1
|
Regulation of arginine biosynthesis, catabolism and transport in Escherichia coli. Amino Acids 2019; 51:1103-1127. [DOI: 10.1007/s00726-019-02757-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/27/2019] [Indexed: 11/26/2022]
|
2
|
Differential protein-DNA contacts for activation and repression by ArgP, a LysR-type (LTTR) transcriptional regulator in Escherichia coli. Microbiol Res 2017; 206:141-158. [PMID: 29146251 DOI: 10.1016/j.micres.2017.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 11/21/2022]
Abstract
ArgP is a LysR-type transcriptional regulator (LTTR) that operates with two effector molecules, lysine and arginine, to differentially regulate gene expression. Effector-free ArgP stimulates transcription of all investigated regulon members, except argO, whereas lysine abolishes this effect. Activation of argO, encoding an exporter for arginine and canavanine, is strictly dependent on arginine-bound ArgP. Lysine counteracts this effect and even though lysine-bound ArgP stimulates RNA polymerase recruitment at the argO promoter, the complex is non-productive. It is presently unclear what distinguishes argO from other ArgP targets and how binding of arginine and lysine translates in antagonistic effects on promoter activity. Here we generate high resolution contact maps of effector-free and effector-bound ArgP-DNA interactions and identify the sequence 5'-CTTAT as the consensus recognition motif for ArgP binding. argO is the only operator at which ArgP binding overlaps the -35 promoter element and binding of arginine results in a repositioning of the promoter proximal bound ArgP-arg subunits. This effect was mimicked by the generation of a 10bp insertion mutant (ins-10) in the argO operator that renders its activation by ArgP arginine-independent. ArgP-induced DNA bending of the argO operator by approximately 60° was found to be effector independent. An ArgP:DNA binding stoichiometry of 4:1 indicates binding of four ArgP subunits even to DNA constructs that are truncated for one binding subsite (ΔABS). These results provide insight into the molecular mechanisms of ArgP-mediated regulation and a molecular explanation for the unique arginine-dependence of argO activation that distinguishes this particular ArgP target from all others.
Collapse
|
3
|
Moore JM, Magnan D, Mojica AK, Núñez MAB, Bates D, Rosenberg SM, Hastings PJ. Roles of Nucleoid-Associated Proteins in Stress-Induced Mutagenic Break Repair in Starving Escherichia coli. Genetics 2015; 201:1349-62. [PMID: 26500258 PMCID: PMC4676537 DOI: 10.1534/genetics.115.178970] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/18/2015] [Indexed: 01/02/2023] Open
Abstract
The mutagenicity of DNA double-strand break repair in Escherichia coli is controlled by DNA-damage (SOS) and general (RpoS) stress responses, which let error-prone DNA polymerases participate, potentially accelerating evolution during stress. Either base substitutions and indels or genome rearrangements result. Here we discovered that most small basic proteins that compact the genome, nucleoid-associated proteins (NAPs), promote or inhibit mutagenic break repair (MBR) via different routes. Of 15 NAPs, H-NS, Fis, CspE, and CbpA were required for MBR; Dps inhibited MBR; StpA and Hha did neither; and five others were characterized previously. Three essential genes were not tested. Using multiple tests, we found the following: First, Dps, which reduces reactive oxygen species (ROS), inhibited MBR, implicating ROS in MBR. Second, CbpA promoted F' plasmid maintenance, allowing MBR to be measured in an F'-based assay. Third, Fis was required for activation of the SOS DNA-damage response and could be substituted in MBR by SOS-induced levels of DinB error-prone DNA polymerase. Thus, Fis promoted MBR by allowing SOS activation. Fourth, H-NS represses ROS detoxifier sodB and was substituted in MBR by deletion of sodB, which was not otherwise mutagenic. We conclude that normal ROS levels promote MBR and that H-NS promotes MBR by maintaining ROS. CspE positively regulates RpoS, which is required for MBR. Four of five previously characterized NAPs promoted stress responses that enhance MBR. Hence, most NAPs affect MBR, the majority via regulatory functions. The data show that a total of six NAPs promote MBR by regulating stress responses, indicating the importance of nucleoid structure and function to the regulation of MBR and of coupling mutagenesis to stress, creating genetic diversity responsively.
Collapse
Affiliation(s)
- Jessica M Moore
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, 77030 Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030
| | - David Magnan
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| | - Ana K Mojica
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030 Undergraduate Program on Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, 62210, Morelos, Mexico
| | - María Angélica Bravo Núñez
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, 77030 Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| | - David Bates
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, 77030
| | - Susan M Rosenberg
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, 77030 Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, 77030
| | - P J Hastings
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|
4
|
Abstract
In recent years it has become clear that complex regulatory circuits control the initiation step of DNA replication by directing the assembly of a multicomponent molecular machine (the orisome) that separates DNA strands and loads replicative helicase at oriC, the unique chromosomal origin of replication. This chapter discusses recent efforts to understand the regulated protein-DNA interactions that are responsible for properly timed initiation of chromosome replication. It reviews information about newly identified nucleotide sequence features within Escherichia coli oriC and the new structural and biochemical attributes of the bacterial initiator protein DnaA. It also discusses the coordinated mechanisms that prevent improperly timed DNA replication. Identification of the genes that encoded the initiators came from studies on temperature-sensitive, conditional-lethal mutants of E. coli, in which two DNA replication-defective phenotypes, "immediate stop" mutants and "delayed stop" mutants, were identified. The kinetics of the delayed stop mutants suggested that the defective gene products were required specifically for the initiation step of DNA synthesis, and subsequently, two genes, dnaA and dnaC, were identified. The DnaA protein is the bacterial initiator, and in E. coli, the DnaC protein is required to load replicative helicase. Regulation of DnaA accessibility to oriC, the ordered assembly and disassembly of a multi-DnaA complex at oriC, and the means by which DnaA unwinds oriC remain important questions to be answered and the chapter discusses the current state of knowledge on these topics.
