1
|
Berends E, van Oostenbrugge RJ, Foulquier S, Schalkwijk CG. Methylglyoxal, a highly reactive dicarbonyl compound, as a threat for blood brain barrier integrity. Fluids Barriers CNS 2023; 20:75. [PMID: 37875994 PMCID: PMC10594715 DOI: 10.1186/s12987-023-00477-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
The brain is a highly metabolically active organ requiring a large amount of glucose. Methylglyoxal (MGO), a by-product of glucose metabolism, is known to be involved in microvascular dysfunction and is associated with reduced cognitive function. Maintenance of the blood-brain barrier (BBB) is essential to maintain optimal brain function and a large amount of evidence indicates negative effects of MGO on BBB integrity. In this review, we summarized the current literature on the effect of MGO on the different cell types forming the BBB. BBB damage by MGO most likely occurs in brain endothelial cells and mural cells, while astrocytes are most resistant to MGO. Microglia on the other hand appear to be not directly influenced by MGO but rather produce MGO upon activation. Although there is clear evidence that MGO affects components of the BBB, the impact of MGO on the BBB as a multicellular system warrants further investigation. Diminishing MGO stress can potentially form the basis for new treatment strategies for maintaining optimal brain function.
Collapse
Affiliation(s)
- Eline Berends
- Department of Internal Medicine, Maastricht University, Universiteitssingel, Maastricht, 50 6229ER, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht, 6229ER, The Netherlands
| | - Robert J van Oostenbrugge
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht, 6229ER, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Universiteitssingel 40, Maastricht, 6229ER, The Netherlands
- Department of Neurology, Maastricht University Medical Centre (MUMC+), P. Debyelaan 25 6202AZ, Maastricht, The Netherlands
| | - Sébastien Foulquier
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht, 6229ER, The Netherlands.
- Department of Neurology, Maastricht University Medical Centre (MUMC+), P. Debyelaan 25 6202AZ, Maastricht, The Netherlands.
- Department of Pharmacology and Toxicology, Maastricht University, Universiteitssingel 50 6229ER, Maastricht, The Netherlands.
| | - Casper G Schalkwijk
- Department of Internal Medicine, Maastricht University, Universiteitssingel, Maastricht, 50 6229ER, The Netherlands.
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht, 6229ER, The Netherlands.
| |
Collapse
|
2
|
Wang J, Yang X, Wang Z, Wang J. Role of the Glyoxalase System in Breast Cancer and Gynecological Cancer-Implications for Therapeutic Intervention: a Review. Front Oncol 2022; 12:857746. [PMID: 35898868 PMCID: PMC9309216 DOI: 10.3389/fonc.2022.857746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022] Open
Abstract
Methyglyoxal (MGO), an essential endogenous dicarbonyl metabolite, can lead to multiple physiological problems including hyperglycemia, kidney diseases, malignant tumors, beyond its normal concentration range. The glyoxalase system, making MGO maintained at a low level, links glycation to carcinogenesis, growth, metastasis, and cancer chemotherapy. The glyoxalase system comprises glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2), which is often overexpressed in various tumor tissues. However, very little is known about the glyoxalase system in breast cancer and gynecological cancer. In this review, we introduce the role of the glyoxalase system in breast cancer, endometrial cancer, ovarian cancer and cervical cancer, and highlight the potential of the glyoxalase system to be both as a marker for diagnosis and a novel target for antitumor therapy. However, the intrinsic molecular biology and mechanisms of the glyoxalase system in breast cancer and gynecological cancer need further exploration.
Collapse
|
3
|
Zhang X, Schalkwijk CG, Wouters K. Immunometabolism and the modulation of immune responses and host defense: A role for methylglyoxal? Biochim Biophys Acta Mol Basis Dis 2022; 1868:166425. [DOI: 10.1016/j.bbadis.2022.166425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022]
|
4
|
Yumnam S, Subedi L, Kim SY. Glyoxalase System in the Progression of Skin Aging and Skin Malignancies. Int J Mol Sci 2020; 22:ijms22010310. [PMID: 33396745 PMCID: PMC7794849 DOI: 10.3390/ijms22010310] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Dicarbonyl compounds, including methylglyoxal (MGO) and glyoxal (GO), are mainly formed as byproducts of glucose metabolism. The main glyoxalase system consists of glyoxalase I and II (Glo1 and Glo2) and is the main enzyme involved in the detoxification of dicarbonyl stress, which occurs as an accumulation of MGO or GO due to decreased activity or expression of Glo1. Dicarbonyl stress is a major cause of cellular and tissue dysfunction that causes various health issues, including diabetes, aging, and cancer. The skin is the largest organ in the body. In this review, we discuss the role of the glyoxalase system in the progression of skin aging, and more importantly, skin malignancies. We also discuss the future prospects of the glyoxalase system in other skin abnormalities such as psoriasis and vitiligo, including hyperpigmentation. Finally, in the present review, we suggest the role of glyoxalase in the progression of skin aging and glyoxalase system as a potential target for anticancer drug development for skin cancer.
Collapse
Affiliation(s)
- Silvia Yumnam
- College of Pharmacy, Gachon University, 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (S.Y.); (L.S.)
| | - Lalita Subedi
- College of Pharmacy, Gachon University, 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (S.Y.); (L.S.)
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (S.Y.); (L.S.)
- Gachon Institute of Pharmaceutical Science, Gachon University, Yeonsu-gu, Incheon 21565, Korea
- Correspondence: ; Tel.: +82-32-820-4931
| |
Collapse
|
5
|
Ding C, Wang F, Dang Y, Xu Z, Li L, Lai Y, Yu H, Luo Y, Huang R, Zhang A, Zhang W. Imaging Tumorous Methylglyoxal by an Activatable Near-Infrared Fluorescent Probe for Monitoring Glyoxalase 1 Activity. Anal Chem 2019; 91:15577-15584. [DOI: 10.1021/acs.analchem.9b03600] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Chunyong Ding
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fengyang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yijing Dang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Lingling Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yi Lai
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Haijun Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ruimin Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wen Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
6
|
Methylglyoxal – An emerging biomarker for diabetes mellitus diagnosis and its detection methods. Biosens Bioelectron 2019; 133:107-124. [DOI: 10.1016/j.bios.2019.03.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023]
|
7
|
Bellahcène A, Nokin MJ, Castronovo V, Schalkwijk C. Methylglyoxal-derived stress: An emerging biological factor involved in the onset and progression of cancer. Semin Cancer Biol 2018; 49:64-74. [DOI: 10.1016/j.semcancer.2017.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023]
|
8
|
Antognelli C, Talesa VN. Glyoxalases in Urological Malignancies. Int J Mol Sci 2018; 19:ijms19020415. [PMID: 29385039 PMCID: PMC5855637 DOI: 10.3390/ijms19020415] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 12/16/2022] Open
Abstract
Urological cancers include a spectrum of malignancies affecting organs of the reproductive and/or urinary systems, such as prostate, kidney, bladder, and testis. Despite improved primary prevention, detection and treatment, urological cancers are still characterized by an increasing incidence and mortality worldwide. While advances have been made towards understanding the molecular bases of these diseases, a complete understanding of the pathological mechanisms remains an unmet research goal that is essential for defining safer pharmacological therapies and prognostic factors, especially for the metastatic stage of these malignancies for which no effective therapies are currently being used. Glyoxalases, consisting of glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2), are enzymes that catalyze the glutathione-dependent metabolism of cytotoxic methylglyoxal (MG), thus protecting against cellular damage and apoptosis. They are generally overexpressed in numerous cancers as a survival strategy by providing a safeguard through enhancement of MG detoxification. Increasing evidence suggests that glyoxalases, especially Glo1, play an important role in the initiation and progression of urological malignancies. In this review, we highlight the critical role of glyoxalases as regulators of tumorigenesis in the prostate through modulation of various critical signaling pathways, and provide an overview of the current knowledge on glyoxalases in bladder, kidney and testis cancers. We also discuss the promise and challenges for Glo1 inhibitors as future anti-prostate cancer (PCa) therapeutics and the potential of glyoxalases as biomarkers for PCa diagnosis.
