1
|
Fathi M, Seida AA, Sobhy RR, Darwish GM, Badr MR, Moawad AR. Caffeine supplementation during IVM improves frequencies of nuclear maturation and preimplantation development of dromedary camel oocytes following IVF. Theriogenology 2014; 81:1286-92. [DOI: 10.1016/j.theriogenology.2014.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/29/2014] [Accepted: 02/06/2014] [Indexed: 10/25/2022]
|
2
|
Actin cytoskeleton in cell polarity and asymmetric division during mouse oocyte maturation. Cytoskeleton (Hoboken) 2012; 69:727-37. [DOI: 10.1002/cm.21048] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/18/2012] [Accepted: 06/21/2012] [Indexed: 12/22/2022]
|
3
|
Gotoh T, Villa LM, Capelluto DGS, Finkielstein CV. Regulatory pathways coordinating cell cycle progression in early Xenopus development. Results Probl Cell Differ 2011; 53:171-99. [PMID: 21630146 DOI: 10.1007/978-3-642-19065-0_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The African clawed frog, Xenopus laevis, is used extensively as a model organism for studying both cell development and cell cycle regulation. For over 20 years now, this model organism has contributed to answering fundamental questions concerning the mechanisms that underlie cell cycle transitions--the cellular components that synthesize, modify, repair, and degrade nucleic acids and proteins, the signaling pathways that allow cells to communicate, and the regulatory pathways that lead to selective expression of subsets of genes. In addition, the remarkable simplicity of the Xenopus early cell cycle allows for tractable manipulation and dissection of the basic components driving each transition. In this organism, early cell divisions are characterized by rapid cycles alternating phases of DNA synthesis and division. The post-blastula stages incorporate gap phases, lengthening progression, and allowing more time for DNA repair. Various cyclin/Cdk complexes are differentially expressed during the early cycles with orderly progression being driven by both the combined action of cyclin synthesis and degradation and the appropriate selection of specific substrates by their Cdk components. Like other multicellular organisms, chief developmental events in early Xenopus embryogenesis coincide with profound remodeling of the cell cycle, suggesting that cell proliferation and differentiation events are linked and coordinated through crosstalk mechanisms acting on signaling pathways involving the expression of cell cycle control genes.
Collapse
Affiliation(s)
- Tetsuya Gotoh
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
4
|
Mos in the oocyte: how to use MAPK independently of growth factors and transcription to control meiotic divisions. JOURNAL OF SIGNAL TRANSDUCTION 2010; 2011:350412. [PMID: 21637374 PMCID: PMC3101788 DOI: 10.1155/2011/350412] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/01/2010] [Indexed: 01/12/2023]
Abstract
In many cell types, the mitogen-activated protein kinase (MAPK) also named extracellular signal-regulated kinase (ERK) is activated in response to a variety of extracellular growth factor-receptor interactions and leads to the transcriptional activation of immediate early genes, hereby influencing a number of tissue-specific biological activities, as cell proliferation, survival and differentiation. In one specific cell type however, the female germ cell, MAPK does not follow this canonical scheme. In oocytes, MAPK is activated independently of growth factors and tyrosine kinase receptors, acts independently of transcriptional regulation, plays a crucial role in controlling meiotic divisions, and is under the control of a peculiar upstream regulator, the kinase Mos. Mos was originally identified as the transforming gene of Moloney murine sarcoma virus and its cellular homologue was the first proto-oncogene to be molecularly cloned. What could be the specific roles of Mos that render it necessary for meiosis? Which unique functions could explain the evolutionary cost to have selected one gene to only serve for few hours in one very specific cell type? This review discusses the original features of MAPK activation by Mos and the roles of this module in oocytes.
Collapse
|
5
|
Tokmakov AA, Iwasaki T, Sato KI, Fukami Y. Analysis of signal transduction in cell-free extracts and rafts of Xenopus eggs. Methods 2010; 51:177-82. [PMID: 20079845 DOI: 10.1016/j.ymeth.2010.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/10/2010] [Accepted: 01/12/2010] [Indexed: 10/19/2022] Open
Abstract
Intracellular signaling during egg activation/fertilization has been extensively studied using intact eggs, which can be manipulated by microinjection of different mRNAs, proteins, or chemical drugs. Furthermore, egg extracts, which retain high CSF activity (CSF-arrested extracts), were developed for studying fertilization/activation signal transduction, which have significant advantages as a model system. The addition of calcium to CSF-arrested extracts initiates a plethora of signaling events that take place during egg activation. Hence, the signaling downstream of calcium mobilization has been successfully studied in the egg extracts. Moreover, despite disruption of membrane-associated signaling compartments and ordered compartmentalization during extract preparation, CSF-arrested extracts can be successfully used to study early signaling events, which occur upstream of calcium release during egg activation/fertilization. In combination with the CSF-arrested extracts, activated egg rafts can reproduce some events of egg activation, including PLCgamma activation, IP3 production, transient calcium release, MAPK inactivation, and meiotic exit. This becomes possible due to complementation of the sperm-induced egg activation signaling machinery present in the rafts with the components of signal transduction system localized in the extracts. Herein, we describe protocols for studying molecular mechanisms of egg fertilization/activation using cell-free extracts and membrane rafts prepared from metaphase-arrested Xenopus eggs.
Collapse
|
6
|
Hara M, Mori M, Wada T, Tachibana K, Kishimoto T. Start of the embryonic cell cycle is dually locked in unfertilized starfish eggs. Development 2009; 136:1687-96. [PMID: 19369392 DOI: 10.1242/dev.035261] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A key event in the oocyte-to-embryo transition is the start of the embryonic mitotic cell cycle. Prior to this start, the cell cycle in oocytes is generally arrested at a particular stage during meiosis, and the meiotic arrest is released by fertilization. However, it remains unclear how release from the meiotic arrest is implicated in the start of the embryonic cell cycle. To elucidate this link, we have used starfish eggs, in which G1 phase arrest occurs after completion of meiosis if the mature oocytes are not fertilized, and fertilization simply directs the start of the embryonic cell cycle. The starfish G1 arrest is known to rely on the Mos-MAPK-Rsk (p90 ribosomal S6 kinase) pathway, and inactivation of Rsk induces S phase in the absence of fertilization. However, here we show that this S phase is not followed by M phase when MAPK remains active, owing to poly(A)-independent repression of cyclin A and B synthesis. By contrast, inactivation of MAPK alone induces M phase, even when S phase is inhibited by constitutively active Rsk. Thus, there is a divergence of separate pathways downstream of MAPK that together block the start of the embryonic mitotic cycle. One is the previously known Rsk-dependent pathway that prevents S phase, and the other is a novel pathway that is not mediated by Rsk and that leads to prevention of the first mitotic M phase through suppression of protein synthesis of M phase cyclins. Release from such a 'dual-lock' by fertilization results in the start of the embryonic cell cycle.
