1
|
Stadnichuk IN, Krasilnikov PM. Relationship between non-photochemical quenching efficiency and the energy transfer rate from phycobilisomes to photosystem II. PHOTOSYNTHESIS RESEARCH 2024; 159:177-189. [PMID: 37328680 DOI: 10.1007/s11120-023-01031-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
The chromophorylated PBLcm domain of the ApcE linker protein in the cyanobacterial phycobilisome (PBS) serves as a bottleneck for Förster resonance energy transfer (FRET) from the PBS to the antennal chlorophyll of photosystem II (PS II) and as a redirection point for energy distribution to the orange protein ketocarotenoid (OCP), which is excitonically coupled to the PBLcm chromophore in the process of non-photochemical quenching (NPQ) under high light conditions. The involvement of PBLcm in the quenching process was first directly demonstrated by measuring steady-state fluorescence spectra of cyanobacterial cells at different stages of NPQ development. The time required to transfer energy from the PBLcm to the OCP is several times shorter than the time it takes to transfer energy from the PBLcm to the PS II, ensuring quenching efficiency. The data obtained provide an explanation for the different rates of PBS quenching in vivo and in vitro according to the half ratio of OCP/PBS in the cyanobacterial cell, which is tens of times lower than that realized for an effective NPQ process in solution.
Collapse
Affiliation(s)
- Igor N Stadnichuk
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya 35, 127726, Moscow, Russia.
| | - Pavel M Krasilnikov
- Biological Faculty of M.V., Lomonosov State University, Lenin Hills 12, 119991, Moscow, Russia
| |
Collapse
|
2
|
Zhou LJ, Höppner A, Wang YQ, Hou JY, Scheer H, Zhao KH. Crystallographic and biochemical analyses of a far-red allophycocyanin to address the mechanism of the super-red-shift. PHOTOSYNTHESIS RESEARCH 2024:10.1007/s11120-023-01066-2. [PMID: 38182842 DOI: 10.1007/s11120-023-01066-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/03/2023] [Indexed: 01/07/2024]
Abstract
Far-red absorbing allophycocyanins (APC), identified in cyanobacteria capable of FRL photoacclimation (FaRLiP) and low-light photoacclimation (LoLiP), absorb far-red light, functioning in energy transfer as light-harvesting proteins. We report an optimized method to obtain high purity far-red absorbing allophycocyanin B, AP-B2, of Chroococcidiopsis thermalis sp. PCC7203 by synthesis in Escherichia coli and an improved purification protocol. The crystal structure of the trimer, (PCB-ApcD5/PCB-ApcB2)3, has been resolved to 2.8 Å. The main difference to conventional APCs absorbing in the 650-670 nm range is a largely flat chromophore with the co-planarity extending, in particular, from rings BCD to ring A. This effectively extends the conjugation system of PCB and contributes to the super-red-shifted absorption of the α-subunit (λmax = 697 nm). On complexation with the β-subunit, it is even further red-shifted (λmax, absorption = 707 nm, λmax, emission = 721 nm). The relevance of ring A for this shift is supported by mutagenesis data. A variant of the α-subunit, I123M, has been generated that shows an intense FR-band already in the absence of the β-subunit, a possible model is discussed. Two additional mechanisms are known to red-shift the chromophore spectrum: lactam-lactim tautomerism and deprotonation of the chromophore that both mechanisms appear inconsistent with our data, leaving this question unresolved.
Collapse
Affiliation(s)
- Li-Juan Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, The People's Republic of China
| | - Astrid Höppner
- Center for Structural Studies, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Yi-Qing Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, The People's Republic of China
| | - Jian-Yun Hou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, The People's Republic of China
| | - Hugo Scheer
- Department Biologie I, Universität München, Menzinger Str. 67, 80638, Munich, Germany
| | - Kai-Hong Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, The People's Republic of China.
| |
Collapse
|
3
|
Gisriel CJ, Elias E, Shen G, Soulier NT, Brudvig GW, Croce R, Bryant DA. Structural comparison of allophycocyanin variants reveals the molecular basis for their spectral differences. PHOTOSYNTHESIS RESEARCH 2023:10.1007/s11120-023-01048-4. [PMID: 37773575 DOI: 10.1007/s11120-023-01048-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
Allophycocyanins are phycobiliproteins that absorb red light and transfer the energy to the reaction centers of oxygenic photosynthesis in cyanobacteria and red algae. Recently, it was shown that some allophycocyanins absorb far-red light and that one subset of these allophycocyanins, comprising subunits from the ApcD4 and ApcB3 subfamilies (FRL-AP), form helical nanotubes. The lowest energy absorbance maximum of the oligomeric ApcD4-ApcB3 complexes occurs at 709 nm, which is unlike allophycocyanin (AP; ApcA-ApcB) and allophycocyanin B (AP-B; ApcD-ApcB) trimers that absorb maximally at ~ 650 nm and ~ 670 nm, respectively. The molecular bases of the different spectra of AP variants are presently unclear. To address this, we structurally compared FRL-AP with AP and AP-B, performed spectroscopic analyses on FRL-AP, and leveraged computational approaches. We show that among AP variants, the α-subunit constrains pyrrole ring A of its phycocyanobilin chromophore to different extents, and the coplanarity of ring A with rings B and C sets a baseline for the absorbance maximum of the chromophore. Upon oligomerization, the α-chromophores of all AP variants exhibit a red shift of the absorbance maximum of ~ 25 to 30 nm and band narrowing. We exclude excitonic coupling in FRL-AP as the basis for this red shift and extend the results to discuss AP and AP-B. Instead, we attribute these spectral changes to a conformational alteration of pyrrole ring D, which becomes more coplanar with rings B and C upon oligomerization. This study expands the molecular understanding of light-harvesting attributes of phycobiliproteins and will aid in designing phycobiliproteins for biotechnological applications.
Collapse
Affiliation(s)
| | - Eduard Elias
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, 1081 HV, Amsterdam, Netherlands
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nathan T Soulier
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Roberta Croce
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, 1081 HV, Amsterdam, Netherlands.
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
4
|
Krasilnikov PM, Zlenko DV, Stadnichuk IN. Rates and pathways of energy migration from the phycobilisome to the photosystem II and to the orange carotenoid protein in cyanobacteria. FEBS Lett 2019; 594:1145-1154. [PMID: 31799708 DOI: 10.1002/1873-3468.13709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 02/01/2023]
Abstract
The phycobilisome (PBS) is the cyanobacterial antenna complex which transfers absorbed light energy to the photosystem II (PSII), while the excess energy is nonphotochemically quenched by interaction of the PBS with the orange carotenoid protein (OCP). Here, the molecular model of the PBS-PSII-OCP supercomplex was utilized to assess the resonance energy transfer from PBS to PSII and, using the excitonic theory, the transfer from PBS to OCP. Our estimates show that the effective energy migration from PBS to PSII is realized due to the existence of several transfer pathways from phycobilin chromophores of the PBS to the neighboring antennal chlorophyll molecules of the PSII. At the same time, the single binding site of photoactivated OCP and the PBS is sufficient to realize the quenching.