Collapse
Affiliation(s)
- Cinzia Antognelli
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy.
| | | |
Collapse
|
9
|
Greifenhagen U, Frolov A, Blüher M, Hoffmann R. Site-specific analysis of advanced glycation end products in plasma proteins of type 2 diabetes mellitus patients. Anal Bioanal Chem 2016; 408:5557-66. [DOI: 10.1007/s00216-016-9651-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/06/2016] [Accepted: 05/17/2016] [Indexed: 01/21/2023]
|
10
|
Greifenhagen U, Frolov A, Blüher M, Hoffmann R. Plasma Proteins Modified by Advanced Glycation End Products (AGEs) Reveal Site-specific Susceptibilities to Glycemic Control in Patients with Type 2 Diabetes. J Biol Chem 2016; 291:9610-6. [PMID: 26933035 DOI: 10.1074/jbc.m115.702860] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Indexed: 01/15/2023] Open
Abstract
Protein glycation refers to the reversible reaction between aldoses (or ketoses) and amino groups yielding relatively stable Amadori (or Heyns) products. Consecutive oxidative cleavage reactions of these products or the reaction of amino groups with other reactive substances (e.g. α-dicarbonyls) yield advanced glycation end products (AGEs) that can alter the structures and functions of proteins. AGEs have been identified in all organisms, and their contents appear to rise with some diseases, such as diabetes and obesity. Here, we report a pilot study using highly sensitive and specific proteomics approach to identify and quantify AGE modification sites in plasma proteins by reversed phase HPLC mass spectrometry in tryptic plasma digests. In total, 19 AGE modification sites corresponding to 11 proteins were identified in patients with type 2 diabetes mellitus under poor glycemic control. The modification degrees of 15 modification sites did not differ among cohorts of normoglycemic lean or obese and type 2 diabetes mellitus patients under good and poor glycemic control. The contents of two amide-AGEs in human serum albumin and apolipoprotein A-II were significantly higher in patients with poor glycemic control, although the plasma levels of both proteins were similar among all plasma samples. These two modification sites might be useful to predict long term, AGE-related complications in diabetic patients, such as impaired vision, increased arterial stiffness, or decreased kidney function.
Collapse
Affiliation(s)
- Uta Greifenhagen
- From the Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, the Center for Biotechnology and Biomedicine, and
| | - Andrej Frolov
- From the Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, the Center for Biotechnology and Biomedicine, and
| | - Matthias Blüher
- the Department of Medicine, Endocrinology, Universität Leipzig, 04103 Leipzig, Germany
| | - Ralf Hoffmann
- From the Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, the Center for Biotechnology and Biomedicine, and
| |
Collapse
|
11
|
Chakraborty S, Karmakar K, Chakravortty D. Cells producing their own nemesis: Understanding methylglyoxal metabolism. IUBMB Life 2014; 66:667-78. [PMID: 25380137 DOI: 10.1002/iub.1324] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/15/2014] [Indexed: 01/21/2023]
Affiliation(s)
- Sangeeta Chakraborty
- Department of Microbiology and Cell Biology, Indian Institute of Science; Bengaluru Karnataka India
| | - Kapudeep Karmakar
- Department of Microbiology and Cell Biology, Indian Institute of Science; Bengaluru Karnataka India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science; Bengaluru Karnataka India
| |
Collapse
|
12
|
Devanathan S, Erban A, Perez-Torres R, Kopka J, Makaroff CA. Arabidopsis thaliana glyoxalase 2-1 is required during abiotic stress but is not essential under normal plant growth. PLoS One 2014; 9:e95971. [PMID: 24760003 PMCID: PMC3997514 DOI: 10.1371/journal.pone.0095971] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/01/2014] [Indexed: 11/26/2022] Open
Abstract
The glyoxalase pathway, which consists of the two enzymes, GLYOXALASE 1 (GLX 1) (E.C.: 4.4.1.5) and 2 (E.C.3.1.2.6), has a vital role in chemical detoxification. In Arabidopsis thaliana there are at least four different isoforms of glyoxalase 2, two of which, GLX2-1 and GLX2-4 have not been characterized in detail. Here, the functional role of Arabidopsis thaliana GLX2-1 is investigated. Glx2-1 loss-of-function mutants and plants that constitutively over-express GLX2-1 resemble wild-type plants under normal growth conditions. Insilico analysis of publicly available microarray datasets with ATTEDII, Mapman and Genevestigator indicate potential role(s) in stress response and acclimation. Results presented here demonstrate that GLX2-1 gene expression is up-regulated in wild type Arabidopsis thaliana by salt and anoxia stress, and by excess L-Threonine. Additionally, a mutation in GLX2-1 inhibits growth and survival during abiotic stresses. Metabolic profiling studies show alterations in the levels of sugars and amino acids during threonine stress in the plants. Elevated levels of polyamines, which are known stress markers, are also observed. Overall our results suggest that Arabidopsis thaliana GLX2-1 is not essential during normal plant life, but is required during specific stress conditions.
Collapse
Affiliation(s)
- Sriram Devanathan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, United States of America
- * E-mail:
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Rodolfo Perez-Torres
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, United States of America
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Christopher A. Makaroff
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, United States of America
| |
Collapse
|
13
|
Rondeau P, Bourdon E. The glycation of albumin: structural and functional impacts. Biochimie 2010; 93:645-58. [PMID: 21167901 DOI: 10.1016/j.biochi.2010.12.003] [Citation(s) in RCA: 298] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 12/07/2010] [Indexed: 02/06/2023]
Abstract
Oxidative stress and protein modifications are frequently observed in numerous disease states. Glucose constitutes a vital nutrient necessary to cellular oxygen metabolism. However, hyperglycemia-associated damage is an important factor in diabetes disorders. Albumin, the major circulating protein in blood, can undergo increased glycation in diabetes. From recent studies, it has become evident that protein glycation has important implications for protein activity, unfolding, and degradation, as well as for cell functioning. After giving a brief overview of the key role of albumin in overall antioxidant defense, this review examines its role as a target of glycation reactions. A synthesis of state of the art methods for measuring and characterizing albumin glycation is detailed. In light of recent data, we then report the impact of glycation on the structure of albumin and its various activities, especially its antioxidant and binding capacities. The biological impact of glycated albumin on cell physiology is also discussed, specifically the role of the protein as a biological marker of diabetes.
Collapse
Affiliation(s)
- Philippe Rondeau
- Laboratoire de Biochimie et Génétique Moléculaire (LBGM)-Groupe d'Etude sur l'Inflammation Chronique et l'Obésité (GEICO), Université de La Réunion, Saint Denis de La Réunion, France.
| | | |
Collapse
|
14
|
Husain A, Sato D, Jeelani G, Mi-ichi F, Ali V, Suematsu M, Soga T, Nozaki T. Metabolome analysis revealed increase in S-methylcysteine and phosphatidylisopropanolamine synthesis upon L-cysteine deprivation in the anaerobic protozoan parasite Entamoeba histolytica. J Biol Chem 2010; 285:39160-70. [PMID: 20923776 DOI: 10.1074/jbc.m110.167304] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
L-cysteine is ubiquitous in all living organisms and is involved in a variety of functions, including the synthesis of iron-sulfur clusters and glutathione and the regulation of the structure, stability, and catalysis of proteins. In the protozoan parasite Entamoeba histolytica, the causative agent of amebiasis, L-cysteine plays an essential role in proliferation, adherence, and defense against oxidative stress; however, the essentiality of this amino acid in the pathways it regulates is not well understood. In the present study, we applied capillary electrophoresis time-of-flight mass spectrometry to quantitate charged metabolites modulated in response to L-cysteine deprivation in E. histolytica, which was selected as a model for examining the biological roles of L-cysteine. L-cysteine deprivation had profound effects on glycolysis, amino acid, and phospholipid metabolism, with sharp decreases in the levels of L-cysteine, L-cystine, and S-adenosylmethionine and a dramatic accumulation of O-acetylserine and S-methylcysteine. We further demonstrated that S-methylcysteine is synthesized from methanethiol and O-acetylserine by cysteine synthase, which was previously considered to be involved in sulfur-assimilatory L-cysteine biosynthesis. In addition, L-cysteine depletion repressed glycolysis and energy generation, as it reduced acetyl-CoA, ethanol, and the major nucleotide di- and triphosphates, and led to the accumulation of glycolytic intermediates. Interestingly, L-cysteine depletion increased the synthesis of isopropanolamine and phosphatidylisopropanolamine, and it was confirmed that their increment was not a result of oxidative stress but was a specific response to L-cysteine depletion. We also identified a pathway in which isopropanolamine is synthesized from methylglyoxal via aminoacetone. To date, this study represents the first case where L-cysteine deprivation leads to drastic changes in core metabolic pathways, including energy, amino acid, and phospholipid metabolism.
