1
|
Romero-Aguilar L, Hernández-Morfín KD, Guerra-Sánchez G, Pardo JP. Metabolic Changes and Antioxidant Response in Ustilago maydis Grown in Acetate. J Fungi (Basel) 2023; 9:749. [PMID: 37504737 PMCID: PMC10381545 DOI: 10.3390/jof9070749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
Ustilago maydis is an important model to study intermediary and mitochondrial metabolism, among other processes. U. maydis can grow, at very different rates, on glucose, lactate, glycerol, and ethanol as carbon sources. Under nitrogen starvation and glucose as the only carbon source, this fungus synthesizes and accumulates neutral lipids in the form of lipid droplets (LD). In this work, we studied the accumulation of triacylglycerols in cells cultured in a medium containing acetate, a direct precursor of the acetyl-CoA required for the synthesis of fatty acids. The metabolic adaptation of cells to acetate was studied by measuring the activities of key enzymes involved in glycolysis, gluconeogenesis, and the pentose phosphate pathways. Since growth on acetate induces oxidative stress, the activities of some antioxidant enzymes were also assayed. The results show that cells grown in acetate plus nitrate did not increase the amount of LD, but increased the activities of glutathione reductase, glutathione peroxidase, catalase, and superoxide dismutase, suggesting a higher production of reactive oxygen species in cells growing in acetate. The phosphofructokinase-1 (PFK1) was the enzyme with the lowest specific activity in the glycolytic pathway, suggesting that PFK1 controls the flux of glycolysis. As expected, the activity of the phosphoenolpyruvate carboxykinase, a gluconeogenic enzyme, was present only in the acetate condition. In summary, in the presence of acetate as the only carbon source, U. maydis synthesized fatty acids, which were directed into the production of phospholipids and neutral lipids for biomass generation, but without any excessive accumulation of LD.
Collapse
Affiliation(s)
- Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Ciudad de México C.P. 04510, Mexico
| | - Katia Daniela Hernández-Morfín
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N Santo Tomás, Miguel Hidalgo, Ciudad de México C.P. 11340, Mexico
| | - Guadalupe Guerra-Sánchez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N Santo Tomás, Miguel Hidalgo, Ciudad de México C.P. 11340, Mexico
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Ciudad de México C.P. 04510, Mexico
| |
Collapse
|
2
|
Rojas BE, Iglesias AA. Integrating multiple regulations on enzyme activity: the case of phospho enolpyruvate carboxykinases. AOB PLANTS 2023; 15:plad053. [PMID: 37608926 PMCID: PMC10441589 DOI: 10.1093/aobpla/plad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/27/2023] [Indexed: 08/24/2023]
Abstract
Data on protein post-translational modifications (PTMs) increased exponentially in the last years due to the refinement of mass spectrometry techniques and the development of databases to store and share datasets. Nevertheless, these data per se do not create comprehensive biochemical knowledge. Complementary studies on protein biochemistry are necessary to fully understand the function of these PTMs at the molecular level and beyond, for example, designing rational metabolic engineering strategies to improve crops. Phosphoenolpyruvate carboxykinases (PEPCKs) are critical enzymes for plant metabolism with diverse roles in plant development and growth. Multiple lines of evidence showed the complex regulation of PEPCKs, including PTMs. Herein, we present PEPCKs as an example of the integration of combined mechanisms modulating enzyme activity and metabolic pathways. PEPCK studies strongly advanced after the production of the recombinant enzyme and the establishment of standardized biochemical assays. Finally, we discuss emerging open questions for future research and the challenges in integrating all available data into functional biochemical models.
Collapse
Affiliation(s)
- Bruno E Rojas
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| |
Collapse
|
3
|
Mcleod MJ, Krismanich AP, Assoud A, Dmitrienko GI, Holyoak T. Characterization of 3-[(Carboxymethyl)thio]picolinic Acid: A Novel Inhibitor of Phosphoenolpyruvate Carboxykinase. Biochemistry 2019; 58:3918-3926. [PMID: 31461616 DOI: 10.1021/acs.biochem.9b00583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) has traditionally been characterized for its role in the first committed step of gluconeogenesis. The current understanding of PEPCK's metabolic role has recently expanded to include it serving as a general mediator of tricarboxylic acid cycle flux. Selective inhibition of PEPCK in vivo and in vitro has been achieved with 3-mercaptopicolinic acid (MPA) (Ki ∼ 8 μM), whose mechanism of inhibition has been elucidated only recently. On the basis of crystallographic and mechanistic data of various inhibitors of PEPCK, MPA was used as the initial chemical scaffold to create a potentially more selective inhibitor, 3-[(carboxymethyl)thio]picolinic acid (CMP), which has been characterized both structurally and kinetically here. These data demonstrate that CMP acts as a competitive inhibitor at the OAA/PEP binding site, with its picolinic acid moiety coordinating directly with the M1 metal in the active site (Ki ∼ 29-55 μM). The extended carboxy tail occupies a secondary binding cleft that was previously shown could be occupied by sulfoacetate (Ki ∼ 82 μM) and for the first time demonstrates the simultaneous occupation of both OAA/PEP subsites by a single molecular structure. By occupying both the OAA/PEP binding subsites simultaneously, CMP and similar molecules can potentially be used as a starting point for the creation of additional selective inhibitors of PEPCK.
Collapse
|
4
|
Lv Z, Qiu L, Wang W, Liu Z, Xue Z, Yu Z, Song X, Chen H, Wang L, Song L. A GTP-dependent Phosphoenolpyruvate Carboxykinase from Crassostrea gigas Involved in Immune Recognition. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:318-329. [PMID: 28888537 DOI: 10.1016/j.dci.2017.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/03/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is well known as a key enzyme involved in the metabolic pathway of gluconeogenesis in organisms, but the information about its involvement in immune response is still very limited. In the present study, a novel PEPCK homolog named CgPEPCK was identified from oyster Crassostrea gigas. The deduced amino acid sequence of CgPEPCK shared 52%-74% similarities with those from other known PEPCKs. There were one conserved guanosine triphosphate (GTP) binding site, one substrate binding site, one metal binding site and one active site in CgPEPCK. The mRNA transcripts of CgPEPCK were constitutively expressed in all the tested tissues including hemolymph, mantle, gill, muscle, gonad and hepatopancreas. CgPEPCK proteins were mainly distributed in adductor muscle, gonad, gill and mantle, and rarely detected in hepatopancreas by using immunohistochemical analysis. After the stimulations with lipopolysaccharide (LPS), peptidoglycan (PGN), Vibrio splendidus and V. anguillarum, CgPEPCK transcripts in hemocytes were significantly up-regulated and peaked at 6 h (LPS, 9.62-fold, p < 0.01), 9 h (PGN, 4.25-fold, p < 0.01), 12 h (V. splendidus, 5.72-fold, p < 0.01), 3 h (V. anguillarum, 2.87-fold, p < 0.01), respectively. The recombinant CgPEPCK protein (rCgPEPCK) exhibited Mn2+/Mg2+ dependent GTP binding activity, and the activities to bind LPS and PGN, but not β-1,3-glucan (GLU), lipoteichoic acid (LTA), mannan (MAN) nor polyinosinic-polycytidylic (Poly I: C). It could also bind Escherichia coli, Staphylococcus aureus, Micrococcus luteus and significantly inhibit their growth. All these results collectively suggested that CgPEPCK could not only exert GTP binding activity involved in gluconeogenesis, but also mediate the bacteria recognition and clearance in immune response of oysters.
Collapse
Affiliation(s)
- Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuang Xue
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Zichao Yu
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
5
|
Biological significance of phosphoenolpyruvate carboxykinase in a cestode parasite, Raillietina echinobothrida and effect of phytoestrogens on the enzyme from the parasite and its host, Gallus domesticus. Parasitology 2017; 144:1264-1274. [PMID: 28485262 DOI: 10.1017/s0031182017000518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is involved in glycolysis in the cestode parasite, Raillietina echinobothrida; whereas, it executes a gluconeogenic role in its host, Gallus domesticus. Because of its differing primary function in the cestode parasite and its host, this enzyme is regarded as a plausible anthelmintic target. Hence, the biological significance of PEPCK in the parasite was analysed using siRNA against PEPCK from R. echinobothrida (RePEPCK). In order to find out the functional differences between RePEPCK and GdPEPCK (PEPCK from its host, G. domesticus), PEPCK genes from both sources were cloned, over-expressed, characterized, and some properties of the purified enzymes were compared. RePEPCK and GdPEPCK showed a standard Michaelis-Menten kinetics with K mapp of 46.9 and 22.9 µ m, respectively, for phosphoenolpyruvate and K mapp of 15.4 µ m for oxaloacetate in GdPEPCK decarboxylation reaction. Here, we report antagonist behaviours of recombinant PEPCKs derived from the parasite and its host. In search of possible modulators for PEPCK, few phytoestrogens were examined on the purified enzymes and their inhibitory constants were determined and discussed. This study stresses the potential of these findings to validate PEPCK as the anthelmintic drug target for parasitism management.
Collapse
|
6
|
Johnson TA, Mcleod MJ, Holyoak T. Utilization of Substrate Intrinsic Binding Energy for Conformational Change and Catalytic Function in Phosphoenolpyruvate Carboxykinase. Biochemistry 2016; 55:575-87. [PMID: 26709450 DOI: 10.1021/acs.biochem.5b01215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is an essential metabolic enzyme operating in the gluconeogenesis and glyceroneogenesis pathways. Previous work has demonstrated that the enzyme cycles between a catalytically inactive open state and a catalytically active closed state. The transition of the enzyme between these states requires the transition of several active site loops to shift from mobile, disordered structural elements to stable ordered states. The mechanism by which these disorder-order transitions are coupled to the ligation state of the active site however is not fully understood. To further investigate the mechanisms by which the mobility of the active site loops is coupled to enzymatic function and the transitioning of the enzyme between the two conformational states, we have conducted structural and functional studies of point mutants of E89. E89 is a proposed key member of the interaction network of mobile elements as it resides in the R-loop region of the enzyme active site. These new data demonstrate the importance of the R-loop in coordinating interactions between substrates at the OAA/PEP binding site and the mobile R- and Ω-loop domains. In turn, the studies more generally demonstrate the mechanisms by which the intrinsic ligand binding energy can be utilized in catalysis to drive unfavorable conformational changes, changes that are subsequently required for both optimal catalytic activity and fidelity.