Collapse
|
5
|
Abstract
This review considers the pathways for the degradation of amino acids and a few related compounds (agmatine, putrescine, ornithine, and aminobutyrate), along with their functions and regulation. Nitrogen limitation and an acidic environment are two physiological cues that regulate expression of several amino acid catabolic genes. The review considers Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella species. The latter is included because the pathways in Klebsiella species have often been thoroughly characterized and also because of interesting differences in pathway regulation. These organisms can essentially degrade all the protein amino acids, except for the three branched-chain amino acids. E. coli, Salmonella enterica serovar Typhimurium, and Klebsiella aerogenes can assimilate nitrogen from D- and L-alanine, arginine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and D- and L-serine. There are species differences in the utilization of agmatine, citrulline, cysteine, histidine, the aromatic amino acids, and polyamines (putrescine and spermidine). Regardless of the pathway of glutamate synthesis, nitrogen source catabolism must generate ammonia for glutamine synthesis. Loss of glutamate synthase (glutamineoxoglutarate amidotransferase, or GOGAT) prevents utilization of many organic nitrogen sources. Mutations that create or increase a requirement for ammonia also prevent utilization of most organic nitrogen sources.
Collapse
|
6
|
Wolański M, Donczew R, Zawilak-Pawlik A, Zakrzewska-Czerwińska J. oriC-encoded instructions for the initiation of bacterial chromosome replication. Front Microbiol 2015; 5:735. [PMID: 25610430 PMCID: PMC4285127 DOI: 10.3389/fmicb.2014.00735] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/05/2014] [Indexed: 01/09/2023] Open
Abstract
Replication of the bacterial chromosome initiates at a single origin of replication that is called oriC. This occurs via the concerted action of numerous proteins, including DnaA, which acts as an initiator. The origin sequences vary across species, but all bacterial oriCs contain the information necessary to guide assembly of the DnaA protein complex at oriC, triggering the unwinding of DNA and the beginning of replication. The requisite information is encoded in the unique arrangement of specific sequences called DnaA boxes, which form a framework for DnaA binding and assembly. Other crucial sequences of bacterial origin include DNA unwinding element (DUE, which designates the site at which oriC melts under the influence of DnaA) and binding sites for additional proteins that positively or negatively regulate the initiation process. In this review, we summarize our current knowledge and understanding of the information encoded in bacterial origins of chromosomal replication, particularly in the context of replication initiation and its regulation. We show that oriC encoded instructions allow not only for initiation but also for precise regulation of replication initiation and coordination of chromosomal replication with the cell cycle (also in response to environmental signals). We focus on Escherichia coli, and then expand our discussion to include several other microorganisms in which additional regulatory proteins have been recently shown to be involved in coordinating replication initiation to other cellular processes (e.g., Bacillus, Caulobacter, Helicobacter, Mycobacterium, and Streptomyces). We discuss diversity of bacterial oriC regions with the main focus on roles of individual DNA recognition sequences at oriC in binding the initiator and regulatory proteins as well as the overall impact of these proteins on the formation of initiation complex.
Collapse
Affiliation(s)
- Marcin Wolański
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław Wrocław, Poland
| | - Rafał Donczew
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Anna Zawilak-Pawlik
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Jolanta Zakrzewska-Czerwińska
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław Wrocław, Poland ; Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| |
Collapse
|
7
|
Marbaniang CN, Gowrishankar J. Role of ArgP (IciA) in lysine-mediated repression in Escherichia coli. J Bacteriol 2011; 193:5985-96. [PMID: 21890697 PMCID: PMC3194910 DOI: 10.1128/jb.05869-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 08/24/2011] [Indexed: 11/20/2022] Open
Abstract
Initially identified as an inhibitor of oriC-initiated DNA replication in vitro, the ArgP or IciA protein of Escherichia coli has subsequently been described as a nucleoid-associated protein and also as a transcriptional regulator of genes involved in DNA replication (dnaA and nrdA) and amino acid metabolism (argO, dapB, and gdhA [the last in Klebsiella pneumoniae]). ArgP mediates lysine (Lys) repression of argO, dapB, and gdhA in vivo, for which two alternative mechanisms have been identified: at the dapB and gdhA regulatory regions, ArgP binding is reduced upon the addition of Lys, whereas at argO, RNA polymerase is trapped at the step of promoter clearance by Lys-bound ArgP. In this study, we have examined promoter-lac fusions in strains that were argP(+) or ΔargP or that were carrying dominant argP mutations in order to identify several new genes that are ArgP-regulated in vivo, including lysP, lysC, lysA, dapD, and asd (in addition to argO, dapB, and gdhA). All were repressed upon Lys supplementation, and in vitro studies demonstrated that ArgP binds to the corresponding regulatory regions in a Lys-sensitive manner (with the exception of argO, whose binding to ArgP was Lys insensitive). Neither dnaA nor nrdA was ArgP regulated in vivo, although their regulatory regions exhibited low-affinity binding to ArgP. Our results suggest that ArgP is a transcriptional regulator for Lys repression of genes in E. coli but that it is noncanonical in that it also exhibits low-affinity binding, without apparent direct regulatory effect, to a number of additional sites in the genome.