Collapse
Affiliation(s)
| | - Dmitry V Zlenko
- Faculty of Biology, M.V. Lomonosov State University, Moscow, Russia
| | | |
Collapse
|
5
|
Pagels F, Guedes AC, Amaro HM, Kijjoa A, Vasconcelos V. Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnol Adv 2019; 37:422-443. [DOI: 10.1016/j.biotechadv.2019.02.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/27/2019] [Accepted: 02/19/2019] [Indexed: 12/13/2022]
|
6
|
Zlenko DV, Elanskaya IV, Lukashev EP, Bolychevtseva YV, Suzina NE, Pojidaeva ES, Kononova IA, Loktyushkin AV, Stadnichuk IN. Role of the PB-loop in ApcE and phycobilisome core function in cyanobacterium Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:155-166. [DOI: 10.1016/j.bbabio.2018.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/04/2018] [Accepted: 10/29/2018] [Indexed: 11/30/2022]
|
7
|
Herrera-Salgado P, Leyva-Castillo LE, Ríos-Castro E, Gómez-Lojero C. Complementary chromatic and far-red photoacclimations in Synechococcus ATCC 29403 (PCC 7335). I: The phycobilisomes, a proteomic approach. PHOTOSYNTHESIS RESEARCH 2018; 138:39-56. [PMID: 29943359 DOI: 10.1007/s11120-018-0536-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Synechococcus ATCC 29403 (PCC 7335) is a unicellular cyanobacterium isolated from Puerto Peñasco, Sonora Mexico. This cyanobacterium performs complementary chromatic acclimation (CCA), far-red light photoacclimation (FaRLiP), and nitrogen fixation. The Synechococcus PCC 7335 genome contains at least 31 genes for proteins of the phycobilisome (PBS). Nine constitutive genes were expressed when cells were grown under white or red lights and the resulting proteins were identified by mass spectrometry in isolated PBS. Five inducible genes were expressed under white light, and phycoerythrin subunits and associated linker proteins were detected. The proteins of five inducible genes expressed under red light were identified, the induced phycocyanin subunits, two rod linkers and the rod-capping linker. The five genes for FaRLiP phycobilisomes were expressed under far-red light together with the apcF gene, and the proteins were identified by mass spectrometry after isoelectric focusing and SDS-PAGE. Based on in silico analysis, Phylogenetic trees, and the observation of a highly conserved amino acid sequence in far-red light absorbing alpha allophycoproteins encoded by FaRLiP gene cluster, we propose a new nomenclature for the genes. Based on a ratio of ApcG2/ApcG3 of six, a model with the arrangement of the allophycocyanin trimers of the core is proposed.
Collapse
Affiliation(s)
- Priscila Herrera-Salgado
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Mexico City, Mexico
| | - Lourdes E Leyva-Castillo
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Mexico City, Mexico
| | - Emmanuel Ríos-Castro
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Mexico City, Mexico
| | - Carlos Gómez-Lojero
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Mexico City, Mexico.
| |
Collapse
|
8
|
Elanskaya IV, Zlenko DV, Lukashev EP, Suzina NE, Kononova IA, Stadnichuk IN. Phycobilisomes from the mutant cyanobacterium Synechocystis sp. PCC 6803 missing chromophore domain of ApcE. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:280-291. [DOI: 10.1016/j.bbabio.2018.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/22/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
|
9
|
Ranjbar Choubeh R, Sonani RR, Madamwar D, Struik PC, Bader AN, Robert B, van Amerongen H. Picosecond excitation energy transfer of allophycocyanin studied in solution and in crystals. PHOTOSYNTHESIS RESEARCH 2018; 135:79-86. [PMID: 28755150 PMCID: PMC5783994 DOI: 10.1007/s11120-017-0417-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/29/2017] [Indexed: 06/01/2023]
Abstract
Cyanobacteria perform photosynthesis with the use of large light-harvesting antennae called phycobilisomes (PBSs). These hemispherical PBSs contain hundreds of open-chain tetrapyrrole chromophores bound to different peptides, providing an arrangement in which excitation energy is funnelled towards the PBS core from where it can be transferred to photosystem I and/or photosystem II. In the PBS core, many allophycocyanin (APC) trimers are present, red-light-absorbing phycobiliproteins that covalently bind phycocyanobilin (PCB) chromophores. APC trimers were amongst the first light-harvesting complexes to be crystallized. APC trimers have two spectrally different PCBs per monomer, a high- and a low-energy pigment. The crystal structure of the APC trimer reveals the close distance (~21 Å) between those two chromophores (the distance within one monomer is ~51 Å) and this explains the ultrafast (~1 ps) excitation energy transfer (EET) between them. Both chromophores adopt a somewhat different structure, which is held responsible for their spectral difference. Here we used spectrally resolved picosecond fluorescence to study EET in these APC trimers both in crystallized and in solubilized form. We found that not all closely spaced pigment couples consist of a low- and a high-energy pigment. In ~10% of the cases, a couple consists of two high-energy pigments. EET to a low-energy pigment, which can spectrally be resolved, occurs on a time scale of tens of picoseconds. This transfer turns out to be three times faster in the crystal than in the solution. The spectral characteristics and the time scale of this transfer component are similar to what have been observed in the whole cells of Synechocystis sp. PCC 6803, for which it was ascribed to EET from C-phycocyanin to APC. The present results thus demonstrate that part of this transfer should probably also be ascribed to EET within APC trimers.
Collapse
Affiliation(s)
- Reza Ranjbar Choubeh
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
- BioSolar Cells, P.O. Box 98, 6700 Wageningen, The Netherlands
| | - Ravi R. Sonani
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Sardar Patel University, Bakrol, Anand, Gujarat 388 315 India
- Commission of Atomic and Alternative Energy, Institute of Biology and Technology of Saclay, 91191 Gif-sur-Yvette, France
| | - Datta Madamwar
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Sardar Patel University, Bakrol, Anand, Gujarat 388 315 India
| | - Paul C. Struik
- Centre for Crop Systems Analysis, Wageningen University, Wageningen, The Netherlands
| | - Arjen N. Bader
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
- MicroSpectroscopy Centre, Wageningen University, Wageningen, The Netherlands
| | - Bruno Robert
- Commission of Atomic and Alternative Energy, Institute of Biology and Technology of Saclay, 91191 Gif-sur-Yvette, France
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
- MicroSpectroscopy Centre, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
10
|
Zlenko DV, Galochkina TV, Krasilnikov PM, Stadnichuk IN. Coupled rows of PBS cores and PSII dimers in cyanobacteria: symmetry and structure. PHOTOSYNTHESIS RESEARCH 2017; 133:245-260. [PMID: 28365856 DOI: 10.1007/s11120-017-0362-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/23/2017] [Indexed: 05/26/2023]
Abstract
Phycobilisome (PBS) is a giant water-soluble photosynthetic antenna transferring the energy of absorbed light mainly to the photosystem II (PSII) in cyanobacteria. Under the low light conditions, PBSs and PSII dimers form coupled rows where each PBS is attached to the cytoplasmic surface of PSII dimer, and PBSs come into contact with their face surfaces (state 1). The model structure of the PBS core that we have developed earlier by comparison and combination of different fine allophycocyanin crystals, as reported in Zlenko et al. (Photosynth Res 130(1):347-356, 2016b), provides a natural way of the PBS core face-to-face stacking. According to our model, the structure of the protein-protein contact between the neighboring PBS cores in the rows is the same as the contact between the APC hexamers inside the PBS core. As a result, the rates of energy transfer between the cores can occur, and the row of PBS cores acts as an integral PBS "supercore" providing energy transfer between the individual PBS cores. The PBS cores row pitch in our elaborated model (12.4 nm) is very close to the PSII dimers row pitch obtained by the electron microscopy (12.2 nm) that allowed to unite a model of the PBS cores row with a model of the PSII dimers row. Analyzing the resulting model, we have determined the most probable locations of ApcD and ApcE terminal emitter subunits inside the bottom PBS core cylinders and also revealed the chlorophyll molecules of PSII gathering energy from the PBS.