Collapse
Affiliation(s)
- Troy A Johnson
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Matthew J Mcleod
- Department of Biology, University of Waterloo , Waterloo, ON N2L 3G1, Canada
| | - Todd Holyoak
- Department of Biology, University of Waterloo , Waterloo, ON N2L 3G1, Canada.,Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| |
Collapse
|
7
|
Machová I, Snášel J, Dostál J, Brynda J, Fanfrlík J, Singh M, Tarábek J, Vaněk O, Bednárová L, Pichová I. Structural and functional studies of phosphoenolpyruvate carboxykinase from Mycobacterium tuberculosis. PLoS One 2015; 10:e0120682. [PMID: 25798914 PMCID: PMC4370629 DOI: 10.1371/journal.pone.0120682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/05/2015] [Indexed: 12/04/2022] Open
Abstract
Tuberculosis, the second leading infectious disease killer after HIV, remains a top public health priority. The causative agent of tuberculosis, Mycobacterium tuberculosis (Mtb), which can cause both acute and clinically latent infections, reprograms metabolism in response to the host niche. Phosphoenolpyruvate carboxykinase (Pck) is the enzyme at the center of the phosphoenolpyruvate-pyruvate-oxaloacetate node, which is involved in regulating the carbon flow distribution to catabolism, anabolism, or respiration in different states of Mtb infection. Under standard growth conditions, Mtb Pck is associated with gluconeogenesis and catalyzes the metal-dependent formation of phosphoenolpyruvate. In non-replicating Mtb, Pck can catalyze anaplerotic biosynthesis of oxaloacetate. Here, we present insights into the regulation of Mtb Pck activity by divalent cations. Through analysis of the X-ray structure of Pck-GDP and Pck-GDP-Mn2+ complexes, mutational analysis of the GDP binding site, and quantum mechanical (QM)-based analysis, we explored the structural determinants of efficient Mtb Pck catalysis. We demonstrate that Mtb Pck requires presence of Mn2+ and Mg2+ cations for efficient catalysis of gluconeogenic and anaplerotic reactions. The anaplerotic reaction, which preferably functions in reducing conditions that are characteristic for slowed or stopped Mtb replication, is also effectively activated by Fe2+ in the presence of Mn2+ or Mg2+ cations. In contrast, simultaneous presence of Fe2+ and Mn2+ or Mg2+ inhibits the gluconeogenic reaction. These results suggest that inorganic ions can contribute to regulation of central carbon metabolism by influencing the activity of Pck. Furthermore, the X-ray structure determination, biochemical characterization, and QM analysis of Pck mutants confirmed the important role of the Phe triad for proper binding of the GDP-Mn2+ complex in the nucleotide binding site and efficient catalysis of the anaplerotic reaction.
Collapse
Affiliation(s)
- Iva Machová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Snášel
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jiří Dostál
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Mahavir Singh
- LIONEX diagnostics & Therapeutics, Braunschweig, Germany
| | - Ján Tarábek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Sciences, Charles University in Prague, Prague, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
8
|
Stark R, Kibbey RG. The mitochondrial isoform of phosphoenolpyruvate carboxykinase (PEPCK-M) and glucose homeostasis: has it been overlooked? BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1840:1313-30. [PMID: 24177027 PMCID: PMC3943549 DOI: 10.1016/j.bbagen.2013.10.033] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/13/2013] [Accepted: 10/18/2013] [Indexed: 01/03/2023]
Abstract
BACKGROUND Plasma glucose levels are tightly regulated within a narrow physiologic range. Insulin-mediated glucose uptake by tissues must be balanced by the appearance of glucose from nutritional sources, glycogen stores, or gluconeogenesis. In this regard, a common pathway regulating both glucose clearance and appearance has not been described. The metabolism of glucose to produce ATP is generally considered to be the primary stimulus for insulin release from beta-cells. Similarly, gluconeogenesis from phosphoenolpyruvate (PEP) is believed to be the primarily pathway via the cytosolic isoform of phosphoenolpyruvate carboxykinase (PEPCK-C). These models cannot adequately explain the regulation of insulin secretion or gluconeogenesis. SCOPE OF REVIEW A metabolic sensing pathway involving mitochondrial GTP (mtGTP) and PEP synthesis by the mitochondrial isoform of PEPCK (PEPCK-M) is associated with glucose-stimulated insulin secretion from pancreatic beta-cells. Here we examine whether there is evidence for a similar mtGTP-dependent pathway involved in gluconeogenesis. In both islets and the liver, mtGTP is produced at the substrate level by the enzyme succinyl CoA synthetase (SCS-GTP) with a rate proportional to the TCA cycle. In the beta-cell PEPCK-M then hydrolyzes mtGTP in the production of PEP that, unlike mtGTP, can escape the mitochondria to generate a signal for insulin release. Similarly, PEPCK-M and mtGTP might also provide a significant source of PEP in gluconeogenic tissues for the production of glucose. This review will focus on the possibility that PEPCK-M, as a sensor for TCA cycle flux, is a key mechanism to regulate both insulin secretion and gluconeogenesis suggesting conservation of this biochemical mechanism in regulating multiple aspects of glucose homeostasis. Moreover, we propose that this mechanism may be important for regulating insulin secretion and gluconeogenesis compared to canonical nutrient sensing pathways. MAJOR CONCLUSIONS PEPCK-M, initially believed to be absent in islets, carries a substantial metabolic flux in beta-cells. This flux is intimately involved with the coupling of glucose-stimulated insulin secretion. PEPCK-M activity may have been similarly underestimated in glucose producing tissues and could potentially be an unappreciated but important source of gluconeogenesis. GENERAL SIGNIFICANCE The generation of PEP via PEPCK-M may occur via a metabolic sensing pathway important for regulating both insulin secretion and gluconeogenesis. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Romana Stark
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.
| | - Richard G Kibbey
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA.
| |
Collapse
|
9
|
Johnson TA, Holyoak T. The Ω-loop lid domain of phosphoenolpyruvate carboxykinase is essential for catalytic function. Biochemistry 2012; 51:9547-59. [PMID: 23127136 DOI: 10.1021/bi301278t] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is an essential metabolic enzyme operating in the gluconeogenesis and glyceroneogenesis pathways. Recent studies have demonstrated that the enzyme contains a mobile active site lid domain that undergoes a transition between an open, disorded conformation and a closed, ordered conformation as the enzyme progresses through the catalytic cycle. The understanding of how this mobile domain functions in catalysis is incomplete. Previous studies showed that the closure of the lid domain stabilizes the reaction intermediate and protects the reactive intermediate from spurious protonation and thus contributes to the fidelity of the enzyme. To more fully investigate the roles of the lid domain in PEPCK function, we introduced three mutations that replaced the 11-residue lid domain with one, two, and three glycine residues. Kinetic analysis of the mutant enzymes demonstrates that none of the enzyme constructs exhibit any measurable kinetic activity, resulting in a decrease in the catalytic parameters of at least 10(6). Structural characterization of the mutants in complexes representing the catalytic cycle suggests that the inactivity is due to a role for the lid domain in the formation of the fully closed state of the enzyme that is required for catalytic function. In the absence of the lid domain, the enzyme is unable to achieve the fully closed state and is rendered inactive despite possessing all of the residues and substrates required for catalytic function. This work demonstrates how enzyme catalytic function can be abolished through the alteration of conformational equilibria despite all the elements required for chemical conversion of substrates to products remaining intact.
Collapse
Affiliation(s)
- Troy A Johnson
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | |
Collapse
|
10
|
Purification and characterization of phosphoenolpyruvate carboxykinase from Raillietina echinobothrida, a cestode parasite of the domestic fowl. Parasitology 2012; 140:136-46. [DOI: 10.1017/s0031182012001254] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYPhosphoenolpyruvate carboxykinase (PEPCK, EC 4.1.1.32) is an essential regulatory enzyme of glycolysis in helminths in contrast to its role in gluconeogenesis in their host. Previously we have reported that phytochemicals from Flemingia vestita (Family: Fabaceae), genistein in particular, have vermifugal action and are known to affect carbohydrate metabolism in the cestode, Raillietina echinobothrida. In order to determine the functional differences of PEPCK from the parasite and its avian host (Gallus domesticus), we purified the parasite enzyme apparently to homogeneity, and characterized it. The native PEPCK is a monomer with a subunit molecular weight of 65 kDa. The purified enzyme displayed standard Michaelis-Menten kinetics with Km value of 42·52 μM for its substrate PEP. The Ki for the competitive inhibitors GTP, GMP, ITP and IMP for the carboxylation reaction were determined and discussed. In order to identify putative modulators from plant sources, phytochemicals from F. vestita and Stephania glabra were tested on the purified PEPCK, which resulted in alteration of its activity. From our results, we hypothesize that PEPCK may be a potential target site for anthelmintic action.
Collapse
|
11
|
Pérez E, Cardemil E. Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase: the relevance of Glu299 and Leu460 for nucleotide binding. Protein J 2010; 29:299-305. [PMID: 20524049 DOI: 10.1007/s10930-010-9252-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A homology model of Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase (ATP + oxaloacetate right arrow over left arrow ADP + PEP + CO(2)) in complex with its substrates shows that the isobutyl group of Leu460 is in close proximity to the adenine ring of the nucleotide, while the carboxyl group of Glu299 is within hydrogen-bonding distance of the ribose 2'OH. The Leu460Ala mutation caused three-fold and seven-fold increases in the K (m) for ADPMn(-) and ATPMn(2-), respectively, while the Glu299Ala mutation had no effect. Binding studies showed losses of approximately 2 kcal mol(-1) in the nucleotide binding affinity due to the Leu460Ala mutation and no effect for the Glu299Ala mutation. PEP carboxykinase utilized 2'deoxyADP and 2'deoxyATP as substrates with kinetic and equilibrium dissociation constants very similar to those of ADP and ATP, respectively. These results show that the hydrophobic interaction between Leu460 and the adenine ring of the nucleotide significantly contributed to the nucleotide affinity of the enzyme. The 2'deoxy nucleotide studies and the lack of an effect of the Glu299Ala mutation in nucleotide binding suggest that the possible hydrogen bond contributed by Glu299 and the ribose 2'OH group may not be relevant for nucleotide binding.