Collapse
Affiliation(s)
- Masatoshi Hara
- Graduate School of BioscienceTokyo Institute of Technology, Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | | | | | | | | |
Collapse
|
7
|
Maalouf W, Lee JH, Campbell K. Effects of caffeine, cumulus cell removal and aging on polyspermy and embryo development on in vitro matured and fertilized ovine oocytes. Theriogenology 2009; 71:1083-92. [DOI: 10.1016/j.theriogenology.2008.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 11/25/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
|
8
|
Wu JQ, Kornbluth S. Across the meiotic divide - CSF activity in the post-Emi2/XErp1 era. J Cell Sci 2009; 121:3509-14. [PMID: 18946022 DOI: 10.1242/jcs.036855] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Vertebrate eggs are arrested at the metaphase stage of meiosis II. Only upon fertilization will the metaphase-II-arrested eggs exit meiosis II and enter interphase. In 1971, Masui and Markert injected egg extracts into a two-cell-stage embryo and found that the injected blastomere arrested at the next mitosis. On the basis of these observations, they proposed the existence of an activity present in the eggs that is responsible for meiosis-II arrest and can induce mitotic arrest, and named this activity cytostatic factor (CSF). Although the existence of CSF was hypothesized more than 35 years ago, its precise identity remained unclear until recently. The discovery of the Mos-MAPK pathway and characterization of the anaphase-promoting complex/cyclosome (APC/C) as a central regulator of M-phase exit provided the framework for a molecular understanding of CSF. These pathways have now been linked by the discovery and characterization of the protein Emi2, a meiotic APC/C inhibitor, the activity and stability of which are controlled by the Mos-MAPK pathway. Continued investigation into the mechanism of action and mode of regulation of Emi2 promises to shed light not only on CSF function, but also on the general principles of APC/C regulation and the control of protein function by MAPK pathways.
Collapse
Affiliation(s)
- Judy Qiju Wu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
9
|
Madgwick S, Hansen DV, Levasseur M, Jackson PK, Jones KT. Mouse Emi2 is required to enter meiosis II by reestablishing cyclin B1 during interkinesis. ACTA ACUST UNITED AC 2006; 174:791-801. [PMID: 16966421 PMCID: PMC2064334 DOI: 10.1083/jcb.200604140] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During interkinesis, a metaphase II (MetII) spindle is built immediately after the completion of meiosis I. Oocytes then remain MetII arrested until fertilization. In mouse, we find that early mitotic inhibitor 2 (Emi2), which is an anaphase-promoting complex inhibitor, is involved in both the establishment and the maintenance of MetII arrest. In MetII oocytes, Emi2 needs to be degraded for oocytes to exit meiosis, and such degradation, as visualized by fluorescent protein tagging, occurred tens of minutes ahead of cyclin B1. Emi2 antisense morpholino knockdown during oocyte maturation did not affect polar body (PB) extrusion. However, in interkinesis the central spindle microtubules from meiosis I persisted for a short time, and a MetII spindle failed to assemble. The chromatin in the oocyte quickly decondensed and a nucleus formed. All of these effects were caused by the essential role of Emi2 in stabilizing cyclin B1 after the first PB extrusion because in Emi2 knockdown oocytes a MetII spindle was recovered by Emi2 rescue or by expression of nondegradable cyclin B1 after meiosis I.
Collapse
Affiliation(s)
- Suzanne Madgwick
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle NE2 4HH, England, UK.
| | | | | | | | | |
Collapse
|
10
|
Koo DB, Chae JI, Kim JS, Wee G, Song BS, Lee KK, Han YM. Inactivation of MPF and MAP kinase by single electrical stimulus for parthenogenetic development of porcine oocytes. Mol Reprod Dev 2005; 72:542-9. [DOI: 10.1002/mrd.20382] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Combelles CMH, Fissore RA, Albertini DF, Racowsky C. In vitro maturation of human oocytes and cumulus cells using a co-culture three-dimensional collagen gel system. Hum Reprod 2005; 20:1349-58. [PMID: 15695316 DOI: 10.1093/humrep/deh750] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Deficiencies remain in the ability of in vitro-matured human oocytes to acquire full developmental competence and give rise to a healthy pregnancy. A clear deficiency of current systems utilizing human oocytes has been the absence of cumulus cells. In the present study, a three-dimensional (3D) co-culture system exploiting an extracellular matrix was developed and compared to conventional methods for its ability to support maturation of human oocytes. METHODS AND RESULTS Cumulus cells were embedded into a 3D collagen gel matrix with individual oocytes added to each gel. Oocytes from the same patient cultured in the gel matrix matured to metaphase II at rates similar to those of cumulus-free oocytes cultured in individual microdrops. Following maturation of oocytes and fixation of intact gels, chromatin and cytoskeletal elements were assessed in oocytes and cumulus cells. The activities of the key cell cycle kinases, maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK), were compared in oocytes matured under the two culture conditions. Compared with denuded oocytes, co-cultured oocytes exhibited increased MAPK activity, but no difference in MPF levels. CONCLUSIONS This work characterizes a novel and efficacious culture system that takes advantage of the unique properties of the extracellular matrix, a 3D microenvironment, and the presence of cumulus cells for maturing human oocytes in vitro.
Collapse
Affiliation(s)
- Catherine M H Combelles
- Brigham and Women's Hospital, Harvard Medical School, Department of Obstetrics and Gynecology, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
12
|
Schmidt A, Duncan PI, Rauh NR, Sauer G, Fry AM, Nigg EA, Mayer TU. Xenopus polo-like kinase Plx1 regulates XErp1, a novel inhibitor of APC/C activity. Genes Dev 2005; 19:502-13. [PMID: 15713843 PMCID: PMC548950 DOI: 10.1101/gad.320705] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Metaphase-to-anaphase transition is a fundamental step in cell cycle progression where duplicated sister-chromatids segregate to the future daughter cells. The anaphase-promoting complex/cyclosome (APC/C) is a highly regulated ubiquitin-ligase that triggers anaphase onset and mitotic exit by targeting securin and mitotic cyclins for destruction. It was previously shown that the Xenopus polo-like kinase Plx1 is essential to activate APC/C upon release from cytostatic factor (CSF) arrest in Xenopus egg extract. Although the mechanism by which Plx1 regulates APC/C activation remained unclear, the existence of a putative APC/C inhibitor was postulated whose activity would be neutralized by Plx1 upon CSF release. Here we identify XErp1, a novel Plx1-regulated inhibitor of APC/C activity, and we demonstrate that XErp1 is required to prevent anaphase onset in CSF-arrested Xenopus egg extract. Inactivation of XErp1 leads to premature APC/C activation. Conversely, addition of excess XErp1 to Xenopus egg extract prevents APC/C activation. Plx1 phosphorylates XErp1 in vitro at a site that targets XErp1 for degradation upon CSF release. Thus, our data lead to a model of APC/C activation in Xenopus egg extract in which Plx1 targets the APC/C inhibitor XErp1 for degradation.