Collapse
Affiliation(s)
- Dmitry V Zlenko
- Biological Faculty of M.V. Lomonosov Moscow State University, Lenin Hills, 1/12, Moscow, Russia, 119991.
- K.A. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya St, 35, Moscow, Russia, 127276.
| | - Tatiana V Galochkina
- Biological Faculty of M.V. Lomonosov Moscow State University, Lenin Hills, 1/12, Moscow, Russia, 119991
- INRIA Team Dracula, INRIA Antenne Lyon la Doua, 69603, Villeurbanne, France
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622, Villeurbanne, France
| | - Pavel M Krasilnikov
- Biological Faculty of M.V. Lomonosov Moscow State University, Lenin Hills, 1/12, Moscow, Russia, 119991
- K.A. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya St, 35, Moscow, Russia, 127276
| | - Igor N Stadnichuk
- K.A. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya St, 35, Moscow, Russia, 127276
| |
Collapse
|
11
|
Kronfel CM, Kuzin AP, Forouhar F, Biswas A, Su M, Lew S, Seetharaman J, Xiao R, Everett JK, Ma LC, Acton TB, Montelione GT, Hunt JF, Paul CEC, Dragomani TM, Boutaghou MN, Cole RB, Riml C, Alvey RM, Bryant DA, Schluchter WM. Structural and biochemical characterization of the bilin lyase CpcS from Thermosynechococcus elongatus. Biochemistry 2013; 52:8663-76. [PMID: 24215428 DOI: 10.1021/bi401192z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacterial phycobiliproteins have evolved to capture light energy over most of the visible spectrum due to their bilin chromophores, which are linear tetrapyrroles that have been covalently attached by enzymes called bilin lyases. We report here the crystal structure of a bilin lyase of the CpcS family from Thermosynechococcus elongatus (TeCpcS-III). TeCpcS-III is a 10-stranded β barrel with two alpha helices and belongs to the lipocalin structural family. TeCpcS-III catalyzes both cognate as well as noncognate bilin attachment to a variety of phycobiliprotein subunits. TeCpcS-III ligates phycocyanobilin, phycoerythrobilin, and phytochromobilin to the alpha and beta subunits of allophycocyanin and to the beta subunit of phycocyanin at the Cys82-equivalent position in all cases. The active form of TeCpcS-III is a dimer, which is consistent with the structure observed in the crystal. With the use of the UnaG protein and its association with bilirubin as a guide, a model for the association between the native substrate, phycocyanobilin, and TeCpcS was produced.
Collapse
Affiliation(s)
- Christina M Kronfel
- Department of Biological Sciences, University of New Orleans , New Orleans, LA 70148, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Watanabe M, Sato M, Kondo K, Narikawa R, Ikeuchi M. Phycobilisome model with novel skeleton-like structures in a glaucocystophyte Cyanophora paradoxa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:1428-35. [PMID: 22172737 DOI: 10.1016/j.bbabio.2011.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 11/12/2011] [Accepted: 11/16/2011] [Indexed: 11/24/2022]
Abstract
Phycobilisome (PBS) is a photosynthetic antenna supercomplex consisting of a central core subcomplex with several peripheral rods radiating from the core. Subunit structure of PBS was studied in a glaucocystophyte Cyanophora paradoxa strain NIES 547. Subunit composition of PBS was identified by N-terminal sequencing and genes for the subunits were determined by homology search of databases. They included rod linker proteins CpcK1 and CpcK2, rod-core linker proteins CpcG1 and CpcG2, and core linker proteins ApcC1 and ApcC2. Subfractionation by native polyacrylamide gel electrophoresis provided evidence for novel subcomplexes (ApcE/CpcK1/CpcG2/ApcA/ApcB/CpcD and ApcE/CpcK2/CpcG1/ApcA/ApcB), which connect rod and core subcomplexes. These skeleton-like structures may serve as a scaffold of the whole PBS assembly. Different roles of ApcC1 and ApcC2 were also suggested. Based on these findings, structural models for PBS were proposed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Mai Watanabe
- Department of Life Sciences, University of Tokyo, Komaba, Tokyo, Japan
| | | | | | | | | |
Collapse
|
13
|
Sun L, Wang S. PHYCOBILIPROTEIN COMPONENTS AND CHARACTERISTICS OF THE PHYCOBILISOME FROM A THERMOPHILIC CYANOBACTERIUM MYXOSARCINA CONCINNA(1). JOURNAL OF PHYCOLOGY 2011; 47:1304-1315. [PMID: 27020354 DOI: 10.1111/j.1529-8817.2011.01067.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A phycocyanin (PC) and three allophycocyanin (AP) components (designated PC, AP1, AP2, and AP3) were prepared from Myxosarcina concinna Printz phycobilisomes by the native gradient PAGE performed in a neutral buffer system combined with the ion exchange column chromatography on DEAE-DE52 cellulose. PC contained one β subunit () and two α ones ( and ), and it carried two rod linkers ( and ) and one rod-core linker (). AP1 and AP3 were characterized as peripheral core APs, whereas AP2 was an inner-core one. AP2 and AP3 were demonstrated to function as the terminal emitters. Each of the three APs contained two β subunits ( and ), two α subunits ( and ) and an inner-core linker (). AP2 and AP3 had another subunit of the allophycocyanin B (AP-B) type () belonging to the β subunit group, and AP1 and AP3 carried their individual specific core linkers ( and ), respectively. No AP component was shown to associate with the core-membrane linker LCM . The functions of the linker polypeptides in the phycobilisome (PBS) construction are discussed.