Collapse
Affiliation(s)
- Estela Pérez
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. B. O'Higgins 3363, Santiago, Chile
| | | |
Collapse
|
12
|
Johnson TA, Holyoak T. Increasing the conformational entropy of the Omega-loop lid domain in phosphoenolpyruvate carboxykinase impairs catalysis and decreases catalytic fidelity . Biochemistry 2010; 49:5176-87. [PMID: 20476774 DOI: 10.1021/bi100399e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many studies have shown that the dynamic motions of individual protein segments can play an important role in enzyme function. Recent structural studies of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) demonstrate that PEPCK contains a 10-residue Omega-loop domain that acts as an active site lid. On the basis of these structural studies, we have previously proposed a model for the mechanism of PEPCK catalysis in which the conformation of this mobile lid domain is energetically coupled to ligand binding, resulting in the closed conformation of the lid, necessary for correct substrate positioning, becoming more energetically favorable as ligands associate with the enzyme. Here we test this model by introducing a point mutation (A467G) into the center of the Omega-loop lid that is designed to increase the entropic penalty for lid closure. Structural and kinetic characterization of this mutant enzyme demonstrates that the mutation has decreased the favorability of the enzyme adapting the closed lid conformation. As a consequence of this shift in the equilibrium defining the conformation of the active site lid, the enzyme's ability to stabilize the reaction intermediate is weakened, resulting in catalytic defect. This stabilization is initially surprising, as the lid domain makes no direct contacts with the enolate intermediate formed during the reaction. Furthermore, during the conversion of OAA to PEP, the destabilization of the lid-closed conformation results in the reaction becoming decoupled as the enolate intermediate is protonated rather than phosphorylated, resulting in the formation of pyruvate. Taken together, the structural and kinetic characterization of A467G-PEPCK supports our model of the role of the active site lid in catalytic function and demonstrates that the shift in the lowest-energy conformation between open and closed lid states is a function of the free energy available to the enzyme through ligand binding and the entropic penalty for ordering of the 10-residue Omega-loop lid domain.
Collapse
Affiliation(s)
- Troy A Johnson
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | |
Collapse
|
13
|
Sepúlveda C, Poch A, Espinoza R, Cardemil E. Electrostatic interactions play a significant role in the affinity of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase for Mn2+. Biochimie 2010; 92:814-9. [PMID: 20211682 DOI: 10.1016/j.biochi.2010.02.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 02/25/2010] [Indexed: 10/19/2022]
Abstract
Phosphoenolpyruvate (PEP) carboxykinases catalyse the reversible formation of oxaloacetate (OAA) and ATP (or GTP) from PEP, ADP (or GDP) and CO(2). They are activated by Mn(2+), a metal ion that coordinates to the protein through the epsilon-amino group of a lysine residue, the N(epsilon-2)-imidazole of a histidine residue, and the carboxylate from an aspartic acid residue. Neutrality in the epsilon-amino group of Lys213 of Saccharomyces cerevisiae PEP carboxykinase is expected to be favoured by the vicinity of ionised Lys212. Glu272 and Glu284, located close to Lys212, should, in turn, electrostatically stabilise its positive charge and hence assist in keeping the epsilon-amino group of Lys213 in a neutral state. The mutations Glu272Gln, Glu284Gln, and Lys212Met increased the activation constant for Mn(2+) in the main reaction of the enzyme up to seven-fold. The control mutation Lys213Gln increased this constant by ten-fold, as opposed to control mutation Lys212Arg, which did not affect the Mn(2+) affinity of the enzyme. These observations indicate a role for Glu272, Glu284, and Lys212 in assisting Lys213 to properly bind Mn(2+). In an unexpected result, the mutations Glu284Gln, Lys212Met and Lys213Gln changed the nucleotide-independent OAA decarboxylase activity of S. cerevisiae PEP carboxykinase into an ADP-requiring activity, implying an effect on the OAA binding characteristics of PEP carboxykinase.
Collapse
Affiliation(s)
- Carolina Sepúlveda
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. B. O'Higgins 3363, Santiago 9170022, Chile
| | | | | | | |
Collapse
|
14
|
Dharmarajan L, Case CL, Dunten P, Mukhopadhyay B. Tyr235 of human cytosolic phosphoenolpyruvate carboxykinase influences catalysis through an anion-quadrupole interaction with phosphoenolpyruvate carboxylate. FEBS J 2009; 275:5810-9. [PMID: 19021757 DOI: 10.1111/j.1742-4658.2008.06702.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tyr235 of GTP-dependent phosphoenolpyruvate (PEP) carboxykinase is a fully invariant residue. The aromatic ring of this residue establishes an energetically favorable weak anion-quadrupole interaction with PEP carboxylate. The role of Tyr235 in catalysis was investigated via kinetic analysis of site-directed mutagenesis-derived variants. The Y235F change lowered the apparent K(m) for PEP by about six-fold, raised the apparent K(m) for Mn(2+) by about 70-fold, and decreased oxaloacetate (OAA)-forming activity by about 10-fold. These effects were due to an enhanced anion-quadrupole interaction between the aromatic side chain at position 235, which now lacked a hydroxyl group, and PEP carboxylate, which probably increased the distance between PEP and Mn(2+) and consequently affected the phosphoryl transfer step and overall catalysis. For the Y235A and Y235S changes, an elimination of the favorable edge-on interaction increased the apparent K(m) for PEP by four- and six-fold, respectively, and the apparent K(m) for Mn(2+) by eight- and six-fold, respectively. The pyruvate kinase-like activity, representing the PEP dephosphorylation step of the OAA-forming reaction, was affected by the substitutions in a similar way to the complete reaction. These observations indicate that the aromatic ring of Tyr235 helps to position PEP in the active site and the hydroxyl group allows an optimal PEP-Mn(2+) distance for efficient phosphoryl transfer and overall catalysis. The Y235A and Y235S changes drastically reduced the PEP-forming and OAA decarboxylase activities, probably due to the elimination of the stabilizing interaction between Tyr235 and the respective products, PEP and pyruvate.
Collapse
Affiliation(s)
- Lakshmi Dharmarajan
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | | | | |
Collapse
|
15
|
Tobar I, González-Nilo FD, Jabalquinto AM, Cardemil E. Relevance of Arg457 for the nucleotide affinity of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase. Int J Biochem Cell Biol 2008; 40:1883-9. [PMID: 18346928 DOI: 10.1016/j.biocel.2008.01.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/19/2007] [Accepted: 01/23/2008] [Indexed: 12/16/2022]
Abstract
Phosphoenolpyruvate carboxykinases catalyze one of the first steps in the biosynthesis of glucose and depending on the enzyme origin, preferentially use adenine or guanine nucleotides as substrates. The Saccharomyces cerevisiae enzyme has a marked preference for ADP (or ATP) over other nucleotides. Homology models of the enzyme in complex with ADP or ATP show that the guanidinium group of Arg457 is close to the adenine base, suggesting that this group might be involved in the stabilization of the nucleotide substrate. To evaluate this we have performed the mutation Arg457Met, replacing the positively charged guanidinium group by a neutral residue. The mutated enzyme retained the structural characteristics of the wild-type protein. Fluorescence titration experiments showed that mutation causes a loss of 1.7 kcal mol(-1) in the binding affinity of the enzyme for ADPMn. Similarly, kinetic analyses of the mutated enzyme showed 50-fold increase in K(m) for ADPMn, with minor alterations in the other kinetic parameters. These results show that Arg457 is an important factor for nucleotide binding by S. cerevisiae PEP carboxykinase.
Collapse
Affiliation(s)
- Iván Tobar
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Santiago 33, Chile
| | | | | | | |
Collapse
|
16
|
Case CL, Mukhopadhyay B. Kinetic characterization of recombinant human cytosolic phosphoenolpyruvate carboxykinase with and without a His10-tag. Biochim Biophys Acta Gen Subj 2007; 1770:1576-84. [PMID: 17888579 DOI: 10.1016/j.bbagen.2007.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Revised: 07/14/2007] [Accepted: 07/19/2007] [Indexed: 11/21/2022]
Abstract
We report the first kinetic characterization of human liver cytosolic GTP-dependent phosphoenolpyruvate carboxykinase (GTP-PEPCK), which plays a major role in the development of type 2 diabetes in human. In this work two recombinant forms of the enzyme were studied. One form had a His10-tag and the other was His-tag-free, and with one exception, both exhibited similar kinetic properties. When Mn2+ was used as the sole divalent cation, the His10-tagged enzyme, but not the His-tag-free enzyme, was increasingly inhibited at Mn2+ concentrations greater than 0.7 mM. This inhibition did not pose any problem in kinetic analysis, for within the relevant Mn2+ concentration range the His-tagged human PEPCK behaved almost identically to the tag-free enzyme. This property will bring simplicity and speed to purifying and studying multiple structural variants of this important enzyme. Apparent Km values of tag-free enzyme for phosphoenolpyruvate, GDP and bicarbonate were 450, 79 and 20,600 microM, respectively, while those for oxaloacetate and GTP were 4 and 23 microM, respectively, emphasizing the enzyme's gluconeogenic character. Bicarbonate (>100 mM) inhibited OAA-forming activity, which was a new observation with a GTP-PEPCK. The apparent Km for Mn2+ in the PEP-forming direction was 30-fold lower than that for the OAA-forming direction. Mn2+ and bicarbonate or CO2 might regulate the enzyme in vivo.
