibited the enzyme. GluTR inhibition by the newly synthesized inhibitor glutamycin, whose structure is similar to the 3' end of the glutamyl-tRNA substrate, revealed the importance of an intact chemical bond between glutamate and tRNA(Glu) for substrate recognition. The absolute requirement for NADPH in the reaction of GluTR was demonstrated using four NADPH analogues. Chemical modification and site-directed mutagenesis studies indicated that a single cysteinyl residue and a single histidinyl residue were important for catalysis. It was concluded that during GluTR catalysis the highly reactive sulfhydryl group of Cys-48 acts as a nucleophile attacking the alpha-carbonyl group of tRNA-bound glutamate with the formation of an enzyme-localized thioester intermediate and the concomitant release of tRNA(Glu). In the presence of NADPH, direct hydride transfer to enzyme-bound glutamate, possibly facilitated by His-84, leads to glutamate-1-semialdehyde formation. In the absence of NADPH, a newly discovered esterase activity of GluTR hydrolyzes the highly reactive thioester of tRNA(Glu) to release glutamate.
Collapse
Affiliation(s)
- J Moser
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg im Breisgau, Germany
| | | | | | | | | |
Collapse
|
11
|
Vothknecht UC, Kannangara CG, von Wettstein D. Barley glutamyl tRNAGlu reductase: mutations affecting haem inhibition and enzyme activity. PHYTOCHEMISTRY 1998; 47:513-519. [PMID: 9461671 DOI: 10.1016/s0031-9422(97)00538-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Glutamyl tRNA(Glu) reductase converts glutamate molecules that are ligated at their alpha-carboxyl groups to tRNA(Glu) into glutamate 1-semialdehyde, an intermediate in the synthesis of 5-aminolevulinate, chlorophyll and haem. The mature plant enzymes contain a highly conserved extension of 31-34 amino acids at the N-terminus not present in bacterial enzymes. It is shown that barley glutamyl tRNAGlu reductases with a deletion of the 30 N-terminal amino acids have the same high specific activity as the untruncated enzymes, but are highly resistant to feed-back inhibition by haem. This peptide domain thus interacts directly or indirectly with haem and the toxicity of the 30 amino acid peptide for Escherichia coli experienced in mutant rescue and overexpression experiments can be explained by extensive haem removal from the metabolic pools that cannot be tolerated by the cell. Induced missense mutations identify nine amino acids in the 451 residue long C-terminal part of the barley glutamyl tRNA(Glu) reductase which upon substitution curtail drastically, but do not eliminate entirely the catalytic activity of the enzyme. These amino acids are thus important for the catalytic reaction or tRNA binding.
Collapse
Affiliation(s)
- U C Vothknecht
- Carlsberg Laboratory, Department of Physiology, Copenhagen-Valby, Denmark
| | | | | |
Collapse
|
12
|
Wang LY, Brown L, Elliott M, Elliott T. Regulation of heme biosynthesis in Salmonella typhimurium: activity of glutamyl-tRNA reductase (HemA) is greatly elevated during heme limitation by a mechanism which increases abundance of the protein. J Bacteriol 1997; 179:2907-14. [PMID: 9139907 PMCID: PMC179053 DOI: 10.1128/jb.179.9.2907-2914.1997] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In Salmonella typhimurium and Escherichia coli, the hemA gene encodes the enzyme glutamyl-tRNA reductase, which catalyzes the first committed step in heme biosynthesis. We report that when heme limitation is imposed on cultures of S. typhimurium, glutamyl-tRNA reductase (HemA) enzyme activity is increased 10- to 25-fold. Heme limitation was achieved by a complete starvation for heme in hemB, hemE, and hemH mutants or during exponential growth of a hemL mutant in the absence of heme supplementation. Equivalent results were obtained by both methods. To determine the basis for this induction, we developed a panel of monoclonal antibodies reactive with HemA, which can detect the small amount of protein present in a wild-type strain. Western blot (immunoblot) analysis with these antibodies reveals that the increase in HemA enzyme activity during heme limitation is mediated by an increase in the abundance of the HemA protein. Increased HemA protein levels were also observed in heme-limited cells of a hemL mutant in two different E. coli backgrounds, suggesting that the observed regulation is conserved between E. coli and S. typhimurium. In S. typhimurium, the increase in HemA enzyme and protein levels was accompanied by a minimal (less than twofold) increase in the expression of hemA-lac operon fusions; thus HemA regulation is mediated either at a posttranscriptional step or through modulation of protein stability.