Collapse
Affiliation(s)
- Carmelita N. Marbaniang
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500 001, India
| | - J. Gowrishankar
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500 001, India
| |
Collapse
|
8
|
Zhou X, Lou Z, Fu S, Yang A, Shen H, Li Z, Feng Y, Bartlam M, Wang H, Rao Z. Crystal structure of ArgP from Mycobacterium tuberculosis confirms two distinct conformations of full-length LysR transcriptional regulators and reveals its function in DNA binding and transcriptional regulation. J Mol Biol 2009; 396:1012-24. [PMID: 20036253 DOI: 10.1016/j.jmb.2009.12.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 10/20/2022]
Abstract
Mycobacterium tuberculosis presents a challenging medical problem partly due to its persistent nonreplicative state. The inhibitor of chromosomal replication (iciA) protein encoded by M. tuberculosis has been suggested to inhibit chromosome replication initiation in vitro. However, iciA has also been identified as arginine permease (ArgP), a regulatory transcription factor for arginine outward transport. In order to understand the function of ArgP, we have determined its crystal structure by X-ray crystallography to a resolution of 2.7 A. ArgP is a member of the LysR-type transcriptional regulators (LTTRs) and forms a homodimer with each subunit containing two domains: a DNA binding domain (DBD) and a regulatory domain (RD). Two conformationally distinct subunits were identified: closed subunit and open subunit. This phenomenon was first observed in LTTR CbnR, but not in LTTR CrgA, and might be common in LTTRs. We identified two forms of dimers: DBD-type dimers and RD-type dimers. The former is confirmed in solution, and the latter is considered to form oligomers during function. We provide the first structural insights into the interaction of the extreme C-terminal residues with the DBD, which is confirmed by mutagenesis and analytical ultracentrifugation to be important for stability of the functional dimer. The structure serves as a model to suggest how three critical aspects, namely, DNA binding, homo-oligomerization, and interaction with RNAP, are mediated during regulation processing. A model is proposed for the LysR family of dimeric regulators.
Collapse
Affiliation(s)
- Xiaohong Zhou
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Peeters E, Nguyen Le Minh P, Foulquié-Moreno M, Charlier D. Competitive activation of the Escherichia coli argO gene coding for an arginine exporter by the transcriptional regulators Lrp and ArgP. Mol Microbiol 2009; 74:1513-26. [DOI: 10.1111/j.1365-2958.2009.06950.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Laishram RS, Gowrishankar J. Environmental regulation operating at the promoter clearance step of bacterial transcription. Genes Dev 2008; 21:1258-72. [PMID: 17504942 PMCID: PMC1865496 DOI: 10.1101/gad.1520507] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In vivo transcription of the Escherichia coli argO gene, which encodes an arginine (Arg) exporter, requires the LysR-family regulator protein ArgP (previously called IciA) and is induced in the presence of Arg or its naturally occurring antimetabolite analog canavanine. Lysine (Lys) addition, on the other hand, phenocopies an argP mutation to result in the shutoff of argO expression. We now report that the ArgP dimer by itself is able to bind the argO promoter-operator region to form a binary complex, but that the formation of a ternary complex with RNA polymerase is greatly stimulated only in presence of a coeffector. Both Arg and Lys were proficient as coeffectors for ArgP-mediated recruitment of RNA polymerase to, and open complex formation at, the argO promoter, although only Arg (but not Lys) was competent to activate transcription. The two coeffectors competed for binding to ArgP, and the ternary complex that had been assembled on the argO template in the presence of Lys could be chased into a transcriptionally active state upon Arg addition. Our results support a novel mechanism of argO regulation in which Lys-bound ArgP reversibly restrains RNA polymerase at the promoter, at a step (following open complex formation) that precedes, and is common to, both abortive and productive transcription. This represents, therefore, the first example of an environmental signal regulating the final step of promoter clearance by RNA polymerase in bacterial transcription. We propose that, in E. coli cells, the ternary complex remains assembled and poised at the argO promoter at all times to respond, positively or negatively, to instantaneous changes in the ratio of intracellular Arg to Lys concentrations.
Collapse
Affiliation(s)
- Rakesh S. Laishram
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076, India
| | - Jayaraman Gowrishankar
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076, India
- Corresponding author.E-MAIL ; FAX 91-40-27155610
| |
Collapse
|
11
|
Braun M, Thöny-Meyer L. Cytochrome c maturation and the physiological role of c-type cytochromes in Vibrio cholerae. J Bacteriol 2005; 187:5996-6004. [PMID: 16109941 PMCID: PMC1196146 DOI: 10.1128/jb.187.17.5996-6004.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae lives in different habitats, varying from aquatic ecosystems to the human intestinal tract. The organism has acquired a set of electron transport pathways for aerobic and anaerobic respiration that enable adaptation to the various environmental conditions. We have inactivated the V. cholerae ccmE gene, which is required for cytochrome c biogenesis. The resulting strain is deficient of all c-type cytochromes and allows us to characterize the physiological role of these proteins. Under aerobic conditions in rich medium, V. cholerae produces at least six c-type cytochromes, none of which is required for growth. Wild-type V. cholerae produces active fumarate reductase, trimethylamine N-oxide reductase, cbb3 oxidase, and nitrate reductase, of which only the fumarate reductase does not require maturation of c-type cytochromes. The reduction of nitrate in the medium resulted in the accumulation of nitrite, which is toxic for the cells. This suggests that V. cholerae is able to scavenge nitrate from the environment only in the presence of other nitrite-reducing organisms. The phenotypes of cytochrome c-deficient V. cholerae were used in a transposon mutagenesis screening to search for additional genes required for cytochrome c maturation. Over 55,000 mutants were analyzed for nitrate reductase and cbb3 oxidase activity. No transposon insertions other than those within the ccm genes for cytochrome c maturation and the dsbD gene, which encodes a disulphide bond reductase, were found. In addition, the role of a novel CcdA-like protein in cbb3 oxidase assembly is discussed.