Collapse
Affiliation(s)
- Afzal Husain
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Pietkiewicz J, Gamian A, Staniszewska M, Danielewicz R. Inhibition of human muscle-specific enolase by methylglyoxal and irreversible formation of advanced glycation end products. J Enzyme Inhib Med Chem 2009; 24:356-64. [PMID: 18830874 DOI: 10.1080/14756360802187679] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Methylglyoxal (MG) was studied as an inhibitor and effective glycating factor of human muscle-specific enolase. The inhibition was carried out by the use of a preincubation procedure in the absence of substrate. Experiments were performed in anionic and cationic buffers and showed that inhibition of enolase by methylglyoxal and formation of enolase-derived glycation products arose more effectively in slight alkaline conditions and in the presence of inorganic phosphate. Incubation of 15 micromolar solutions of the enzyme with 2 mM, 3.1 mM and 4.34 mM MG in 100 mM phosphate buffer pH 7.4 for 3 h caused the loss a 32%, 55% and 82% of initial specific activity, respectively. The effect of MG on catalytic properties of enolase was investigated. The enzyme changed the K(M) value for glycolytic substrate 2-phospho-D-glycerate (2-PGA) from 0.2 mM for native enzyme to 0.66 mM in the presence of MG. The affinity of enolase for gluconeogenic substrate phosphoenolpyruvate altered after preincubation with MG in the same manner, but less intensively. MG has no effect on V(max) and optimal pH values. Incubation of enolase with MG for 0-48 h generated high molecular weight protein derivatives. Advanced glycation end products (AGEs) were resistant to proteolytic degradation by trypsin. Magnesium ions enhanced the enzyme inactivation by MG and facilitated AGEs formation. However, the protection for this inhibition in the presence of 2-PGA as glycolytic substrate was observed and AGEs were less effectively formed under these conditions.
Collapse
Affiliation(s)
- Jadwiga Pietkiewicz
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | | | | | | |
Collapse
|
16
|
Mukhopadhyay S, Sen S, Majhi B, Das KP, Kar M. Methyl glyoxal elevation is associated with oxidative stress in rheumatoid arthritis. Free Radic Res 2009; 41:507-14. [PMID: 17454133 DOI: 10.1080/10715760601148285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Methyl glyoxal (MG), a metabolic hazard plays a role in pathogenesis of different diseases. We studied the role of MG in cellular oxidative and carbonyl stress in rheumatoid arthritis (RA). 148 RA patients were divided into subgroups according to disease severity, RA factor status and age. They were acute, remission, seropositive, seronegative and JRA group. About 88 normal, young, healthy individuals were taken as control. We estimated serum level of total antioxidant status (TAS), total thiol, GSH, MG, carbonyl compounds and TBARS level of normal control and RA. The synovial fluid (SF) level of above parameters have been also evaluated in RA. Our observation suggests that MG elevation is associated with increased level of TBARS and decreased level of GSH in all RA subgroups than normal control. The elevation of MG along with declination of GSH and antioxidant status may be associated with free radical damage in RA.
Collapse
Affiliation(s)
- S Mukhopadhyay
- Department of Biochemistry, NRS Medical College & Hospital, Kolkata, India.
| | | | | | | | | |
Collapse
|
17
|
Mukhopadhyay S, Ghosh A, Kar M. Methylglyoxal increase in uremia with special reference to snakebite-mediated acute renal failure. Clin Chim Acta 2008; 391:13-7. [DOI: 10.1016/j.cca.2008.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 01/01/2008] [Accepted: 01/14/2008] [Indexed: 10/22/2022]
|
18
|
The tandem of free radicals and methylglyoxal. Chem Biol Interact 2008; 171:251-71. [DOI: 10.1016/j.cbi.2007.11.009] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 11/02/2007] [Accepted: 11/19/2007] [Indexed: 11/19/2022]
|
19
|
Bechara EJH, Dutra F, Cardoso VES, Sartori A, Olympio KPK, Penatti CAA, Adhikari A, Assunção NA. The dual face of endogenous alpha-aminoketones: pro-oxidizing metabolic weapons. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:88-110. [PMID: 16920403 DOI: 10.1016/j.cbpc.2006.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 06/26/2006] [Accepted: 07/06/2006] [Indexed: 11/29/2022]
Abstract
Amino metabolites with potential prooxidant properties, particularly alpha-aminocarbonyls, are the focus of this review. Among them we emphasize 5-aminolevulinic acid (a heme precursor formed from succinyl-CoA and glycine), aminoacetone (a threonine and glycine metabolite), and hexosamines and hexosimines, formed by Schiff condensation of hexoses with basic amino acid residues of proteins. All these metabolites were shown, in vitro, to undergo enolization and subsequent aerobic oxidation, yielding oxyradicals and highly cyto- and genotoxic alpha-oxoaldehydes. Their metabolic roles in health and disease are examined here and compared in humans and experimental animals, including rats, quail, and octopus. In the past two decades, we have concentrated on two endogenous alpha-aminoketones: (i) 5-aminolevulinic acid (ALA), accumulated in acquired (e.g., lead poisoning) and inborn (e.g., intermittent acute porphyria) porphyric disorders, and (ii) aminoacetone (AA), putatively overproduced in diabetes mellitus and cri-du-chat syndrome. ALA and AA have been implicated as contributing sources of oxyradicals and oxidative stress in these diseases. The end product of ALA oxidation, 4,5-dioxovaleric acid (DOVA), is able to alkylate DNA guanine moieties, promote protein cross-linking, and damage GABAergic receptors of rat brain synaptosome preparations. In turn, methylglyoxal (MG), the end product of AA oxidation, is also highly cytotoxic and able to release iron from ferritin and copper from ceruloplasmin, and to aggregate proteins. This review covers chemical and biochemical aspects of these alpha-aminoketones and their putative roles in the oxidative stress associated with porphyrias, tyrosinosis, diabetes, and cri-du-chat. In addition, we comment briefly on a side prooxidant behaviour of hexosamines, that are known to constitute building blocks of several glycoproteins and to be involved in Schiff base-mediated enzymatic reactions.
Collapse
Affiliation(s)
- Etelvino J H Bechara
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900, São Paulo, SP, Brazil.