Collapse
Affiliation(s)
- L Y Wang
- Department of Microbiology and Immunology, West Virginia University Health Sciences Center, Morgantown 26506, USA
| | | | | | | |
Collapse
|
13
|
Chen W, Wright L, Li S, Cosloy SD, Russell CS, Lee S. Expression of glutamyl-tRNA reductase in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1309:109-21. [PMID: 8950186 DOI: 10.1016/s0167-4781(96)00117-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The biosynthesis of the hemes, chlorophylls, corrins and other tetrapyrroles begins with the synthesis of 5-aminolevulinic acid (ALA). The pathway is highly conserved except for the synthesis of ALA which is derived from glycine and succinyl CoA (C4) in most eukaryotes and from glutamate (C5) in most bacteria and in green plants. In C5, glutamyl-tRNA synthetase (GTS) converts glutamate to glutamyl-tRNA (glu-tRNA), which is reduced by glutamyl-tRNA reductase (GTR) to glutamyl-1-semialdehyde (GSA), which is converted by aminotransferase (GSA-AT) to ALA. Since GTS is also involved in protein synthesis and GSA can be converted to ALA non-enzymatically, it is highly probable that control of ALA synthesis and thus of the whole pathway resides in the GTR step. In Escherichia coli, GTR is the gene product of hemA. BL21(DE3), a protease-deficient strain which contains the T7 RNA polymerase gene in front of a lac promoter, was transformed with a pET14b-based vector, pWC01, harboring hemA in front of a T7 promoter and ORF1 which is transcribed in the opposite direction. The transformed strain, WC1201, secreted ALA and porphyrins into the medium. Induction of expression of hemA by WC1201 was optimized for concentration of inducer (IPTG, 5 mM), temperature (37 degrees C), presence of betaine and sorbitol (no change) and time of induction (2h). GTR was observable as a 46 kDa band by Brilliant blue G staining of SDS-PAGE gels. Sonicates of the induction mixture exhibited strong ALA synthesis activity which was enhanced by tRNAglu. Most of the activity was in the supernatant of the sonicate indicating that GTR is a soluble enzyme. The induced strain had more GTS activity than the uninduced strain which had more GTS activity than its parent wild-type strain. Autoradiography on native gradient PAGE showed that GTR expressed in vivo by induction of WC1201 had a molecular weight of approx. 117 kDa. Gel filtration of the induced sonicate showed a peak of enzymatic activity at about 126 kDa. When pET14b- or pUC19-based plasmids harboring hemA and ORF1, or importantly, a pUC19-based plasmid harboring only hemA and not ORF1, were expressed in an in vitro transcription-translation system, native gradient PAGE showed a product with a molecular weight of approximately 175 kDA. This expression was higher in the presence of tRNAglu. When the 117 kDa and 175 kDa proteins were excised from their native gels respectively, and run on SDS PAGE, autoradiography showed bands at 46 kDa. We conclude that GTR is present in both high molecular weight species. Since overexpression of hemA from pET14b-based plasmids is associated with increased glutamyl-tRNA synthetase activity, the 175 kDa species may represent different complexes of GTR, GTS and glutamyl-tRNA as observed in Chlamydomonas and the 117-126 kDa species may be an dimer of GTR associated with glu-tRNA or a complex of GTR, GTS and glu-tRNA. These possibilities are being investigated.
Collapse
Affiliation(s)
- W Chen
- Department of Biology, City College of New York, City University of New York, NY 10031, USA
| | | | | | | | | | | |
Collapse
|
14
|
Jahn D, Hungerer C, Troup B. Ungew�hnliche Wege und umweltregulierte Gene der bakteriellen H�mbiosynthese. Naturwissenschaften 1996. [DOI: 10.1007/bf01142065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Hungerer C, Weiss DS, Thauer RK, Jahn D. The hemA gene encoding glutamyl-tRNA reductase from the archaeon Methanobacterium thermoautotrophicum strain Marburg. Bioorg Med Chem 1996; 4:1089-95. [PMID: 8831980 DOI: 10.1016/0968-0896(96)00098-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In archaea the first general tetrapyrrole precursor 5-aminolevulinic acid (ALA) is formed via the tRNA-dependent five-carbon pathway from glutamate. We have cloned the hemA gene encoding the central enzyme of the pathway glutamyl-tRNA reductase from the methanogenic archaeon Methanobacterium thermoautotrophicum by complementation of an Escherichia coli hemA mutant to ALA prototrophy. An 1194 bp open reading frame that encodes a 398 amino acid polypeptide with the calculated M, 44,509 was detected. The deduced amino acid sequence showed 20-35% amino acid identity to bacterial HemAs with the highest identity score to the Pseudomonas aeruginosa HemA. An identity of approximately 22% was found to plant HemAs. Glutamyl-tRNA reductase activity was shown for the M. thermoautotrophicum HemA after overexpression in E. coli and partial purification. The enzymatic reaction catalyzed by the partially purified enzyme revealed a temperature optimum of 65 degrees C at an optimal pH of 7.0. The reductase utilized preferentially NADPH for the reduction of the activated carboxyl group. The presence of ATP and GTP showed no obvious influence on catalysis.