Collapse
Affiliation(s)
- Andreas Schmidt
- Chemical Biology, Independent Research Group, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Paronetto MP, Giorda E, Carsetti R, Rossi P, Geremia R, Sette C. Functional interaction between p90Rsk2 and Emi1 contributes to the metaphase arrest of mouse oocytes. EMBO J 2004; 23:4649-59. [PMID: 15526037 PMCID: PMC533041 DOI: 10.1038/sj.emboj.7600448] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Accepted: 09/23/2004] [Indexed: 11/10/2022] Open
Abstract
Vertebrate eggs arrest at metaphase of the second meiotic division before fertilization under the effect of a cytostatic factor (CSF). This arrest is established during oocyte maturation by the MAPK kinase module, comprised of Mos, MEK, MAPKs and p90Rsk. Maintenance of CSF arrest at metaphase requires inhibitors of the anaphase-promoting complex (APC) like Emi1, which sequesters the APC activator Cdc20. Although it was proposed that the Mos pathway and Emi1 act independently, neither one alone is sufficient to entirely reproduce CSF arrest. Herein we demonstrate that p90Rsk2 associates with and phosphorylates Emi1 upstream of the binding region for Cdc20, thus stabilizing their interaction. Experiments in transfected cells and two-cell embryos indicate that Emi1 and p90Rsk2 cooperate to induce the metaphase arrest. Moreover, oocyte maturation was impaired by interfering with the interaction between p90Rsk2 and Emi1 or by RNA interference of Emi1. Our results indicate that p90Rsk2 and Emi1 functionally interact during oocyte maturation and that the Mos pathway establishes CSF activity through stabilization of an APC-inhibitory complex composed by Emi1 and Cdc20 before fertilization.
Collapse
Affiliation(s)
- Maria Paola Paronetto
- Department of Public Health and Cell Biology, Section of Anatomy, University of Rome ‘Tor Vergata', Rome, Italy
| | - Ezio Giorda
- Research Center Ospedale Bambino Gesù, University of Rome ‘Tor Vergata', Rome, Italy
| | - Rita Carsetti
- Research Center Ospedale Bambino Gesù, University of Rome ‘Tor Vergata', Rome, Italy
| | - Pellegrino Rossi
- Department of Public Health and Cell Biology, Section of Anatomy, University of Rome ‘Tor Vergata', Rome, Italy
| | - Raffaele Geremia
- Department of Public Health and Cell Biology, Section of Anatomy, University of Rome ‘Tor Vergata', Rome, Italy
| | - Claudio Sette
- Department of Public Health and Cell Biology, Section of Anatomy, University of Rome ‘Tor Vergata', Rome, Italy
- Department of Public Health and Cell Biology, Section of Anatomy, University of Rome ‘Tor Vergata', Via Montpellier 1, 00133 Rome, Italy. Tel.: +39 06 7259 6260; Fax: +39 06 7259 6268; E-mail:
| |
Collapse
|
14
|
Tunquist BJ, Eyers PA, Chen LG, Lewellyn AL, Maller JL. Spindle checkpoint proteins Mad1 and Mad2 are required for cytostatic factor-mediated metaphase arrest. ACTA ACUST UNITED AC 2004; 163:1231-42. [PMID: 14691134 PMCID: PMC2173727 DOI: 10.1083/jcb.200306153] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In cells containing disrupted spindles, the spindle assembly checkpoint arrests the cell cycle in metaphase. The budding uninhibited by benzimidazole (Bub) 1, mitotic arrest-deficient (Mad) 1, and Mad2 proteins promote this checkpoint through sustained inhibition of the anaphase-promoting complex/cyclosome. Vertebrate oocytes undergoing meiotic maturation arrest in metaphase of meiosis II due to a cytoplasmic activity termed cytostatic factor (CSF), which appears not to be regulated by spindle dynamics. Here, we show that microinjection of Mad1 or Mad2 protein into early Xenopus laevis embryos causes metaphase arrest like that caused by Mos. Microinjection of antibodies to either Mad1 or Mad2 into maturing oocytes blocks the establishment of CSF arrest in meiosis II, and immunodepletion of either protein blocked the establishment of CSF arrest by Mos in egg extracts. A Mad2 mutant unable to oligomerize (Mad2 R133A) did not cause cell cycle arrest in blastomeres or in egg extracts. Once CSF arrest has been established, maintenance of metaphase arrest requires Mad1, but not Mad2 or Bub1. These results suggest a model in which CSF arrest by Mos is mediated by the Mad1 and Mad2 proteins in a manner distinct from the spindle checkpoint.
Collapse
Affiliation(s)
- Brian J Tunquist
- Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, 4200 E. 9th Avenue, Campus Box C236, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
15
|
Abstract
Female fertility requires precise regulation of oocyte meiosis. Oocytes are arrested early in the meiotic cycle until just before ovulation, when ovarian factors trigger meiosis, or maturation, to continue. Although much has been learned about the late signaling events that accompany meiosis, until recently less was known about the early actions that initiate maturation. Studies using the well-characterized model of transcription-independent steroid-induced oocyte maturation in Xenopus laevis now show that steroid metabolism, classical steroid receptors, G protein-mediated signaling, and novel G protein-coupled receptors, all may play important roles in regulating meiosis. Furthermore, steroids appear to promote similar events in mammalian oocytes, implying a conserved mechanism of maturation in vertebrates. Interestingly, testosterone is a potent promoter of mammalian oocyte maturation, suggesting that androgen actions in the oocyte might be partially responsible for the polycystic ovarian phenotype and accompanying infertility associated with high androgen states such as polycystic ovarian syndrome or congenital adrenal hyperplasia. A detailed appreciation of the steroid-activated signaling pathways in frog and mammalian oocytes may therefore prove useful in understanding both normal and abnormal ovarian development in humans.