Collapse
Affiliation(s)
- Christopher L Case
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | |
Collapse
|
17
|
Yévenes A, González-Nilo FD, Cardemil E. Relevance of phenylalanine 216 in the affinity of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase for Mn(II). Protein J 2006; 26:135-41. [PMID: 17195942 DOI: 10.1007/s10930-006-9054-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase catalyzes the reversible formation of oxaloacetate and adenosine triphosphate from PEP, adenosine diphosphate and carbon dioxide, and uses Mn(2+) as the activating metal ion. Comparison with the crystalline structure of homologous Escherichia coli PEP carboxykinase [Tari et al. (1997) Nature Struct. Biol. 4, 990-994] shows that Lys(213) is one of the ligands to Mn(2+) at the enzyme active site. Coordination of Mn(2+) to a lysyl residue is not common and suggests a low pK (a) value for the epsilon-NH(2) group of Lys(213). In this work, we evaluate the role of neighboring Phe(216) in contributing to provide a low polarity microenvironment suitable to keep the epsilon-NH(2) of Lys(213) in the unprotonated form. Mutation Phe216Tyr shows that the introduction of a hydroxyl group in the lateral chain of the residue produces a substantial loss in the enzyme affinity for Mn(2+), suggesting an increase of the pK (a) of Lys(213). In agreement with this interpretation, theoretical calculations indicate an alkaline shift of 2.8 pH units in the pK (a) of the epsilon-amino group of Lys(213) upon Phe216Tyr mutation.
Collapse
Affiliation(s)
- Alejandro Yévenes
- Departamento de Ciencias Químicas, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 33, Chile
| | | | | |
Collapse
|
18
|
Case CL, Concar EM, Boswell KL, Mukhopadhyay B. Roles of Asp75, Asp78, and Glu83 of GTP-dependent Phosphoenolpyruvate Carboxykinase from Mycobacterium smegmatis. J Biol Chem 2006; 281:39262-72. [PMID: 17015450 DOI: 10.1074/jbc.m602591200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The roles of Asp(75), Asp(78), and Glu(83) of the (75)DPSDVARVE(83) element of Mycobacterium smegmatis GTP-dependent phosphoenolpyruvate (PEP) carboxykinase (GTP-PEPCK) were investigated. Asp(78) and Glu(83) are fully conserved in GTP-PEP-CKs. The human PEPCK crystal structure suggests that Asp(78) influences Tyr(220); Tyr(220) helps to position bound PEP, and Glu(83) interacts with Arg(81). Experimental data on other PEPCKs indicate that Arg(81) binds PEP, and the phosphate of PEP interacts with Mn(2+) of metal site 1 for catalysis. We found that D78A and E83A replacements severely reduced activity. E83A substitution raised the apparent K(m) value for Mn(2+) 170-fold. In contrast, Asp(75) is highly but not fully conserved; natural substitutions are Ala, Asn, Gln, or Ser. Such substitutions, when engineered, in M. smegmatis enzyme caused the following. 1) For oxaloacetate synthesis, V(max) decreased 1.4-4-fold. K(m) values for PEP and Mn(2+) increased 3-9- and 1.2-10-fold, respectively. K(m) values for GDP and bicarbonate changed little. 2) For PEP formation, V(max) increased 1.5-2.7-fold. K(m) values for oxaloacetate increased 2-2.8-fold. The substitutions did not change the secondary structure of protein significantly. The kinetic effects are rationalized as follows. In E83A the loss of Glu(83)-Arg(81) interaction affected Arg(81)-PEP association. D78A change altered the Tyr(220)-PEP interaction. These events perturbed PEP-Mn(2+) interaction and consequently affected catalysis severely. In contrast, substitutions at Asp(75), a site far from bound PEP, brought subtle effects, lowering oxaloacetate formation rate but enhancing PEP formation rate. It is likely that Asp(75) substitutions affected PEP-Mn(2+) interaction by changing the positions of Asp(78), Arg(81), and Glu(83), which translated to differential effects on two directions.
Collapse
Affiliation(s)
- Christopher L Case
- Virginia Bioinformatics Institute and Departments of Biochemistry and Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | |
Collapse
|
19
|
Hanson RW, Patel YM. Phosphoenolpyruvate carboxykinase (GTP): the gene and the enzyme. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 69:203-81. [PMID: 7817869 DOI: 10.1002/9780470123157.ch6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- R W Hanson
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH
| | | |
Collapse
|
20
|
Yévenes A, Espinoza R, Rivas-Pardo JA, Villarreal JM, González-Nilo FD, Cardemil E. Site-directed mutagenesis study of the microenvironment characteristics of Lys213 of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase. Biochimie 2006; 88:663-72. [PMID: 16469427 DOI: 10.1016/j.biochi.2005.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 12/19/2005] [Indexed: 10/25/2022]
Abstract
Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase catalyzes the reversible formation of oxaloacetate and adenosine triphosphate from PEP, adenosine diphosphate and carbon dioxide, and uses Mn(2+) as the activating metal ion. Comparison with the crystalline structure of homologous Escherichia coli PEP carboxykinase [Tari et al. Nature Struct. Biol. 4 (1997) 990-994] shows that Lys(213) is one of the ligands to Mn(2+) at the enzyme active site. Coordination of Mn(2+) to a lysyl residue is infrequent and suggests a low pK(a) value for the epsilon-NH(2) group of Lys(213). In this work, we evaluate the role of neighboring Phe(416) in contributing to provide a low polarity microenvironment suitable to keep the epsilon-NH(2) of Lys(213) in the unprotonated form. Mutation Phe416Tyr shows that the introduction of a hydroxyl group in the lateral chain of the residue produces a substantial loss in the enzyme affinity for Mn(2+), suggesting an increase of the pK(a) of Lys(213). A study of the effect of pH on K(m) for Mn(2+) indicate that the affinity of recombinant wild type enzyme for the metal ion is dependent on deprotonation of a group with pK(a) of 7.1+/-0.2, compatible with the low pK(a) expected for Lys(213). This pK(a) value increases at least 1.5 pH units upon Phe416Tyr mutation, in agreement with the expected effect of an increase in the polarity of Lys(213) microenvironment. Theoretical calculations of the pK(a) of Lys(213) indicate a value of 6.5+/-0.9, and it increases to 8.2+/-1.6 upon Phe416Tyr mutation. Additionally, mutation Phe416Tyr causes a loss of 1.3 kcal mol(-1) in the affinity of the enzyme for PEP, an effect perhaps related to the close proximity of Phe(416) to Arg(70), a residue previously shown to be important for PEP binding.
Collapse
Affiliation(s)
- Alejandro Yévenes
- Departamento de Ciencias Químicas, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Santiago 33, Chile
| | | | | | | | | | | |
Collapse
|
21
|
Fassy F, Krebs O, Lowinski M, Ferrari P, Winter J, Collard-Dutilleul V, Salahbey Hocini K. UMP kinase from Streptococcus pneumoniae: evidence for co-operative ATP binding and allosteric regulation. Biochem J 2005; 384:619-27. [PMID: 15324307 PMCID: PMC1134148 DOI: 10.1042/bj20040440] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
UMP kinase catalyses the phosphorylation of UMP by ATP to yield UDP and ADP. In prokaryotes, the reaction is carried out by a hexameric enzyme, activated by GTP and inhibited by UTP. In the present study, Streptococcus pneumoniae UMP kinase was studied as a target for antibacterial research and its interest was confirmed by the demonstration of the essentiality of the gene for cell growth. In the presence of MnCl2 or MgCl2, the saturation kinetics of recombinant purified UMP kinase was hyperbolic for UMP (K(m)=0.1 mM) and sigmoidal for ATP (the substrate concentration at half-saturation S0.5=9.4+/-0.7 mM and n=1.9+/-0.1 in the presence of MgCl2). GTP increased the affinity for ATP and decreased the Hill coefficient (n). UTP decreased the affinity for ATP and only slightly increased the Hill coefficient. The kcat (175+/-13 s(-1) in the presence of MgCl2) was not affected by the addition of GTP or UTP, whose binding site was shown to be different from the active site. The hydrodynamic radius of the protein similarly decreased in the presence of ATP or GTP. There was a shift in the pH dependence of the activity when the ATP concentration was switched from low to high. These results support the hypothesis of an allosteric transition from a conformation with low affinity for ATP to a form with high affinity, which would be induced by the presence of ATP or GTP.
Collapse
Affiliation(s)
- Florence Fassy
- Aventis Pharma, 13 quai Jules Guesde, 94403 Vitry sur Seine Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
22
|
Schmeling S, Narmandakh A, Schmitt O, Gad'on N, Schühle K, Fuchs G. Phenylphosphate synthase: a new phosphotransferase catalyzing the first step in anaerobic phenol metabolism in Thauera aromatica. J Bacteriol 2004; 186:8044-57. [PMID: 15547277 PMCID: PMC529068 DOI: 10.1128/jb.186.23.8044-8057.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anaerobic metabolism of phenol in the beta-proteobacterium Thauera aromatica proceeds via para-carboxylation of phenol (biological Kolbe-Schmitt carboxylation). In the first step, phenol is converted to phenylphosphate which is then carboxylated to 4-hydroxybenzoate in the second step. Phenylphosphate formation is catalyzed by the novel enzyme phenylphosphate synthase, which was studied. Phenylphosphate synthase consists of three proteins whose genes are located adjacent to each other on the phenol operon and were overproduced in Escherichia coli. The promoter region and operon structure of the phenol gene cluster were investigated. Protein 1 (70 kDa) resembles the central part of classical phosphoenolpyruvate synthase which contains a conserved histidine residue. It catalyzes the exchange of free [(14)C]phenol and the phenol moiety of phenylphosphate but not the phosphorylation of phenol. Phosphorylation of phenol requires protein 1, MgATP, and another protein, protein 2 (40 kDa), which resembles the N-terminal part of phosphoenol pyruvate synthase. Proteins 1 and 2 catalyze the following reaction: phenol + MgATP + H(2)O-->phenylphosphate + MgAMP + orthophosphate. The phosphoryl group in phenylphosphate is derived from the beta-phosphate group of ATP. The free energy of ATP hydrolysis obviously favors the trapping of phenol (K(m), 0.04 mM), even at a low ambient substrate concentration. The reaction is stimulated severalfold by another protein, protein 3 (24 kDa), which contains two cystathionine-beta-synthase domains of unknown function but does not show significant overall similarity to known proteins. The molecular and catalytic features of phenylphosphate synthase resemble those of phosphoenolpyruvate synthase, albeit with interesting modifications.