Collapse
Affiliation(s)
- Li Sun
- College of Chemistry and Biology, Yantai University, Yantai 264005, ChinaCollege of Photo-electronic Information Science and Technology, Yantai University, Yantai 264005, China
| | - Shumei Wang
- College of Chemistry and Biology, Yantai University, Yantai 264005, ChinaCollege of Photo-electronic Information Science and Technology, Yantai University, Yantai 264005, China
| |
Collapse
|
14
|
Rakhimberdieva MG, Elanskaya IV, Vermaas WF, Karapetyan NV. Carotenoid-triggered energy dissipation in phycobilisomes of Synechocystis sp. PCC 6803 diverts excitation away from reaction centers of both photosystems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:241-9. [DOI: 10.1016/j.bbabio.2009.10.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 10/19/2009] [Accepted: 10/22/2009] [Indexed: 11/25/2022]
|
15
|
Allophycocyanin trimer stability and functionality are primarily due to polar enhanced hydrophobicity of the phycocyanobilin binding pocket. J Mol Biol 2008; 384:406-21. [PMID: 18823993 DOI: 10.1016/j.jmb.2008.09.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Revised: 09/04/2008] [Accepted: 09/10/2008] [Indexed: 11/22/2022]
Abstract
Allophycocyanin (APC) is the primary pigment-protein component of the cores of the phycobilisome antenna complex. In addition to an extremely high degree of amino acid sequence conservation, the overall structures of APC from both mesophilic and thermophilic species are almost identical at all levels of assembly, yet APC from thermophilic organisms should have structural attributes that prevent thermally induced denaturation. We determined the structure of APC from the thermophilic cyanobacterium Thermosynechococcus vulcanus to 2.9 A, reaffirming the conservation of structural similarity with APC from mesophiles. We provide spectroscopic evidence that T. vulcanus APC is indeed more stable at elevated temperatures in vitro, when compared with the APC from mesophilic species. APC thermal and chemical stability levels are further enhanced when monitored in the presence of high concentrations of buffered phosphate, which increases the strength of hydrophobic interactions, and may mimic the effect of cytosolic crowding. Absorption spectroscopy, size-exclusion HPLC, and native gel electrophoresis also show that the thermally or chemically induced changes in the APC absorption spectra that result in the loss of the prominent 652-nm band in trimeric APC are not a result of physical monomerization. We propose that the bathochromic shift that occurs in APC upon trimerization is due to the coupling of the hydrophobicity of the alpha84 phycocyanobilin cofactor environment created by a deep cleft formed by the beta subunit with highly charged flanking regions. This arrangement also provides the additional stability required by thermophiles at elevated temperatures. The chemical environment that induces the bathochromic shift in APC trimers is different from the source of shifts in the absorption of monomers of the terminal energy acceptors APC(B) and L(CM), as visualized by the building of molecular models.
Collapse
|
16
|
Zhao KH, Su P, Tu JM, Wang X, Liu H, Plöscher M, Eichacker L, Yang B, Zhou M, Scheer H. Phycobilin:cystein-84 biliprotein lyase, a near-universal lyase for cysteine-84-binding sites in cyanobacterial phycobiliproteins. Proc Natl Acad Sci U S A 2007; 104:14300-5. [PMID: 17726096 PMCID: PMC1955460 DOI: 10.1073/pnas.0706209104] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phycobilisomes, the light-harvesting complexes of cyanobacteria and red algae, contain two to four types of chromophores that are attached covalently to seven or more members of a family of homologous proteins, each carrying one to four binding sites. Chromophore binding to apoproteins is catalyzed by lyases, of which only few have been characterized in detail. The situation is complicated by nonenzymatic background binding to some apoproteins. Using a modular multiplasmidic expression-reconstitution assay in Escherichia coli with low background binding, phycobilin:cystein-84 biliprotein lyase (CpeS1) from Anabaena PCC7120, has been characterized as a nearly universal lyase for the cysteine-84-binding site that is conserved in all biliproteins. It catalyzes covalent attachment of phycocyanobilin to all allophycocyanin subunits and to cysteine-84 in the beta-subunits of C-phycocyanin and phycoerythrocyanin. Together with the known lyases, it can thereby account for chromophore binding to all binding sites of the phycobiliproteins of Anabaena PCC7120. Moreover, it catalyzes the attachment of phycoerythrobilin to cysteine-84 of both subunits of C-phycoerythrin. The only exceptions not served by CpeS1 among the cysteine-84 sites are the alpha-subunits from phycocyanin and phycoerythrocyanin, which, by sequence analyses, have been defined as members of a subclass that is served by the more specialized E/F type lyases.
Collapse
Affiliation(s)
- Kai-Hong Zhao
- Colleges of *Life Science and Technology and
- To whom correspondence may be addressed. E-mail: or
| | - Ping Su
- Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China; and
| | - Jun-Ming Tu
- Colleges of *Life Science and Technology and
- Department Biologie I–Botanik, Universität München, Menzinger Strasse 67, D-80638 Munich, Germany
| | - Xing Wang
- Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China; and
| | - Hui Liu
- Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China; and
| | - Matthias Plöscher
- Department Biologie I–Botanik, Universität München, Menzinger Strasse 67, D-80638 Munich, Germany
| | - Lutz Eichacker
- Department Biologie I–Botanik, Universität München, Menzinger Strasse 67, D-80638 Munich, Germany
| | - Bei Yang
- Colleges of *Life Science and Technology and
| | - Ming Zhou
- Colleges of *Life Science and Technology and
- Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China; and
| | - Hugo Scheer
- Department Biologie I–Botanik, Universität München, Menzinger Strasse 67, D-80638 Munich, Germany
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
17
|
Houmard J, Capuano V, Coursin T, de Marsac NT. Isolation and molecular characterization of the gene encoding allophycocyanin B, a terminal energy acceptor in cyanobacterial phycobillsomes. Mol Microbiol 2006; 2:101-107. [DOI: 10.1111/j.1365-2958.1988.tb00011.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Montgomery BL, Casey ES, Grossman AR, Kehoe DM. AplA, a member of a new class of phycobiliproteins lacking a traditional role in photosynthetic light harvesting. J Bacteriol 2004; 186:7420-8. [PMID: 15489454 PMCID: PMC523187 DOI: 10.1128/jb.186.21.7420-7428.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All known phycobiliproteins have light-harvesting roles during photosynthesis and are found in water-soluble phycobilisomes, the light-harvesting complexes of cyanobacteria, cyanelles, and red algae. Phycobiliproteins are chromophore-bearing proteins that exist as heterodimers of alpha and beta subunits, possess a number of highly conserved amino acid residues important for dimerization and chromophore binding, and are invariably 160 to 180 amino acids long. A new and unusual group of proteins that is most closely related to the allophycocyanin members of the phycobiliprotein superfamily has been identified. Each of these proteins, which have been named allophycocyanin-like (Apl) proteins, apparently contains a 28-amino-acid extension at its amino terminus relative to allophycocyanins. Apl family members possess the residues critical for chromophore interactions, but substitutions are present at positions implicated in maintaining the proper alpha-beta subunit interactions and tertiary structure of phycobiliproteins, suggesting that Apl proteins are able to bind chromophores but fail to adopt typical allophycocyanin conformations. AplA isolated from the cyanobacterium Fremyella diplosiphon contained a covalently attached chromophore and, although present in the cell under a number of conditions, was not detected in phycobilisomes. Thus, Apl proteins are a new class of photoreceptors with a different cellular location and structure than any previously described members of the phycobiliprotein superfamily.