| | - Fernando Dutra
- Centro de Ciências Biológicas e da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brazil
| | - Vanessa E S Cardoso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900, São Paulo, SP, Brazil
| | - Adriano Sartori
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900, São Paulo, SP, Brazil
| | - Kelly P K Olympio
- Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Avishek Adhikari
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Nilson A Assunção
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
20
|
Saraiva MA, Borges CM, Florêncio MH. Reactions of a modified lysine with aldehydic and diketonic dicarbonyl compounds: an electrospray mass spectrometry structure/activity study. JOURNAL OF MASS SPECTROMETRY : JMS 2006; 41:216-28. [PMID: 16421861 DOI: 10.1002/jms.980] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The phenomenon known as non-enzymatic glycation is described as the reaction of reducing sugars with basic amino groups of proteins and nucleic acids, as well as with simple amines, without enzyme mediation. Non-enzymatic model glycation reactions that make use of low-molecular-weight compounds make an important contribution in the elucidation of glicated processes in vitro and in vivo. Four alpha-dicarbonyl compounds, aldehydic (glyoxal, methylglyoxal and phenylglyoxal) and ketonic (diacetyl), were reacted with the modified amino acid N(alpha)-acetyl-L-lysine (AcLys) in an attempt to establish structure/activity relationships for the reactivity of alpha-dicarbonyls with the amine compound. Electrospray ionization mass spectrometry (ESI-MS) combined with tandem mass spectrometry (MS/MS) and collision-induced dissociation (CID) was used to identify and characterize reagents, intermediates and reaction products. The formation of dicarbonyl-derived lysine dimers was observed exclusively. Especially, attention is drawn to alkyl- (asymmetrical dicarbonyl systems) and carboxyl- (glyoxal system) substituted imidazolium ions, at ring position 2. The main differences observed in the reactions studied were related to the reactivity with the diimine intermediate. This intermediate can react either with a non-hydrated dicarbonyl molecule at the aldehydic carbonyl, or with a mono-hydrated one at the ketonic carbonyl, particularly for asymmetrical dicarbonyls. For 2-carboxyl-substituted imidazolium ion (glyoxal reaction), besides the usual keto-enol rearrangement from the diol group, an alternative reaction pathway (proton abstraction) appears to contribute also for the imidazolium ring-closure process. Moreover, the formation of imidazolium ring structures can depend on several factors, namely, the presence (or absence) of electron donor substituents at the formed diol, the degree of stability of the new electrophile generated and/or the equilibrium concentration of the non- and mono-hydrated dicarbonyl forms in solution, the last being particularly important for asymmetrical dicarbonyls. The results reported reveal the complexity of reactivity as well as the diversity of imidazolium molecular structures.
Collapse
Affiliation(s)
- Marco A Saraiva
- Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Lisbon, Campo Grande, C8, 1749-016 Lisbon, Portugal
| | | | | |
Collapse
|
21
|
Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK. Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem Biophys Res Commun 2005; 337:61-7. [PMID: 16176800 DOI: 10.1016/j.bbrc.2005.08.263] [Citation(s) in RCA: 270] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Accepted: 08/28/2005] [Indexed: 11/29/2022]
Abstract
Methylglyoxal (MG), a cytotoxic by-product produced mainly from triose phosphates, is used as a substrate by glyoxalase I. In this paper, we report on the estimation of MG level in plants which has not been reported earlier. We show that MG concentration varies in the range of 30-75 microM in various plant species and it increases 2- to 6-fold in response to salinity, drought, and cold stress conditions. Transgenic tobacco underexpressing glyoxalase I showed enhanced accumulation of MG which resulted in the inhibition of seed germination. In the glyoxalase I overexpressing transgenic tobacco, MG levels did not increase in response to stress compared to the untransformed plants, however, with the addition of exogenous GSH there was a decrease in MG levels in both untransformed and transgenic plants. The exogenous application of GSH reduced MG levels in WT to 50% whereas in the transgenic plants a 5-fold decrease was observed. These studies demonstrate an important role of glyoxalase I along with GSH concentration in maintaining MG levels in plants under normal and abiotic stress conditions.
Collapse
Affiliation(s)
- Sudesh Kumar Yadav
- Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | | | | | | |
Collapse
|
22
|
Biemel KM, Friedl DA, Lederer MO. Identification and quantification of major maillard cross-links in human serum albumin and lens protein. Evidence for glucosepane as the dominant compound. J Biol Chem 2002; 277:24907-15. [PMID: 11978796 DOI: 10.1074/jbc.m202681200] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycation reactions leading to protein modifications (advanced glycation end products) contribute to various pathologies associated with the general aging process and long term complications of diabetes. However, only few relevant compounds have so far been detected in vivo. We now report on the first unequivocal identification of the lysine-arginine cross-links glucosepane 5, DOGDIC 6, MODIC 7, and GODIC 8 in human material. For their accurate quantification by coupled liquid chromatography-electrospray ionization mass spectrometry, (13)C-labeled reference compounds were synthesized independently. Compounds 5-8 are formed via the alpha-dicarbonyl compounds N(6)-(2,3-dihydroxy-5,6-dioxohexyl)-l-lysinate (1a,b), 3-deoxyglucosone (), methylglyoxal (), and glyoxal (), respectively. The protein-bound dideoxyosone 1a,b seems to be of prime significance for cross-linking because it presumably is not detoxified by mammalian enzymes as readily as 2-4. Hence, the follow-up product glucosepane 5 was found to be the dominant compound. Up to 42.3 pmol of 5/mg of protein was identified in human serum albumin of diabetics; the level of 5 correlates markedly with the glycated hemoglobin HbA(1c). In the water-insoluble fraction of lens proteins from normoglycemics, concentration of 5 ranges between 132.3 and 241.7 pmol/mg. The advanced glycoxidation end product GODIC 8 is elevated significantly in brunescent lenses, indicating enhanced oxidative stress in this material. Compounds 5-8 thus appear predestined as markers for pathophysiological processes.
Collapse
Affiliation(s)
- Klaus M Biemel
- Institut für Lebensmittelchemie (170), Universität Hohenheim, Garbenstrasse 28, Stuttgart D-70593, Germany
| | | | | |
Collapse
|
23
|
Scirè A, Saccucci F, Bertoli E, Cambria MT, Principato G, D'Auria S, Tanfani F. Effect of acidic phospholipids on the structural properties of recombinant cytosolic human glyoxalase II. Proteins 2002; 48:126-33. [PMID: 12012344 DOI: 10.1002/prot.10149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A peculiar characteristic of highly concentrated cytosolic recombinant human glyoxalase II (GII) solutions is to undergo partial precipitation. Previous work indicated that anionic phospholipids (PLs) exert a noncompetitive inhibition on the enzymatic activity of the soluble enzyme. In this study, FTIR spectroscopy was used to analyze the structural properties and the thermal stability of the soluble protein in the absence and in the presence of liposomes made of different phospholipids (PLs). The structural analysis was performed on the precipitate as well. The interaction of acidic PLs with GII lowered the thermal stability of the enzyme and inhibited protein intermolecular interactions (aggregation) brought about by thermal denaturation. Infrared data indicated that ionic and hydrophobic interactions occur between GII and acidic PLs causing small changes in the secondary structure of the enzyme. No interactions of the protein with egg phosphatidylcholine liposomes were detected. The results are consistent with the destabilization of the protein tertiary structure, and indicate that GII possesses hydrophobic part(s) that interact with the acyl chains of PLs. Data on precipitated GII did not show remarkable modification of secondary structure, suggesting that hydrophobic stretches of the enzyme may also be involved in the protein-protein association (precipitation) at high GII concentration. The alterations in the GII structure and the noncompetitive inhibition exerted by acidic PLs are strictly related.
Collapse
Affiliation(s)
- Andrea Scirè
- Institute of Biochemistry, University of Ancona, Via Ranieri, Ancona, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Subramaniam R, Fan XJ, Scivittaro V, Yang J, Ha CE, Petersen CE, Surewicz WK, Bhagavan NV, Weiss MF, Monnier VM. Cellular oxidant stress and advanced glycation endproducts of albumin: caveats of the dichlorofluorescein assay. Arch Biochem Biophys 2002; 400:15-25. [PMID: 11913966 DOI: 10.1006/abbi.2002.2776] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In order to understand the mechanism by which advanced glycation endproducts (AGEs) elicit oxidative stress, macrophage-like RAW264.7 cells were exposed to various AGE-albumins, and oxidant stress was estimated from the fluorescence of oxidized dichlorofluorescein using the microtiter plate assay. Strongest fluorescence was observed with methylglyoxal modified albumin (MGO-BSA) compared with native albumin. Similar effects that were prevented by arginine coincubation were seen with phenylglyoxal-BSA. MGO-BSA had increased affinity for Cu(2+) and Ca(2+), but was conformationally similar to native albumin. Surprisingly, the mere addition of unmodified albumin to cells suppressed the fluorescence of oxidized DCF. While, several site-directed mutants of human serum albumin (HSA), including C34S and recombinant domains II and III retained fluorescence suppressing activity, proteolytic digests, recombinant domain I, and several nonalbumin proteins failed to suppress. Kinetic and ANS binding studies suggested albumin quenches DCF fluorescence by binding to hydrophobic pockets in domains II and III and that MGO-BSA is less hydrophobic than BSA. Finally, BSA also prevented H(2)O(2) catalyzed DCF fluorescence more potently than MGO-BSA. These studies reveal important caveats of the widely used dichlorofluorescein assay and suggest methods other than the microtiter plate assay are needed to accurately assess cellular oxidant stress in presence of native or modified albumin.