Collapse
Affiliation(s)
- Sirko Schmeling
- Institut Biologie II, Mikrobiologie, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Fukuda W, Fukui T, Atomi H, Imanaka T. First characterization of an archaeal GTP-dependent phosphoenolpyruvate carboxykinase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 2004; 186:4620-7. [PMID: 15231795 PMCID: PMC438638 DOI: 10.1128/jb.186.14.4620-4627.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphoenolpyruvate carboxykinase (PCK), which catalyzes the nucleotide-dependent, reversible decarboxylation of oxaloacetate to yield phosphoenolpyruvate and CO2, is one of the important enzymes in the interconversion between C3 and C4 metabolites. This study focused on the first characterization of the enzymatic properties and expression profile of an archaeal PCK from the hyperthermophilic archaeon Thermococcus kodakaraensis (PckTk). PckTk showed 30 to 35% identities to GTP-dependent PCKs from mammals and bacteria but was located in a branch distinct from that of the classical enzymes in the phylogenetic tree, together with other archaeal homologs from Pyrococcus and Sulfolobus spp. Several catalytically important regions and residues, found in all known PCKs irrespective of their nucleotide specificities, were conserved in PckTk. However, the predicted GTP-binding region was unique compared to those in other GTP-dependent PCKs. The recombinant PckTk actually exhibited GTP-dependent activity and was suggested to possess dual cation-binding sites specific for Mn2+ and Mg2+. The enzyme preferred phosphoenolpyruvate formation from oxaloacetate, since the Km value for oxaloacetate was much lower than that for phosphoenolpyruvate. The transcription and activity levels in T. kodakaraensis were higher under gluconeogenic conditions than under glycolytic conditions. These results agreed with the role of PckTk in providing phosphoenolpyruvate from oxaloacetate as the first step of gluconeogenesis in this hyperthermophilic archaeon. Additionally, under gluconeogenic conditions, we observed higher expression levels of PckTk on pyruvate than on amino acids, implying that it plays an additional role in the recycling of excess phosphoenolpyruvate produced from pyruvate, replacing the function of the anaplerotic phosphoenolpyruvate carboxylase that is missing from this archaeon.
Collapse
Affiliation(s)
- Wakao Fukuda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | | | |
Collapse
|
24
|
Delbaere LTJ, Sudom AM, Prasad L, Leduc Y, Goldie H. Structure/function studies of phosphoryl transfer by phosphoenolpyruvate carboxykinase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:271-8. [PMID: 15023367 DOI: 10.1016/j.bbapap.2003.11.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Accepted: 11/12/2003] [Indexed: 11/24/2022]
Abstract
Phosphoenolpyruvate carboxykinase (PCK) catalyzes the conversion of oxaloacetate (OAA) to PEP and carbon dioxide with the subsequent conversion of nucleoside triphosphate to nucleoside diphosphate (NDP). The 1.9 A resolution structure of Escherichia coli PCK consisted of a 275-residue N-terminal domain and a 265-residue C-terminal domain with the active site located in a cleft between these domains. Each domain has an alpha/beta topology and the overall structure represents a new protein fold. Furthermore, PCK has a unique mononucleotide-binding fold. The 1.8 A resolution structure of the complex of ATP/Mg(2+)/oxalate with PCK revealed a 20 degrees hinge-like rotation of the N- and C-terminal domains, which closed the active site cleft. The ATP was found in the unusual syn conformation as a result of binding to the enzyme. Along with the side chain of Lys254, Mg(2+) neutralizes charges on the P beta and P gamma oxygen atoms of ATP and stabilizes an extended, eclipsed conformation of the P beta and P gamma phosphoryl groups. The sterically strained high-energy conformation likely lowers the free energy of activation for phosphoryl transfer. Additionally, the gamma-phosphoryl group becomes oriented in-line with the appropriate enolate oxygen atom, which strongly supports a direct S(N)2-type displacement of this gamma-phosphoryl group by the enolate anion. In the 2.0 A resolution structure of the complex of PCK/ADP/Mg(2+)/AlF(3), the AlF(3) moiety represents the phosphoryl group being transferred during catalysis. There are three positively charged groups that interact with the fluorine atoms, which are complementary to the three negative charges that would occur for an associative transition state.
Collapse
Affiliation(s)
- Louis T J Delbaere
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E5.
| | | | | | | | | |
Collapse
|
25
|
Aich S, Imabayashi F, Delbaere LTJ. Expression, purification, and characterization of a bacterial GTP-dependent PEP carboxykinase. Protein Expr Purif 2003; 31:298-304. [PMID: 14550651 DOI: 10.1016/s1046-5928(03)00189-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Corynebacterium glutamicum (C. glutamicum) phosphoenolpyruvate carboxykinase (PCK) gene (pckA) was cloned into an Escherichia coli expression vector with a glutathione S-transferase (GST) tag. This recombinant DNA can produce highly overexpressed tagged protein in soluble form. This is the first report of the production of C. glutamicum PCK overexpressed in E. coli. The GST-fused PCK was purified using the glutathione-Sepharose 4B affinity column and the GST tag was removed in one-step. This one-step, easy purification method would be very useful for future mutational and structural studies. The molecular mass of the purified protein is approximately 68 kDa as confirmed by mass spectrometry and it is a monomeric enzyme. Also, the enzyme assays revealed that C. glutamicum PCK has a GTP-specific activity and that its activity is maximal in the presence of both Mn2+ and Mg2+.
Collapse
Affiliation(s)
- Sanjukta Aich
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Sask, Canada S7N 5E5
| | | | | |
Collapse
|
26
|
Abstract
Phosphoenolpyruvate carboxykinase (PCK) is probably ubiquitous in flowering plants, but is confined to certain cells or tissues. It is regulated by phosphorylation, which renders it less active by altering both its substrate affinities and its sensitivity to regulation by adenylates. In the leaves of some C4 plants, such as Panicum maximum, dephosphorylation increases its activity in the light. In other tissues such regulation probably avoids futile cycling between phosphoenolpyruvate and oxaloacetate. Although PCK generally acts as a decarboxylase in plants, its affinity for CO2 measured at physiological concentrations of metal ions is high and would allow it to be freely reversible in vivo. While its function in gluconeogenesis in seeds postgermination and in leaves of C4 and crassulacean acid metabolism plants is clearly established, the possible functions of PCK in other plant cells are discussed, drawing parallels with those in animals, including its integrated function in cataplerosis, nitrogen metabolism, pH regulation, and gluconeogenesis.
Collapse
|
27
|
Encinas MV, González-Nilo FD, Goldie H, Cardemil E. Ligand interactions and protein conformational changes of phosphopyridoxyl-labeled Escherichia coli phosphoenolpyruvate carboxykinase determined by fluorescence spectroscopy. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4960-8. [PMID: 12383254 DOI: 10.1046/j.1432-1033.2002.03196.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Escherichia coli phosphoenolpyruvate (PEP) carboxykinase catalyzes the decarboxylation of oxaloacetate and transfer of the gamma-phosphoryl group of ATP to yield PEP, ADP, and CO2. The interaction of the enzyme with the substrates originates important domain movements in the protein. In this work, the interaction of several substrates and ligands with E. coli PEP carboxykinase has been studied in the phosphopyridoxyl (P-pyridoxyl)-enzyme adduct. The derivatized enzyme retained the substrate-binding characteristics of the native protein, allowing the determination of several protein-ligand dissociation constants, as well as the role of Mg2+ and Mn2+ in substrate binding. The binding affinity of PEP to the enzyme-Mn2+ complex was -8.9 kcal.mol-1, which is 3.2 kcal.mol-1 more favorable than in the complex with Mg2+. For the substrate nucleotide-metal complexes, similar binding affinities (-6.0 to -6.2 kcal.mol-1) were found for either metal ion. The fluorescence decay of the P-pyridoxyl group fitted to two lifetimes of 5.15 ns (34%) and 1.2 ns. These lifetimes were markedly altered in the derivatized enzyme-PEP-Mn complexes, and smaller changes were obtained in the presence of other substrates. Molecular models of the P-pyridoxyl-E. coli PEP carboxykinase showed different degrees of solvent-exposed surfaces for the P-pyridoxyl group in the open (substrate-free) and closed (substrate-bound) forms, which are consistent with acrylamide quenching experiments, and suggest that the fluorescence changes reflect the domain movements of the protein in solution.
Collapse
Affiliation(s)
- María Victoria Encinas
- Departamento de Ciencias Químicas, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile.
| | | | | | | |
Collapse
|
28
|
Walker RP, Chen ZH, Acheson RM, Leegood RC. Effects of phosphorylation on phosphoenolpyruvate carboxykinase from the C4 plant Guinea grass. PLANT PHYSIOLOGY 2002. [PMID: 11788762 DOI: 10.1104/pp.010432] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In the C4 plant Guinea grass (Panicum maximum), phosphoenolpyruvate carboxykinase (PEPCK) is phosphorylated in darkened leaves and dephosphorylated in illuminated leaves. To determine whether the properties of phosphorylated and non-phosphorylated PEPCK were different, PEPCK was purified to homogeneity from both illuminated and darkened leaves. The final step of the purification procedure, gel filtration chromatography, further separated phosphorylated and non-phosphorylated forms. In the presence of a high ratio of ATP to ADP, the non-phosphorylated enzyme had a higher affinity for its substrates, oxaloacetate and phosphoenolpyruvate. The activity of the non-phosphorylated form was up to 6-fold higher when measured at low substrate concentrations. Comparison of proteoloytically cleaved PEPCK from Guinea grass, which lacked its N-terminal extension, from yeast (Saccharomyces cerevisiae), which does not possess an N-terminal extension, and from the C4 plant Urochloa panicoides, which possesses an N-terminal extension but is not subject to phosphorylation, revealed similar properties to the non-phosphorylated full-length form from Guinea grass. Assay of PEPCK activity in crude extracts of Guinea grass leaves, showed a large difference between illuminated and darkened leaves when measured in a selective assay (a low concentration of phosphoenolpyruvate and a high ratio of ATP to ADP), but there was no difference under assay conditions used to estimate maximum activity. Immunoblots of sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels showed no difference in the abundance of PEPCK protein in illuminated and darkened leaves. There were no light/dark differences in activity detected in maize (Zea mays) leaves, in which PEPCK is not subject to phosphorylation.
