1
|
Fu Y, Xu Y, Zhang M, Lv F. Removal of signal peptide variants by cation exchange chromatography: A case study. Protein Expr Purif 2025; 225:106581. [PMID: 39168393 DOI: 10.1016/j.pep.2024.106581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Signal peptide (SP) is required for secretion of recombinant proteins and typically cleaved by signal peptidase at its C-region to generate the mature proteins. Miscleavage of the SP is reported occasionally, resulting in a truncated- or elongated-terminal sequence. In the present work, we demonstrated that cation exchange (CEX) chromatography is an effective means for removing SP variants with a case study. With the selected resin/conditions, the chromatographic performance is comparable between runs performed at the low end and high end of load density and elution range. The procedure described in this work can be used as a general approach for resin selection and optimization of chromatographic conditions to remove byproducts that bind more strongly than the product to the selected resin.
Collapse
Affiliation(s)
- Yong Fu
- Downstream Process Development (DSPD), WuXi Biologics, No.1, 1150 Lan Feng Road, Feng Xian District, Shanghai, 201403, China
| | - Yangguang Xu
- Downstream Process Development (DSPD), WuXi Biologics, No.1, 1150 Lan Feng Road, Feng Xian District, Shanghai, 201403, China
| | - Maodan Zhang
- Downstream Process Development (DSPD), WuXi Biologics, No.1, 1150 Lan Feng Road, Feng Xian District, Shanghai, 201403, China
| | - Fengjuan Lv
- Downstream Process Development (DSPD), WuXi Biologics, No.1, 1150 Lan Feng Road, Feng Xian District, Shanghai, 201403, China.
| |
Collapse
|
2
|
Huang Y, Fu J, Ludwig R, Tao L, Bongers J, Ma L, Yao M, Zhu M, Das T, Russell R. Identification and quantification of signal peptide variants in an IgG1 monoclonal antibody produced in mammalian cell lines. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1068-1069:193-200. [PMID: 29078145 DOI: 10.1016/j.jchromb.2017.08.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/03/2017] [Accepted: 08/19/2017] [Indexed: 10/18/2022]
Abstract
Sequence variants of a monoclonal antibody resulting from incomplete processing of signal peptide were identified and characterized using multiple mass spectrometry platforms and reverse phase chromatography. Detection and quantification of these variants by three LC/MS platforms were assessed. Quantification was also performed by mass spectrometric analysis of the subunits of the antibody generated by reduction and IdeS proteolysis. Peptide mapping with LC/MS/MS detection was used to quantify and confirm the identities of signal peptide sequence variants. Although quantification of the signal peptide variants thru mass spectrometry approaches is system dependent, our data revealed the results are close to the values determined by chromatographic separation with UV detection. Each of the methods have proven effective in demonstrating the consistency of signal peptide variants levels across the manufacture history of the antibody.
Collapse
Affiliation(s)
- Yunping Huang
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb Co., Pennington, NJ 08534, United States.
| | - Jinmei Fu
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb Co., Pennington, NJ 08534, United States
| | - Richard Ludwig
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb Co., Pennington, NJ 08534, United States
| | - Li Tao
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb Co., Pennington, NJ 08534, United States
| | - Jacob Bongers
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb Co., Pennington, NJ 08534, United States
| | - Li Ma
- MAP Discovery Support, Bristol-Myers Squibb Co., P.O. Box 5400, Princeton, NJ 08543, United States
| | - Ming Yao
- MAP Discovery Support, Bristol-Myers Squibb Co., P.O. Box 5400, Princeton, NJ 08543, United States
| | - Mingshe Zhu
- MAP Discovery Support, Bristol-Myers Squibb Co., P.O. Box 5400, Princeton, NJ 08543, United States
| | - Tapan Das
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb Co., Pennington, NJ 08534, United States
| | - Reb Russell
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb Co., Pennington, NJ 08534, United States
| |
Collapse
|
3
|
Gibson SJ, Bond NJ, Milne S, Lewis A, Sheriff A, Pettman G, Pradhan R, Higazi DR, Hatton D. N-terminal or signal peptide sequence engineering prevents truncation of human monoclonal antibody light chains. Biotechnol Bioeng 2017; 114:1970-1977. [DOI: 10.1002/bit.26301] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/01/2017] [Accepted: 03/24/2017] [Indexed: 01/02/2023]