Collapse
Affiliation(s)
- Ram Subramaniam
- Institute of Pathology and Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Scir� A, Tanfani F, Saccucci F, Bertoli E, Principato G. Specific interaction of cytosolic and mitochondrial glyoxalase II with acidic phospholipids in form of liposomes results in the inhibition of the cytosolic enzyme only. Proteins 2000. [DOI: 10.1002/1097-0134(20001001)41:1<33::aid-prot60>3.0.co;2-n] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Oya T, Hattori N, Mizuno Y, Miyata S, Maeda S, Osawa T, Uchida K. Methylglyoxal modification of protein. Chemical and immunochemical characterization of methylglyoxal-arginine adducts. J Biol Chem 1999; 274:18492-502. [PMID: 10373458 DOI: 10.1074/jbc.274.26.18492] [Citation(s) in RCA: 278] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Methylglyoxal (MG), an endogenous metabolite that increases in diabetes and is a common intermediate in the Maillard reaction (glycation), reacts with proteins and forms advanced glycation end products. In the present study, we identify a novel MG-arginine adduct and also characterize the structure of a major fluorescent adduct. In addition, we describe the immunochemical study on the MG-arginine adducts using monoclonal antibody directed to MG-modified protein. Upon incubation of Nalpha-acetyl-L-arginine with MG at 37 degrees C, two nonfluorescent products and one fluorescent product were detected as the major products. The nonfluorescent products were identified as the Ndelta-(5-hydro-5-methyl-4-imidazolon-2-yl)-L-ornithine derivatives (5-hydro-5-methylimidazolone) and a novel MG-arginine adduct having a tetrahydropyrimidine moiety (Ndelta-(4-carboxy-4,6-dimethyl-5, 6-dihydroxy-1,4,5,6-tetrahydropyrimidine-2-yl)-L-ornithine). On the basis of the following chemical and spectroscopic evidence, the major fluorescent product, putatively identified as Ndelta-(5-methylimidazolon-2-yl)-L-ornithine (5-methylimidazolone), was found to be identical to Ndelta-(5-hydroxy-4, 6-dimethylpyrimidine-2-yl)-L-ornithine (argpyrimidine): (i) the low and high resolution fast atom bombardment-mass spectrometry gave a molecular ion peak at m/z of 297 (M+H) and a molecular formula of C10H25O6N4, respectively, which coincided with argpyrimidine; (ii) the 1H NMR spectrum of this product in d6-Me2SO showed a singlet at 2.10 ppm corresponding to six protons; (iii) the peak corresponding to the 5-methylimidazolone derivative was not detected by the liquid chromatography-mass spectrometry with the mode of selected ion monitoring; (iv) incubation of 5-hydro-5-methylimidazolone, a putative precursor of 5-methylimidazolone, at 37 degrees C for 14 days scarcely generated 5-methylimidazolone. On the other hand, as an immunochemical approach to the detection of these MG adducts, we raised the monoclonal antibodies (mAb3C and mAb6B) directed to the MG-modified protein and found that they specifically recognized the major fluorescent product, argpyrimidine, as the dominant epitope. The immunohistochemical analysis of the kidneys from diabetic patients revealed the localization of argpyrimidine in intima and media of small artery walls. Furthermore, the accumulation of argpyrimidine was also observed in some arterial walls of the rat brain after middle cerebral artery occlusion followed by reperfusion. These results suggest that argpyrimidine may contribute to the progression of not only long term diabetic complications, such as nephropathy and atherosclerosis, but also the tissue injury caused by ischemia/reperfusion.
Collapse
Affiliation(s)
- T Oya
- Laboratory of Food and Biodynamics, Nagoya University Graduate School of Bioagricultural Sciences, Nagoya 464-8601, Kobe University School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Deng Y, Yu PH. Assessment of the deamination of aminoacetone, an endogenous substrate for semicarbazide-sensitive amine oxidase. Anal Biochem 1999; 270:97-102. [PMID: 10328770 DOI: 10.1006/abio.1999.4058] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Methylglyoxal, a toxic aldehyde, has been reported to be increased in diabetes and has been claimed to be related to diabetic complications. Aminoacetone, an intermediate in the metabolism of threonine and glycine, has been proposed to be an endogenous substrate for semicarbazide-sensitive amine oxidase (SSAO). Methylglyoxal is the product. An HPLC procedure for the determination of SSAO activity toward aminoacetone in vitro is described. It was observed in previous assays that methylglyoxal formed via deamination of aminoacetone was quite unstable and led to erroneous results. o-Phenylenediamine (o-PD) was therefore employed for derivatization of methylglyoxal. o-PD does not affect SSAO activity and can be included in the enzyme reaction mixture for continuous trapping of methylglyoxal. This can avoid the loss of methylglyoxal during incubation. Deamination of aminoacetone by human umbilical artery SSAO was confirmed with this improved assay. The values of Km and Vmax, are 125.9 +/- 20.5 microM and 332.2 +/- 11.7 nmol/h/mg protein, respectively. Deamination of aminoacetone was nearly completely inhibited by 1 mM semicarbazide and 1 microM MDL-72974A, a potent selective SSAO inhibitor, whereas MAO inhibitors clorgyline (1 mM) and deprenyl (1 mM) had no inhibitory effect.
Collapse
Affiliation(s)
- Y Deng
- Department of Psychiatry, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E4, Canada
| | | |
Collapse
|
28
|
Deng Y, Boomsma F, Yu PH. Deamination of methylamine and aminoacetone increases aldehydes and oxidative stress in rats. Life Sci 1998; 63:2049-58. [PMID: 9839528 DOI: 10.1016/s0024-3205(99)80001-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Semicarbazide-sensitive amine oxidase (SSAO)-mediated deamination of methylamine and aminoacetone in vitro produces carbonyl compounds, such as formaldehyde and methylglyoxal, which have been proposed to be cytotoxic and may be responsible for some pathological conditions. An HPLC procedure was developed to assess different aldehydes, which were derivatized with 2,4-dinitrophenylhydrazine (DNPH). We have demonstrated in vivo deamination of methylamine and aminoacetone by examining the excretion of formaldehyde and methylglyoxal, respectively, in rats. Following chronic administration of methylamine, the urinary level of malondialdehyde (MDA), an end product of lipid peroxidation, was also found to be substantially increased. A selective SSAO inhibitor blocked the increase of MDA. The results support the idea that increased SSAO-mediated deamination of methylamine and aminoacetone can be a potential cytotoxic risk factor.
Collapse
Affiliation(s)
- Y Deng
- Neuropsychiatry Research Unit, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
29
|
Frye EB, Degenhardt TP, Thorpe SR, Baynes JW. Role of the Maillard reaction in aging of tissue proteins. Advanced glycation end product-dependent increase in imidazolium cross-links in human lens proteins. J Biol Chem 1998; 273:18714-9. [PMID: 9668043 DOI: 10.1074/jbc.273.30.18714] [Citation(s) in RCA: 269] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dicarbonyl compounds such as glyoxal and methylglyoxal are reactive dicarbonyl intermediates in the nonenzymatic browning and cross-linking of proteins during the Maillard reaction. We describe here the quantification of glyoxal and methylglyoxal-derived imidazolium cross-links in tissue proteins. The imidazolium salt cross-links, glyoxal-lysine dimer (GOLD) and methylglyoxal-lysine dimer (MOLD), were measured by liquid chromatography/mass spectrometry and were present in lens protein at concentrations of 0. 02-0.2 and 0.1-0.8 mmol/mol of lysine, respectively. The lens concentrations of GOLD and MOLD correlated significantly with one another and also increased with lens age. GOLD and MOLD were present at significantly higher concentrations than the fluorescent cross-links pentosidine and dityrosine, identifying them as major Maillard reaction cross-links in lens proteins. Like the N-carboxy-alkyllysines Nepsilon-(carboxymethyl)lysine and Nepsilon-(carboxyethyl)lysine, these cross-links were also detected at lower concentrations in human skin collagen and increased with age in collagen. The presence of GOLD and MOLD in tissue proteins implicates methylglyoxal and glyoxal, either free or protein-bound, as important precursors of protein cross-links formed during Maillard reactions in vivo during aging and in disease.