Collapse
Affiliation(s)
- Robert P Walker
- Robert Hill Institute and Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | | | | | | |
Collapse
|
29
|
Mukhopadhyay B, Concar EM, Wolfe RS. A GTP-dependent vertebrate-type phosphoenolpyruvate carboxykinase from Mycobacterium smegmatis. J Biol Chem 2001; 276:16137-45. [PMID: 11278451 DOI: 10.1074/jbc.m008960200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This is the first report on a bacterial verterbrate-type GTP-dependent phosphoenolpyruvate carboxykinase (PCK). The pck gene of Mycobacterium smegmatis was cloned. The recombinant PCK was overexpressed in Escherichia coli in a soluble form and with high activity. The purified enzyme was found to be monomeric (72 kDa), thermophilic (optimum temperature, 70 degrees C), very stable upon storage at 4 degrees C, stimulated by thiol-containing reducing agents, and inhibited by oxalate and by alpha-ketoglutarate. The requirement for a divalent cation for activity was fulfilled best by Mn(2+) and Co(2+) and poorly by Mg(2+). At 37 degrees C, the highest V(m) value (32.5 units/mg) was recorded with Mn(2+) and in the presence of 37 mm dithiothreitol (DTT). The presence of Mg(2+) (2 mm) greatly lowered the apparent K(m) values for Mn(2+) (by 144-fold in the presence of DTT and by 9.4-fold in the absence of DTT) and Co(2+) (by 230-fold). In the absence of DTT but in the presence of Mg(2+) (2 mm) as the co-divalent cation, Co(2+) was 21-fold more efficient than Mn(2+). For producing oxaloacetate, the enzyme utilized both GDP and IDP; ADP served very poorly. The apparent K(m) values for phosphoenolpyruvate, GDP, and bicarbonate were >100, 66, and 8300 micrometer, respectively, whereas those for GTP and oxaloacetate (for the phosphoenolpyruvate formation activity) were 13 and 12 microm, respectively. Thus, this enzyme preferred the gluconeogenesis/glycerogenesis direction. This property fits the suggestion that in M. smegmatis, pyruvate carboxylase is not anaplerotic but rather gluconeogenic (Mukhopadhyay, B., and Purwantini, E. (2000) Biochim. Biophys. Acta. 1475, 191-206). Both in primary structure and kinetic properties, the mycobacterial PCK was very similar to its vertebrate-liver counterparts and thus could serve as a model for these enzymes; examples for several immediate targets are presented.
Collapse
Affiliation(s)
- B Mukhopadhyay
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | |
Collapse
|
30
|
Chida Y, Ohtsu H, Takahashi K, Sato K, Toyomizu M, Akiba Y. Carbohydrate metabolism in temporal and persistent hypoglycemic chickens induced by insulin infusion. Comp Biochem Physiol C Toxicol Pharmacol 2000; 126:187-93. [PMID: 11050690 DOI: 10.1016/s0742-8413(00)00111-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to elucidate the regulatory mechanism of blood glucose concentrations specific to chickens, carbohydrate metabolism in the liver, muscle and kidney and metabolite concentrations in the blood were investigated in chickens with acute and persistent hypoglycemia. Acute and persistent hypoglycemia were experimentally induced by a single injection of insulin (8 U/kg BW) or by continuous infusion of insulin (22.5 U/kg BW/day) for 4 days. Non-esterified fatty acid (NEFA) concentration in plasma and D-3-hydroxybutyrate (3HB) concentrations in liver and muscle increased in the acute hypoglycemia. Plasma NEFA concentration and 3HB concentration in the blood and liver were not changed at day 3 of persistent hypoglycemia, while 3HB concentration in the muscle was decreased. Phosphofructokinase (PFK) activity in the liver tended to increase but PFK and pyruvate kinase (PK) activities were unchanged in acute hypoglycemia. In persistent hypoglycemia, increase of hepatic PFK activity at day 1 in which it was reversed at day 3, and a small increase of muscle PK activity were observed, while PK and phosphoenolpyruvate carboxykinase (PEPCK) activities in the liver and kidney were not significantly changed. These results show that in the persistent hypoglycemic chickens, hepatic glycolysis transiently increases, which is followed by a small decrease, while glycolysis in muscles and gluconeogenesis in the liver and kidney are not significantly changed.
Collapse
Affiliation(s)
- Y Chida
- Laboratory of Animal Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Wong DK, Lee BY, Horwitz MA, Gibson BW. Identification of fur, aconitase, and other proteins expressed by Mycobacterium tuberculosis under conditions of low and high concentrations of iron by combined two-dimensional gel electrophoresis and mass spectrometry. Infect Immun 1999; 67:327-36. [PMID: 9864233 PMCID: PMC96314 DOI: 10.1128/iai.67.1.327-336.1999] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron plays a critical role in the pathophysiology of Mycobacterium tuberculosis. To gain a better understanding of iron regulation by this organism, we have used two-dimensional (2-D) gel electrophoresis, mass spectrometry, and database searching to study protein expression in M. tuberculosis under conditions of high and low iron concentration. Proteins in cellular extracts from M. tuberculosis Erdman strain grown under low-iron (1 microM) and high-iron (70 microM) conditions were separated by 2-D polyacrylamide gel electrophoresis, which allowed high-resolution separation of several hundred proteins, as visualized by Coomassie staining. The expression of at least 15 proteins was induced, and the expression of at least 12 proteins was decreased under low-iron conditions. In-gel trypsin digestion was performed on these differentially expressed proteins, and the digestion mixtures were analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry to determine the molecular masses of the resulting tryptic peptides. Partial sequence data on some of the peptides were obtained by using after source decay and/or collision-induced dissociation. The fragmentation data were used to search computerized peptide mass and protein sequence databases for known proteins. Ten iron-regulated proteins were identified, including Fur and aconitase proteins, both of which are known to be regulated by iron in other bacterial systems. Our study shows that, where large protein sequence databases are available from genomic studies, the combined use of 2-D gel electrophoresis, mass spectrometry, and database searching to analyze proteins expressed under defined environmental conditions is a powerful tool for identifying expressed proteins and their physiologic relevance.
Collapse
Affiliation(s)
- D K Wong
- Department of Chemistry and Pharmaceutical Chemistry, University of California, San Francisco p594143-0446, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Understanding how phosphoryl transfer is accomplished by kinases, a ubiquitous group of enzymes, is central to many biochemical processes. Qualitative analysis of the crystal structures of enzyme-substrate complexes of kinases reveals structural features of these enzymes important to phosphoryl transfer. Recently determined crystal structures which mimic the transition state complex have added new insight into the debate as to whether kinases use associative or dissociative mechanisms of catalysis.
Collapse
Affiliation(s)
- A Matte
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | |
Collapse
|
33
|
Tari LW, Matte A, Goldie H, Delbaere LT. Mg(2+)-Mn2+ clusters in enzyme-catalyzed phosphoryl-transfer reactions. NATURE STRUCTURAL BIOLOGY 1997; 4:990-4. [PMID: 9406547 DOI: 10.1038/nsb1297-990] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
34
|
Matte A, Tari LW, Goldie H, Delbaere LT. Structure and mechanism of phosphoenolpyruvate carboxykinase. J Biol Chem 1997; 272:8105-8. [PMID: 9139042 DOI: 10.1074/jbc.272.13.8105] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- A Matte
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | | | |
Collapse
|
35
|
Sixteenth Midwest Enzyme Chemistry Conference. Bioorg Chem 1997. [DOI: 10.1006/bioo.1996.1048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Chauvin C, Brilloit-Petit C, Argaud D, Catelloni F, Velours J, Leverve XM. The inhibition of phosphoenolpyruvate carboxykinase following in vivo chronic phenobarbital treatment in the rat is due to a post-translational event. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 238:207-13. [PMID: 8665939 DOI: 10.1111/j.1432-1033.1996.0207q.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chronic treatment of rats with phenobarbital has been reported to decrease gluconeogenesis in rat hepatocytes by a 50% inhibition of phosphoenolpyruvate (P-pyruvate) carboxykinase activity [Argaud, D., Halimi, S., Catelloni, F. & Leverve, X. (1991) Biochem. J. 280, 663-669]. Contrary to the current knowledge of P-pyruvate carboxykinase regulation, we failed to find a diminution of either P-pyruvate carboxykinase protein (by using a polyclonal antibody) or P-pyruvate carboxykinase mRNA, in the liver of rats treated with phenobarbital for 2 weeks. Kinetic studies of P-pyruvate carboxykinase activity, measured by either carboxylation of P-pyruvate or decarboxylation of oxaloacetate, revealed a decrease in both V(max) and Km after phenobarbital treatment, whereas the nutritional state affected only the V(max), as expected. Assessment of P-pyruvate carboxykinase specificity was confirmed by the full inhibition of the enzyme with its specific inhibitor 3-mercaptopicolinate in the micromolar range. P-Pyruvate carboxykinase, purified either by ammonium sulfate fractionation or by immunoprecipitation, exhibited a similar decrease in affinity after phenobarbital treatment. Although the molecular mass does not appear to be altered, the pH sensitivity to 3-mercaptopicolinate inhibition and the enzyme recovery after immunoprecipitation both seemed to be affected. This leads us to propose that the effect of chronic phenobarbital treatment on P-pyruvate carboxykinase activity is not the result of transcriptional regulation but is exerted at the post-translational level.