Affiliation(s)
- S. J. Gibson
- Department of Biopharmaceutical Development; MedImmune; Milstein Building, Granta Park Cambridge CB21 6GH United Kingdom
| | - N. J. Bond
- Department of Biopharmaceutical Development; MedImmune; Milstein Building, Granta Park Cambridge CB21 6GH United Kingdom
| | - S. Milne
- Lonza Biologics Plc; Slough Berkshire United Kingdom
| | - A. Lewis
- Department of Biopharmaceutical Development; MedImmune; Milstein Building, Granta Park Cambridge CB21 6GH United Kingdom
| | | | - G. Pettman
- Department of Biopharmaceutical Development; MedImmune; Milstein Building, Granta Park Cambridge CB21 6GH United Kingdom
| | - R. Pradhan
- Department of Biopharmaceutical Development; MedImmune; Milstein Building, Granta Park Cambridge CB21 6GH United Kingdom
| | | | - D. Hatton
- Department of Biopharmaceutical Development; MedImmune; Milstein Building, Granta Park Cambridge CB21 6GH United Kingdom
| |
Collapse
|
4
|
Characterization of a Non-Canonical Signal Peptidase Cleavage Site in a Replication Protein from Tomato Ringspot Virus. PLoS One 2016; 11:e0162223. [PMID: 27589230 PMCID: PMC5010249 DOI: 10.1371/journal.pone.0162223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/18/2016] [Indexed: 11/19/2022] Open
Abstract
The NTB-VPg polyprotein from tomato ringspot virus is an integral membrane replication protein associated with endoplasmic reticulum membranes. A signal peptidase (SPase) cleavage was previously detected in the C-terminal region of NTB-VPg downstream of a 14 amino acid (aa)-long hydrophobic region (termed TM2). However, the exact location of the cleavage site was not determined. Using in vitro translation assays, we show that the SPase cleavage site is conserved in the NTB-VPg protein from various ToRSV isolates, although the rate of cleavage varies from one isolate to another. Systematic site-directed mutagenesis of the NTB-VPg SPase cleavage sites of two ToRSV isolates allowed the identification of sequences that affect cleavage efficiency. We also present evidence that SPase cleavage in the ToRSV-Rasp2 isolate occurs within a GAAGG sequence likely after the AAG (GAAG/G). Mutation of a downstream MAAV sequence to AAAV resulted in SPase cleavage at both the natural GAAG/G and the mutated AAA/V sequences. Given that there is a distance of seven aa between the two cleavage sites, this indicates that there is flexibility in the positioning of the cleavage sites relative to the inner surface of the membrane and the SPase active site. SPase cleavage sites are typically located 3–7 aa downstream of the hydrophobic region. However, the NTB-VPg GAAG/G cleavage site is located 17 aa downstream of the TM2 hydrophobic region, highlighting unusual features of the NTB-VPg SPase cleavage site. A putative 11 aa-long amphipathic helix was identified immediately downstream of the TM2 region and five aa upstream of the GAAG/G cleavage site. Based on these results, we present an updated topology model in which the hydrophobic and amphipathic domains form a long tilted helix or a bent helix in the membrane lipid bilayer, with the downstream cleavage site(s) oriented parallel to the membrane inner surface.
Collapse
|
5
|
Cuviello F, Tellgren-Roth Å, Lara P, Ruud Selin F, Monné M, Bisaccia F, Nilsson I, Ostuni A. Membrane insertion and topology of the amino-terminal domain TMD0 of multidrug-resistance associated protein 6 (MRP6). FEBS Lett 2015; 589:3921-8. [PMID: 26545497 DOI: 10.1016/j.febslet.2015.10.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 01/25/2023]
Abstract
The function of the ATP-binding cassette transporter MRP6 is unknown but mutations in its gene cause pseudoxanthoma elasticum. We have investigated the membrane topology of the N-terminal transmembrane domain TMD0 of MRP6 and the membrane integration and orientation propensities of its transmembrane segments (TMs) by glycosylation mapping. Results demonstrate that TMD0 has five TMs, an Nout-Cin topology and that the less hydrophobic TMs have strong preference for their orientation in the membrane that affects the neighboring TMs. Two disease-causing mutations changing the number of positive charges in the loops of TMD0 did not affect the membrane insertion efficiencies of the adjacent TMs.
