1
|
Gunning P, O'Neill G, Hardeman E. Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev 2008; 88:1-35. [PMID: 18195081 DOI: 10.1152/physrev.00001.2007] [Citation(s) in RCA: 367] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tropomyosins are rodlike coiled coil dimers that form continuous polymers along the major groove of most actin filaments. In striated muscle, tropomyosin regulates the actin-myosin interaction and, hence, contraction of muscle. Tropomyosin also contributes to most, if not all, functions of the actin cytoskeleton, and its role is essential for the viability of a wide range of organisms. The ability of tropomyosin to contribute to the many functions of the actin cytoskeleton is related to the temporal and spatial regulation of expression of tropomyosin isoforms. Qualitative and quantitative changes in tropomyosin isoform expression accompany morphogenesis in a range of cell types. The isoforms are segregated to different intracellular pools of actin filaments and confer different properties to these filaments. Mutations in tropomyosins are directly involved in cardiac and skeletal muscle diseases. Alterations in tropomyosin expression directly contribute to the growth and spread of cancer. The functional specificity of tropomyosins is related to the collaborative interactions of the isoforms with different actin binding proteins such as cofilin, gelsolin, Arp 2/3, myosin, caldesmon, and tropomodulin. It is proposed that local changes in signaling activity may be sufficient to drive the assembly of isoform-specific complexes at different intracellular sites.
Collapse
Affiliation(s)
- Peter Gunning
- Oncology Research Unit, The Children's Hospital at Westmead, and Muscle Development Unit, Children's Medical Research Institute, Westmead; New South Wales, Australia.
| | | | | |
Collapse
|
2
|
Gunning PW, Ferguson V, Brennan KJ, Hardeman EC. Alpha-skeletal actin induces a subset of muscle genes independently of muscle differentiation and withdrawal from the cell cycle. J Cell Sci 2001; 114:513-24. [PMID: 11171321 DOI: 10.1242/jcs.114.3.513] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Muscle differentiation is characterized by the induction of genes encoding contractile structural proteins and the repression of nonmuscle isoforms from these gene families. We have examined the importance of this regulated order of gene expression by expressing the two sarcomeric muscle actins characteristic of the differentiated state, i.e. alpha-skeletal and alpha-cardiac actin, in C2 mouse myoblasts. Precocious accumulation of transcripts and proteins for a group of differentiation-specific genes was elicited by alpha-skeletal actin only: four muscle tropomyosins, two muscle actins, desmin and MyoD. The nonmuscle isoforms of tropomyosin and actin characteristic of the undifferentiated state continued to be expressed, and no myosin heavy or light chain or troponin transcripts characteristic of muscle differentiation were induced. Stable transfectants displayed a substantial reduction in cell surface area and in the levels of nonmuscle tropomyosins and beta-actin, consistent with a relationship between the composition of the actin cytoskeleton and cell surface area. The transfectants displayed normal cell cycle progression. We propose that alpha-skeletal actin can activate a regulatory pathway linking a subset of muscle genes that operates independently of normal differentiation and withdrawal from the cell cycle.
Collapse
Affiliation(s)
- P W Gunning
- Cell Biology Unit and Muscle Development Unit, Children's Medical Research Institute, Locked Bag 23, Wentworthville, NSW, 2145, Australia
| | | | | | | |
Collapse
|
3
|
Abstract
Tropomyosins (Tm) are a large family of isoforms obtained from multiple genes and by extensive alternative splicing. They bind in the alpha-helical groove of the actin filament and are therefore core components of this extensive cytoskeletal system. In non-muscle cells the Tm isoforms have been implicated in a diversity of processes including cytokinesis, vesicle transport, motility, morphogenesis and cell transformation. Using immunohistochemical localization in cultured primary cortical neurons with an antibody that potentially identifies all non-muscle TM5 gene isoforms compared with one that specifically identifies a subset of isoforms, the possibility was raised that there were considerably more isoforms derived from this gene than the four previously described. Using polymerase chain reaction (PCR) analysis we have now shown that the rat brain generates at least 10 mRNA isoforms using multiple combinations of terminal exons and two internal exons. There is extensive developmental regulation of these isoforms in the brain and there appears to be a switch in the preferential use of the two internal exons 6a to 6b from the embryonic to the adult isoforms. Specific isoforms using alternate carboxyl-terminal exons are differentially localized within the adult rat cerebellum. It is suggested that the tightly regulated spatial and temporal expression of Tm isoforms plays an important role in the development and maintenance of specific neuronal compartments. This may be achieved by isoforms providing unique structural properties to actin-based filaments within functionally distinct neuronal domains.