Collapse
Affiliation(s)
- E B Frye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | | | |
Collapse
|
30
|
Amicarelli F, Bonfigli A, Colafarina S, Bucciarelli T, Principato G, Ragnelli AM, Di Ilio C, Miranda M. Effect of methylglyoxal on Bufo bufo embryo development: morphological and biochemical aspects. Chem Biol Interact 1998; 114:177-89. [PMID: 9839630 DOI: 10.1016/s0009-2797(98)00048-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Methylglyoxal (2-oxopropanal) is a cytotoxic compound that can be formed endogenously as a by-product of glycolytic pathway; so its concentration is expected to increase when glycolysis activity increases such as during embryo development. In this work we study the effect of exogenous methylglyoxal on development and embryo viability during Bufo Bufo development and on the enzymes and cofactors involved in its detoxication process (glyoxalase I and II, reduced glutathione and glyceraldehyde 3-phosphate dehydrogenase). The results show that exogenous methylglyoxal does not affect the enzymatic pattern until stage 20, while it induces a significant activity decrease of the tested enzymes at stage 25. On the contrary methylglyoxal positively influences the reduced glutathione concentration at all the considered stages. At morphological and histological levels methylglyoxal causes a strong retardation of cell division in the early stages, that results in various abnormalities in the late development. In conclusion, methylglyoxal enters the embryo and is antiproliferative and teratogenic: the data further supports the hypothesis of the importance of the glyoxalase system in the process of cell growth and division.
Collapse
Affiliation(s)
- F Amicarelli
- University of L'Aquila, Faculty of Science, Department of Basic and Applied Biology, Italy. cellular@univaq/.it
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Misra K, Banerjee AB, Ray S, Ray M. Reduction of methylglyoxal in Escherichia coli K12 by an aldehyde reductase and alcohol dehydrogenase. Mol Cell Biochem 1996; 156:117-24. [PMID: 9095467 DOI: 10.1007/bf00426333] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two enzymes, one NADPH-dependent and another NADH-dependent which catalyze the reduction of methylglyoxal to acetol have been isolated and substantially purified from crude extracts of Escherichia coli K12 cells. Substrate specificity and formation of acetol as the reaction product by both the enzymes, reversibility of NADH-dependent enzyme with alcohols as substrates and inhibitor study with NADPH-dependent enzyme indicate that NADPH-dependent and NADH-dependent enzymes are identical with an aldehyde reductase (EC 1.1.1.2) and alcohol dehydrogenase (EC 1.1.1.1) respectively. The K(m) for methylglyoxal have been determined to be 0.77 mM for NADPH-dependent and 3.8 mM for NADH-dependent enzyme. Stoichiometrically equimolar amount of acetol is formed from methylglyoxal by both NADPH- and NADH-dependent enzymes. In phosphate buffer, both the enzymes are active in the pH range of 5.8-6.6 with no sharp pH optimum. Molecular weight of both the enzymes were found to be 100,000 +/- 3,000 by gel filtration on a Sephacryl S-200 column. Both NADPH- and NADH-dependent enzymes are sensitive to sulfhydryl group reagents.
Collapse
Affiliation(s)
- K Misra
- Department of Biochemistry, University College of Science, University of Calcutta, India
| | | | | | | |
Collapse
|
32
|
Chaplen FWR, Fahl WE, Cameron DC. Effect of endogenous methylglyoxal on Chinese hamster ovary cells grown in culture. Cytotechnology 1996; 22:33-42. [DOI: 10.1007/bf00353922] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
33
|
Thornalley PJ. Advances in glyoxalase research. Glyoxalase expression in malignancy, anti-proliferative effects of methylglyoxal, glyoxalase I inhibitor diesters and S-D-lactoylglutathione, and methylglyoxal-modified protein binding and endocytosis by the advanced glycation endproduct receptor. Crit Rev Oncol Hematol 1995; 20:99-128. [PMID: 7576201 DOI: 10.1016/1040-8428(94)00149-n] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- P J Thornalley
- Department of Chemistry and Biological Chemistry, University of Essex, Colchester, UK
| |
Collapse
|
34
|
Westwood ME, Thornalley PJ. Molecular characteristics of methylglyoxal-modified bovine and human serum albumins. Comparison with glucose-derived advanced glycation endproduct-modified serum albumins. JOURNAL OF PROTEIN CHEMISTRY 1995; 14:359-72. [PMID: 8590604 DOI: 10.1007/bf01886793] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The amino acid modification, gel filtration chromatographic, and electrophoretic characteristics of bovine and human serum albumins irreversibly modified by methylglyoxal (MG-SA) and by glucose-derived advanced glycation endproducts (AGE-SA) were investigated. Methylglyoxal selectively modified arginine residues at low concentration (1 mM); at high methylglyoxal concentration (100 mM), the extent of arginine modification increased and lysine residues were also modified. Both arginine and lysine residues were modified in AGE-SA. Analytical gel filtration HPLC of serum albumin derivatives suggested that the proportion of dimers and oligomers increased with modification in both low and highly modified MG-SA and AGE-SA derivatives relative to unmodified serum albumins. In SDS-PAGE analysis, dimers and oligomers of low-modified MG-SA were dissociated into monomers, but not in highly modified MG-SA. MG-SA had increased anodic electrophoretic mobility under nondenaturing conditions at pH 8.6, indicating an increased net negative charge, which increased with extent of modification; highly modified MG-SA and AGE-SA had similar high electrophoretic mobilities. MG-SA derivatives were fluorescent: the fluorescence was characteristic of the arginine-derived imidazolone N delta-(5-methyl-4-imidazolon-2-yl)ornithine, but other fluorophores were also present. AGE-SA had similar fluorescence, attributed, in part, to glucose-derived imidazolones. AGE formed from glucose-modified proteins and AGE-like compounds formed from methylglyoxal-modified proteins may both be signals for recognition and degradation of senescent macromolecules.
Collapse
Affiliation(s)
- M E Westwood
- Department of Chemistry and Biological Chemistry, University of Essex, Wivenhoe Park, Colchester, U.K
| | | |
Collapse
|
35
|
Lyles GA, Chalmers J. Aminoacetone metabolism by semicarbazide-sensitive amine oxidase in rat aorta. Biochem Pharmacol 1995; 49:416-9. [PMID: 7857329 DOI: 10.1016/0006-2952(94)00421-h] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
High speed (105,000 g/60 min) membrane fractions from rat aorta homogenates metabolized the aliphatic amine aminoacetone (AA) to methylglyoxal (MG) with a Km of 19 +/- 3 microM, and Vmax of 510 +/- 169 nmol MG/hr/mg protein. This deaminating activity appears to be due to a semicarbazide-sensitive amine oxidase (SSAO), which is associated with smooth muscle cells in blood vessels of the rat and other species. AA was a competitive inhibitor (Ki of 28 +/- 6 microM) of the metabolism of benzylamine, a synthetic amine often used as an assay substrate for SSAO. AA is produced endogenously from mitochondrial metabolism of threonine and glycine, and thus could be a physiological substrate for SSAO, whereas the production of MG by SSAO could have cytotoxic implications for cellular function.