Collapse
Affiliation(s)
- Flavia Cuviello
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Åsa Tellgren-Roth
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Patricia Lara
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Frida Ruud Selin
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Magnus Monné
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Faustino Bisaccia
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - IngMarie Nilsson
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden.
| | - Angela Ostuni
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy.
| |
Collapse
|
6
|
Human signal peptide had advantage over mouse in secretory expression. Histochem Cell Biol 2009; 132:239-46. [PMID: 19404667 DOI: 10.1007/s00418-009-0602-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2009] [Indexed: 10/20/2022]
Abstract
The signal peptide is a critical component in the secretory expression of protein in eukaryotic cells. It has been verified that the signal peptide of mouse nerve growth factor could mediate the secretory expression of beta-endorphin in cultured non-neuronal cells. Although there is a counterpart of nerve growth factor in human genome, no research about the signal sequence from human genome has been reported. The function of mediating secretory expression is affected by many factors. We assumed that the counterpart from human genome could function as the signal peptide from mouse nerve growth factor does and these two signal sequences had different efficiency in mediating secretory expression of beta-endorphin, but we could not figure out which one had a better function. To validate our hypothesis and give an answer to the question, we constructed two eukaryotic vectors, pcDNA3.1-hEP and pcDNA3.1-mEP, containing human and mouse signal sequences in fusion genes, respectively. RT-PCR showed that the constructed fusion genes were expressed in NIH3T3 cells. We also found that the detected beta-endorphin by the immunofluorescent technique was mainly in the cytoplasm of NIH3T3 cells. The concentration of beta-endorphin in the culture medium by RIA is 280.33 +/- 24.16 (pg/ml) and 191.04 +/- 7.96 (pg/ml) from pcDNA3.1-hEP and pcDNA3.1-mEP, respectively, and there was a significant statistical difference between them (P < 0.05). A difference existed between them and that from blank vector individually (P < 0.01). These findings suggest that our constructed fusion gene containing the signal sequence of human nerve growth factor can be secretorily expressed and the efficiency of the signal peptide from human nerve growth factor is higher than that of mouse signal peptide.
Collapse
|
7
|
Pearson MS, McManus DP, Smyth DJ, Lewis FA, Loukas A. In vitro and in silico analysis of signal peptides from the human blood fluke,Schistosoma mansoni. ACTA ACUST UNITED AC 2005; 45:201-11. [PMID: 16051070 DOI: 10.1016/j.femsim.2005.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 03/14/2005] [Accepted: 03/25/2005] [Indexed: 01/28/2023]
Abstract
Proteins secreted by and anchored on the surfaces of parasites are in intimate contact with host tissues. The transcriptome of infective cercariae of the blood fluke, Schistosoma mansoni, was screened using signal sequence trap to isolate cDNAs encoding predicted proteins with an N-terminal signal peptide. Twenty cDNA fragments were identified, most of which contained predicted signal peptides or transmembrane regions, including a novel putative seven-transmembrane receptor and a membrane-associated mitogen-activated protein kinase. The developmental expression pattern within different life-cycle stages ranged from ubiquitous to a transcript that was highly upregulated in the cercaria. A bioinformatics-based comparison of 100 signal peptides from each of schistosomes, humans, a parasitic nematode and Escherichia coli showed that differences in the sequence composition of signal peptides, notably the residues flanking the predicted cleavage site, might account for the negative bias exhibited in the processing of schistosome signal peptides in mammalian cells.
Collapse
Affiliation(s)
- Mark S Pearson
- Division of Infectious Diseases and Immunology, Australian Centre for International and Tropical Health and Nutrition, Queensland Institute of Medical Research and The University of Queensland, 300 Herston Road, Brisbane, QLD 4006, Australia
| | | | | | | | | |
Collapse
|
8
|
Couvineau A, Rouyer-Fessard C, Laburthe M. Presence of a N-terminal signal peptide in class II G protein-coupled receptors: crucial role for expression of the human VPAC1 receptor. REGULATORY PEPTIDES 2004; 123:181-5. [PMID: 15518910 DOI: 10.1016/j.regpep.2004.06.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The hVPAC1 receptor for vasoactive intestinal peptide (VIP) and pituitary adenylyl cyclase activating peptide (PACAP) has an N-terminal signal peptide like all other class II G protein-coupled receptors (GPCRs). We determined the role of the signal peptide in expression of human VPAC1 receptor in transfected CHO cells. Three constructs were transfected: Flag30-hVPAC1, a receptor containing an inserted FLAG sequence between Ala30 and Ala31 and fused in the C-terminal position to GFP; Flag30-[delta1-30]-hVPAC1, the same construct as Flag30-hVPAC1 but lacking the 1-30 putative signal peptide (SP) sequence; Flag0-hVPAC1, a receptor containing an N-terminal FLAG sequence and fused in the C-terminal position to GFP. For each construct, we determined 125I-VIP binding, VIP-induced cAMP production, GFP fluorescence and indirect immunofluorescence on nonpermeabilized cells incubated with mouse monoclonal anti-Flag antibodies. The data were consistent with a crucial role of the signal peptide for expression of functional VPAC1 receptors at the cell surface and suggested that the signal peptide is cleaved during the translocation of the receptor to the plasma membrane, probably in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Alain Couvineau
- INSERM U410, Neuroendocrinologie et Biologie Cellulaire Digestives, Institut National de la Santé et de la Recherche Médicale, Faculté de Médecine Xavier Bichat, Paris F-75018, France.