Collapse
Affiliation(s)
- Stephen R Hammes
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-8857, USA.
| |
Collapse
|
16
|
Tunquist BJ, Maller JL. Under arrest: cytostatic factor (CSF)-mediated metaphase arrest in vertebrate eggs. Genes Dev 2003; 17:683-710. [PMID: 12651887 DOI: 10.1101/gad.1071303] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Brian J Tunquist
- The Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, Denver, CO 80262, USA
| | | |
Collapse
|
17
|
Saneyoshi T, Kume S, Mikoshiba K. Calcium/calmodulin-dependent protein kinase I in Xenopus laevis. Comp Biochem Physiol B Biochem Mol Biol 2003; 134:499-507. [PMID: 12628380 DOI: 10.1016/s1096-4959(02)00292-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Calcium/calmodulin (CaM) dependent protein kinase I (CaM-KI) is a member of a well-defined multi-functional CaM-K family, but its physiological and developmental functions have yet to be determined. Here, we have cloned two cDNAs encoding CaM-KI from a Xenopus laevis (X. laevis) oocyte cDNA library. One is a novel isoform of CaM-KI, named CaM-KI LiKbeta (XCaM-KI LiKbeta). The other is an alpha isoform of CaM-KI (XCaM-KIalpha), which is a highly related to previously cloned mammalian isoform. XCaM-KIalpha was constantly expressed through embryogenesis, whereas XCaM-KI LiKbeta expression dramatically increased in the neurula stage. Both XCaM-KI isoforms exhibited kinase activity in a Ca(2+)/CaM-dependent manner. Overexpression of a constitutively active mutant of CaM-KI isoforms inhibited cell cleavage in X. laevis embryos and caused a marked change of cell morphology in Hela cells. Taken together, these results suggest that CaM-KI plays a role in cell-structure regulation during early embryonic development.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Western
- Calcium-Calmodulin-Dependent Protein Kinase Type 1
- Calcium-Calmodulin-Dependent Protein Kinases/genetics
- Calcium-Calmodulin-Dependent Protein Kinases/isolation & purification
- Calcium-Calmodulin-Dependent Protein Kinases/metabolism
- Cloning, Molecular/methods
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Electrophoresis, Polyacrylamide Gel
- Enzyme Activation
- Female
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Gene Library
- HeLa Cells
- Humans
- Male
- Molecular Sequence Data
- Mutation
- Oocytes/cytology
- Oocytes/enzymology
- Plasmids/genetics
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Species Specificity
- Xenopus laevis/embryology
- Xenopus laevis/genetics
Collapse
Affiliation(s)
- Takeo Saneyoshi
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama, Wako-shi 351-0198, Japan.
| | | | | |
Collapse
|
18
|
Shapiro P. Ras-MAP kinase signaling pathways and control of cell proliferation: relevance to cancer therapy. Crit Rev Clin Lab Sci 2002; 39:285-330. [PMID: 12385501 DOI: 10.1080/10408360290795538] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mitogen-activated protein (MAP) kinase pathways represent several families of signal transduction cascades that mediate information provided by extracellular stimuli. MAP kinase pathways regulate a wide range of physiological responses, including cell proliferation, apoptosis, cell differentiation, and tissue development. Constitutive activation of MAP kinase proteins in experimental models has been shown to cause cell transformation and is implicated in tumorigenesis. Of clinical importance, MAP kinase pathways are regulated by Ras G-proteins, which are found to be mutated and constitutively active in approximately 30% of all human cancers. Thus, a major goal in the treatment of cancer is the development of specific compounds that target Ras and critical downstream signaling proteins responsible for uncontrolled cell growth. A variety of biochemical, molecular, and structural approaches have been used to develop drug compounds that target signaling proteins important for MAP kinase pathway activation. These compounds have been useful tools for identifying the mechanisms of MAP kinase pathway signaling and hold promise for clinical use. This review will present an overview of the major proteins involved in Ras and MAP kinase signaling pathways and their function in regulating cell cycle events and proliferation. In addition, some of the relevant compounds that have been developed to inhibit the activities of these proteins and MAP kinase signaling are discussed.
Collapse
Affiliation(s)
- Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland-School of Pharmacy, Baltimore 21201, USA
| |
Collapse
|
19
|
Tunquist BJ, Schwab MS, Chen LG, Maller JL. The spindle checkpoint kinase bub1 and cyclin e/cdk2 both contribute to the establishment of meiotic metaphase arrest by cytostatic factor. Curr Biol 2002; 12:1027-33. [PMID: 12123578 DOI: 10.1016/s0960-9822(02)00894-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In vertebrate unfertilized eggs, metaphase arrest in Meiosis II is mediated by an activity known as cytostatic factor (CSF). CSF arrest is dependent upon Mos-dependent activation of the MAPK/Rsk pathway, and Rsk activates the spindle checkpoint kinase Bub1, leading to inhibition of the anaphase-promoting complex (APC), an E3 ubiquitin ligase required for the metaphase/anaphase transition. However, it is not known whether Bub1 is required for the establishment of CSF arrest or whether other pathways also contribute. Here, we show that immunodepletion of Bub1 from egg extracts blocks the ability of Mos to establish CSF arrest, and arrest can be restored by the addition of wild-type, but not kinase-dead, Bub1. The appearance of CSF arrest at Meiosis II may result from coexpression of cyclin E/Cdk2 with the MAPK/Bub1 pathway. Cyclin E/Cdk2 was able to cause metaphase arrest in egg extracts even in the absence of Mos and could also inhibit cyclin B degradation in oocytes when expressed at anaphase of Meiosis I. Once it has been established, metaphase arrest can be maintained in the absence of MAPK, Bub1, or cyclin E/Cdk2 activity. Both pathways are independent of each other, but each appears to block activation of the APC, which is required for cyclin B degradation and the metaphase/anaphase transition.
Collapse
Affiliation(s)
- Brian J Tunquist
- Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, Denver 80262, USA
| | | | | | | |
Collapse
|
20
|
Bodart JF, Flament S, Vilain JP. Metaphase arrest in amphibian oocytes: interaction between CSF and MPF sets the equilibrium. Mol Reprod Dev 2002; 61:570-4. [PMID: 11891929 DOI: 10.1002/mrd.10112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Jean-François Bodart
- Laboratoire de Biologie du Développement, Régulation Ionique et Moléculaire du Cycle Cellulaire, UPRES EA 1033, Université de Lille 1, Villeneuve d'Ascq, France.
| | | | | |
Collapse
|
21
|
Abstract
MAPK families play an important role in complex cellular programs like proliferation, differentiation, development, transformation, and apoptosis. At least three MAPK families have been characterized: extracellular signal-regulated kinase (ERK), Jun kinase (JNK/SAPK) and p38 MAPK. The above effects are fulfilled by regulation of cell cycle engine and other cell proliferation related proteins. In this paper we discussed their functions and cooperation with other signal pathways in regulation of cell proliferation.