Collapse
Affiliation(s)
- Martin Braun
- Institut für Mikrobiologie, ETH Hönggerberg, Wolfgang-Pauli-Str. 10, 8093 Zürich, Switzerland.
| | | |
Collapse
|
12
|
Nandineni MR, Laishram RS, Gowrishankar J. Osmosensitivity associated with insertions in argP (iciA) or glnE in glutamate synthase-deficient mutants of Escherichia coli. J Bacteriol 2004; 186:6391-9. [PMID: 15375119 PMCID: PMC516596 DOI: 10.1128/jb.186.19.6391-6399.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An ampicillin enrichment strategy following transposon insertion mutagenesis was employed to obtain NaCl-sensitive mutants of a gltBD (glutamate synthase [GOGAT]-deficient) strain of Escherichia coli. It was reasoned that the gltBD mutation would sensitize the parental strain even to small perturbations affecting osmotolerance. Insertions conferring an osmosensitive phenotype were identified in the proU, argP (formerly iciA), and glnE genes encoding a glycine betaine/proline transporter, a LysR-type transcriptional regulator, and the adenylyltransferase for glutamine synthetase, respectively. The gltBD+ derivatives of the strains were not osmosensitive. The argP mutation, but not the glnE mutation, was associated with reduced glutamate dehydrogenase activity and a concomitant NH4+ assimilation defect in the gltBD strain. Supplementation of the medium with lysine or a lysine-containing dipeptide phenocopied the argP null mutation for both osmosensitivity and NH4+ assimilation deficiency in a gltBD background, and a dominant gain-of-function mutation in argP was associated with suppression of these lysine inhibitory effects. Osmosensitivity in the gltBD strains, elicited either by lysine supplementation or by introduction of the argP or glnE mutations (but not proU mutations), was also correlated with a reduction in cytoplasmic glutamate pools in cultures grown at elevated osmolarity. We propose that an inability to accumulate intracellular glutamate at high osmolarity underlies the osmosensitive phenotype of both the argP gltBD and glnE gltBD mutants, the former because of a reduction in the capacity for NH4+ assimilation into glutamate and the latter because of increased channeling of glutamate into glutamine.
Collapse
|
13
|
Nandineni MR, Gowrishankar J. Evidence for an arginine exporter encoded by yggA (argO) that is regulated by the LysR-type transcriptional regulator ArgP in Escherichia coli. J Bacteriol 2004; 186:3539-46. [PMID: 15150242 PMCID: PMC415761 DOI: 10.1128/jb.186.11.3539-3546.2004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anonymous open reading frame yggA of Escherichia coli was identified in this study as a gene that is under the transcriptional control of argP (previously called iciA), which encodes a LysR-type transcriptional regulator protein. Strains with null mutations in either yggA or argP were supersensitive to the arginine analog canavanine, and yggA-lac expression in vivo exhibited argP(+)-dependent induction by arginine. Lysine supplementation phenocopied the argP null mutation in that it virtually abolished yggA expression, even in the argP+ strain. The dipeptides arginylalanine and lysylalanine behaved much like arginine and lysine, respectively, to induce and to turn off yggA transcription. Dominant missense mutations in argP (argPd) that conferred canavanine resistance and rendered yggA-lac expression constitutive were obtained. The protein deduced to be encoded by yggA shares similarity with a basic amino acid exporter (LysE) of Corynebacterium glutamicum, and we obtained evidence for increased arginine efflux from E. coli strains with either the argPd mutation or multicopy yggA+. The null yggA mutation abolished the increased arginine efflux from the argPd strain. Our results suggest that yggA encodes an ArgP-regulated arginine exporter, and we have accordingly renamed it argO (for "arginine outward transport"). We propose that the physiological function of argO may be either to prevent the accumulation to toxic levels of canavanine (which is a plant-derived antimetabolite) or arginine or to maintain an appropriate balance between the intracellular lysine and arginine concentrations.
Collapse
|
14
|
Steuber J. The C-terminally truncated NuoL subunit (ND5 homologue) of the Na+-dependent complex I from Escherichia coli transports Na+. J Biol Chem 2003; 278:26817-22. [PMID: 12740360 DOI: 10.1074/jbc.m301682200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The NADH:quinone oxidoreductase (complex I) from Escherichia coli acts as a primary Na+ pump. Expression of a C-terminally truncated version of the hydrophobic NuoL subunit (ND5 homologue) from E. coli complex I resulted in Na+-dependent growth inhibition of the E. coli host cells. Membrane vesicles containing the truncated NuoL subunit (NuoLN) exhibited 2-4-fold higher Na+ uptake activity than control vesicles without NuoLN. Respiratory proton transport into inverted vesicles containing NuoLN decreased upon addition of Na+, but was not affected by K+, indicating a Na+-dependent increase of proton permeability of membranes in the presence of NuoLN. The His-tagged NuoLN protein was solubilized, enriched by affinity chromatography, and reconstituted into proteoliposomes. Reconstituted His6-NuoLN facilitated the uptake of Na+ into the proteoliposomes along a concentration gradient. This Na+ uptake was prevented by EIPA (5-(N-ethyl-N-isopropyl)-amiloride), which acts as inhibitor against Na+/H+ antiporters.