| | | | | |
Collapse
|
9
|
Tissier C, Woolhead CA, Robinson C. Unique structural determinants in the signal peptides of "spontaneously" inserting thylakoid membrane proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3131-41. [PMID: 12084053 DOI: 10.1046/j.1432-1033.2002.02943.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A series of thylakoid membrane proteins, including PsbX, PsbY and PsbW, are synthesized with cleavable signal peptides yet inserted using none of the known Sec/SRP/Tat/Oxa1-type insertion machineries. Here, we show that, although superficially similar to Sec-type signal peptides, these thylakoidal signal peptides contain very different determinants. First, we show that basic residues in the N-terminal domain are not important, ruling out electrostatic interactions as an essential element of the insertion mechanism, and implying a fundamentally different targeting mechanism when compared with the structurally similar M13 procoat. Second, we show that acidic residues in the C-domain are essential for the efficient maturation of the PsbX and PsbY-A1 peptides, and that even a single substitution of the -5 Glu by Val in the PsbX signal peptide abolishes maturation in the thylakoid. Processing efficiency is restored to an extent, but not completely, by the highly hydrophilic Asn, implying that this domain is required to be hydrophilic, but preferably negatively charged, in order to present the cleavage site in an optimal manner. We show that substitution of the PsbX C-domain Glu residues by Val leads to a burial of the cleavage site within the bilayer although insertion is unaffected. Finally, we show that substitution of the Glu residues in the lumenal A2 loop of the PsbY polyprotein leads to a block in cleavage on the stromal side of the membrane, and present evidence that the PsbY-A2 signal peptide is required to be relatively hydrophilic and unable to adopt a transmembrane conformation on its own. These data indicate that, rather than being merely additional hydrophobic regions to promote insertion, the signal peptides of these thylakoid proteins are complex domains with uniquely stringent requirements in the C-domain and/or translocated loop regions.
Collapse
Affiliation(s)
- Christophe Tissier
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
10
|
Chan D, Ho MS, Cheah KS. Aberrant signal peptide cleavage of collagen X in Schmid metaphyseal chondrodysplasia. Implications for the molecular basis of the disease. J Biol Chem 2001; 276:7992-7. [PMID: 11115494 DOI: 10.1074/jbc.m003361200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Schmid metaphyseal chondrodysplasia results from mutations in the collagen X (COL10A1) gene. With the exception of two cases, the known mutations are clustered in the C-terminal nonhelical (NC1) domain of the collagen X. In vitro and cell culture studies have shown that the NC1 mutations result in impaired collagen X trimer assembly and secretion. In the two other cases, missense mutations that alter Gly(18) at the -1 position of the putative signal peptide cleavage site were identified (Ikegawa, S., Nakamura, K., Nagano, A., Haga, N., and Nakamura, Y. (1997) Hum. Mutat. 9, 131-135). To study their impact on collagen X biosynthesis using in vitro cell-free translation in the presence of microsomes, and cell transfection assays, these two mutations were created in COL10A1 by site-directed mutagenesis. The data suggest that translocation of the mutant pre-alpha1(X) chains into the microsomes is not affected, but cleavage of the signal peptide is inhibited, and the mutant chains remain anchored to the membrane of microsomes. Cell-free translation and transfection studies in cells showed that the mutant chains associate into trimers but cannot form a triple helix. The combined effect of both the lack of signal peptide cleavage and helical configuration is impaired secretion. Thus, despite the different nature of the NC1 and signal peptide mutations in collagen X, both result in impaired collagen X secretion, probably followed by intracellular retention and degradation of mutant chains, and causing the Schmid metaphyseal chondrodysplasia phenotype.