Collapse
Affiliation(s)
- C Hungerer
- Laboratorium für Mikrobiologie des Fachbereich Biologie der Philipps-Universität, Marburg, Germany
| | | | | | | |
Collapse
|
16
|
O'Brian MR. Heme synthesis in the rhizobium-legume symbiosis: a palette for bacterial and eukaryotic pigments. J Bacteriol 1996; 178:2471-8. [PMID: 8626311 PMCID: PMC177968 DOI: 10.1128/jb.178.9.2471-2478.1996] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- M R O'Brian
- Department of Biochemistry, State University of New York at Buffalo 14214, USA
| |
Collapse
|
17
|
Choi P, Wang L, Archer CD, Elliott T. Transcription of the glutamyl-tRNA reductase (hemA) gene in Salmonella typhimurium and Escherichia coli: role of the hemA P1 promoter and the arcA gene product. J Bacteriol 1996; 178:638-46. [PMID: 8550494 PMCID: PMC177706 DOI: 10.1128/jb.178.3.638-646.1996] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In Salmonella typhimurium and Escherichia coli, the hemA gene encodes the enzyme glutamyl-tRNA reductase, which catalyzes the first committed step in the heme biosynthetic pathway. It has recently been reported that a lac operon fusion to the hemA promoter of E. coli is induced 20-fold after starvation for heme. Induction was dependent on the transcriptional regulator ArcA, with a second transcriptional regulator, FNR, playing a negative role specifically under anaerobic conditions (S. Darie and R. P. Gunsalus, J. Bacteriol. 176:5270-5276, 1994). We have investigated the generality of this effect by examining the response to heme starvation of a number of lac operon fusions to the hemA promoters of both E. coli and S. typhimurium. We confirmed that such fusions are induced during starvation of a hemA auxotroph, but the level of induction observed was maximally sixfold and for S. typhimurium fusions it was only two- to fourfold. Sequences required for high-level expression of hemA lie within 129 bp upstream of the major (P1) promoter transcriptional start site. Mutants defective in the P1 promoter had greatly reduced hemA-lac expression both in the presence and in the absence of ALA. Mutations in arcA had no effect on hemA-lac expression in E. coli during normal growth, although the increase in expression during starvation for ALA was half that seen in an arcA+ strain. Overexpression of the arcA gene had no effect on hemA-lac expression. Primer extension analysis showed that RNA 5' ends mapping to the hemA P1 and P2 promoters were not expressed at significantly higher levels in induced cultures. These results differ from those previously reported.
Collapse
Affiliation(s)
- P Choi
- Department of Microbiology and Immunology, West Virginia University, Health Sciences Center, Morgantown 26506, USA
| | | | | | | |
Collapse
|
18
|
Nakayashiki T, Nishimura K, Tanaka R, Inokuchi H. Partial inhibition of protein synthesis accelerates the synthesis of porphyrin in heme-deficient mutants of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:139-46. [PMID: 7500934 DOI: 10.1007/bf00290359] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mutants of Escherichia coli defective in the HemA protein grow extremely poorly as the result of heme deficiency. A novel hemA mutant was identified whose rate of growth was dramatically enhanced by addition to the medium of low concentrations of translational inhibitors, such as chloramphenicol and tetracycline. This mutant (H110) carries mutation at position 314 in the hemA gene, which resulted in diminished activity of the encoded protein. Restoration of growth of H110 upon addition of the drugs mentioned above was due to activation of the synthesis of porphyrin. However, this activation was not characteristic exclusively of cells with this mutant hemA gene since it was also observed in a heme-deficient strain bearing the wild-type hemA gene. The activation did not depend on the promoter activity of the hemA gene, as indicated by studies with fusion genes. It appears that partial inhibition of protein synthesis via inhibition of peptidyltransferase can promote the synthesis of porphyrin by providing an increased supply of glutamyl-tRNA for porphyrin synthesis. Glutamyl-tRNA is the common substrate for peptidyltransferase and HemA.