Collapse
Affiliation(s)
- Julia Steuber
- Mikrobiologisches Institut der Eidgenössischen Technischen Hochschule, ETH-Zentrum, Schmelzbergstrasse 7, CH-8092 Zürich, Switzerland.
| |
Collapse
|
15
|
Vlamis-Gardikas A, Potamitou A, Zarivach R, Hochman A, Holmgren A. Characterization of Escherichia coli null mutants for glutaredoxin 2. J Biol Chem 2002; 277:10861-8. [PMID: 11741965 DOI: 10.1074/jbc.m111024200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three Escherichia coli glutaredoxins catalyze GSH-disulfide oxidoreductions, but the atypical 24-kDa glutaredoxin 2 (Grx2, grxB gene), in contrast to the 9-kDa glutaredoxin 1 (Grx1, grxA gene) and glutaredoxin 3 (Grx3, grxC gene), is not a hydrogen donor for ribonucleotide reductase. To improve the understanding of glutaredoxin function, a null mutant for grxB (grxB(-)) was constructed and combined with other mutations. Null mutants for grxB or all three glutaredoxin genes were viable in rich and minimal media with little changes in their growth properties. Expression of leaderless alkaline phosphatase showed that Grx1 and Grx2 (but not Grx3) contributed in the reduction of cytosolic protein disulfides. Moreover, Grx1 could catalyze disulfide formation in the oxidizing cytosol of combined null mutants for glutathione reductase and thioredoxin 1. grxB(-) cells were more sensitive to hydrogen peroxide and other oxidants and showed increased carbonylation of intracellular proteins, particularly in the stationary phase. Significant up-regulation of catalase activity was observed in null mutants for thioredoxin 1 and the three glutaredoxins, whereas up-regulation of glutaredoxin activity was observed in catalase-deficient strains with additional defects in the thioredoxin pathway. The expression of catalases is thus interconnected with the thioredoxin/glutaredoxin pathways in the antioxidant response.
Collapse
Affiliation(s)
- Alexios Vlamis-Gardikas
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
16
|
Jeon Y, Lee YS, Han JS, Kim JB, Hwang DS. Multimerization of phosphorylated and non-phosphorylated ArcA is necessary for the response regulator function of the Arc two-component signal transduction system. J Biol Chem 2001; 276:40873-9. [PMID: 11527965 DOI: 10.1074/jbc.m104855200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To adapt to anaerobic conditions, Escherichia coli operates the Arc two-component signal transduction system, consisting of a sensor kinase, ArcB, and a response regulator, ArcA. ArcA is converted to the active form, phosphorylated ArcA (ArcA-P), by ArcB-mediated phosphorylation. The active ArcA-P binds to the promoter regions of target genes, thereby regulating their transcriptional activities. The phosphoryl group of ArcA-P is unstable with a half-life of 30 min. However, we were able to inhibit the dephosphorylation for more than 12 h by the addition of EDTA; this allowed us to characterize ArcA-P. Gel-filtration and glycerol sedimentation experiments demonstrated that ArcA exists as a homo-dimer. ArcA phosphorylated by either ArcB or carbamyl phosphate multimerizes to form a tetramer of dimers; this multimer binds to the ArcA DNA binding site. Isoelectric focusing gel electrophoresis and nitrocellulose-filter binding analyses indicated that the ArcA multimer is composed of both ArcA-P and ArcA in a ratio, 1:1. The ArcA(D54E) mutant protein was unable to be phosphorylated by ArcB. This defect resulted in the inability of ArcA(D54E) to form a multimer or to bind to the ArcA DNA binding site. These results indicate that phosphorylation of ArcA induces multimerization prior to DNA binding, and the multimerization is a prerequisite for binding. Our results suggest a novel model that phosphorylation of ArcA by ArcB regulates multimerization of ArcA, which in turn functions as a response regulator.
Collapse
Affiliation(s)
- Y Jeon
- Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
17
|
Lee H, Kang S, Bae SH, Choi BS, Hwang DS. SeqA protein aggregation is necessary for SeqA function. J Biol Chem 2001; 276:34600-6. [PMID: 11457824 DOI: 10.1074/jbc.m101339200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding of SeqA protein to hemimethylated GATC sequences is important in the negative modulation of chromosomal initiation at oriC, and in the formation of SeqA foci necessary for Escherichia coli chromosome segregation. Using gel-filtration chromotography and glycerol gradient sedimentation, we demonstrate that SeqA exists as a homotetramer. SeqA tetramers are able to aggregate or multimerize in a reversible, concentration-dependent manner. Using a bacterial two-hybrid system, we demonstrate that the N-terminal region of SeqA, especifically the 9th amino acid residue, glutamic acid, is required for functional SeqA-SeqA interaction. Although the SeqA(E9K) mutant protein, containing lysine rather than glutamic acid at the 9th amino acid residue, exists as a tetramer, the mutant protein binds to hemimethylated DNA with altered binding patterns as compared with wild-type SeqA. Aggregates of SeqA(E9K) are defective in hemimethylated DNA binding. Here we demonstrate that proper interaction between SeqA tetramers is required for both hemimethylated DNA binding and formation of active aggregates. SeqA tetramers and aggregates might be involved in the formation of SeqA foci required for the segregation of chromosomal DNA as well as the regulation of chromosomal initiation.