Collapse
Affiliation(s)
- D Chan
- Department of Biochemistry, University of Hong Kong, Hong Kong SAR, China.
| | | | | |
Collapse
|
11
|
De Berardinis P, Guardiola J, Manca F. Epitope context and reshaping of activated T helper cell repertoire. Hum Immunol 1997; 54:189-93. [PMID: 9297537 DOI: 10.1016/s0198-8859(97)00075-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In recent years, a growing interest in the study of peptide antigenicity in relation to the role of flanking sequences and protein topology in processing, presentation, and recognition has been observed. However, the information available on the antigenicity of recombinant fusion proteins and their effect on the selection of antigen receptor repertoires is limited. To analyze the role of molecular topology of T epitopes in a system relevant to human pathology, we have used the bacterially expressed Schistosoma japonicum glutathione S transferase (GST) to construct recombinant antigens containing HIV-1 derived T cell determinants, and human T cell clones specific for these determinants. We found that antigenicity of a given GST-peptide combination was not the same when T cells and antigen presenting cells from different individuals were tested. Our results show that differences in processing and presentation of chimeric proteins are not dictated by the use of diverse restriction elements. We also found that the context in which an antigenic peptide is delivered affects the recruited repertoire as defined according to T cell receptor V beta usage and fine specificities of selected T cells.
Collapse
Affiliation(s)
- P De Berardinis
- Institute of Protein Biochemistry and Enzymology, CNR, Naples, Italy
| | | | | |
Collapse
|
12
|
Barkocy-Gallagher GA, Cannon JG, Bassford PJ. Thirty-three amino acids of the mature moiety of an unprocessed maltose-binding protein are sufficient for export in Escherichia coli. J Bacteriol 1994; 176:3397-9. [PMID: 8195099 PMCID: PMC205515 DOI: 10.1128/jb.176.11.3397-3399.1994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Maltose-binding protein (MBP) is translocated across the cytoplasmic membrane of Escherichia coli; successful export depends on information in both the signal peptide and the mature moiety of the protein. To determine the shortest portion of the mature region that would maintain detectable entry of MBP into the export pathway, we took advantage of the properties of an MBP species with proline substituted in the +1 position relative to the cleavage site (MBP27-P). This protein efficiently crosses the cytoplasmic membrane but is not processed and acts as a competitive inhibitor of signal peptidase I (leader peptidase). Export of MBP27-P is measured by the inhibition of processing of other proteins, such as ribose-binding protein (RBP). A series of truncated derivatives of MBP27-P were tested for the ability to inhibit processing of RBP. An MBP27-P species with only 33 amino acids of the mature moiety inhibited processing of RBP, indicating that this truncated polypeptide was probably exported and interacted with signal peptidase I.
Collapse
Affiliation(s)
- G A Barkocy-Gallagher
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill 27599-7290
| | | | | |
Collapse
|
13
|
Human coagulation factor X deficiency caused by a mutant signal peptide that blocks cleavage by signal peptidase but not targeting and translocation to the endoplasmic reticulum. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53380-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
Roy P, Chatellard C, Lemay G, Crine P, Boileau G. Transformation of the signal peptide/membrane anchor domain of a type II transmembrane protein into a cleavable signal peptide. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53830-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Kronman C, Velan B, Gozes Y, Leitner M, Flashner Y, Lazar A, Marcus D, Sery T, Papier Y, Grosfeld H. Production and secretion of high levels of recombinant human acetylcholinesterase in cultured cell lines: microheterogeneity of the catalytic subunit. Gene 1992; 121:295-304. [PMID: 1446827 DOI: 10.1016/0378-1119(92)90134-b] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To allow for structural analysis of the human acetylcholinesterase (hAChE) subunit, a series of eukaryotic vectors was designed for efficient expression. Several eukaryotic multicistronic expression vectors were tested in various mammalian cell lines. All expression vectors contained the selectable neo gene under control of a weak promoter, while the hAChE cDNA was under control of the cytomegalovirus (CMV) immediate-early or Rous sarcoma virus long terminal repeat (RSV LTR) or simian virus 40 (SV40) early promoters. Optimal production and secretion of recombinant hAChE (rehAChE) was achieved in the embryonal kidney 293 cell line transfected either with the RSV-hAChE or with CMV-hAChE expression vectors. Clones expressing and secreting as much as 5-25 pg of enzyme per cell per 24 h were obtained without resorting to coamplification techniques or continuous maintenance of cells under selective pressure. The purified (specific activity of 6000 units per mg protein) homodimer and tetramer enzyme molecules displayed typical AChE biochemical properties: a Km value of 120 microM for acetylthiocholine; a kcat value of 3.9 x 10(5)/min, and selective by AChE-specific inhibitors. Catalytic subunit dimers (130 kDa) exhibit differential N-glycosylation patterns, and upon reduction resolve into 67- and 70-kDa monomeric subunits. These two forms appear as a single discrete 62-kDa band following deglycosylation by N-glycanase. The N-terminal amino acid sequence analysis of the purified mature enzyme suggests the existence of two alternative cleavage sites for the removal of the signal peptide, in which the 'mature' position 1 is either Ala31 or Gly33. Both of these positions conform with the consensus signal peptide recognition sequences and demonstrate bidirected processing of signal peptides on a native molecule.