Collapse
Affiliation(s)
- G A Lyles
- Department of Pharmacology and Clinical Pharmacology, University of Dundee, Ninewells Hospital and Medical School, U.K
| | | |
Collapse
|
36
|
Buffoni F. Semicarbazide-sensitive amine oxidases: some biochemical properties and general considerations. PROGRESS IN BRAIN RESEARCH 1995; 106:323-31. [PMID: 8584668 DOI: 10.1016/s0079-6123(08)61228-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Semicarbazide-sensitive amine oxidases with a high affinity for benzylamine (Bz.SSAO) (E.C.1.4.3.6) have been biochemically described in many mammalian tissues (adipose tissue, lung, heart, blood vessels). The enzymic activity appears to be expressed by mesenchymal cells (fibroblasts, adipocytes, smooth muscles). Although the physiological role of this enzymic activity is still unclear, some possible physiological substrates such as histamine are discussed. Some enzymes of this class (SSAO) have been purified. They share many similarities, among which are that they contain copper and a carbonyl active site. The nature of the organic cofactor of these enzymes is discussed and data are presented which have identified pyridoxal in pig kidney diamine oxidase and in pig plasma benzylamine oxidase by gas chromatography-mass spectrometry.
Collapse
Affiliation(s)
- F Buffoni
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy
| |
Collapse
|
37
|
Lyles GA. Substrate-specificity of mammalian tissue-bound semicarbazide-sensitive amine oxidase. PROGRESS IN BRAIN RESEARCH 1995; 106:293-303. [PMID: 8584666 DOI: 10.1016/s0079-6123(08)61226-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although the existence of a membrane-bound (probably plasmalemmal) semicarbazide-sensitive amine oxidase (SSAO) is well established in various mammalian tissues, and especially within vascular smooth muscle, its importance and the possible consequences of its metabolism of certain physiological and xenobiotic amines in vivo are under continuing investigation. In this respect, there are major species-related differences in substrate specificity determined in vitro, not only towards the synthetic amine benzylamine, but also towards some other aromatic amines (e.g. tyramine, tryptamine, 2-phenylethylamine, dopamine, histamine) which are possible endogenous substrates. Inhibition of SSAO can potentiate the pharmacological activity of some amines in isolated tissue (e.g. blood vessel) preparations from some species. Recent evidence has accumulated that SSAO may also be involved in metabolizing endogenous aliphatic amines such as methylamine and aminoacetone, focussing attention on the fact that the aldehyde products (formaldehyde and methylglyoxal, respectively) are potentially cytotoxic agents. Indeed, SSAO has been implicated in experimental models of cardiovascular toxicity involving conversion of the industrial aliphatic amine allylamine to acrolein. In summary, metabolism by SSAO may reduce the physiological/pharmacological effects of some amines, but the resulting metabolites (aldehydes, H2O2) may also have important actions.
Collapse
Affiliation(s)
- G A Lyles
- Department of Pharmacology and Clinical Pharmacology, University of Dundee, Ninewells Hospital and Medical School, UK
| |
Collapse
|
38
|
Affiliation(s)
- Y Inoue
- Research Institute for Food Science, Kyoto University, Japan
| | | |
Collapse
|
39
|
Abstract
Although the interest is growing towards glyoxalases and methylglyoxal, their role in metabolism is still an enigma. In this paper, the effects of methylglyoxal in both in vivo and in vitro mammalian systems are reviewed and correlated with its interaction with macromolecules (nucleic acids, proteins). The theories on the role of methylglyoxal and glyoxalases are also discussed. Recently, data obtained have focused attention on the possible role of disturbed methylglyoxal metabolism in the development of diabetic complications and it is hoped that the contribution of methylglyoxal to pathological events can be ascertained in the near future.
Collapse
Affiliation(s)
- M P Kalapos
- Semmelweis University Medical School, First Institute of Biochemistry, Budapest, Hungary
| |
Collapse
|
40
|
Bender K, Seibert RT, Wienker TF, Kren V, Pravenec M, Bissbort S. Biochemical genetics of methylglyoxal dehydrogenases in the laboratory rat (Rattus norvegicus). Biochem Genet 1994; 32:147-54. [PMID: 7993370 DOI: 10.1007/bf00554618] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A genetic locus controlling the electrophoretic mobility of a methylglyoxal dehydrogenase (EC 1.2.1.23) in the rat is described. The locus, designated Mgd1, is expressed in liver and kidney. Inbred rat strains have fixed either allele Mgd1a or allele Mgd1b. Codominant expression is observed in heterozygotes, providing evidence for a tetrameric enzyme structure. Backcross progenies showed the expected 1:1 segregation ratio, and there is evidence that Mgd1 is linked to Pep3 and Fh1 on chromosome 13. There is also evidence for two additional methylglyoxal dehydrogenases: Mgd2, present in liver and kidney, and Mgd3, present only in heart.
Collapse
Affiliation(s)
- K Bender
- Institut für Humangenetik und Anthropologie, Universität Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Methylglyoxal, glyoxalases and the development of diabetic complications. Amino Acids 1994; 6:15-23. [DOI: 10.1007/bf00808119] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/1993] [Accepted: 06/11/1993] [Indexed: 10/26/2022]
|
42
|
Halder J, Ray M, Ray S. Inhibition of glycolysis and mitochondrial respiration of Ehrlich ascites carcinoma cells by methylglyoxal. Int J Cancer 1993; 54:443-9. [PMID: 8509219 DOI: 10.1002/ijc.2910540315] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effect of methylglyoxal (MG) on the aerobic glycolysis of Ehrlich ascites carcinoma (EAC) cells has been tested. Methylglyoxal inhibited glucose utilization and glucose 6-phosphate (G6P) and L-lactate formation in whole EAC cells. Methylglyoxal strongly inactivated glyceraldehyde 3-phosphate dehydrogenase (GA3PD) of the malignant cells, whereas MG has little inactivating effect on this enzyme from several normal sources. Methylglyoxal also inactivated only the particulate hexominase of the EAC cells, but this inactivation was less pronounced than the effect on GA3PD. Methylglyoxal has little inactivating effect on glucose 6-phosphate dehydrogenase (G6PD), and no effect on L-lactate dehydrogenase (LDH) of the malignant cells. Glucose-dependent L-lactic acid formation of EAC-cell-free homogenate was strongly inhibited by MG, but when GA3PD of normal cells was added to this homogenate, significant lactate formation was observed even in the presence of MG. Methylglyoxal also inhibited the respiration of EAC-cell mitochondria. Respiration of mitochondria isolated from liver and kidney of normal mice, however, remained unaffected. As a consequence of the inhibition of glycolysis and mitochondrial respiration, the ATP level of the EAC cells was drastically reduced. Studies reported herein strongly suggest that the tumoricidal effect of MG is mediated at least in part through the inhibition of mitochondrial respiration and inactivation of GA3PD, and this enzyme may play an important role in the high glycolytic capacity of the malignant cells.
Collapse
Affiliation(s)
- J Halder
- Indian Institute of Chemical Biology, Calcutta
| | | | | |
Collapse
|
43
|
Ayoub FM, Allen RE, Thornalley PJ. Inhibition of proliferation of human leukaemia 60 cells by methylglyoxal in vitro. Leuk Res 1993; 17:397-401. [PMID: 8501967 DOI: 10.1016/0145-2126(93)90094-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Methylglyoxal (2-oxopropanal) is the physiological substrate of the glyoxalase system. When exogenous methylglyoxal (50 microM-1 mM) was added to human leukaemia 60 (HL60) cells in culture (5 x 10(4) cells/ml), inhibition of growth and toxicity was induced. The median growth inhibitory concentration IC50 value was 238 +/- 2 microM. There was little differentiation of HL60 cells induced by methylglyoxal (a maximum of 2% differentiation with 500 microM methylglyoxal). There was no similar toxicity induced by methylglyoxal in corresponding differentiated cells, neutrophils, under the same culture conditions. Cell growth and toxicity induced by methylglyoxal (250 microM) in HL60 cells occurred in the initial 24 h of culture, after which residual surviving cells exhibited normal growth kinetics. It could also be prevented by replacing the culture medium in the initial 6 h of culture; thereafter, irreversible toxicity developed, reaching the maximum value after 24 h of culture. Growth arrest and toxicity induced by methylglyoxal increased with increasing serum composition of the medium. The mechanism of toxicity is unknown.