Collapse
Affiliation(s)
- Beronda L Montgomery
- Department of Biology, Indiana University, 1001 E. Third St., Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
19
|
MacColl R. Allophycocyanin and energy transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1657:73-81. [PMID: 15238265 DOI: 10.1016/j.bbabio.2004.04.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 04/06/2004] [Accepted: 04/16/2004] [Indexed: 11/21/2022]
Abstract
Allophycocyanin is a biliprotein located in the core of the phycobilisome. The biliprotein is isolated and purified as a trimer (alpha3beta3), where a monomer is an alphabeta structure. Each alpha and beta subunit has a single noncyclic tetrapyrrole chromophore, called phycocyanobilin. The trimer of allophycocyanin has an unusual absorption maximum at 650 nm with a shoulder at 620 nm, while the monomer has an absorption maximum at 615 nm. Two explanations have been proposed for the 650-nm maximum. In one, this maximum is produced by the interaction of a particular local protein environment for three of the chromophores, causing them to red shift, while the other three chromophores are at a higher energy. Energy is transferred from the high- to the low-energy chromophores by Förster resonance energy transfer, the donor-acceptor model. In the second proposal, there is strong exciton coupling between two chromophores of the trimer that closely approach across the monomer-monomer interface. The strong interaction causes exciton splitting and a red shift in the absorption. There are three of these strongly coupled chromophore pairs, and energy is transferred between the two-exciton states of a pair by internal conversion. A variety of biophysical methods have been used to examine this question. Although evidence supporting both models has been produced, sophisticated ultra fast fluorescence results from a plethora of approaches now firmly point to the latter strong coupling hypothesis as being more likely. Between the different strongly coupled pairs, Förster resonance energy transfer should occur. For monomers of allophycocyanin, Förster resonance energy transfer occurs between the two chromophores.
Collapse
Affiliation(s)
- Robert MacColl
- Wadsworth Center, Laboratories and Research, New York State Department of Health, P.O. Box 509, Albany, NY 12201-0509 USA.
| |
Collapse
|
20
|
|
21
|
Zhang JM, Zheng XG, Zhang JP, Zhao FL, Xie J, Wang HZ, Zhao JQ, Jiang LJ. Studies of the Energy Transfer among Allophycocyanin from Phycobilisomes of Polysiphonia urceolata by Time-Resolved Fluorescence Isotropic and Anisotropic Spectroscopy. Photochem Photobiol 1998. [DOI: 10.1111/j.1751-1097.1998.tb05284.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Anderson LK, Toole CM. A model for early events in the assembly pathway of cyanobacterial phycobilisomes. Mol Microbiol 1998; 30:467-74. [PMID: 9822813 DOI: 10.1046/j.1365-2958.1998.01081.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Biological self-assembly is remarkable in its fidelity and in the efficient production of intricate molecular machines and functional materials from a heterogeneous mixture of macromolecules. The phycobilisome, a light-harvesting structure of cyanobacteria, presents the opportunity to study an in vivo assembly process in detail. The phycobilisome molecular architecture is defined, and crystal structures are available for all major proteins, as are a large sequence database (including a genome sequence) and effective genetic systems exist for some cyanobacteria. Recent studies on subunit interaction, covalent modification, and protein stability suggest a model for the earliest events in the phycobilisome assembly pathway. Partitioning of phycobilisome proteins between degradation and assembly is proposed to be controlled by the interaction equilibria between phycobilisome assembly partners, processing enzymes and chaperones. The model provides plausible explanations for existing observations and makes predictions that are amenable to direct experimental investigation.
Collapse
Affiliation(s)
- L K Anderson
- Department of Biological Science, University of Tulsa, 600 S. College Ave, Tulsa, OK 74104, USA.
| | | |
Collapse
|
23
|
Zhao F, Zheng X, Zhang J, Wang H, Yu Z, Zhao J, Jiang L. Energy transfer in allophycocyanin hexamer from Anabaena variabilis by time-resolved spectroscopy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1998. [DOI: 10.1016/s1011-1344(98)00173-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Ducret A, Müller SA, Goldie KN, Hefti A, Sidler WA, Zuber H, Engel A. Reconstitution, characterisation and mass analysis of the pentacylindrical allophycocyanin core complex from the cyanobacterium Anabaena sp. PCC 7120. J Mol Biol 1998; 278:369-88. [PMID: 9571058 DOI: 10.1006/jmbi.1998.1678] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phycobilisome (PBS) of Anabaena sp. PCC 7120 was allowed to dissociate into its constituents and the resulting allophycocyanin (AP) fraction was purified. Its reconstitution yielded a complex which according to negative stain electron microscopy and spectral analysis was identical to the native pentacylindrical PBS core domain. Each cylinder of the central tricylindric unit was comprised of four AP (alphabeta)3 disks. Mass analysis using the scanning transmission electron microscope (STEM) showed the presence of 16 AP trimers in the intact reconstitute, which had a total mass of 1966(+/-66) kDa. Composition analysis indicated an AP trimer distribution of (AP-II):(AP-LCM):(AP-B):(AP-I)=6:2:2:6, i.e. an addition of two AP-I and two AP-II complexes compared to a tricylindrical PBS core domain. Therefore, we suggest that each supplementary half-core cylinder found in pentacylindrical AP core domains is comprised of one AP-I and one AP-II trimer, in agreement with the current model. The structural significance of the 127 kDa core membrane linker polypeptide was further investigated by subjecting the AP core reconstitute to mild chymotryptic degradation. After isolation, the digested complex exhibited a tricylindrical appearance while STEM mass analysis confirmed the presence of only 12 AP complexes. Polypeptide analysis by SDS-PAGE and Edman degradation related the half-cylinder loss to cleavage of the Rep4 domain of the core membrane linker polypeptide. On the basis of these data, a general model for the assembly of the three hemidiscoidal PBS types known to date is discussed.
Collapse
Affiliation(s)
- A Ducret
- Institute for Molecular Biology and Biophysics, Federal Institute of Technology, Zürich, CH-8093, Switzerland
| | | | | | | | | | | | | |
Collapse
|
25
|
Bald D, Kruip J, Rögner M. Supramolecular architecture of cyanobacterial thylakoid membranes: How is the phycobilisome connected with the photosystems? PHOTOSYNTHESIS RESEARCH 1996; 49:103-18. [PMID: 24271608 DOI: 10.1007/bf00117661] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/1996] [Accepted: 06/25/1996] [Indexed: 05/06/2023]
Abstract
Cyanobacteria, as the most simple organisms to perform oxygenic photosynthesis differ from higher plants especially with respect to the thylakoid membrane structure and the antenna system used to capture light energy. Cyanobacterial antenna systems, the phycobilisomes (PBS), have been shown to be associated with Photosystem 2 (PS 2) at the cytoplasmic side, forming a PS 2-PBS-supercomplex, the structure of which is not well understood. Based on structural data of PBS and PS 2, a model for such a supercomplex is presented. Its key features are the PS 2 dimer as prerequisite for formation of the supercomplex and the antiparallel orientation of PBS-cores and the two PS 2 monomers which form the 'contact area' within the supercomplex. Possible consequences for the formation of 'superstructures' (PS 2-PBS rows) within the thylakoid membrane under so-called 'state 1' conditions are discussed. As there are also indications for specific functional connections of PBS with Photosystem 1 (PS 1) under so-called 'state 2' conditions, we show a model which reconciles the need for a structural interaction between PBS and PS 1 with the difference in structural symmetry (2-fold rotational symmetry of PBS-cores, 3-fold rotational symmetry of trimeric PS 1). Finally, the process of dynamic coupling and uncoupling of PBS to PS 1 and PS 2, based on the presented models, shows analogies to mechanisms for the regulation of photosynthetic electron flow in higher plants-despite the very different organization of their thylakoid membranes in comparison to cyanobacteria.
