1
|
Sevrioukova IF. Interaction of CYP3A4 with the inhibitor cobicistat: Structural and mechanistic insights and comparison with ritonavir. Arch Biochem Biophys 2024; 758:110071. [PMID: 38909836 PMCID: PMC11286144 DOI: 10.1016/j.abb.2024.110071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Cobicistat is a derivative of ritonavir marketed as a pharmacoenhancer for anti-HIV therapy. This study investigated the interaction of cobicistat with the target protein, drug-metabolizing cytochrome P450 3A4 (CYP3A4), at the molecular level using spectral, kinetic, functional, and structural approaches. It was found that, similar to ritonavir, cobicistat directly coordinates to the heme via the thiazole nitrogen but its affinity and the binding rate are 2-fold lower: 0.030 μM and 0.72 s-1, respectively. The newly determined 2.5 Å crystal structure of cobicistat-bound CYP3A4 suggests that these changes arise from the inability of cobicistat to H-bond to the active site S119 and establish multiple stabilizing contacts with the F-F' connecting fragment, which becomes disordered upon steric clashing with the bulky morpholine moiety. Nonetheless, cobicistat inhibits recombinant CYP3A4 as potently as ritonavir (IC50 of 0.24 μM vs 0.22 μM, respectively) due to strong ligation to the heme and formation of extensive hydrophobic/aromatic interactions via the phenyl side-groups. To get insights into the inhibitory mechanism, the K257 residue, known to be solely and irreversibly modified by the reactive ritonavir metabolite, was substituted with alanine. Neither this nor control K266A mutation changed the extent of time-dependent inhibition of CYP3A4 by cobicistat and ritonavir, suggesting the existence of alternative inactivation mechanism(s). More importantly, K257 was found to be functionally important and contributed to CYP3A4 allosterism, possibly by modulating protein-ligand interactions through conformational dynamics.
Collapse
Affiliation(s)
- Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA.
| |
Collapse
|
2
|
Rational Design of CYP3A4 Inhibitors: A One-Atom Linker Elongation in Ritonavir-Like Compounds Leads to a Marked Improvement in the Binding Strength. Int J Mol Sci 2021; 22:ijms22020852. [PMID: 33467005 PMCID: PMC7830545 DOI: 10.3390/ijms22020852] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Inhibition of the major human drug-metabolizing cytochrome P450 3A4 (CYP3A4) by pharmaceuticals and other xenobiotics could lead to toxicity, drug–drug interactions and other adverse effects, as well as pharmacoenhancement. Despite serious clinical implications, the structural basis and attributes required for the potent inhibition of CYP3A4 remain to be established. We utilized a rational inhibitor design to investigate the structure–activity relationships in the analogues of ritonavir, the most potent CYP3A4 inhibitor in clinical use. This study elucidated the optimal length of the head-group spacer using eleven (series V) analogues with the R1/R2 side-groups as phenyls or R1–phenyl/R2–indole/naphthalene in various stereo configurations. Spectral, functional and structural characterization of the inhibitory complexes showed that a one-atom head-group linker elongation, from pyridyl–ethyl to pyridyl–propyl, was beneficial and markedly improved Ks, IC50 and thermostability of CYP3A4. In contrast, a two-atom linker extension led to a multi-fold decrease in the binding and inhibitory strength, possibly due to spatial and/or conformational constraints. The lead compound, 3h, was among the best inhibitors designed so far and overall, the strongest binder (Ks and IC50 of 0.007 and 0.090 µM, respectively). 3h was the fourth structurally simpler inhibitor superior to ritonavir, which further demonstrates the power of our approach.