Collapse
Affiliation(s)
- T Nakayashiki
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | | | | | |
Collapse
|
19
|
Kühn C, Frommer WB. A novel zinc finger protein encoded by a couch potato homologue from Solanum tuberosum enables a sucrose transport-deficient yeast strain to grow on sucrose. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:759-63. [PMID: 7616968 DOI: 10.1007/bf00290408] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A yeast strain deficient in secreted invertase but expressing a cytoplasmic sucrose synthase has been used to select for potato genes that enable growth on sucrose as the sole carbon source by suppressing the sucrose uptake deficiency. Besides the already known sucrose transporter gene (StSUT1), ten different suppressor clones were identified and characterized. One of these cDNAs (PCP1) enabled efficient growth of the mutant yeast strain and mediated uptake of radiolabeled sucrose. The cDNA encodes a protein of 509 amino acids which is highly hydrophilic and thus does not seem to represent a transporter. Sequence comparisons show that the protein contains zinc finger motifs and shares weak homologies with the Drosophila couch potato gene, which serves as a transcriptional regulator, indicating that PCP1 activates a silent endogenous sucrose uptake system. The other suppressor clones encode either putative transcriptional regulators, protein kinases or enzymes involved in thiamine biosynthesis, ferredoxin reduction or glutamyl tRNA reduction and suppress the phenotype by unknown mechanisms.
Collapse
Affiliation(s)
- C Kühn
- Institut für Genbiologische Forschung, Berlin, Germany
| | | |
Collapse
|
20
|
Troup B, Hungerer C, Jahn D. Cloning and characterization of the Escherichia coli hemN gene encoding the oxygen-independent coproporphyrinogen III oxidase. J Bacteriol 1995; 177:3326-31. [PMID: 7768836 PMCID: PMC177029 DOI: 10.1128/jb.177.11.3326-3331.1995] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Coproporphyrinogen III oxidase, an enzyme involved in heme biosynthesis, catalyzes the oxidative decarboxylation of coproporphyrinogen III to form protoporphyrinogen IX. Genetic and biochemical studies suggested the presence of two different coproporphyrinogen III oxidases, one for aerobic (HemF) and one for anaerobic (HemN) conditions. Here we report the cloning of the hemN gene encoding the oxygen-independent coproporphyrinogen III oxidase from Escherichia coli by complementation of a Salmonella typhimurium hemF hemN double mutant. An open reading frame of 1,371 bp encoding a protein of 457 amino acids with a calculated molecular mass of 52.8 kDa was identified. Sequence comparisons revealed 92% amino acid sequence identity to the recently cloned S. typhimurium hemN gene and 35% identity to the Rhodobacter sphaeroides gene. The hemN gene was mapped to 87.3 min of the E. coli chromosome and found identical to open reading frame o459 previously discovered during the genome sequencing project. Complementation of S. typhimurium hemF hemN double mutants with the E. coli hemN gene was detected under aerobic and anaerobic conditions, indicating an aerobic function for HemN. The previously cloned E. coli hemF gene encoding the oxygen-dependent enzyme complemented exclusively under aerobic conditions. Primer extension experiments revealed a strong transcription initiation site 102 bp upstream of the translational start site. DNA sequences with homology to a sigma 70-dependent promoter were detected. Expression of the hemN gene in response to changing environmental conditions was evaluated by using lacZ reporter gene fusions. Under anaerobic conditions, hemN expression was threefold greater than under aerobic growth conditions. Removal of iron from the growth medium resulted in an approximately fourfold decrease of aerobic hemN expression. Subsequent addition of iron restored normal expression.