Collapse
Affiliation(s)
- D Bald
- Institute of Botany, University of Münster, Schlossgarten 3, D-48149, Münster, Germany
| | | | | |
Collapse
|
26
|
Ducret A, Sidler W, Wehrli E, Frank G, Zuber H. Isolation, characterization and electron microscopy analysis of a hemidiscoidal phycobilisome type from the cyanobacterium Anabaena sp. PCC 7120. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:1010-24. [PMID: 8665889 DOI: 10.1111/j.1432-1033.1996.01010.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this work we present the characterization of a hemidiscoidal phycobilisome type of the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. The phycobilisome of this organism contains allophycocyanin, phycocyanin and phycoerythrocyanin, similar to the closely related thermophilic cyanobacterium Mastigocladus laminosus. Intact phycobilisomes exhibit an absorption maximum at 619 nm and two fluorescence maxima at 664 nm and 680 nm, corroborating the presence of a complete energy pathyway along the antenna. Upon dissociation, the phycobiliproteins were released from the phycobilisome. One phycoerythrocyanin, one phycocyanin and three allophycocyanin complexes were isolated by ion-exchange chromatography and characterized by absorption and fluorescence spectroscopy and by SDS/PAGE. The amino-terminal sequences of the polypeptides belonging to the phycoerythrocyanin and phycocyanin families were identical with the derived sequences of their corresponding genes. Partial amino-terminal sequences of the polypeptides belonging to the allophycocyanin family are presented here. Our results show that the phycobiliproteins and linker polypeptides from Anabaena sp. PCC 7120 are similar to the phycobilisome components characterized in other cyanobacteria. The phycobilisome of Anabaena sp. PCC 7120 was extensively analyzed by electron microscopy. It differs from the common hemidiscoidal tricylindrical, six-rod phycobilisome type by a core domain consisting of five core cylinders surrounded by up to eight rods radiating in a hemidiscoidal manner. One rod is linked to each basal core cylinder, whereas the remaining core cylinders bind two rods each. On the basis of the data presented in this work, a revised model for the hemidiscoidal pentacylindrical phycobilisome of Anabaena sp. PCC 7120, M. laminosus and Anabaena variabilis is proposed. This model accounts more accurately for the 'grape' pattern typically exhibited by these phycobilisomes in electron micrographs.
Collapse
Affiliation(s)
- A Ducret
- Institute for Molecular Biology and Biophysics, Federal Institute of Technology, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
27
|
A new type of complementary chromatic adaptation exemplified byPhormidium sp. C86: Changes in the number of peripheral rods and in the stoichiometry of core complexes in phycobilisomes. Arch Microbiol 1995. [DOI: 10.1007/bf02525319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Gottschalk L, Lottspeich F, Scheer H. RECONSTITUTION OF ALLOPHYCOCYANIN FROM Mastigocladus laminosus WITH ISOLATED LINKER POLYPEPTIDE. Photochem Photobiol 1993. [DOI: 10.1111/j.1751-1097.1993.tb04966.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Gindt YM, Zhou J, Bryant DA, Sauer K. Core mutations of Synechococcus sp. PCC 7002 phycobilisomes: a spectroscopic study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1992; 15:75-89. [PMID: 1460543 DOI: 10.1016/1011-1344(92)87007-v] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Three cyanobacterial strains harboring mutations affecting phycobilisome (PBS) cores were studied using steady state absorption and fluorescence and time-resolved fluorescence. The apcF mutant, missing beta 18, and the apcDF mutant, missing both alpha APB and beta 18, showed only small spectroscopic differences from the wild-type strain; their PBS emission was blue shifted by 10 nm, whereas their absorption spectra and time-resolved fluorescence kinetics were virtually unchanged. The third mutant studied was the apcE/C186S mutant in which the chromophore-binding cysteine-186 in the LCM99 polypeptide has been substituted with serine. The apcE/C186S mutant contained a modified chromophore which significantly changed the spectroscopic properties of the PBS complex. The apcE/C186S PBS absorbed more than the wild-type strain at 705 nm, and the emission spectrum gave two peaks at 660 nm and 715 nm. The time-resolved kinetics of the apcE/C186S mutant PBS were also significantly altered from those of the wild-type strain.
Collapse
Affiliation(s)
- Y M Gindt
- Chemical Biodynamics Division, Lawrence Berkeley Laboratory, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
30
|
Bryant DA, de Lorimier R, Guglielmi G, Stevens SE. Structural and compositional analyses of the phycobilisomes of Synechococcus sp. PCC 7002. Analyses of the wild-type strain and a phycocyanin-less mutant constructed by interposon mutagenesis. Arch Microbiol 1990; 153:550-60. [PMID: 2164365 DOI: 10.1007/bf00245264] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The phycobilisomes and phycobiliproteins of Synechococcus sp. PCC 7002 wild-type strain PR6000 have been isolated and characterized. The hemidiscoidal phycobilisomes of strain PR6000 are composed of eleven different polypeptides: phycocyanin alpha and beta subunits; allophycocyanin alpha and beta subunits; alpha subunit of allophycocyanin B; the allophycocyanin beta-subunit-like polypeptide of Mr 18,000; the linker phycobiliprotein of Mr 99,000; and non-chromophore-carrying linker polypeptides of Mr 33,000, 29,000, 9000, and 8000. Several of these polypeptides were purified to homogeneity and their amino acid compositions and amino-terminal amino acid sequences were determined. Analyses of the phycobiliproteins of Synechococcus sp. PCC 7002 were greatly facilitated by comparative studies performed with a mutant strain, PR6008, constructed to be devoid of the phycocyanin alpha and beta subunits by recombinant DNA techniques and transformation of strain PR6000. The absence of phycocyanin did not greatly affect the allophycocyanin content of the mutant strain but caused the doubling time to increase 2-7-fold depending upon the light intensity at which the cells were grown. Although intact phycobilisome cores could not be isolated from this mutant, it is probable that functionally intact cores do exist in vivo.