Collapse
|
3
|
Davydov DR, Ponomarev GV, Bobrovnikova-Marjon E, Haines DC, Peterson JA. Aluminum-substituted heme domain of P450BM-3 (BMP): Introducing a heme-derived fluorescent probe for studies of substrate binding and protein-protein interactions in cytochromes P450. Biotechnol Appl Biochem 2013; 60:41-51. [DOI: 10.1002/bab.1085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/18/2012] [Indexed: 01/23/2023]
Affiliation(s)
| | - Gelii V. Ponomarev
- Institute of Biomedical Chemistry, Russian Academy of Medical Science; Moscow; Russia
| | | | - Donovan C. Haines
- Department of Biochemistry; The University of Texas Southwestern Medical Center at Dallas; Dallas; TX; USA
| | - Julian A. Peterson
- Department of Biochemistry; The University of Texas Southwestern Medical Center at Dallas; Dallas; TX; USA
| |
Collapse
|
4
|
Schumacher SD, Hannemann F, Teese MG, Bernhardt R, Jose J. Autodisplay of functional CYP106A2 in Escherichia coli. J Biotechnol 2012; 161:104-12. [PMID: 22426093 DOI: 10.1016/j.jbiotec.2012.02.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 02/07/2012] [Accepted: 02/29/2012] [Indexed: 01/02/2023]
Abstract
Cytochrome P450 enzymes catalyse a wide variety of reactions, including the hydroxylation and epoxidation of CC bonds, and dealkylation reactions. There is high interest in these reactions for biotechnology and pharmaceutical processes. Many P450s require membrane surroundings and have substrates that do not cross biological membranes. To circumvent these obstacles, CYP106A2 from Bacillus megaterium was expressed on the outer membrane of Escherichia coli cells by Autodisplay. Exposure on the surface was confirmed by a protease accessibility test and flow cytometry after immunolabelling. HPLC assays showed that 0.5 ml of cells displaying the enzyme (OD₅₇₈ = 6) converted 9.13 μmol of deoxycorticosterone to 15β-OH-deoxycorticosterone within 1h. Imipramine and abietic acid were also accepted as substrates. The number of active enzyme molecules per cell was calculated to be 20,000. Surprisingly, surface-exposed CYP106A2 was active in E. coli BL21 without the external addition of the heme group. However, when CYP106A2 was expressed on the surface of an E. coli strain lacking the TolC channel protein (JW5503), enzymatic activity was almost completely abolished. The activity of CYP106A2 on the surface of E. coli JW5503 could be restored by the external addition of the heme group. This suggests, as has been reported before, that E. coli uses a TolC-dependent mechanism to export heme into the growth media, where it can be scavenged by a surface-displayed apoenzyme. Our results indicate that Autodisplay enables the functional surface display of P450 enzymes and provides a new platform to access their synthetic potential.
Collapse
Affiliation(s)
- Stephanie D Schumacher
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
5
|
Davydov DR, Sineva EV, Sistla S, Davydova NY, Frank DJ, Sligar SG, Halpert JR. Electron transfer in the complex of membrane-bound human cytochrome P450 3A4 with the flavin domain of P450BM-3: the effect of oligomerization of the heme protein and intermittent modulation of the spin equilibrium. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:378-90. [PMID: 20026040 DOI: 10.1016/j.bbabio.2009.12.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 09/05/2009] [Accepted: 12/14/2009] [Indexed: 10/20/2022]
Abstract
We studied the kinetics of NADPH-dependent reduction of human CYP3A4 incorporated into Nanodiscs (CYP3A4-ND) and proteoliposomes in order to probe the effect of P450 oligomerization on its reduction. The flavin domain of cytochrome P450-BM3 (BMR) was used as a model electron donor partner. Unlike CYP3A4 oligomers, where only 50% of the enzyme was shown to be reducible by BMR, CYP3A4-ND could be reduced almost completely. High reducibility was also observed in proteoliposomes with a high lipid-to-protein ratio (L/P=910), where the oligomerization equilibrium is displaced towards monomers. In contrast, the reducibililty in proteoliposomes with L/P=76 did not exceed 55+/-6%. The effect of the surface density of CYP3A4 in proteoliposomes on the oligomerization equilibrium was confirmed with a FRET-based assay employing a cysteine-depleted mutant labeled on Cys-468 with BODIPY iodoacetamide. These results confirm a pivotal role of CYP3A4 oligomerization in its functional heterogeneity. Furthermore, the investigation of the initial phase of the kinetics of CYP3A4 reduction showed that the addition of NADPH causes a rapid low-to-high-spin transition in the CYP3A4-BMR complex, which is followed by a partial slower reversal. This observation reveals a mechanism whereby the CYP3A4 spin equilibrium is modulated by the redox state of the bound flavoprotein.
Collapse
Affiliation(s)
- Dmitri R Davydov
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Fruk L, Kuo CH, Torres E, Niemeyer CM. Apoenzyme reconstitution as a chemical tool for structural enzymology and biotechnology. Angew Chem Int Ed Engl 2009; 48:1550-74. [PMID: 19165853 DOI: 10.1002/anie.200803098] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Many enzymes contain a nondiffusible organic cofactor, often termed a prosthetic group, which is located in the active site and essential for the catalytic activity of the enzyme. These cofactors can often be extracted from the protein to yield the respective apoenzyme, which can subsequently be reconstituted with an artificial analogue of the native cofactor. Nowadays a large variety of synthetic cofactors can be used for the reconstitution of apoenzymes and, thus, generate novel semisynthetic enzymes. This approach has been refined over the past decades to become a versatile tool of structural enzymology to elucidate structure-function relationships of enzymes. Moreover, the reconstitution of apoenzymes can also be used to generate enzymes possessing enhanced or even entirely new functionality. This Review gives an overview on historical developments and the current state-of-the-art on apoenzyme reconstitution.