Collapse
Affiliation(s)
- C Dufour
- Oncology Research Unit, New Children's Hospital, Parramatta, New South Wales, Australia
| | | | | |
Collapse
|
4
|
Dufour C, Weinberger RP, Schevzov G, Jeffrey PL, Gunning P. Splicing of two internal and four carboxyl-terminal alternative exons in nonmuscle tropomyosin 5 pre-mRNA is independently regulated during development. J Biol Chem 1998; 273:18547-55. [PMID: 9660825 DOI: 10.1074/jbc.273.29.18547] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Four nonmuscle tropomyosin isoforms have been reported to be produced from the rat Tm5 gene by alternative splicing (Beisel, K. W., and Kennedy, J. E. (1994) Gene (Amst.) 145, 251-256). In order to detect additional isoforms that might be expressed from that gene, we used reverse transcriptase-polymerase chain reaction assays and evaluated the presence of all product combinations of two alternative internal exons (6a and 6b) and four carboxyl-terminal exons (9a, 9b, 9c, and 9d) in developing and adult rat brain. We identified five different combinations for exon 9 (9a + 9b, 9a + 9c, 9a + 9d, 9c, and 9d), and the exon combinations 9a + 9c and 9a + 9d were previously unreported. Each of these combinations existed with both exon 6a and exon 6b. Thus, the rat brain generates at least 10 different isoforms from the Tm5 gene. Northern blot hybridization with alternative exon-specific probes revealed that these isoforms were also expressed in a number of different adult rat tissues, although some exons are preferentially expressed in particular tissues. Studies of regulation of the 10 different Tm5 isoform mRNAs during rat brain development indicated that no two isoforms are coordinately accumulated. Furthermore, there is a developmental switch in the use of exon 6a to exon 6b from embryonic to adult isoforms. TM5 protein isoforms show a differential localization in the adult cerebellum.
Collapse
Affiliation(s)
- C Dufour
- Cell Biology Unit, Children's Medical Research Institute, Wentworthville, New South Wales 2145, Australia
| | | | | | | | | |
Collapse
|
5
|
Ichida M, Endo H, Ikeda U, Matsuda C, Ueno E, Shimada K, Kagawa Y. MyoD is indispensable for muscle-specific alternative splicing in mouse mitochondrial ATP synthase gamma-subunit pre-mRNA. J Biol Chem 1998; 273:8492-501. [PMID: 9525963 DOI: 10.1074/jbc.273.14.8492] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Muscle-specific alternative RNA splicing is an essential step during myogenesis. In this paper, we report that a muscle-specific transcription factor, MyoD, plays a central role in the induction of muscle-specific alternative splicing during myogenesis. Recently, we reported that muscle and nonmuscle isoforms of the mitochondrial ATP synthase gamma-subunit (F1gamma) were generated by alternative splicing and that acidic stimulation promoted this muscle-specific alternative splicing (Endo, H., Matsuda, C., and Kagawa, Y. (1994) J. Biol. Chem. 269, 12488-12493). In this report, mouse myoblasts are shown to express the muscle-specific isoform of F1gamma after induction with low-serum medium (differentiation medium) or acidic medium, although myotube formation was not detected after acidic induction. RNA blot analysis revealed that the expression levels of both MEF2 and myogenin were increased by low-serum induction, but not by acidic induction. High expression of MyoD mRNA was observed after both types of induction. Overexpression of exogenous MyoD in fibroblasts showed that MyoD was necessary for muscle-specific alternative splicing in both types of induction. Exogenous Id, a negative regulator of MyoD, blocked muscle-specific alternative splicing of F1gamma pre-mRNA by both types of induction. In addition, MyoD induced several muscle-specific alternative splicings, including structural protein pre-mRNAs such as beta-tropomyosin and neural-cell adhesion molecule and transcriptional protein pre-mRNAs such as MEF2A and MEF2D. Our analysis of the two induction systems shows a common MyoD-dependent mechanism of muscle-specific alternative splicing in several genes, independent of MEF2 and myogenin.
Collapse
Affiliation(s)
- M Ichida
- Department of Biochemistry, Jichi Medical School, Minamikawachi-machi, Kawachi-gun, Tochigi 329-04, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The G protein-coupled receptor kinases (GRKs) are critical enzymes in the desensitization of activated G protein-coupled receptors. Six members of the GRK family have been identified to date. Among these enzymes, GRK1 (rhodopsin kinase) is involved in phototransduction and is the most specialized of the family. GRK1 phosphorylates photoactivated rhodopsin, initiating steps in its deactivation. In this study, we found that human retina expressed all GRKs except GRK4. Based on results of molecular cloning and immunolocalization, it appears that both rod and cone photoreceptors express GRK1. This conclusion was supported by the cloning of only GRK1 from cone-dominated chicken retina. Human photoreceptors also transcribe a splice variant of GRK1, which differs in its C-terminal region next to the catalytic domain. This novel variant, GRK1b, is produced by retention of the last intron. mRNA encoding GRK1b is exported to the cytosol; however, the level of the protein is relatively low compared with GRK1 (now called GRK1a), and GRK1b appears to have very low catalytic activity. Thus, these studies suggest that rods and cones, express the same form of GRK1.