Collapse
Affiliation(s)
- B Troup
- Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität Marburg, Germany
| | | | | |
Collapse
|
21
|
Avissar YJ, Moberg PA. The common origins of the pigments of life-early steps of chlorophyll biosynthesis. PHOTOSYNTHESIS RESEARCH 1995; 44:221-242. [PMID: 24307093 DOI: 10.1007/bf00048596] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/1994] [Accepted: 03/30/1995] [Indexed: 06/02/2023]
Abstract
The complex pathway of tetrapyrrole biosynthesis can be dissected into five sections: the pathways that produce 5-aminolevulinate (the C-4 and the C-5 pathways), the steps that transform ALA to uroporphyrinogen III, which are ubiquitous in the biosynthesis of all tetrapyrroles, and the three branches producing specialized end products. These end products include corrins and siroheme, chlorophylls and hemes and linear tetrapyrroles. These branches have been subjects of recent reviews. This review concentrates on the early steps leading up to uroporphyrinogen III formation which have been investigated intensively in recent years in animals, in plants, and in a wide range of bacteria.
Collapse
Affiliation(s)
- Y J Avissar
- Department of Biology, Rhode Island College, 02908, Providence, RI, USA
| | | |
Collapse
|
22
|
Frustaci JM, Sangwan I, O'Brian MR. gsa1 is a universal tetrapyrrole synthesis gene in soybean and is regulated by a GAGA element. J Biol Chem 1995; 270:7387-93. [PMID: 7706283 DOI: 10.1074/jbc.270.13.7387] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Expression of plant tetrapyrroles is high in photosynthetic tissues and in legume root nodules in the form of chlorophyll and heme, respectively. The universal tetrapyrrole precursor delta-aminolevulinic acid (ALA) is synthesized from glutamate 1-semialdehyde (GSA) by GSA aminotransferase in plants, which is encoded by gsa. Immunoblot analysis showed that GSA aminotransferase was expressed in soybean leaves and nodules, but not in roots, and that protein correlated with enzyme activity. These observations indicate that GSA aminotransferase expression is controlled in tetrapyrrole formation and argue against significant activity of an enzyme other than the well described aminotransferase for GSA-dependent ALA formation. gas mRNA and protein were induced in soybean nodules, and their activation was temporally intermediate between those of the respective early and late genes endo2 and lb. A GSA aminotransferase gene, designated gsa1, was isolated and appears to be one of two gsa genes in the soybean genome. gsa1 mRNA accumulated to high levels in leaves and nodules, but not in uninfected roots as discerned with a gsa1-specific probe. Message levels were higher in leaves from etiolated plantlets than in mature plants, and expression in the former was slightly elevated by light. The expression pattern of gsa1 mRNA was qualitatively similar to that of total gsa. The data strongly suggest that gsa1 is a universal tetrapyrrole synthesis gene and that a gsa gene specific for a tissue, tetrapyrrole, or light condition is unlikely. The gsa1 promoter contained a genetic element found in numerous Drosophila melanogaster genes; the so-called GAGA element displayed single-stranded character in vitro and formed a complex with nuclear factors from nodules and leaves but not from roots. From these observations we infer that the GAGA element is involved in the transcriptional control of gsa1.
Collapse
Affiliation(s)
- J M Frustaci
- Department of Biochemistry, State University of New York, Buffalo 14214, USA
| | | | | |
Collapse
|
23
|
Hungerer C, Troup B, Römling U, Jahn D. Regulation of the hemA gene during 5-aminolevulinic acid formation in Pseudomonas aeruginosa. J Bacteriol 1995; 177:1435-43. [PMID: 7883699 PMCID: PMC176757 DOI: 10.1128/jb.177.6.1435-1443.1995] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The general tetrapyrrole precursor 5-aminolevulinic acid is formed in bacteria via two different biosynthetic pathways. Members of the alpha group of the proteobacteria use 5-aminolevulinic acid synthase for the condensation of succinyl-coenzyme A and glycine, while other bacteria utilize a two-step pathway from aminoacylated tRNA(Glu). The tRNA-dependent pathway, involving the enzymes glutamyl-tRNA reductase (encoded by hemA) and glutamate-1-semialdehyde-2,1-aminomutase (encoded by hemL), was demonstrated to be used by Pseudomonas aeruginosa, Pseudomonas putida, Pseudomonas stutzeri, Comamonas testosteroni, Azotobacter vinelandii, and Acinetobacter calcoaceticus. To study the regulation of the pathway, the glutamyl-tRNA reductase gene (hemA) from P. aeruginosa was cloned by complementation of an Escherichia coli hemA mutant. The hemA gene was mapped to the SpeI A fragment and the DpnIL fragment of the P. aeruginosa chromosome corresponding to min 24.1 to 26.8. The cloned hemA gene, coding for a protein of 423 amino acids with a calculated molecular mass of 46,234 Da, forms an operon with the gene for protein release factor 1 (prf1). This translational factor mediates the termination of the protein chain at the ribosome at amber and ochre codons. Since the cloned hemA gene did not possess one of the appropriate stop codons, an autoregulatory mechanism such as that postulated for the enterobacterial system was ruled out. Three open reading frames of unknown function transcribed in the opposite direction to the hemA gene were found. hemM/orf1 and orf2 were found to be homologous to open reading frames located in the 5' region of enterobacterial hemA genes. Utilization of both transcription start sites was changed in a P. aeruginosa mutant missing the oxygen regulator Anr (Fnr analog), indicating the involvement of the transcription factor in hemA expression. DNA sequences homologous to one half of an Anr binding site were detected at one of the determined transcription start sites.