Collapse
Affiliation(s)
- Wei Zhang
- The Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, China
| | | |
Collapse
|
22
|
Maller JL, Schwab MS, Gross SD, Taieb FE, Roberts BT, Tunquist BJ. The mechanism of CSF arrest in vertebrate oocytes. Mol Cell Endocrinol 2002; 187:173-8. [PMID: 11988325 DOI: 10.1016/s0303-7207(01)00695-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A cytoplasmic activity in mature oocytes responsible for second meiotic metaphase arrest was identified over 30 years ago in amphibian oocytes. In Xenopus oocytes cytostatic factor (CSF) activity is initiated by the progesterone-dependent synthesis of Mos, a MAPK kinase kinase that activates the MAPK pathway. CSF arrest is mediated by a sole MAPK target, the protein kinase p90(Rsk). Rsk phosphorylates and activates the Bub1 protein kinase, which may cause metaphase arrest due to inhibition of the anaphase-promoting complex (APC) by a conserved mechanism defined genetically in yeast and mammalian cells. CSF arrest in vertebrate oocytes by p90(Rsk) provides a link between the MAPK pathway and the spindle assembly checkpoint in the cell cycle.
Collapse
Affiliation(s)
- James L Maller
- The Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, 4200 E. 9th Avenue, Box C236, Denver, CO 80262, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Yin XL, Chen S, Yan J, Hu Y, Gu JX. Identification of interaction between MEK2 and A-Raf-1. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1589:71-6. [PMID: 11909642 DOI: 10.1016/s0167-4889(01)00188-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mitogen-activated protein (MAP) kinases are activated by dual-specificity kinases, termed MEKs. Using MEK2 as bait in yeast two-hybrid screening, besides c-Raf and KSR, A-Raf was identified as a novel partner that interacts with MEK2. This interaction was confirmed by in vitro binding assay. Further investigation indicates that regions critical for this interaction were located between residues 255 and 606 that represent the kinase domain of A-Raf.
Collapse
Affiliation(s)
- Xiang L Yin
- Box 103, Gene Research Center, Medical Center of Fudan University (Former Shanghai Medical University), Shanghai 200032, PR China
| | | | | | | | | |
Collapse
|
24
|
Sohaskey ML, Ferrell JE. Activation of p42 mitogen-activated protein kinase (MAPK), but not c-Jun NH(2)-terminal kinase, induces phosphorylation and stabilization of MAPK phosphatase XCL100 in Xenopus oocytes. Mol Biol Cell 2002; 13:454-68. [PMID: 11854404 PMCID: PMC65641 DOI: 10.1091/mbc.01-11-0553] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dual-specificity protein phosphatases are implicated in the direct down-regulation of mitogen-activated protein kinase (MAPK) activity in vivo. Accumulating evidence suggests that these phosphatases are components of negative feedback loops that restore MAPK activity to low levels after diverse physiological responses. Limited information exists, however, regarding their posttranscriptional regulation. We cloned two Xenopus homologs of the mammalian dual-specificity MAPK phosphatases MKP-1/CL100 and found that overexpression of XCL100 in G2-arrested oocytes delayed or prevented progesterone-induced meiotic maturation. Epitope-tagged XCL100 was phosphorylated on serine during G2 phase, and on serine and threonine in a p42 MAPK-dependent manner during M phase. Threonine phosphorylation mapped to a single residue, threonine 168. Phosphorylation of XCL100 had no measurable effect on its ability to dephosphorylate p42 MAPK. Similarly, mutation of threonine 168 to either valine or glutamate did not significantly alter the binding affinity of a catalytically inactive XCL100 protein for active p42 MAPK in vivo. XCL100 was a labile protein in G2-arrested and progesterone-stimulated oocytes; surprisingly, its degradation rate was increased more than twofold after exposure to hyperosmolar sorbitol. In sorbitol-treated oocytes expressing a conditionally active DeltaRaf-DD:ER chimera, activation of the p42 MAPK cascade led to phosphorylation of XCL100 and a pronounced decrease in the rate of its degradation. Our results provide mechanistic insight into the regulation of a dual-specificity MAPK phosphatase during meiotic maturation and the adaptation to cellular stress.
Collapse
Affiliation(s)
- Michael L Sohaskey
- Department of Molecular Pharmacology and Program in Cancer Biology, Stanford University School of Medicine, Stanford, California 94305-5174, USA.
| | | |
Collapse
|
25
|
Willard FS, Crouch MF. MEK, ERK, and p90RSK are present on mitotic tubulin in Swiss 3T3 cells: a role for the MAP kinase pathway in regulating mitotic exit. Cell Signal 2001; 13:653-64. [PMID: 11495723 DOI: 10.1016/s0898-6568(01)00185-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mitogen-activated protein (MAP) kinase pathway has been implicated in cell cycle control for some time. Several reports have suggested a role for this pathway in growth factor stimulation of DNA synthesis, while other reports have proposed a role in the transition of cells through mitosis. Here, we have examined the potential involvement of the extracellular signal-related kinase (ERK)1/2 MAP kinases, their upstream regulators, and downstream effectors in the regulation of mitosis. Inhibition of MAP kinase/ERK kinase (MEK) activity reduced the serum-stimulated DNA synthesis and proliferation of Swiss 3T3 cells. To study the potential mechanisms of this effect, we examined the subcellular localization of members of the MAP kinase pathway including regulators (MEK1/2), substrates (90-kDa ribosomal S6 kinases (RSKs): RSK1, RSK2 and RSK3), and ERK itself. We show that there is enrichment of ERK, MEK, and the RSK enzymes on both the spindle and midbody tubulin of dividing cells. Inhibition of MEK1/2 activity in cells released from mitotic arrest results in an inability of cells to complete mitosis. This failure to exit mitosis correlated with altered cyclin-dependent kinase (cdk) activities. Thus, the MAP kinase pathway may act to coordinate passage through mitosis in Swiss 3T3 fibroblasts by regulation of cdk activity.