Collapse
Affiliation(s)
- X Zhao
- Department of Ophthalmology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
7
|
Gallagher PG, Tse WT, Scarpa AL, Lux SE, Forget BG. Structure and organization of the human ankyrin-1 gene. Basis for complexity of pre-mRNA processing. J Biol Chem 1997; 272:19220-8. [PMID: 9235914 DOI: 10.1074/jbc.272.31.19220] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ankyrin-1 (ANK-1) is an erythrocyte membrane protein that is defective in many patients with hereditary spherocytosis, a common hemolytic anemia. In the red cell, ankyrin-1 provides the primary linkage between the membrane skeleton and the plasma membrane. To gain additional insight into the structure and function of this protein and to provide the necessary tools for further genetic studies of hereditary spherocytosis patients, we cloned the human ANK-1 chromosomal gene. Characterization of the ANK-1 gene genomic structure revealed that the erythroid transcript is composed of 42 exons distributed over approximately 160 kilobase pairs of DNA. Comparison of the genomic structure with the protein domains reveals a near-absolute correlation between the tandem repeats encoding the membrane-binding domain of ankyrin with the location of the intron/exon boundaries in the corresponding part of the gene. Erythroid stage-specific, complex patterns of alternative splicing were identified in the region encoding the regulatory domain of ankyrin-1. Novel brain-specific transcripts were also identified in this region, as well as in the "hinge" region between the membrane-binding and spectrin-binding domains. Utilization of alternative polyadenylation signals was found to be the basis for the previously described, stage-specific 9.0- and 7.2-kilobase pair transcripts of the ANK-1 gene.
Collapse
Affiliation(s)
- P G Gallagher
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | | | | | | | |
Collapse
|
8
|
Bush EW, Taft CS, Meixell GE, Perryman MB. Overexpression of myotonic dystrophy kinase in BC3H1 cells induces the skeletal muscle phenotype. J Biol Chem 1996; 271:548-52. [PMID: 8550617 DOI: 10.1074/jbc.271.1.548] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Myotonic muscular dystrophy is an autosomal dominant defect that produces muscle wasting, myotonia, and cardiac conduction abnormalities. The myotonic dystrophy locus codes for a putative serine-threonine protein kinase of unknown function. We report that overexpression of human myotonic dystrophy protein kinase induces the expression of skeletal muscle-specific genes in undifferentiated BC3H1 muscle cells. BC3H1 clones expressing myotonic dystrophy kinase appear equivalent to differentiated cells with respect to expression of myogenin, retinoblastoma tumor supressor gene, M creatine kinase, beta-tropomyosin, and vimentin. In addition, differential display analysis demonstrates that the pattern of gene expression exhibited by myotonic dystrophy kinase-expressing cells is essentially identical to that of differentiated BC3H1 muscle cells. These observations suggest that myotonic dystrophy kinase may function in the myogenic pathway.
Collapse
Affiliation(s)
- E W Bush
- Department of Medicine, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | |
Collapse
|
9
|
McMahon DK, Anderson PA, Nassar R, Bunting JB, Saba Z, Oakeley AE, Malouf NN. C2C12 cells: biophysical, biochemical, and immunocytochemical properties. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 266:C1795-802. [PMID: 8023908 DOI: 10.1152/ajpcell.1994.266.6.c1795] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We examined the myofibril biochemical, structural, and biophysical properties of C2C12, a mouse skeletal muscle cell line (American Type Culture Collection), to assess whether force development and the sensitivity of the myofilaments to calcium could be measured in C2C12 myotubes and whether a cardiac contractile protein, troponin T, is expressed and incorporated into C2C12 myofibrils. When myoblasts fused and differentiated into myotubes, expression of myofilament proteins was initiated. Multiple cardiac and skeletal muscle troponin T isoforms were coexpressed. Cardiac troponin T expression increased and then decreased with time. Fluorescence immunocytochemistry demonstrated incorporation of cardiac troponin T isoforms into the myofibrils. At the time of the biophysical studies, mean myotube diameter was 12 microns (range 5-25 microns), and mean length was 290 microns (range 130-520 microns). The estimated maximum force developed by chemically skinned myotubes at 6-7 days poststarvation, 0.88 +/- 0.12 microN (mean +/- 95% confidence interval, n = 5), was significantly less (P < 0.05) than that at 10-13 days poststarvation, 1.12 +/- 0.12 microN (n = 7). The force-pCa relation yielded a Hill coefficient of 2.9 +/- 0.6 (n = 7) and half-maximal activation at pCa of 5.77 +/- 0.20. The demonstration that the biophysical properties of C2C12 cells can be measured and that cardiac and skeletal muscle troponin T isoforms are incorporated and colocalized into myofibrils suggest that these cells could be a useful model to assess the effects of exogenous native and mutated cardiac and skeletal contractile protein isoforms on myofilament function.
Collapse
Affiliation(s)
- D K McMahon
- Department of Pathology, University of North Carolina at Chapel Hill 27599
| | | | | | | | | | | | | |
Collapse
|
10
|
Wang Y, Rubenstein P. Splicing of two alternative exon pairs in beta-tropomyosin pre-mRNA is independently controlled during myogenesis. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49797-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|