Collapse
Affiliation(s)
- H Lee
- Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
18
|
Azam TA, Ishihama A. Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity. J Biol Chem 1999; 274:33105-13. [PMID: 10551881 DOI: 10.1074/jbc.274.46.33105] [Citation(s) in RCA: 347] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The genome of Escherichia coli is composed of a single molecule of circular DNA with the length of about 47,000 kilobase pairs, which is associated with about 10 major DNA-binding proteins, altogether forming the nucleoid. We expressed and purified 12 species of the DNA-binding protein, i.e. CbpA (curved DNA-binding protein A), CbpB or Rob (curved DNA-binding protein B or right arm of the replication origin binding protein), DnaA (DNA-binding protein A), Dps (DNA-binding protein from starved cells), Fis (factor for inversion stimulation), Hfq (host factor for phage Q(beta)), H-NS (histone-like nucleoid structuring protein), HU (heat-unstable nucleoid protein), IciA (inhibitor of chromosome initiation A), IHF (integration host factor), Lrp (leucine-responsive regulatory protein), and StpA (suppressor of td(-) phenotype A). The sequence specificity of DNA binding was determined for all the purified nucleoid proteins using gel-mobility shift assays. Five proteins (CbpB, DnaA, Fis, IHF, and Lrp) were found to bind to specific DNA sequences, while the remaining seven proteins (CbpA, Dps, Hfq, H-NS, HU, IciA, and StpA) showed apparently sequence-nonspecific DNA binding activities. Four proteins, CbpA, Hfq, H-NS, and IciA, showed the binding preference for the curved DNA. From the apparent dissociation constant (K(d)) determined using the sequence-specific or nonspecific DNA probes, the order of DNA binding affinity were determined to be: HU > IHF > Lrp > CbpB(Rob) > Fis > H-NS > StpA > CbpA > IciA > Hfq/Dps, ranging from 25 nM (HU binding to the non-curved DNA) to 250 nM (Hfq binding to the non-curved DNA), under the assay conditions employed.
Collapse
Affiliation(s)
- T A Azam
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | |
Collapse
|
19
|
Ali Azam T, Iwata A, Nishimura A, Ueda S, Ishihama A. Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol 1999; 181:6361-70. [PMID: 10515926 PMCID: PMC103771 DOI: 10.1128/jb.181.20.6361-6370.1999] [Citation(s) in RCA: 674] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome DNA of Escherichia coli is associated with about 10 DNA-binding structural proteins, altogether forming the nucleoid. The nucleoid proteins play some functional roles, besides their structural roles, in the global regulation of such essential DNA functions as replication, recombination, and transcription. Using a quantitative Western blot method, we have performed for the first time a systematic determination of the intracellular concentrations of 12 species of the nucleoid protein in E. coli W3110, including CbpA (curved DNA-binding protein A), CbpB (curved DNA-binding protein B, also known as Rob [right origin binding protein]), DnaA (DNA-binding protein A), Dps (DNA-binding protein from starved cells), Fis (factor for inversion stimulation), Hfq (host factor for phage Q(beta)), H-NS (histone-like nucleoid structuring protein), HU (heat-unstable nucleoid protein), IciA (inhibitor of chromosome initiation A), IHF (integration host factor), Lrp (leucine-responsive regulatory protein), and StpA (suppressor of td mutant phenotype A). Intracellular protein levels reach a maximum at the growing phase for nine proteins, CbpB (Rob), DnaA, Fis, Hfq, H-NS, HU, IciA, Lrp, and StpA, which may play regulatory roles in DNA replication and/or transcription of the growth-related genes. In descending order, the level of accumulation, calculated in monomers, in growing E. coli cells is Fis, Hfq, HU, StpA, H-NS, IHF*, CbpB (Rob), Dps*, Lrp, DnaA, IciA, and CbpA* (stars represent the stationary-phase proteins). The order of abundance, in descending order, in the early stationary phase is Dps*, IHF*, HU, Hfq, H-NS, StpA, CbpB (Rob), DnaA, Lrp, IciA, CbpA, and Fis, while that in the late stationary phase is Dps*, IHF*, Hfq, HU, CbpA*, StpA, H-NS, CbpB (Rob), DnaA, Lrp, IciA, and Fis. Thus, the major protein components of the nucleoid change from Fis and HU in the growing phase to Dps in the stationary phase. The curved DNA-binding protein, CbpA, appears only in the late stationary phase. These changes in the composition of nucleoid-associated proteins in the stationary phase are accompanied by compaction of the genome DNA and silencing of the genome functions.
Collapse
Affiliation(s)
- T Ali Azam
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | |
Collapse
|
20
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
21
|
Chattoraj DK, Schneider TD. Replication control of plasmid P1 and its host chromosome: the common ground. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 57:145-86. [PMID: 9175433 DOI: 10.1016/s0079-6603(08)60280-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- D K Chattoraj
- Laboratory of Biochemistry NCI, NIH Bethesda, Maryland 20892, USA
| | | |
Collapse
|
22
|
Zhou P, Bogan JA, Welch K, Pickett SR, Wang HJ, Zaritsky A, Helmstetter CE. Gene transcription and chromosome replication in Escherichia coli. J Bacteriol 1997; 179:163-9. [PMID: 8981994 PMCID: PMC178675 DOI: 10.1128/jb.179.1.163-169.1997] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transcript levels of several Escherichia coli genes involved in chromosome replication and cell division were measured in dnaC2(Ts) mutants synchronized for chromosome replication by temperature shifts. Levels of transcripts from four of the genes, dam, nrdA, mukB, and seqA, were reduced at a certain stage during chromosome replication. The magnitudes of the decreases were similar to those reported previously ftsQ and ftsZ (P. Zhou and C. E. Helmstetter, J. Bacteriol. 176:6100-6106, 1994) but considerably less than those seen with dnaA, gidA, and mioC (P. W. Theisen, J. E. Grimwade, A. C. Leonard, J. A. Bogan, and C. E. Helmstetter, Mol. Microbiol. 10:575-584, 1993). The decreases in transcripts appeared to correlate with the estimated time at which the genes replicated. This same conclusion was reached in studies with synchronous cultures obtained with the baby machine in those instances in which periodicities in transcript levels were clearly evident. The transcriptional levels for two genes, minE and tus, did not fluctuate significantly, whereas the transcripts for one gene, iciA, appeared to increase transiently. The results support the idea that cell cycle timing in E. coli is not governed by timed bursts of gene expression, since the overall findings summarized in this report are generally consistent with cell cycle-dependent transient inhibitions of transcription rather than stimulations.