Collapse
Affiliation(s)
- D A Bryant
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| | | | | | | |
Collapse
|
31
|
Maxson P, Sauer K, Zhou JH, Bryant DA, Glazer AN. Spectroscopic studies of cyanobacterial phycobilisomes lacking core polypeptides. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 977:40-51. [PMID: 2508754 DOI: 10.1016/s0005-2728(89)80007-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Synechococcus sp. PCC 7002 (Agmenellum quadruplicatum PR6) genes encoding two highly conserved phycobilisome core polypeptides, a small linker polypeptide (LC8, apcC) and the allophycocyanin-B alpha-subunit (alpha APB, apcD), respectively, were interrupted by insertion of restriction fragments carrying the neomycin phosphotransferase gene of Tn5. The interrupted genes were used to transform Synechococcus sp. PCC 7002 to kanamycin resistance. The apcC- mutant assembled phycobilisomes lacking the LC8 polypeptide and the apcD- mutant assembled phycobilisomes lacking alpha APB. No other differences between the compositions of the mutant and wild-type phycobilisomes were detected. The apcC- strain grew about 25% more slowly than the wild-type, and its phycobilisomes dissociated more rapidly in 0.33 M Na/K-PO4 (pH 8.0) or in 0.75 M Na/K-PO4 at pH 8.0, at 40 degrees C, than did those of the wild-type. The phycobilisomes of this mutant were indistinguishable from those of the wild-type with respect to absorption and circular dichroism spectra, as well as time-resolved fluorescence emission. Steady-state emission spectra indicate a small decrease in long wavelength (680 nm) emission from the apcC- phycobilisomes and a complementary increase in shorter wavelength (665 nm) emission, relative to wild-type phycobilisomes. Strain apcD- phycobilisomes appear to be functionally indistinguishable from those of the wild-type, in spite of the absence of the two alpha APB subunits which bear terminal acceptor bilins. The only spectroscopic difference was seen in the steady-state fluorescence emission, for which the emission of the mutant was about 15% higher than that of the wild-type and was slightly blue-shifted. A phenotype has yet to be found for the apcD- mutation.
Collapse
Affiliation(s)
- P Maxson
- Department of Chemistry, Lawrence Berkeley Laboratory, University of California, Berkeley 94720
| | | | | | | | | |
Collapse
|
32
|
Arciero DM, Dallas JL, Glazer AN. In vitro attachment of bilins to apophycocyanin. III. Properties of the phycoerythrobilin adduct. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)81367-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
|
34
|
Füglistaller P, Mimuro M, Suter F, Zuber H. Allophycocyanin complexes of the phycobilisome from Mastigocladus laminosus. Influence of the linker polypeptide L8.9C on the spectral properties of the phycobiliprotein subunits. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1987; 368:353-67. [PMID: 3111493 DOI: 10.1515/bchm3.1987.368.1.353] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The following phycobiliproteins and complexes of the allophycocyanin core were isolated from phycobilisomes of the thermophilic cyanobacterium Mastigocladus laminosus: alpha AP, beta AP, (alpha AP beta AP), (alpha AP beta AP)3, (alpha AP beta AP)3L8.9C, (alpha APB alpha AP2 beta AP3)L8.9C. The six proteins and complexes were characterised spectroscopically with respect to absorption, oscillator strength, extinction coefficient, fluorescence emission, relative quantum yield, fluorescence emission polarisation and fluorescence excitation polarisation. The interpretation of the spectral data was based on the three-dimensional structure model of (alpha PC beta PC)3 (Schirmer et al. (1985) J. Mol. Biol. 184, 257-277), which is related to the allophycocyanin trimer. The absorption and CD spectra of the complexes (alpha AP beta AP)3, (alpha AP beta AP)3L8.9C and (alpha APB alpha AP2 beta AP3)L8.9C could be deconvoluted into the spectra of the phycobiliprotein subunits. The assumptions made for the deconvolution could be checked by the synthesis of the spectra of (alpha APB beta AP)3. The synthesised spectra are in good agreement with the corresponding measured spectra published by other authors. Considering the deconvoluted spectra the following influences on the chromophores could be ascribed to L8.9C: L8.9C neither influences the alpha AP nor the alpha APB chromophores. L8.9C shifts the absorption maximum of the beta AP chromophore to longer wavelength than the absorption maximum of the alpha AP chromophore in trimeric complexes. L8.9C increases the oszillator strength of the beta AP chromophores to about the value of the alpha AP chromophores in trimeric complexes. L8.9C turns the beta AP chromophores from sensitizing into weak fluorescing chromophores. By means of the hydropathy plot and the predicted secondary structure, a postulated three-fold symmetry in the tertiary structure of L8.9C could be confirmed.
Collapse
|
35
|
Zuber H, Brunisholz R, Sidler W. Chapter 11 Structure and function of light-harvesting pigment-protein complexes. NEW COMPREHENSIVE BIOCHEMISTRY 1987. [DOI: 10.1016/s0167-7306(08)60142-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Energy flow in the phycobilisome core of Nostoc sp. (MAC): Two independent terminal pigments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1986. [DOI: 10.1016/0005-2728(86)90065-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Elmorjani K, Thomas JC, Sebban P. Phycobilisomes of wild type and pigment mutants of the cyanobacterium Synechocystis PCC 6803. Arch Microbiol 1986. [DOI: 10.1007/bf00402349] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Mimuro M, Gantt E. A high molecular weight terminal pigment ("anchor polypeptide") and a minor blue polypeptide from phycobilisomes of the cyanobacterium Nostoc sp. (MAC): Isolation and characterization. PHOTOSYNTHESIS RESEARCH 1986; 10:201-208. [PMID: 24435366 DOI: 10.1007/bf00118284] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A 94 kD pigment-polypeptide, which is presumed to be involved in anchoring the phycobilisomes to the thylakoids, was isolated from Nostoc phycobilisomes by gel filtration in 63 mM formic acid. The isolation condition did not require detergents or denaturating reagents, as in previous procedures, and enzymatic degradation was not observed at the low pH of 2.5. The "anchor polypeptide" thus obtained had absorption (Abs) and fluorescence maxima (Em) at 658 and 673 nm, respectively, in 63 mM formic acid at room temperature. The maxima shifted to longer wavelengths in 100 mM potassium phosphate (pH 6.8), Abs 665 and Em 683 nm at room temperature, and Abs 665 and Em 684 nm at liquid nitrogen temperature. The fluorescence maxima at both temperatures correspond to the longest wavelength component resolved in phycobilisomes from second derivative spectra. A minor blue polypeptide was also found by this isolation method. The molecular weight of this polypeptide was ca. 18,000 and is probably similar to a polypeptide which has been found in the phycobilisome core of other cyanobacteria.