Collapse
Affiliation(s)
- C Hungerer
- Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität Marburg, Germany
| | | | | | | |
Collapse
|
24
|
Rogers KC, Crescenzo AT, Söll D. Aminoacylation of transfer RNAs with 2-thiouridine derivatives in the wobble position of the anticodon. Biochimie 1995; 77:66-74. [PMID: 7541255 DOI: 10.1016/0300-9084(96)88106-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The first position or 'wobble base' in the anticodon of tRNAs is frequently the site of post-transcriptional modification. In Escherichia coli, glutamine, glutamate, and lysine tRNAs contain 2-thiouridine derivatives in this position, and the significance of these modifications has been under investigation since their discovery. Here we describe the investigations to link 2-thiouridine derivatives to aminoacylation of these tRNAs. The implications of these findings on the evolution of specificity of aminoacyl-tRNA synthetases and on translational regulation are also discussed.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/metabolism
- Anticodon
- Base Sequence
- Biological Evolution
- Escherichia coli/chemistry
- Molecular Sequence Data
- Protein Biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Gln/metabolism
- RNA, Transfer, Glu/metabolism
- RNA, Transfer, Lys/metabolism
- Substrate Specificity
- Thiouridine/analogs & derivatives
- Thiouridine/metabolism
Collapse
Affiliation(s)
- K C Rogers
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
25
|
Pontoppidan B, Kannangara CG. Purification and partial characterisation of barley glutamyl-tRNA(Glu) reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 225:529-37. [PMID: 7957167 DOI: 10.1111/j.1432-1033.1994.00529.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
5-Aminolevulinic acid for chlorophyll synthesis in greening barley is formed from glutamate. One of the steps involved in the conversion of glutamate to 5-aminolevulinic acid involves a reduction of glutamyl-tRNA(Glu) to glutamate 1-semialdehyde and tRNA(Glu). An enzyme catalysing this reduction was purified from the stroma of greening barley chloroplasts. An approximately 270-kDa protein composed of 54-kDa identical subunits was identified as the barley glutamyl-tRNA(Glu) reductase after purification by Sephacryl S-300, Cibacron Blue-Sepharose, 2'-5'-ADP-Sepharose, Mono S, Mini Q and Superose 12 chromatography. The sequence of 18 amino acids from the N-terminus of the reductase is 50% identical to a cDNA-deduced domain of the Arabidopsis thaliana hemA protein and encoded in a barley hemA cDNA sequence. This is an unequivocal demonstration that the glutamyl-tRNA(Glu) reductase subunit of higher plants is encoded in a hemA gene of the nuclear genome. Heme at 4 microM concentration or glutamate 1-semialdehyde at 200 microM caused a 50% inhibition of the reductase activity. Micromolar concentrations of Zn2+, Cu2+ and Cd2+ also inhibited barley glutamyl-tRNA(Glu) reductase.