Collapse
Affiliation(s)
- Ljiljana Fruk
- Universität Dortmund, Fachbereich Chemie, Biologisch-Chemische Mikrostrukturtechnik, Otto-Hahn Strasse 6, 44227 Dortmund, Germany.
| | | | | | | |
Collapse
|
7
|
Fruk L, Kuo CH, Torres E, Niemeyer C. Rekonstitution von Apoenzymen als chemisches Werkzeug für die strukturelle Enzymologie und Biotechnologie. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200803098] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Tsalkova TN, Davydova NY, Halpert JR, Davydov DR. Mechanism of interactions of alpha-naphthoflavone with cytochrome P450 3A4 explored with an engineered enzyme bearing a fluorescent probe. Biochemistry 2007; 46:106-19. [PMID: 17198380 PMCID: PMC2574515 DOI: 10.1021/bi061944p] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Design of a partially cysteine-depleted C98S/C239S/C377S/C468A cytochrome P450 3A4 mutant designated CYP3A4(C58,C64) allowed site-directed incorporation of thiol-reactive fluorescent probes into alpha-helix A. The site of modification was identified as Cys-64 with the help of CYP3A4(C58) and CYP3A4(C64), each bearing only one accessible cysteine. Changes in the fluorescence of CYP3A4(C58,C64) labeled with 6-(bromoacetyl)-2-(dimethylamino)naphthalene (BADAN), 7-(diethylamino)-3-(4'-maleimidylphenyl)-4-methylcoumarin (CPM), or monobromobimane (mBBr) were used to study the interactions with bromocriptine (BCT), 1-pyrenebutanol (1-PB), testosterone (TST), and alpha-naphthoflavone (ANF). Of these substrates only ANF has a specific effect, causing a considerable decrease in fluorescence intensity of BADAN and CPM and increasing the fluorescence of mBBr. This ANF-binding event in the case of the BADAN-modified enzyme is characterized by an S50 of 18.2 +/- 0.7, compared with the value of 2.2 +/- 0.3 for the ANF-induced spin transition, thus revealing an additional low-affinity binding site. Studies of the effect of TST, 1-PB, and BCT on the interactions of ANF monitored by changes in fluorescence of CYP3A4(C58,C64)-BADAN or by the ANF-induced spin transition revealed no competition by these substrates. Investigation of the kinetics of fluorescence increase upon H2O2-dependent heme depletion suggests that labeled CYP3A4(C58,C64) is represented by two conformers, one of which has the fluorescence of the BADAN and CPM labels completely quenched, presumably by photoinduced electron transfer from the neighboring Trp-72 and/or Tyr-68 residues. The binding of ANF to the newly discovered binding site appears to affect the interactions of the label with the above residue(s), thus modulating the fraction of the fluorescent conformer.
Collapse
Affiliation(s)
| | | | | | - Dmitri R. Davydov
- Corresponding author: E-mail: . Tel.: (409) 772-9658; Fax: (409) 772-9642
| |
Collapse
|
9
|
Kumar S, Davydov DR, Halpert JR. Role of cytochrome B5 in modulating peroxide-supported cyp3a4 activity: evidence for a conformational transition and cytochrome P450 heterogeneity. Drug Metab Dispos 2005; 33:1131-6. [PMID: 15870379 DOI: 10.1124/dmd.105.004606] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of cytochrome b(5) (b(5)) in the alpha-naphthoflavone (alpha-NF)-mediated inhibition of H(2)O(2)-supported 7-benzyloxyquinoline (7-BQ) debenzylation by heterologously expressed and purified cytochrome P450 3A4 (CYP3A4) was studied. Although alpha-NF showed negligible effect in an NADPH-dependent reconstituted system, inhibition of 7-BQ oxidation was observed in the H(2)O(2) system. Analysis of the effect of various constituents of a standard reconstituted system on H(2)O(2)-supported activity showed that b(5) alone resulted in a 2.5-fold increase in the k(cat) value and reversed the inhibitory effect of alpha-NF. In addition, titration with b(5) suggested that only 65% of the CYP3A4 participated in the interaction with b(5), consistent with cytochrome P450 (P450) heterogeneity. Study of the influence of b(5) on the kinetics of H(2)O(2)-dependent destruction of the P450 heme moiety suggested two distinct conformers of CYP3A4 with different sensitivity to heme loss. In the absence of b(5), 66% of the wild-type enzyme was bleached in the fast phase, whereas the addition of b(5) decreased the fraction of the fast phase to 16%. Finally, to locate amino acid residues that might influence b(5) action, several active site mutants were tested. Substitution of Ser-119, Ile-301, Ala-305, Ile-369, or Ala-370 with the larger Phe or Trp decreased or even abolished the activation by b(5). Ser-119 is in the B'-C loop, a predicted b(5)-P450 interaction site, and Ile-301 and Ala-305 are closest to the heme. In conclusion, the interaction of b(5) with P450 apparently leads to a conformational transition, which results in redistribution of the CYP3A4 pool.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1031, USA.