Collapse
Affiliation(s)
- M Mimuro
- Smithsonian Institution, Environmental Research Center, 12441 Parklawn Drive, 20852-1773, Rockville, Maryland, (U.S.A.)
| | | |
Collapse
|
39
|
Zilinskas BA, Greenwald LS. Phycobilisome structure and function. PHOTOSYNTHESIS RESEARCH 1986; 10:7-35. [PMID: 24435274 DOI: 10.1007/bf00024183] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/1985] [Revised: 10/18/1985] [Accepted: 10/18/1985] [Indexed: 06/03/2023]
Abstract
Phycobilisomes are aggregates of light-harvesting proteins attached to the stroma side of the thylakoid membranes of the cyanobacteria (blue-green algae) and red algae. The water-soluble phycobiliproteins, of which there are three major groups, tetrapyrrole chromophores covalently bound to apoprotein. Several additional protiens are found within the phycobilisome and serve to link the phycobiliproteins to each other in an ordered fashion and also to attach the phycobilisome to the thylakoid membrane. Excitation energy absorbed by phycoerythrin is transferred through phycocyanin to allophycocyanin with an efficiency approximating 100%. This pathway of excitation energy transfer, directly confirmed by time-resolved spectroscopic measurements, has been incorporated into models describing the ultrastructure of the phycobilisome. The model for the most typical type of phycobilisome describes an allophycocyanin-containing core composed of three cylinders arranged so that their longitudinal axes are parallel and their ends form a triangle. Attached to this core are six rod structures which contain phycocyanin proximal to the core and phycoerythrin distal to the core. The axes of these rods are perpendicular to the longitudinal axis of the core. This arrangement ensures a very efficient transfer of energy. The association of phycoerythrin and phycocyanin within the rods and the attachment of the rods to the core and the core to the thylakoid require the presence of several 'linker' polypeptides. It is recently possible to assemble functionally and structurally intact phycobilisomes in vitro from separated components as well as to reassociate phycobilisomes with stripped thylakoids. Understanding of the biosynthesis and in vivo assembly of phycobilisomes will be greatly aided by the current advances in molecular genetics, as exemplified by recent identification of several genes encoding phycobilisome components.Combined ultrastructural, biochemical and biophysical approaches to the study of cyanobacterial and red algal cells and isolated phycobilisome-thylakoid fractions are leading to a clearer understanding of the phycobilisome-thylakoid structural interactions, energy transfer to the reaction centers and regulation of excitation energy distribution. However, compared to our current knowledge concerning the structural and functional organization of the isolated phycobilisome, this research area is relatively unexplored.
Collapse
Affiliation(s)
- B A Zilinskas
- Department of Biochemistry and Microbiology, Cook College, Rutgers University, 08903, New Brunswick, NJ, USA
| | | |
Collapse
|
40
|
Picosecond study of energy-transfer kinetics in phycobilisomes of Synechococcus 6301 and the mutant AN 112. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1985. [DOI: 10.1016/0005-2728(85)90027-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Suter GW, Mazzola P, Wendler J, Holzwarth AR. Fluorescence decay kinetics in phycobilisomes isolated from the bluegreen alga Synechococcus 6301. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1984. [DOI: 10.1016/0005-2728(84)90241-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
A highly active oxygen-evolving Photosystem II preparation from synechococcus lividus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1984. [DOI: 10.1016/0005-2728(84)90237-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
|
44
|
Molecular architecture of a light-harvesting antenna. Quaternary interactions in the Synechococcus 6301 phycobilisome core as revealed by partial tryptic digestion and circular dichroism studies. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32114-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
45
|
Glazer AN, Lundell DJ, Yamanaka G, Williams RC. The structure of a "simple" phycobilisome. ANNALES DE MICROBIOLOGIE 1983; 134B:159-80. [PMID: 6416125 DOI: 10.1016/s0769-2609(83)80103-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This report describes the properties of a relatively simple phycobilisome, Synechococcus 6301 (Anacystis nidulans). Morphology. -- Examination of wild type and mutant phycobilisomes by electron microscopy has shown them to have two morphologically differing substructures when seen in "face-view". There is a core consisting of two contiguous objects, disc-like in face-view projection, 115 A in diameter, and six rods, each composed of several stacked discs 60 A thick and 120 A in diameter, which radiate from the core in a hemidiscoidal arrangement. Each of the core components consists of four discs approximately 30 A thick. Rod substructures. -- Each of the discs in the rod substructure is a phycocyanin hexamer held together by interaction with a specific linker polypeptide, i. e., it has the composition (alpha beta)6 . X, where X is the linker polypeptide and alpha beta a phycocyanin monomer. The disc proximal to the core is an (alpha beta)6 . 27,000 complex. A small portion, Mr approximately 2,000,, of the Mr 27,000 polypeptide is essential to the attachment of this disc to the core. From studies of phycobilisomes from nitrogen-starved cells, and from mutants containing lowered amounts of phycocyanin relative to allophycocyanin, the second disc has been established to be an (alpha beta)6 . 33,000 complex. Either (alpha beta)6 . 33,000 or (alpha beta)6 . 30,000 complexes occupy the positions in the rods distal to the (alpha beta)6 .33,000 discs. Core substructure. -- Structural studies on the core and on core-rod junctions were greatly facilitated by the isolation of a mutant, strain AN112, which produces phycobilisomes with rods only one disc in length but with normal cores. Partial dissociation of these incomplete phycobilisomes under a variety of conditions, and separation and characterization of the resulting sub-complexes, has led to the determination of the composition of four distinct "trimeric" complexes, each of which is present in two copies per phycobilisome. These complexes, which account for the composition of the core, are as follows: (alpha beta)3AP . 10,500 with lambda maxF at 662 nm; (alpha beta)3AP with lambda maxF at 660 nm; (alpha 2AP alpha APB beta 3AP) . 10,500 with lambda maxF at 680 nm; where apha AP and alpha AFB are alpha subunits of allophycocyanin and allophycocyanin B, respectively, and beta AP is a subunit common to these two biliproteins; (alpha beta)2 AP . 18,300 . 40,000* . 11,000* with lambda maxF at 680 nm, where the Mr 40,000* and 11,000* polypeptides are derived from a Mr 75,000 polypeptide by tryptic digestion.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
46
|
Canaani O, Gantt E. Native and in vitro-associated phycobilisomes of Nostoc sp. Composition, energy transfer, and effect of antibodies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1983. [DOI: 10.1016/0005-2728(83)90039-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Abstract
The tricylindrical core of Synechocystis 6701 phycobilisomes is made up of four types of allophycocyanin-containing complexes: A, (alpha AP beta AP)3; B, (alpha AP beta AP)3 .10K; C, (alpha APB1 alpha AP2 beta AP3).10K; D, (alpha AP beta AP)2.18.5K.99K; where AP is allophycocyanin, APB is allophycocyanin B, and 10K, 18.5K, and 99K are polypeptides of 10,000, 18,500, and 99,000 daltons, respectively. The 18.5K polypeptide is a hitherto unrecognized biliprotein subunit with a single phycocyanobilin prosthetic group. The tricylindrical core is made up of 12 subcomplexes in the molar ratio of A:B:C:D: of 4:4:2:2. Complexes C and D act as terminal energy acceptors. From these results and previous analysis of the bicylindrical core of Synechococcus 6301 phycobilisomes [14,15] it is proposed that the two cylinders of the Synechocystis 6701 core, proximal to the thylakoid membrane, each have the composition ABCD, and that the distal cylinder has the composition A2B2.
Collapse
|
48
|
Lundell DJ, Glazer AN. Molecular architecture of a light-harvesting antenna. Core substructure in Synechococcus 6301 phycobilisomes: two new allophycocyanin and allophycocyanin B complexes. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)33136-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
49
|
Lundell DJ, Glazer AN. Molecular architecture of a light-harvesting antenna. Structure of the 18 S core-rod subassembly of the Synechococcus 6301 phycobilisome. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)33135-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
|