Collapse
Affiliation(s)
- F S Willard
- Molecular Signalling Group, Division of Neuroscience, John Curtin School of Medical Research, Australian National University, GPO Box 334, A.C.T. 2601, Canberra, Australia.
| | | |
Collapse
|
26
|
Schwab MS, Roberts BT, Gross SD, Tunquist BJ, Taieb FE, Lewellyn AL, Maller JL. Bub1 is activated by the protein kinase p90(Rsk) during Xenopus oocyte maturation. Curr Biol 2001; 11:141-50. [PMID: 11231148 DOI: 10.1016/s0960-9822(01)00045-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The kinetochore attachment (spindle assembly) checkpoint arrests cells in metaphase to prevent exit from mitosis until all the chromosomes are aligned properly at the metaphase plate. The checkpoint operates by preventing activation of the anaphase-promoting complex (APC), which triggers anaphase by degrading mitotic cyclins and other proteins. This checkpoint is active during normal mitosis and upon experimental disruption of the mitotic spindle. In yeast, the serine/threonine protein kinase Bub1 and the WD-repeat protein Bub3 are elements of a signal transduction cascade that regulates the kinetochore attachment checkpoint. In mammalian cells, activated MAPK is present on kinetochores during mitosis and activity is upregulated by the spindle assembly checkpoint. In vertebrate unfertilized eggs, a special form of meiotic metaphase arrest by cytostatic factor (CSF) is mediated by MAPK activation of the protein kinase p90(Rsk), which leads to inhibition of the APC. However, it is not known whether CSF-dependent metaphase arrest caused by p90(Rsk) involves components of the spindle assembly checkpoint. RESULTS xBub1 is present in resting oocytes and its protein level increases slightly during oocyte maturation and early embryogenesis. In Xenopus oocytes, Bub1 is localized to kinetochores during both meiosis I and meiosis II, and the electrophoretic mobility of Bub1 upon SDS-PAGE decreases during meiosis I, reflecting phosphorylation and activation of the enzyme. The activation of Bub1 can be induced in interphase egg extracts by selective stimulation of the MAPK pathway by c-Mos, a MAPKKK. In oocytes treated with the MEK1 inhibitor U0126, the MAPK pathway does not become activated, and Bub1 remains in its low-activity, unshifted form. Injection of a constitutively active target of MAPK, the protein kinase p90(Rsk), restores the activation of Bub1 in the presence of U0126. Moreover, purified p90(Rsk) phosphorylates Bub1 in vitro and increases its protein kinase activity. CONCLUSIONS Bub1, an upstream component of the kinetochore attachment checkpoint, is activated during meiosis in Xenopus in a MAPK-dependent manner. Moreover, a single substrate of MAPK, p90(Rsk), is sufficient to activate Bub1 in vitro and in vivo. These results indicate that in vertebrate eggs, kinetochore attachment/spindle assembly checkpoint proteins, including Bub1, are downstream of p90(Rsk) and may be effectors of APC inhibition and CSF-dependent metaphase arrest by p90(Rsk).
Collapse
Affiliation(s)
- M S Schwab
- Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado, School of Medicine, 4200 East Ninth Ave., Denver, CO 80262, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Bhatt RR, Ferrell JE. Cloning and characterization of Xenopus Rsk2, the predominant p90 Rsk isozyme in oocytes and eggs. J Biol Chem 2000; 275:32983-90. [PMID: 10934212 DOI: 10.1074/jbc.m006386200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 90-kDa ribosomal S6 kinases, the p90 Rsks, are a family of intracellular serine/threonine protein kinases distinguished by two distinct kinase domains. Rsks are activated downstream of the ERK1 (p44) and ERK2 (p42) mitogen-activated protein (MAP) kinases in diverse biological contexts, including progression through meiotic and mitotic M phases in Xenopus oocytes and cycling Xenopus egg extracts, and are critical for the M phase functions of Xenopus p42 MAPK. Here we report the cloning and biochemical characterization of Xenopus Rsk2. Xenopus Rsk1 and Rsk2 are specifically recognized by commercially available RSK1 and RSK2 antisera on immunoblots, but both Rsk1 and Rsk2 are immunoprecipitated by RSK1, RSK2, and RSK3 sera. Rsk2 is about 20-fold more abundant than the previously described Xenopus Rsk1 protein; their concentrations are approximately 120 and 5 nm, respectively. Rsk2, like Rsk1, forms a heteromeric complex with p42 MAP kinase. This interaction depends on sequences at the extreme C terminus of Rsk2 and can be disrupted by a synthetic peptide derived from the C-terminal 20 amino acids of Rsk2. Finally, we demonstrate that p42 MAP kinase can activate recombinant Rsk2 in vitro to a specific activity comparable to that found in Rsk2 that has been activated maximally in vivo. These findings underscore the importance of the Rsk2 isozyme in the M phase functions of p42 MAP kinase and provide tools for further examining Rsk2 function.
Collapse
Affiliation(s)
- R R Bhatt
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, California 94305-5174, USA
| | | |
Collapse
|
28
|
Saavedra HI, Fukasawa K, Conn CW, Stambrook PJ. MAPK mediates RAS-induced chromosome instability. J Biol Chem 1999; 274:38083-90. [PMID: 10608877 DOI: 10.1074/jbc.274.53.38083] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The generation of micronuclei is a reflection of DNA damage, defective mitosis, and loss of genetic material. The involvement of the MAPK pathway in mediating v-ras-induced micronuclei in NIH 3T3 cells was examined by inhibiting MAPK activation. Conversely, the MAPK pathway was constitutively activated by infecting cells with a v-mos retrovirus. Micronucleus formation was inhibited by the MAPK kinase inhibitors PD98059 and U0126, but not by wortmannin, an inhibitor of the Ras/phosphatidylinositol 3-kinase pathway. Transduction of cells with v-mos resulted in an increase in micronucleus formation, also consistent with the involvement of the MAPK pathway. Staining with the anti-centromeric CREST antibody revealed that instability induced by constitutive activation of MAPK is due predominantly to aberrant mitotic segregation, since most of the micronuclei were CREST-positive, reflective of lost chromosomes. A significant fraction of the micronuclei were CREST-negative, reflective of lost acentric chromosome fragments. Some of the instability observed was due to mitotic events, consistent with the increased formation of bi-nucleated cells, which result from perturbations of the mitotic spindle and failure to undergo cytokinesis. This chromosome instability, therefore, is a consequence of mitotic aberrations, mediated by the MAPK pathway, including centrosome amplification and formation of mitotic chromosome bridges.