Collapse
Affiliation(s)
- B Pontoppidan
- Carlsberg Laboratory, Department of Physiology, Copenhagen-Valby, Denmark
| | | |
Collapse
|
26
|
Darie S, Gunsalus RP. Effect of heme and oxygen availability on hemA gene expression in Escherichia coli: role of the fnr, arcA, and himA gene products. J Bacteriol 1994; 176:5270-6. [PMID: 8071201 PMCID: PMC196710 DOI: 10.1128/jb.176.17.5270-5276.1994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
While many organisms synthesize delta-aminolevulinate, the precursor of heme, by condensing succinyl-coenzyme A and glycine, others use a glutamate-dependent pathway in which glutamyl-tRNA dehydrogenase catalyzes the rate-determining step. The hemeA gene that encodes this latter enzyme in Escherichia coli has been cloned and sequenced. To examine how its expression is regulated, we constructed hemA-lacZ operon and gene fusions and inserted them into the chromosome in single copy. The effect of aerobic and anaerobic growth conditions and the availability of electron acceptors and various carbon substrates were documented. Use of different types of cell culture medium resulted in a fivefold variation in hemA-lacZ expression during aerobic cell growth. Anaerobic growth resulted in 2.5-fold-higher hemA-lacZ expression than aerobic growth. This control is mediated by the fnr and arcA gene products. Fnr functions as a repressor of hemA transcription during anaerobic cell growth only, whereas the arcA gene product activates hemA gene expression under both aerobic and anaerobic conditions. Integration host factor protein was also shown to be required for control of hemA gene regulation. To determine whether an intermediate or a product of the heme biosynthetic pathway is involved in hemA regulation, hemA-lacZ expression was analyzed in a hemA mutant. Expression was elevated by 20-fold compared with that in a wild-type strain, while the addition of the heme pathway intermediate delta-aminolevulinate to the culture medium restored expression to wild-type levels. These results suggest that the heme pathway is feedback regulated at the level of hemA gene expression, to supply heme as it is required during different modes of cell growth.
Collapse
Affiliation(s)
- S Darie
- Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90024
| | | |
Collapse
|
27
|
Chen W, Russell CS, Murooka Y, Cosloy SD. 5-Aminolevulinic acid synthesis in Escherichia coli requires expression of hemA. J Bacteriol 1994; 176:2743-6. [PMID: 8169226 PMCID: PMC205417 DOI: 10.1128/jb.176.9.2743-2746.1994] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
hemA and hemM, which are 213 bp apart and divergently transcribed, were separately cloned. We found that hemA is required for 5-aminolevulinic acid (ALA) synthesis in two ALA- auxotrophs. Overexpression of hemM alone did not produce ALA. More ALA was produced by strains harboring a plasmid with both hemA and hemM than by those with hemA alone. We conclude that hemA alone is required for ALA synthesis but hemA and hemM are required for maximal ALA synthesis.
Collapse
Affiliation(s)
- W Chen
- Department of Biochemistry, City College of City University of New York, New York 10031
| | | | | | | |
Collapse
|
28
|
Troup B, Jahn M, Hungerer C, Jahn D. Isolation of the hemF operon containing the gene for the Escherichia coli aerobic coproporphyrinogen III oxidase by in vivo complementation of a yeast HEM13 mutant. J Bacteriol 1994; 176:673-80. [PMID: 8300522 PMCID: PMC205104 DOI: 10.1128/jb.176.3.673-680.1994] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Coproporphyrinogen III oxidase, an enzyme involved in heme biosynthesis, catalyzes the oxidative decarboxylation of coproporphyrinogen III to form protoporphyrinogen IX. Genetic and biochemical studies suggested the presence of two different coproporphyrinogen III oxidases, one for aerobic and one for anaerobic conditions. Here we report the cloning of the hemF gene, encoding the aerobic coproporphyrinogen III oxidase from Escherichia coli, by functional complementation of a Saccharomyces cerevisiae HEM13 mutant. An open reading frame of 897 bp encoding a protein of 299 amino acids with a calculated molecular mass of 34.3 kDa was identified. Sequence comparisons revealed 43% amino acid sequence identity with the product of the S. cerevisiae HEM13 gene and 90% identity with the product of the recently cloned Salmonella typhimurium hemF gene, while a structural relationship to the proposed anaerobic enzyme from Rhodobacter sphaeroides was not obvious. The hemF gene is in an operon with an upstream open reading frame (orf1) encoding a 31.7-kDa protein with homology to an amidase involved in cell wall metabolism. The hemF gene was mapped to 52.6 min of the E. coli chromosome. Primer extension experiments revealed a strong transcription initiation site upstream of orf1. A weak signal, possibly indicative of a second promoter, was also identified just upstream of the hemF gene. A region containing bent DNA (Bent 111), previously mapped to 52.6 min of the E. coli chromosome, was discovered in the 5' region of orf1. Two potential integration host factor binding sites were found, one close to each transcription start site. An open reading frame (orf3) transcribed in a direction opposite that of the hemF gene was found downstream of the hemF gene. It encodes a protein of 40.2 kDa that showed significant homology to proteins of the XylS/AraC family of transcriptional regulators.