Collapse
Affiliation(s)
- C Kronman
- Department of Biochemistry, Israel Institute for Biological Research, Ness-Ziona
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nixon PJ, Trost JT, Diner BA. Role of the carboxy terminus of polypeptide D1 in the assembly of a functional water-oxidizing manganese cluster in photosystem II of the cyanobacterium Synechocystis sp. PCC 6803: assembly requires a free carboxyl group at C-terminal position 344. Biochemistry 1992; 31:10859-71. [PMID: 1420199 DOI: 10.1021/bi00159a029] [Citation(s) in RCA: 185] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The D1 polypeptide of the photosystem II (PSII) reaction center is synthesized as a precursor polypeptide which is posttranslationally processed at the carboxy terminus. It has been shown in spinach that such processing removes nine amino acids, leaving Ala344 as the C-terminal residue [Takahashi, M., Shiraishi, T., & Asada, K. (1988) FEBS Lett. 240, 6-8; Takahashi, Y., Nakane, H., Kojima, H., & Satoh, K. (1990) Plant Cell Physiol. 31, 273-280]. We show here that processing on the carboxy side of Ala344 also occurs in the cyanobacterium Synechocystis 6803, resulting in the removal of 16 amino acids. By constructing a deletion strain of Synechocystis 6803 that lacks the three copies of the psbA gene encoding D1, we have developed a system for generating psbA mutants. Using this system, we have constructed mutants of Synechocystis 6803 that are modified in the region of the C-terminus of the D1 polypeptide. Characterization of these mutants has revealed that (1) processing of the D1 polypeptide is blocked when the residue after the cleavage site is changed from serine to proline (mutant Ser345Pro) with the result that the manganese cluster is unable to assemble correctly; (2) the C-terminal extension of 16 amino acid residues can be deleted with little consequence either for insertion of D1 into the thylakoid membrane or for assembly of D1 into a fully active PSII complex; (3) removal of only one more residue (mutant Ala344stop) results in a loss of assembly of the manganese cluster; and (4) the ability of detergent-solubilized PSII core complexes (lacking the manganese cluster) to bind and oxidize exogenous Mn2+ by the secondary donor, Z+, is largely unaffected in the processing mutants (the Ser345Pro mutant of Synechocystis 6803 and the LF-1 mutant of Scenedesmus obliquus) and the truncation mutant Ala344stop. Our results are consistent with a role for processing in regulating the assembly of the photosynthetic manganese cluster and a role for the free carboxy terminus of the mature D1 polypeptide in the ligation of one or more manganese ions of the cluster.
Collapse
Affiliation(s)
- P J Nixon
- Central Research and Development Department, E.I. Du Pont de Nemours & Company, Wilmington, Delaware 19880-0173
| | | | | |
Collapse
|
17
|
Hegner M, von Kieckebusch-Gück A, Falchetto R, James P, Semenza G, Mantei N. Single amino acid substitutions can convert the uncleaved signal-anchor of sucrase-isomaltase to a cleaved signal sequence. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41873-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
18
|
Affiliation(s)
- G von Heijne
- Department of Molecular Biology, Karolinska Institute Center for Structural Biochemistry, NOVUM, Huddinge, Sweden
| |
Collapse
|
19
|
Synthesis of precursor maltose-binding protein with proline in the +1 position of the cleavage site interferes with the activity of Escherichia coli signal peptidase I in vivo. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48419-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|