Collapse
Affiliation(s)
- H I Saavedra
- Department of Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0521, USA
| | | | | | | |
Collapse
|
29
|
Sette C, Barchi M, Bianchini A, Conti M, Rossi P, Geremia R. Activation of the mitogen-activated protein kinase ERK1 during meiotic progression of mouse pachytene spermatocytes. J Biol Chem 1999; 274:33571-9. [PMID: 10559244 DOI: 10.1074/jbc.274.47.33571] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Okadaic acid (OA) causes meiotic progression and chromosome condensation in cultured pachytene spermatocytes and an increase in maturation promoting factor (cyclin B1/cdc2 kinase) activity, as evaluated by H1 phosphorylative activity in anti-cyclin B1 immunoprecipitates. OA also induces a strong increase of phosphorylative activity toward the mitogen-activated protein kinase substrate myelin basic protein (MBP). Immunoprecipitation experiments with anti-extracellular signal-regulated kinase 1 (ERK1) or anti-ERK2 antibodies followed by MBP kinase assays, and direct in-gel kinase assays for MBP, show that p44/ERK1 but not p42/ERK2 is stimulated in OA-treated spermatocytes. OA treatment stimulates phosphorylation of ERK1, but not of ERK2, on a tyrosine residue involved in activation of the enzyme. ERK1 immunoprecipitated from extracts of OA-stimulated spermatocytes induces a stimulation of H1 kinase activity in extracts from control pachytene spermatocytes, whereas immunoprecipitated ERK2 is uneffective. We also show that natural G(2)/M transition in spermatocytes is associated to intracellular redistribution of ERKs, and their association with microtubules of the metaphase spindle. Preincubation of cultured pachytene spermatocytes with PD98059 (a selective inhibitor of ERK-activating kinases MEK1/2) completely blocks the ability of OA to induce chromosome condensation and progression to meiotic metaphases. These results suggest that ERK1 is specifically activated during G(2)/M transition in mouse spermatocytes, that it contributes to the mechanisms of maturation promoting factor activation, and that it is essential for chromosome condensation associated with progression to meiotic metaphases.
Collapse
Affiliation(s)
- C Sette
- Dipartimento di Sanità Pubblica e Biologia Cellulare, Sezione di Anatomia, Università di Roma "Tor Vergata," Via O. Raimondo 8, 00173, Rome, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Persistent activation of p42 mitogen-activated protein kinase (p42 MAPK) during mitosis induces a "cytostatic factor" arrest, the arrest responsible for preventing the parthenogenetic activation of unfertilized eggs. The protein kinase p90 Rsk is a substrate of p42 MAPK; thus, the role of p90 Rsk in p42 MAPK-induced mitotic arrest was examined. Xenopus laevis egg extracts immunodepleted of Rsk lost their capacity to undergo mitotic arrest in response to activation of the Mos-MEK-1-p42 MAPK cascade of protein kinases. Replenishing Rsk-depleted extracts with catalytically competent Rsk protein restored the ability of the extracts to undergo mitotic arrest. Rsk appears to be essential for cytostatic factor arrest.
Collapse
Affiliation(s)
- R R Bhatt
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, CA 94305-5332, USA
| | | |
Collapse
|
31
|
Sohaskey ML, Ferrell JE. Distinct, constitutively active MAPK phosphatases function in Xenopus oocytes: implications for p42 MAPK regulation In vivo. Mol Biol Cell 1999; 10:3729-43. [PMID: 10564268 PMCID: PMC25672 DOI: 10.1091/mbc.10.11.3729] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Xenopus oocyte maturation requires the phosphorylation and activation of p42 mitogen-activated protein kinase (MAPK). Likewise, the dephosphorylation and inactivation of p42 MAPK are critical for the progression of fertilized eggs out of meiosis and through the first mitotic cell cycle. Whereas the kinase responsible for p42 MAPK activation is well characterized, little is known concerning the phosphatases that inactivate p42 MAPK. We designed a microinjection-based assay to examine the mechanism of p42 MAPK dephosphorylation in intact oocytes. We found that p42 MAPK inactivation is mediated by at least two distinct phosphatases, an unidentified tyrosine phosphatase and a protein phosphatase 2A-like threonine phosphatase. The rates of tyrosine and threonine dephosphorylation were high and remained constant throughout meiosis, indicating that the dramatic changes in p42 MAPK activity seen during meiosis are primarily attributable to changes in MAPK kinase activity. The overall control of p42 MAPK dephosphorylation was shared among four partially rate-determining dephosphorylation reactions, with the initial tyrosine dephosphorylation of p42 MAPK being the most critical of the four. Our findings provide biochemical and kinetic insight into the physiological mechanism of p42 MAPK inactivation.
Collapse
Affiliation(s)
- M L Sohaskey
- Department of Molecular Pharmacology and Program in Cancer Biology, Stanford University School of Medicine, Stanford, California 94305-5332, USA
| | | |
Collapse
|
32
|
Liu L, Yang X. Interplay of maturation-promoting factor and mitogen-activated protein kinase inactivation during metaphase-to-interphase transition of activated bovine oocytes. Biol Reprod 1999; 61:1-7. [PMID: 10377024 DOI: 10.1095/biolreprod61.1.1] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The objective of the present study was to examine the activity changes in histone H1 kinase (also known as maturation-promoting factor [MPF]) and mitogen-activated protein kinase (MAPK) and their constituent proteins in in vitro-matured bovine oocytes after in vitro fertilization (IVF) or after parthenogenetic activation induced by calcium ionophore A23187 alone or by the ionophore followed by either 6-dimethylaminopurine (6-DMAP) or cycloheximide (CHX). Inactivation of both H1 kinase and MAPK occurred after both A23187+6-DMAP treatment and IVF; inactivation of H1 kinase preceded inactivation of MAPK. However, MAPK was inactivated much earlier in 6-DMAP-treated oocytes. Further analysis of constituent cell cycle proteins of these kinases by Western blot showed that A23187 alone could not induce changes in cdc2, cdc25, or ERK2 but induced reduction of cyclin B1. IVF and A23187+CHX induced similar changes: cyclin B1 was destroyed shortly after activation followed by accumulation of cyclin B1, phosphorylation of cdc2, and dephosphorylation of ERK2 at pronuclear formation 15 h after activation. No change in cdc25 was observed at this time. In contrast, A23187+6-DMAP treatment resulted in earlier phosphorylation of cdc2 and dephosphorylation of ERK2 at 4 h after treatment when the pronucleus formed. Moreover, accumulation of both cdc25 and cyclin B1 was detected at 15 h. Microinjection of ERK2 antibody into A23187-treated oocytes resulted in pronuclear formation. In conclusion, activation of bovine oocytes with 6-DMAP led to earlier inactivation of MAPK, while CHX induced inactivation of MAPK parallel to that following sperm-induced oocyte activation. Destruction of cyclin B is responsible for inactivation of MPF, while phosphorylation of cdc2 is likely responsible for maintaining its low activity. Inactivation of MAPK is closely associated with pronuclear development regardless of the activation protocol used.