Collapse
Affiliation(s)
- P Zhou
- Department of Biological Sciences, Florida Institute of Technology, Melbourne 32901, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Lee YS, Hwang DS. Occlusion of RNA Polymerase by Oligomerization of DnaA Protein over the dnaA Promoter of Escherichia coli. J Biol Chem 1997. [DOI: 10.1074/jbc.272.1.83] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
24
|
Bogan JA, Helmstetter CE. mioC transcription, initiation of replication, and the eclipse in Escherichia coli. J Bacteriol 1996; 178:3201-6. [PMID: 8655499 PMCID: PMC178071 DOI: 10.1128/jb.178.11.3201-3206.1996] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The potential role of mioC transcription as a negative regulator of initiation of chromosome replication in Escherichia coli was evaluated. When initiation was aligned by a shift of dnaC2(Ts) mutants to nonpermissive temperature (40 degrees C), mioC transcript levels measured at the 5' end or reading through oriC disappeared within one mass doubling. Upon return to permissive temperature (30 degrees C), the transcripts reappeared coordinately about 15 min after the first synchronized initiation and then declined sharply again 10 min later, just before the second initiation. Although these observations were consistent with the idea that mioC transcription might have to be terminated prior to initiation, it was found that the interval between initiations at permissive temperature, i.e., the eclipse period, was not influenced by the time required to shut down mioC transcription, since the eclipse was the same for chromosomes and minichromosomes which lacked mioC transcription. This finding did not, in itself, rule out the possibility that mioC transcription must be terminated prior to initiation of replication, since it might normally be shut off before initiation, and never be limiting, even during the eclipse. Therefore, experiments were performed to determine whether the continued presence of mioC transcription during the process of initiation altered the timing of initiation. It was found that minichromosomes possessing a deletion in the DnaA box upstream of the promoter transcribed mioC continuously and replicated with the same timing as those that either shut down expression prior to initiation or lacked expression entirely. It was further shown that mioC transcription was present throughout the induction of initiation by addition of chloramphenicol to a dnaA5(Ts) mutant growing at a semipermissive temperature. Thus, transcription through oriC emanating from the mioC gene promoter is normally inhibited prior to initiation of replication by the binding of DnaA protein, but replication can initiate with the proper timing even when transcription is not shut down; i.e., mioC does not serve as a negative regulator of initiation. It is proposed, however, that the reappearance and subsequent disappearance of mioC transcription during a 10-min interval at the end of the eclipse serves as an index of the minimum time required for the establishment of active protein-DNA complexes at the DnaA boxes in the fully methylated origin region of the chromosome. On this basis, the eclipse constitutes the time for methylation of the newly formed DNA strands (15 to 20 min at 30 degrees C) followed by the time for DnaA protein to bind and activate oriC for replication (10 min).
Collapse
Affiliation(s)
- J A Bogan
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, 32901, USA
| | | |
Collapse
|
25
|
Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 1996; 178:1274-82. [PMID: 8631702 PMCID: PMC177799 DOI: 10.1128/jb.178.5.1274-1282.1996] [Citation(s) in RCA: 770] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The live attenuated bacillus Calmette-Guérin (BCG) vaccine for the prevention of disease associated with Mycobacterium tuberculosis was derived from the closely related virulent tubercle bacillus, Mycobacterium bovis. Although the BCG vaccine has been one of the most widely used vaccines in the world for over 40 years, the genetic basis of BCG's attenuation has never been elucidated. We employed subtractive genomic hybridization to identify genetic differences between virulent M. bovis and M. tuberculosis and avirulent BCG. Three distinct genomic regions of difference (designated RD1 to RD3) were found to be deleted from BCG, and the precise junctions and DNA sequence of each deletion were determined. RD3, a 9.3-kb genomic segment present in virulent laboratory strains of M. bovis and M. tuberculosis, was absent from BCG and 84% of virulent clinical isolates. RD2, a 10.7-kb DNA segment containing a novel repetitive element and the previously identified mpt-64 gene, was conserved in all virulent laboratory and clinical tubercle bacilli tested and was deleted only from substrains derived from the original BCG Pasteur strain after 1925. Thus, the RD2 deletion occurred after the original derivation of BCG. RD1, a 9.5-kb DNA segment found to be deleted from all BCG substrains, was conserved in all virulent laboratory and clinical isolates of M. bovis and M. tuberculosis tested. The reintroduction of RD1 into BCG repressed the expression of at least 10 proteins and resulted in a protein expression profile almost identical to that of virulent M. bovis and M. tuberculosis, as determined by two-dimensional gel electrophoresis. These data indicate a role for RD1 in the regulation of multiple genetic loci, suggesting that the loss of virulence by BCG is due to a regulatory mutation. These findings may be applicable to the rational design of a new attenuated tuberculosis vaccine and the development of new diagnostic tests to distinguish BCG vaccination from tuberculosis infection.