Collapse
Affiliation(s)
- C Chauvin
- Laboratoire de Bioénergétique Fondamentale et Appliquée, Université Joseph Fourier, Grenoble, France
| | | | | | | | | | | |
Collapse
|
37
|
Tari LW, Matte A, Pugazhenthi U, Goldie H, Delbaere LT. Snapshot of an enzyme reaction intermediate in the structure of the ATP-Mg2+-oxalate ternary complex of Escherichia coli PEP carboxykinase. NATURE STRUCTURAL BIOLOGY 1996; 3:355-63. [PMID: 8599762 DOI: 10.1038/nsb0496-355] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We report the 1.8 A crystal structure of adenosine triphosphate (ATP)-magnesium-oxalate bound phosphoenolpyruvate carboxykinase (PCK) from Escherichia coli. ATP binding induces a 20 degree hinge-like rotation of the N- and C-terminal domains which closes the active-site cleft. PCK possesses a novel nucleotide-binding fold, particularly in the adenine-binding region, where the formation of a cis backbone torsion angle in a loop glycine residue promotes intimate contacts between the adenine-binding loop and adenine, while stabilizing a syn conformation of the base. This complex represents a reaction intermediate analogue along the pathway of the conversion of oxaloacetate to phosphoenolpyruvate, and provides insight into the mechanistic details of the chemical reaction catalysed by this enzyme.
Collapse
Affiliation(s)
- L W Tari
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | |
Collapse
|
38
|
Hotta K, Kuwajima M, Ono A, Nakajima H, Shingu R, Miyagawa J, Namba M, Hanafusa T, Noguchi T, Kono N, Matsuzawa Y. Disordered expression of hepatic glycolytic and gluconeogenic enzymes in Otsuka Long-Evans Tokushima fatty rats with spontanteous long-term hyperglycemia. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1289:145-9. [PMID: 8605225 DOI: 10.1016/0304-4165(95)00148-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Expression of key regulatory enzymes involved in glucose metabolism was studied in the livers of Otsuka Long-Evans Tokushima fatty (OLETF) rats, a model of non-insulin dependent diabetes mellitus. The activity and mRNA levels of glucokinase and L-type pyruvate kinase was increased in the liver of OLETF rats compared with control rats. There was no such remarkable change in liver-type phosphofructokinase. The activities of glucose-6-phosphatase and fructose-1,6-biphosphatase also increase despite high plasma levels of glucose and insulin. The activity of phosphoenolpyruvate carboxykinase did not show any significant change. The mRNA levels for fructose-1,6-biphosphatase, and phosphoenolpyruvate carboxykinase exhibited no marked changes. These results suggest that the expression of glucose-6-phosphatase and fructose-1,6-biphosphatase is disordered in OLETF rats.
Collapse
Affiliation(s)
- K Hotta
- Second Department of Internal Medicine, Osaka University Medical School, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jurado LA, Machín I, Urbina JA. Trypanosoma cruzi phospho enol pyruvate carboxykinase (ATP-dependent): transition metal ion requirement for activity and sulfhydryl group reactivity. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1292:188-96. [PMID: 8547343 DOI: 10.1016/0167-4838(95)00201-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We studied the transition metal ion requirements for activity and sulfhydryl group reactivity in phospho enol pyruvate carboxykinase (PEP-carboxykinase; ATP:oxaloacetate carboxylase (transphosphorylating), EC 4.1.1.49), a key enzyme in the energy metabolism of the protozan parasite Trypanosoma (Schizotrypanum) cruzi. As for other PEP-carboxykinases this enzyme has a strict requirement of transition metal ions for activity, even in the presence of excess Mg2+ ions for the carboxylation reaction; the order of effectiveness of these ions as enzyme activators was: Co2+ > Mn2+ > Cd2+ > Ni2+ >> Fe2+ > VO2+, while Zn2+ and Ca2+ had no activating effects. When we investigated the effect of the varying type or concentration of the transition metal ions on the kinetic parameters of the enzyme the results suggested that the stimulatory effects of the transition metal center were mostly associated with the activation of the relatively inert CO2 substrate. The inhibitory effects of 3-mercaptopicolinic acid (3MP) on the enzyme were found to depend on the transition metal ion activator: for the Mn(2+)-activated enzyme the inhibition was purely non-competitive (Kii = Kis) towards all substrates, while for the Co(2+)-activated enzyme the inhibitor was much less effective, produced a mixed-type inhibition and affected differentially the interaction of the enzyme with its substrates. The modification of a single, highly reactive, cysteine per enzyme molecule by 5,5'-dithiobis (2-nitro-benzoate) (DTNB) lead ton an almost complete inhibition of Mn(2+)-activated T. cruzi PEP-carboxykinase; however, in contrast with the results of previous studies in vertebrate and yeast enzymes, the substrate ADP slowed the chemical modification and enzyme inactivation but did not prevent it. PEP and HCO3- had no significant effect on the rate or extent of the enzyme inactivation. The kinetics of the enzyme inactivation by DTNB was also dependent on the transition metal activator, being much slower for the Co(2+)-activated enzyme than for its Mn(2+)-activated counterpart. When the bulkier but more hydrophobic reagent N-(7-dimethylamino-4-methylcoumarinyl)maleimide (DACM) was used the enzyme was slowly and incompletely inactivated in the presence of Mn2+ and ADP afforded almost complete protection from inactivation; in the presence of Co2+ the enzyme was completely resistant to inactivation. Taken together, our results indicate that the parasite enzyme has a specific requirement of transition metal ions for activity and that they modulate the reactivity of a single, essential thiol group, different from the hyperreactive cysteines present in vertebrate or yeast enzymes.
Collapse
Affiliation(s)
- L A Jurado
- Laboratario de Química Biológica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | | | | |
Collapse
|
40
|
Hunt M, Köhler P. Purification and characterization of phospho enol pyruvate carboxykinase from Trypanosoma brucei. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1249:15-22. [PMID: 7766679 DOI: 10.1016/0167-4838(95)00061-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
ATP-dependent phospho enol pyruvate carboxykinase (EC 4.1.1.49; PEPCK, ATP) was purified from glycosomes of cultured procyclic Trypanosoma brucei to electrophoretic homogeneity. The purified enzyme exhibited a mean specific activity of 83 units mg-1, as measured in the carboxylation direction at 30 degrees C. A similar activity was obtained for the decarboxylation reaction. The enzyme was shown to be a homodimer in solution with a subunit molecular mass of 59 kDa. Amino acid sequence analysis suggested that the PEPCK (ATP) is identical to the trypanosomal protein p60, the sequence of which was previously predicted from the corresponding nucleotide sequence by other investigators. The basic nature of the enzyme was indicated by a high isoelectric point (pH 8.9). The enzyme was found to be strictly dependent on adenosine nucleotides for activity, as well as on the presence of Mn2+. Mg2+ was found to be ineffective as activator of the trypanosomal enzyme, but a combination of subsaturating (< or = 300 microM) concentrations of Mn2+ and high concentrations of Mg2+ caused a synergistic effect on the carboxylation activity, indicating a dual cation requirement. Mn2+ is necessary to activate the enzyme and Mn2+ or Mg2+ most likely forms the cation-nucleotide complex as the active form of the substrate. Relatively high (5 mM) levels of ATP were required to produce a significant inhibition of the carboxylation reaction. Quinolinic acid, a structural analogue of oxaloacetate, completely inhibited the decarboxylation reaction at a 1 mM concentration. The apparent Michaelis constants of the enzyme were 490 microM for PEP, 37 microM for oxaloacetate, 40 microM for ADP, 10.3 microM for ATP, 970 microM for Mn2+ and 26 mM for HCO3-. Endogenous substrate concentrations were found to be 327 nmol PEP, 1486 nmol ADP, 4200 nmol ATP and 11.5 nmol Mn2+ (ml cell volume)-1. Our kinetic data suggest that under physiological conditions PEPCK (ATP) in T. brucei is bidirectional and that its activity is regulated primarily by mass action. The physiological relevance of the enzyme in procyclic T. brucei is discussed.
Collapse
Affiliation(s)
- M Hunt
- Institute of Parasitology, University of Zürich, Switzerland
| | | |
Collapse
|
41
|
Lambeth DO, Muhonen WW, Jacoby GH, Ray PD. Factors affecting the manganese and iron activation of the phosphoenolpyruvate carboxykinase isozymes from rabbit. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1156:85-91. [PMID: 1472544 DOI: 10.1016/0304-4165(92)90100-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Timed assays in which GTP and GDP were separated and quantitated by HPLC were developed and used to study the metal activation of the mitochondrial and cytosolic isozymes of phosphoenolpyruvate carboxykinase purified from rabbit liver. These assays allowed both directions of catalysis to be studied under similar conditions and in the absence of coupling enzymes. The mitochondrial enzyme is rapidly inactivated by preincubation with Fe2+, as had been shown previously for the cytosolic isozyme. The greatest activation by Fe2+ was obtained by adding micromolar Fe2+ immediately after enzyme to form the complete assay mixture that also contained millimolar Mg2+. In the direction of synthesis of OAA from Pep, the K0.5 values for Mn2+ and Fe2+ were in the 3-7 microM range when a nonchelating buffer, Hepes, was used. The buffer used strongly affected activation by Fe2+ at pH 7.4; activation was eliminated in the case of phosphate and K0.5 increased several-fold over that obtained with Hepes when imidazole was used. In non-chelating buffer, the pH optimum was near 7.4 for both isozymes and for both directions of catalysis. However, the near optimal pH range extended below 7.4 for the direction of oxaloacetate synthesis while the range was above 7.4 for Pep synthesis. In the direction of oxaloacetate synthesis: (1) Both isozymes required the presence of micromolar Mn2+ or Fe2+ in addition to millimolar Mg2+ in order to shown significant activity. (2) Fe2+ was as effective an activator as Mn2+ at pH 7 and below. In the direction of Pep synthesis: (1) Micromolar Mn2+ was a much better activator than Fe2+ at the higher pH values needed for optimal activity in this direction. (2) With increasing pH, decreasing activation was obtained with Fe2+ while the activity supported by Mg2+ alone increased. The results demonstrate the potential for regulation of either isozyme of Pep carboxykinase by the availability of iron or manganese.