Collapse
Affiliation(s)
- B Troup
- Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität Marburg, Germany
| | | | | | | |
Collapse
|
29
|
Sylvers LA, Rogers KC, Shimizu M, Ohtsuka E, Söll D. A 2-thiouridine derivative in tRNAGlu is a positive determinant for aminoacylation by Escherichia coli glutamyl-tRNA synthetase. Biochemistry 1993; 32:3836-41. [PMID: 8385989 DOI: 10.1021/bi00066a002] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Early investigations into the interaction between Escherichia coli glutamyl-tRNA synthetase (GluRS) and tRNAGlu have implicated the modified nucleoside 5-[(methylamino)methyl]-2-thiouridine in the first position of the anticodon as an important contact for efficient aminoacylation. However, the experimental methods employed were not sufficient to determine whether the interaction was dependent on the presence of the modification or simply involved other anticodon loop-nucleotides, now occluded from interaction with the synthetase. Unmodified E. coli tRNA(Glu), derived by in vitro transcription of the corresponding gene, is a poor substrate for GluRS, exhibiting a 100-fold reduction in its specificity constant (kcat/KM) compared to that of tRNA(Glu) prepared from an overproducing strain. Through the use of recombinant RNA technology, we created several hybrid tRNAs which combined sequences from the in vitro transcript with that of the native tRNA, resulting in tRNA molecules differing in modified base content. By in vitro aminoacylation of these hybrid tRNA molecules and of tRNAs with base substitutions at positions of nucleotide modification, we show conclusively that the modified uridine at position 34 in tRNA(Glu) is required for efficient aminoacylation by E. coli GluRS. This is only the second example of a tRNA modification acting as a positive determinant for interaction with its cognate aminoacyl-tRNA synthetase.
Collapse
Affiliation(s)
- L A Sylvers
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | | | | | | | | |
Collapse
|
30
|
Tandeau de Marsac N, Houmard J. Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiol Lett 1993. [DOI: 10.1111/j.1574-6968.1993.tb05866.x] [Citation(s) in RCA: 270] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
31
|
Rieble S, Beale SI. Structure and expression of a cyanobacterial ilvC gene encoding acetohydroxyacid isomeroreductase. J Bacteriol 1992; 174:7910-8. [PMID: 1459938 PMCID: PMC207525 DOI: 10.1128/jb.174.24.7910-7918.1992] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Acetohydroxyacid isomeroreductase (AHAIR) is the shared second enzyme in the biosynthetic pathways leading to isoleucine and valine. AHAIR is encoded by the ilvC gene in bacteria. A 1,544-bp fragment of genomic DNA containing the ilvC gene was cloned from the cyanobacterium Synechocystis sp. strain PCC 6803, and the complete nucleotide sequence was determined. The identity of the gene was established by comparison of the nucleotide and derived peptide sequences with those of other ilvC genes. The highest degree of sequence similarity was found with the ilvC gene from Rhizobium meliloti. The isolated Synechocystis ilvC gene complemented an Escherichia coli ilvC mutant lacking AHAIR activity. The expressed Synechocystis gene encodes a protein that has a molecular mass of 35.7 kDa and that has AHAIR activity in an in vitro assay. Polyclonal antibodies raised against purified Synechocystis AHAIR produced a single band on a Western blot (immunoblot) of a Synechocystis cell extract and detected the protein in an extract of an E. coli ilvC mutant strain that was transformed with a plasmid containing the Synechocystis ilvC gene. The antibody did not react with an extract of an E. coli ilvC mutant strain that was transformed with a control plasmid lacking the Synechocystis ilvC gene or with an extract of an E. coli IlvC+ control strain.
Collapse
Affiliation(s)
- S Rieble
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912
| | | |
Collapse
|
32
|
Jahn D, Verkamp E, Söll D. Glutamyl-transfer RNA: a precursor of heme and chlorophyll biosynthesis. Trends Biochem Sci 1992; 17:215-8. [PMID: 1502723 DOI: 10.1016/0968-0004(92)90380-r] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In green plants, archaebacteria and many eubacteria, the porphyrin ring that is common to both chlorophyll and heme is synthesized from 5-aminolevulinic acid (ALA) via an interesting pathway. This two-step process involves the unusual enzymes glutamyl-tRNA reductase and glutamate-1-semialdehyde 2,1-aminomutase. Interest in this pathway has increased since it was discovered that a tRNA cofactor was required for the formation of ALA. This tRNA(Glu) is common to the biosyntheses of both porphyrins and proteins.
Collapse
Affiliation(s)
- D Jahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | | | | |
Collapse
|