Collapse
Affiliation(s)
- G G Mahairas
- Laboratory of Tuberculosis and Molecular Microbiology, PathoGenesis Corp., Seattle, Washington 98119, USA
| | | | | | | | | |
Collapse
|
26
|
Thöny-Meyer L, Künzler P, Hennecke H. Requirements for maturation of Bradyrhizobium japonicum cytochrome c550 in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 235:754-61. [PMID: 8654426 DOI: 10.1111/j.1432-1033.1996.00754.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Various forms of Bradyrhizobium japonicum cytochrome c550 (the cycA gene product) were overexpressed in Escherichia coli cells grown under different conditions. Antibodies directed against a synthetic cytochrome c550 peptide were used as tools to detect both, apoprotein and holoprotein. Complete maturation of the apoprotein into its holo form with haem covalently bound to the polypeptide was observed only under anaerobic growth conditions and in E. coli K12 derivatives, whereas haem binding did not occur in the E. coli BL21 host. When maturation was complete, holocytochrome c550 was found exclusively in the periplasmic fraction. A cycA-expressing plasmid construct lacking the genetic information for the signal sequence produced apoprotein that was rapidly degraded without further maturation. Mutations in the haem-binding site resulted in products that were translocated through the cytoplasmic membrane, but apparently became degraded. Our results support the view that attachment of haem to the apoprotein is not a prerequisite for cleavage of the signal sequence and occurs on the periplasmic side of the membrane, subsequent to translocation of the apoprotein precursor.
Collapse
Affiliation(s)
- L Thöny-Meyer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zurich, Switzerland
| | | | | |
Collapse
|
27
|
|
28
|
Abstract
Research into the enzymology of DNA replication has seen a multitude of highly significant advances during the past year, in both prokaryotic and eukaryotic systems. The scope of this article is limited to chromosomal replicases and origins of initiation. The multiprotein chromosomal replicases of prokaryotes and eukaryotes appear to be strikingly similar in structure and function, although future work may reveal their differences. Recent developments, elaborating the activation of origins in several systems, have begun to uncover mechanisms of regulation. The enzymology of eukaryotic origins has, until now, been limited to viral systems, but over the past few years, enzymology has caught a grip on the cellular origins of yeast.
Collapse
Affiliation(s)
- Z Kelman
- Department of Microbiology, Cornell University Medical College, New York, New York 10021
| | | |
Collapse
|
29
|
Hsu J, Bramhill D, Thompson CM. Open complex formation by DnaA initiation protein at the Escherichia coli chromosomal origin requires the 13-mers precisely spaced relative to the 9-mers. Mol Microbiol 1994; 11:903-11. [PMID: 8022267 DOI: 10.1111/j.1365-2958.1994.tb00369.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The 245 bp chromosomal origin, oriC, of Escherichia coli contains two iterated motifs. Three 13-mers tandemly repeated at one end of the origin and four 9-mers in a nearby segment of oriC are highly conserved in enteric bacteria, as is the distance separating these two sequence clusters. Mutant origins were constructed with altered spacing of the 9-mers relative to the 13-mers. Loss or addition of even a single base drastically reduced replication, both in vivo and in vitro. Spacing mutant origins bound effectively to DnaA protein but failed to support efficient open complex formation. These results suggest that interaction with the 9-mers positions at least one subunit of DnaA to recognize directly the nearest 13-mer for DNA melting.
Collapse
Affiliation(s)
- J Hsu
- Department of Biochemistry, Merck Research Laboratories, Rahway, New Jersey 07065
| | | | | |
Collapse
|
30
|
Yoo SJ, Seol JH, Woo SK, Suh SW, Hwang DS, Ha DB, Chung CH. Hydrolysis of the IciA protein, an inhibitor of DNA replication initiation, by protease Do in Escherichia coli. FEBS Lett 1993; 327:17-20. [PMID: 8335089 DOI: 10.1016/0014-5793(93)81029-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The 33 kDa IciA protein, an inhibitor of replication initiation of the Escherichia coli chromosome, was found to be specifically cleaved to 27 kDa fragment by protease Do, the htrA gene product. The 27 kDa polypeptide could no longer interact with the oriC region, and therefore the cleavage-site is likely to reside within the N-terminal DNA-binding domain of the IciA protein. In addition, protease Do was found to localize primarily to the cytoplasm although it also could bind to membranes through an ionic interaction. These results suggest that intracellular breakdown of the IciA protein by protease Do may provide a potential mechanism involving the regulation of initiation of DNA replication in Escherichia coli.
Collapse
Affiliation(s)
- S J Yoo
- Department of Molecular Biology, College of Natural Sciences, Seoul National University, Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Livneh Z, Cohen-Fix O, Skaliter R, Elizur T. Replication of damaged DNA and the molecular mechanism of ultraviolet light mutagenesis. Crit Rev Biochem Mol Biol 1993; 28:465-513. [PMID: 8299359 DOI: 10.3109/10409239309085136] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
On UV irradiation of Escherichia coli cells, DNA replication is transiently arrested to allow removal of DNA damage by DNA repair mechanisms. This is followed by a resumption of DNA replication, a major recovery function whose mechanism is poorly understood. During the post-UV irradiation period the SOS stress response is induced, giving rise to a multiplicity of phenomena, including UV mutagenesis. The prevailing model is that UV mutagenesis occurs by the filling in of single-stranded DNA gaps present opposite UV lesions in the irradiated chromosome. These gaps can be formed by the activity of DNA replication or repair on the damaged DNA. The gap filling involves polymerization through UV lesions (also termed bypass synthesis or error-prone repair) by DNA polymerase III. The primary source of mutations is the incorporation of incorrect nucleotides opposite lesions. UV mutagenesis is a genetically regulated process, and it requires the SOS-inducible proteins RecA, UmuD, and UmuC. It may represent a minor repair pathway or a genetic program to accelerate evolution of cells under environmental stress conditions.
Collapse
Affiliation(s)
- Z Livneh
- Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
33
|
Opposed actions of regulatory proteins, DnaA and IciA, in opening the replication origin of Escherichia coli. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)50060-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
34
|
Opening of the replication origin of Escherichia coli by DnaA protein with protein HU or IHF. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)50059-4] [Citation(s) in RCA: 195] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|