| | | | | |
Collapse
|
10
|
Müller EC, Lapko A, Otto A, Müller JJ, Ruckpaul K, Heinemann U. Covalently crosslinked complexes of bovine adrenodoxin with adrenodoxin reductase and cytochrome P450scc. ACTA ACUST UNITED AC 2003. [DOI: 10.1046/j.1432-1327.2001.02058.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Martini CN, Vaena de Avalos SG, Romero DG, San Martín de Viale L, Vila MDC. Heme availability affects corticosterone and aldosterone biosynthesis in rat adrenal. Steroids 1997; 62:767-70. [PMID: 9434340 DOI: 10.1016/s0039-128x(97)00074-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this paper, we studied the effect of heme availability on corticosterone and aldosterone synthesis in rat adrenal. We found that hemin stimulated corticosterone and aldosterone production in adrenal homogenates in a dose-dependent fashion. Hemin administration to rats also provoked an increase in both corticosterone and aldosterone content in adrenal. 3,5-Diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine (DDC), an inhibitor of liver ferrochelatase activity, was able to inhibit this enzyme in rat adrenal. This resulted in an impairment of heme concentration and consequently adrenal ALA-synthase and porphyrin content were increased. Thus, it was proven that DDC inhibits heme biosynthesis in adrenal as it does in liver. In vivo experiments with rats showed that DDC was able to partially blocked ACTH-mediated corticosterone and aldosterone production while hemin administration was able to partially restore it. These data indicate that heme availability affects steroid biosynthesis in rat adrenal.
Collapse
Affiliation(s)
- C N Martini
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
12
|
Kim YM, Bergonia HA, Müller C, Pitt BR, Watkins WD, Lancaster JR. Loss and degradation of enzyme-bound heme induced by cellular nitric oxide synthesis. J Biol Chem 1995; 270:5710-3. [PMID: 7890697 DOI: 10.1074/jbc.270.11.5710] [Citation(s) in RCA: 175] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We report here that, like nonheme iron, protein-bound intracellular heme iron is also a target for destruction by endogenously produced nitric oxide (NO). In isolated rat hepatocytes NO synthesis results in substantial (approximately 60%) and comparable loss of catalase and cytochrome P450 as well as total microsomal heme, and decreased heme synthetic (delta-aminolevulinate synthetase and ferrochelatase) and increased degradative (heme oxygenase) enzymatic activities. The effect is reversible, and intact cytochrome P450 apoproteins are still present, as judged by heme reconstitution of isolated microsomes. The effects on delta-aminolevulinate synthetase and heme oxygenase are likely to be secondary to heme liberation, while the effects on ferrochelatase appear to be a direct effect of NO, perhaps destruction of its nonheme iron-sulfur center.
Collapse
Affiliation(s)
- Y M Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pennsylvania 15261
| | | | | | | | | | | |
Collapse
|
13
|
Cozza EN, Vila MC, Gomez-Sanchez CE. Stimulation of aldosterone production by hemin in calf adrenal glomerulosa cell cultures. Steroids 1993; 58:384-6. [PMID: 8212089 DOI: 10.1016/0039-128x(93)90042-l] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Aldosterone production from 11-deoxycorticosterone was stimulated by hemin in primary cultures and homogenates of calf adrenal zona glomerulosa, in a time- and dose-dependent fashion. The ferrochelatase inhibitor 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine (DDC) blocked the stimulation of aldosterone mediated by adrenocorticotropin (ACTH). Addition of hemin after treatment with DDC partially restored ACTH action. These results suggest that hemin may play a role in regulation of aldosterone production.
Collapse
Affiliation(s)
- E N Cozza
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | | | | |
Collapse
|
14
|
Turko IV, Lepesheva GI, Chashchin VL. Direct antigen detection in Langmuir—Blodgett films of immunoglobulin G modified with coproporphyrin-I. Anal Chim Acta 1992. [DOI: 10.1016/0003-2670(92)85150-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|