Collapse
Affiliation(s)
- D O Lambeth
- Department of Biochemistry and Molecular Biology, Ireland Research Laboratory, School of Medicine, University of North Dakota, Grand Forks 58202
| | | | | | | |
Collapse
|
42
|
Abstract
A new, more gentle enzyme purification for yeast enolase was developed. A series of kinetic experiments was performed with yeast enolase where the concentration of Mg(II) is kept constant and at the Km' level; the addition of Mn(II), Zn(II), or Cu(II) gives a hyperbolic decrease in the enzyme activity. The final velocity of these mixed-metal systems is the same as the velocity obtained only with Mn(II), Zn(II), or Cu(II), respectively. The concentration of the second metal that gives half-maximal effect in the presence of Mg(II) is approximately the same as the apparent Km (Km') value measured for that cation alone. Direct binding of Mn(II) to apoenolase in the absence and presence of Mg(II) shows that Mn(II) and Mg(II) compete for the same metal site on enolase. In the presence of D-2-phosphoglycerate (PGA) and Mg(II), only a single cation site per monomer is occupied by Mn(II). Water proton relaxation rate (PRR) studies of enzyme-ligand complexes containing Mn(II) and Mn(II) in the presence of Mg(II) are consistent with Mn(II) binding at site I under both conditions. PRR titrations of ligands such as the substrate PGA or the inhibitors orthophosphate or fluoride to the enolase-Mn(II)-Mg(II) complex are similar to those obtained for the enolase-Mn(II) complex, also indicating that Mn(II) is at site I in the presence of Mg(II). High-resolution 1H and 31P NMR was used to determine the paramagnetic effect of enolase-bound Mn(II) on the relaxation rates of the nuclei of the competitive inhibitor phosphoglycolate. The distances between the bound Mn(II) and the nuclei were calculated.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M E Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Indiana 46556
| | | |
Collapse
|
43
|
Klein RD, Winterrowd CA, Hatzenbuhler NT, Shea MH, Favreau MA, Nulf SC, Geary TG. Cloning of a cDNA encoding phosphoenolpyruvate carboxykinase from Haemonchus contortus. Mol Biochem Parasitol 1992; 50:285-94. [PMID: 1741016 DOI: 10.1016/0166-6851(92)90226-a] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Biochemical and metabolic data have led to the conclusion that the enzyme phosphoenolpyruvate carboxykinase (PEPCK; EC 4.1.1.32) contributes to a critical point of divergence in energy conservation pathways between mammals and nematodes. To facilitate the determination of the molecular basis for host vs parasite differences in PEPCK, we have cloned a cDNA encoding this enzyme from a parasitic nematode of ruminants, Haemonchus contortus. H. contortus PEPCK was cloned by functional complementation of a PEPCK-, malic enzyme- strain of Escherichia coli (E1786) using an egg stage H. contortus cDNA library in lambda ZAPII. Selection was for growth on malate as the sole carbon source (malate+ phenotype). We isolated a plasmid, pPEPCK, which reproducibly confers a malate+ phenotype in E1786. The sequence of the 2.0-kb EcoRI insert of pPEPCK predicts a 612-amino acid protein which shows about 74% similarity to Drosophila melanogaster and chicken PEPCK. Extracts of E1786[pPEPCK], but not E1786, contain IDP- or GDP-dependent PEPCK enzyme activity. Sequence analysis revealed that the open reading frame (ORF) in pPEPCK lacked a 5' initiation codon and was probably expressed as an in-frame fusion protein with beta-galactosidase. A strategy combining library screening with PCR analysis of positive clones led to the identification of a clone encoding 6 additional NH2-terminal amino acids, including a Met, which, by comparison with known PEPCK amino acid sequences, is likely to be the translation initiation site.
Collapse
Affiliation(s)
- R D Klein
- Molecular Biology Research, Upjohn Laboratories, Kalamazoo, MI 49001
| | | | | | | | | | | | | |
Collapse
|
44
|
Harlocker SL, Kapper MA, Greenwalt DE, Bishop SH. Phosphoenolpyruvate carboxykinase from ribbed mussel gill tissue: Reactivity with metal ions, kinetics, and action of 3-mercaptopicolinic acid. ACTA ACUST UNITED AC 1991. [DOI: 10.1002/jez.1402570302] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Johnson WV, Kemp JR, Anderson PM. Purification and properties of mitochondrial phosphoenolpyruvate carboxykinase from liver of Squalus acanthias. Arch Biochem Biophys 1990; 280:376-82. [PMID: 2369129 DOI: 10.1016/0003-9861(90)90345-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Liver from Squalus acanthias (spiny dogfish), a representative elasmobranch, contains approximately 1.4 units (mumol/min) of phosphoenolpyruvate carboxykinase activity per gram and approximately 90% of the total units of activity are localized in the mitochondria. The mitochondrial phosphoenolpyruvate carboxykinase was isolated and characterized. The purified enzyme has properties generally similar to those found in mammalian and avian species. The enzyme has a molecular weight of approximately 70,000 and exists in a functional state as a monomer. The isolated enzyme displays a dual cation requirement (e.g., 6 mM Mg2+ and 10 microM Mn2+) for maximal activity; very little activity is observed when Mg2+ is present alone, and the maximal activity attained with Mn2+ alone (millimolar concentrations required) is significantly less than that observed under optimal conditions with both cations present. When assayed in the direction of oxalacetate formation there is a lag in product formation with time; the lag can be eliminated by the presence of 50 microM GTP (product). The Km for substrates is not affected by Mn2+ concentration, suggesting that the role of Mn2+ may not be related to substrate binding. The apparent Km for phosphoenolpyruvate (approximately 1 mM) is substantially higher than that reported for phosphoenolpyruvate carboxykinase from other species. The activity of phosphoenolpyruvate carboxykinase is increased 70% by physiological concentrations of urea. Maximal velocity of the reaction in the direction of oxalacetate formation is approximately half that of the reverse reaction.
Collapse
Affiliation(s)
- W V Johnson
- Department of Biochemistry, School of Medicine, University of Minnesota, Duluth 55812
| | | | | |
Collapse
|
46
|
Ash DE, Emig FA, Chowdhury SA, Satoh Y, Schramm VL. Mammalian and avian liver phosphoenolpyruvate carboxykinase. Alternate substrates and inhibition by analogues of oxaloacetate. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39124-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Guidinger PF, Nowak T. Analogs of oxalacetate as potential substrates for phosphoenolpyruvate carboxykinase. Arch Biochem Biophys 1990; 278:131-41. [PMID: 2321953 DOI: 10.1016/0003-9861(90)90241-p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Structural analogs of the substrate oxalacetate were examined as potential substrates and inhibitors for chicken liver mitochondrial phosphoenolpyruvate (P-enolpyruvate) carboxykinase. Steady-state kinetics were employed to characterize the inhibitory effects of these substrate analogs with the enzyme. Assays were carried out in both carboxylation and decarboxylation reaction directions. Pyruvate, beta-hydroxypyruvate, beta-mercaptopyruvate, beta-fluoropyruvate, DL-lactate, glycolate, glycoaldehyde, glyoxylate, glyphosate, and DL-aspartate showed no inhibitory effects by steady-state kinetics. Oxalate, acetopyruvate, and DL-, D-, and L-glycerate exhibited weak noncompetitive inhibition of the P-enolpyruvate carboxykinase-catalyzed reaction. DL-3-Nitro-2-hydroxypropionic acid, 3-nitro-2-oxopropionic acid, DL-malate, malonate, tartronate, and alpha-ketobutyrate all show weak inhibition with estimated inhibition constants greater than 20 nM. Several of these compounds were investigated by 31P NMR to determine if they function as phosphoryl acceptors for GTP. None of the compounds tested act as phosphoryl acceptors in the enzyme-catalyzed reaction. Chicken liver mitochondrial phosphoenolpyruvate carboxykinase shows a remarkably high degree of specificity at the binding site of oxalacetate.
Collapse
Affiliation(s)
- P F Guidinger
- Department of Chemistry and Biochemistry, University of Notre Dame, Indiana 46556
| | | |
Collapse
|
48
|
|
49
|
Kramer P, Nowak T. The preparation and characterization of Cr(III) and Co(III) complexes of GDP and GTP and their interactions with avian phosphoenolpyruvate carboxykinase. J Inorg Biochem 1988; 32:135-51. [PMID: 3346664 DOI: 10.1016/0162-0134(88)80022-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The exchange inert coordination complexes, Cr(H2O)4GDP, Cr(H2O)4GTP, Cr(NH3)4GDP, Cr(NH3)4GTP, Co(NH3)4GDP, and Co(NH3)4GTP have been synthesized and characterized. The lambda and delta coordination isomers of Cr(H2O)4GDP, Cr(NH3)4GDP, and the four Cr(H2O)4GTP isomers have been separated by reverse phase HPLC and characterized by their CD spectra. While the isomers of Co(NH3)4GTP have not been successfully separated, 31P NMR spectroscopy reveals the presence of the lambda and delta forms. The complexes, Cr(H2O)4GDP, Co(NH3)4GDP, Cr(H2O)4GTP, and Co(NH3)4GTP, are linear competitive inhibitors of avian phosphoenolpyruvate carboxykinase. The Ki values of 30 microM, 540 microM, 40 microM, and 12 microM, respectively, were determined for these complexes using Mn-IDP as the nucleotide substrate in the phosphoenolpyruvate carboxylation direction or Mn-ITP as nucleotide substrate for the oxalacetate decarboxylation reaction. The lambda and delta isomers of Cr(H2O)4 GDP show little specificity (a twofold maximum difference in Ki) for the enzyme. The isomeric forms of Cr(H2O)4 GTP demonstrate no observed stereoselectivity of interaction with the enzyme. All of the complexes tested, except for Cr(NH3)4GDP and Co(NH3)4GDP, which have larger Ki values, are good substrate analogs for P-enolpyruvate carboxykinase. When the substrate is Mn-GTP, fixed at 0.2 mM at pH 6.0, enzyme activity is stimulated two- to two and a half-fold by Cr(H2O)4GTP. A Dixon plot reveals that the stimulatory effect is saturated at 0.4 mM Cr(H2O)4GTP. The interaction of the enzyme with Cr(H2O)4GTP appears to produce a "memory" effect which is manifest with guanosine nucleotide substrates, but which is not observed with the alternative substrate Mn-ITP.
Collapse
Affiliation(s)
- P Kramer
- Department of Chemistry, University of Notre Dame, College of Science, IN 46556
| | | |
Collapse
|
50
|
Rohrer SP, Saz HJ, Nowak T. Purification and characterization of phosphoenolpyruvate carboxykinase from the parasitic helminth Ascaris suum. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)69269-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|