Collapse
Affiliation(s)
- F M Ayoub
- Department of Chemistry and Biological Chemistry, University of Essex, Colchester, U.K
| | | | | |
Collapse
|
44
|
Phillips SA, Thornalley PJ. The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 212:101-5. [PMID: 8444148 DOI: 10.1111/j.1432-1033.1993.tb17638.x] [Citation(s) in RCA: 430] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In Krebs-Ringer phosphate buffer, the rate of formation of methylglyoxal from glycerone phosphate and glyceraldehyde 3-phosphate was first order with respect to the triose phosphate with rates constant values of 1.94 +/- 0.02 x 10(-5) s-1 (n = 18) and 1.54 +/- 0.02 x 10(-4) s-1 (n = 18) at 37 degrees C, respectively. The rate of formation of methylglyoxal from glycerone phosphate and glyceraldehyde 3-phosphate in the presence of red blood cell lysate was not significantly different from the non-enzymatic value (P > 0.05). Methylglyoxal formation from glycerone phosphate was increased in the presence of triose phosphate isomerase but this may be due to the faster non-enzymatic formation from the glyceraldehyde 3-phosphate isomerisation product. For red blood cells in vitro, the predicted non-enzymatic rate of formation of methylglyoxal from glycerone phosphate and glyceraldehyde 3-phosphate may account for the metabolic flux through the glyoxalase system. The reactivity of glycerone phosphate and glyceraldehyde 3-phosphate towards the non-enzymatic formation of methylglyoxal under physiological conditions suggests that methylglyoxal formation is unavoidable from the Embden-Meyerhof pathway.
Collapse
Affiliation(s)
- S A Phillips
- Department of Chemistry and Biological Chemistry, University of Essex, Colchester, England
| | | |
Collapse
|
45
|
Affiliation(s)
- P J Thornalley
- Department of Chemistry and Biological Chemistry, University of Essex, Colchester, U.K
| |
Collapse
|
46
|
McLellan AC, Phillips SA, Thornalley PJ. The assay of methylglyoxal in biological systems by derivatization with 1,2-diamino-4,5-dimethoxybenzene. Anal Biochem 1992; 206:17-23. [PMID: 1456430 DOI: 10.1016/s0003-2697(05)80005-3] [Citation(s) in RCA: 181] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A procedure for the assay of methylglyoxal in biological systems is described, together with sample storage, sample processing procedures, and statistical evaluation. Specimen data are presented. Methylglyoxal was assayed by derivatization with 1,2-diamino-4,5-dimethoxybenzene and high-performance liquid chromatography (HPLC) of the resulting quinoxaline, 6,7-dimethoxy-2-methylquinoxaline, with spectrophotometric or fluorescence detection. Derivatization, solid-phase extraction, and HPLC were performed under acid conditions to prevent the spontaneous formation of methylglyoxal from glyceraldehyde 3-phosphate and dihydroxyacetone phosphate during the assay. The limits of detection in the biological matrix were 45 pmol (absorbance detection) and 10 pmol (fluorimetric detection), the recovery was 58%, and the intra- and interbatch coefficients of variance were 7.7 and 30.0%, respectively. The concentration of methylglyoxal in whole blood from normal healthy human individuals was (mean +/- SE, nM) 256 +/- 92 (n = 12) and that from diabetic patients was 479 +/- 49 (n = 55), showing a significant increase in diabetes mellitus (P < 0.01; Mann-Whitney U test). Sample processing under acidic conditions was essential to avoid interferences. Previous estimates of the concentration of methylglyoxal in biological samples require re-evaluation.
Collapse
Affiliation(s)
- A C McLellan
- Department of Chemistry and Biological Chemistry, University of Essex, Wivenhoe Park, United Kingdom
| | | | | |
Collapse
|
47
|
Lyles GA, Chalmers J. The metabolism of aminoacetone to methylglyoxal by semicarbazide-sensitive amine oxidase in human umbilical artery. Biochem Pharmacol 1992; 43:1409-14. [PMID: 1567465 DOI: 10.1016/0006-2952(92)90196-p] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The aliphatic amine aminoacetone has been described previously as a product of mitochondrial metabolism of threonine and glycine. Here, aminoacetone is shown to be deaminated to methylglyoxal by supernatants obtained by low speed centrifugation (600 g/10 min) of human umbilical artery homogenates, and also by membrane fractions isolated by high speed centrifugation (105,000 g/60 min) of these supernatants. Metabolism of 100 microM aminoacetone was completely inhibited by 1 mM propargylamine and MDL 72145, drugs which are capable of inhibiting the membrane-bound semicarbazide-sensitive amine oxidase (SSAO) activity found in vascular smooth muscle cells, whereas 1 mM pargyline and deprenyl which are inhibitors of monoamine oxidase, were without inhibitory effect. Estimated kinetic constants (at pH 7.8) for aminoacetone metabolism were Km = 92 microM; Vmax = 270 nmol/hr/mg protein. In addition, aminoacetone was a competitive inhibitor (Ki = 83 microM and 128 microM in low speed supernatants and high speed membrane fractions, respectively) of [14C]benzylamine metabolism by SSAO in this tissue. Aminoacetone would appear to be an endogenously occurring amine with a Km for metabolism by SSAO far lower than other aliphatic and aromatic biogenic amines examined previously as potential physiological substrates for the human vascular enzyme and possible implications of this are discussed.
Collapse
Affiliation(s)
- G A Lyles
- Department of Pharmacology, Ninewells Hospital and Medical School, University of Dundee, U.K
| | | |
Collapse
|
48
|
Kondoh Y, Kawase M, Ohmori S. D-lactate concentrations in blood, urine and sweat before and after exercise. EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY AND OCCUPATIONAL PHYSIOLOGY 1992; 65:88-93. [PMID: 1505547 DOI: 10.1007/bf01466280] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The purpose of this study was to investigate changes in the concentrations of D-lactate, L-lactate, pyruvate and methylglyoxal (MG) in body fluids after exercise. Eight untrained male students and five male students who were boat club members engaged in the exercise. Each subject performed runs of short and long duration. Compared to pre-exercise values plasma concentrations of D-lactate, L-lactate and pyruvate increased after running; in trained men by 3.6, 5.0, 3.4 times after short runs and by 1.5, 4.6, 2.0 times after long runs, and in untrained men by 3.0, 12.0, 1.6 times after short runs and 2.5, 5.6, 1.6 times after long runs, respectively. In all cases, the increase of L-lactate was always higher than that of D-lactate after running. The MG contents in red blood cells decreased markedly after running, especially in the untrained students. After short runs the MG concentration had decreased to 13% in the untrained men and 30% in the trained men, and after long runs the concentration had decreased to 41% in the untrained and 60% in the trained men. The MG in plasma and red blood cells appeared to have been utilized during relatively anaerobic exercise, especially by the untrained subjects. The D-lactate and related substances were also determined in urine, but the concentration of these substances showed no relationship to exercise. The D-lactate concentration in sweat samples tripled after short periods of running but the relative concentration to sodium ion concentration was not altered.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- Y Kondoh
- Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | | | |
Collapse
|
49
|
Ray M, Halder J, Dutta SK, Ray S. Inhibition of respiration of tumor cells by methylglyoxal and protection of inhibition by lactaldehyde. Int J Cancer 1991; 47:603-9. [PMID: 1995489 DOI: 10.1002/ijc.2910470421] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effect of methylglyoxal (MG), ascorbic acid and lactaldehyde has been tested on the in vitro respiration of Ehrlich ascites carcinoma (EAC) cells and several normal and malignant human tissues. Methylglyoxal inhibited the respiration of each type of malignant cell and tissue tested, but it had practically no inhibitory effect on the respiration of any of the normal cells and tissues. Ascorbic acid exhibited a synergistic effect with MG in inhibiting the respiration of all the neoplastic cells. In the presence of lactaldehyde, a catabolite of MG, the inhibitory effect of MG on the respiration of tumor cells was significantly reduced. Lactaldehyde can exert a similar protective effect on the loss of viability and transplantability of MG-treated EAC cells.
Collapse
Affiliation(s)
- M Ray
- Department of Pharmacy, Jadavpur University, Calcutta, India
| | | | | | | |
Collapse
|
50
|
|