Collapse
Affiliation(s)
- L Liu
- Department of Animal Science, University of Connecticut, Storrs, Connecticut 06269, USA
| | | |
Collapse
|
33
|
Ito H, Iida K, Kamei K, Iwamoto I, Inaguma Y, Kato K. AlphaB-crystallin in the rat lens is phosphorylated at an early post-natal age. FEBS Lett 1999; 446:269-72. [PMID: 10100856 DOI: 10.1016/s0014-5793(99)00242-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We determined the developmental changes in the phosphorylation state of alphaB-crystallin in lenses from rats at various post-natal ages by isoelectric focusing gel electrophoresis or sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a subsequent Western blot analysis of extracts of lenses using antibodies that recognized the carboxy-terminal sequence or each of the three phosphorylated serine residues (Ser-19, Ser-45 and Ser-59) in alphaB-crystallin. Phosphorylated forms of alphaB-crystallin were barely detected at birth but they became detectable at 3 weeks of age and reached plateau levels at 8 weeks of age. The phosphorylation of alphaB-crystallin at Ser-45 was observed preferentially. The active form of p44/42 MAP kinase, which is responsible for the phosphorylation of Ser-45 in alphaB-crystallin, also increased in a development-dependent manner. Thus we found that the developmental increase of the phosphorylation at Ser-45 of alphaB-crystallin in the rat lens was due to the developmental activation of p44/42 MAP kinase.
Collapse
Affiliation(s)
- H Ito
- Department of Biochemistry, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Shapiro PS, Vaisberg E, Hunt AJ, Tolwinski NS, Whalen AM, McIntosh JR, Ahn NG. Activation of the MKK/ERK pathway during somatic cell mitosis: direct interactions of active ERK with kinetochores and regulation of the mitotic 3F3/2 phosphoantigen. J Cell Biol 1998; 142:1533-45. [PMID: 9744882 PMCID: PMC2141760 DOI: 10.1083/jcb.142.6.1533] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/1998] [Revised: 07/20/1998] [Indexed: 02/07/2023] Open
Abstract
The mitogen-activated protein (MAP) kinase pathway, which includes extracellular signal-regulated protein kinases 1 and 2 (ERK1, ERK2) and MAP kinase kinases 1 and 2 (MKK1, MKK2), is well-known to be required for cell cycle progression from G1 to S phase, but its role in somatic cell mitosis has not been clearly established. We have examined the regulation of ERK and MKK in mammalian cells during mitosis using antibodies selective for active phosphorylated forms of these enzymes. In NIH 3T3 cells, both ERK and MKK are activated within the nucleus during early prophase; they localize to spindle poles between prophase and anaphase, and to the midbody during cytokinesis. During metaphase, active ERK is localized in the chromosome periphery, in contrast to active MKK, which shows clear chromosome exclusion. Prophase activation and spindle pole localization of active ERK and MKK are also observed in PtK1 cells. Discrete localization of active ERK at kinetochores is apparent by early prophase and during prometaphase with decreased staining on chromosomes aligned at the metaphase plate. The kinetochores of chromosomes displaced from the metaphase plate, or in microtubule-disrupted cells, still react strongly with the active ERK antibody. This pattern resembles that reported for the 3F3/2 monoclonal antibody, which recognizes a phosphoepitope that disappears with kinetochore attachment to the spindles, and has been implicated in the mitotic checkpoint for anaphase onset (Gorbsky and Ricketts, 1993. J. Cell Biol. 122:1311-1321). The 3F3/2 reactivity of kinetochores on isolated chromosomes decreases after dephosphorylation with protein phosphatase, and then increases after subsequent phosphorylation by purified active ERK or active MKK. These results suggest that the MAP kinase pathway has multiple functions during mitosis, helping to promote mitotic entry as well as targeting proteins that mediate mitotic progression in response to kinetochore attachment.
Collapse
Affiliation(s)
- P S Shapiro
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Zecevic M, Catling AD, Eblen ST, Renzi L, Hittle JC, Yen TJ, Gorbsky GJ, Weber MJ. Active MAP kinase in mitosis: localization at kinetochores and association with the motor protein CENP-E. J Cell Biol 1998; 142:1547-58. [PMID: 9744883 PMCID: PMC2141767 DOI: 10.1083/jcb.142.6.1547] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/1998] [Revised: 07/23/1998] [Indexed: 02/07/2023] Open
Abstract
To investigate possible involvement of the mitogen-activated protein (MAP) kinases ERK1 and ERK2 (extracellular signal-regulated kinases) in somatic cell mitosis, we have used indirect immunofluorescence with a highly specific phospho-MAP kinase antibody and found that a portion of the active MAP kinase is localized at kinetochores, asters, and the midbody during mitosis. Although the aster labeling was constant from the time of nuclear envelope breakdown, the kinetochore labeling first appeared at early prometaphase, started to fade during chromosome congression, and then disappeared at midanaphase. At telophase, active MAP kinase localized at the midbody. Based on colocalization and the presence of a MAP kinase consensus phosphorylation site, we identified the kinetochore motor protein CENP-E as a candidate mitotic substrate for MAP kinase. CENP-E was phosphorylated in vitro by MAP kinase on sites that are known to regulate its interactions with microtubules and was found to associate in vivo preferentially with the active MAP kinase during mitosis. Therefore, the presence of active MAP kinase at specific mitotic structures and its interaction with CENP-E suggest that MAP kinase could play a role in mitosis at least in part by altering the ability of CENP-E to mediate interactions between chromosomes and microtubules.
Collapse
Affiliation(s)
- M Zecevic
- Department of Microbiology and Cancer Center, University of Virginia, Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Vorlaufer E, Peters JM. Regulation of the cyclin B degradation system by an inhibitor of mitotic proteolysis. Mol Biol Cell 1998; 9:1817-31. [PMID: 9658173 PMCID: PMC25421 DOI: 10.1091/mbc.9.7.1817] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The initiation of anaphase and exit from mitosis depend on the anaphase-promoting complex (APC), which mediates the ubiquitin-dependent proteolysis of anaphase-inhibiting proteins and mitotic cyclins. We have analyzed whether protein phosphatases are required for mitotic APC activation. In Xenopus egg extracts APC activation occurs normally in the presence of protein phosphatase 1 inhibitors, suggesting that the anaphase defects caused by protein phosphatase 1 mutation in several organisms are not due to a failure to activate the APC. Contrary to this, the initiation of mitotic cyclin B proteolysis is prevented by inhibitors of protein phosphatase 2A such as okadaic acid. Okadaic acid induces an activity that inhibits cyclin B ubiquitination. We refer to this activity as inhibitor of mitotic proteolysis because it also prevents the degradation of other APC substrates. A similar activity exists in extracts of Xenopus eggs that are arrested at the second meiotic metaphase by the cytostatic factor activity of the protein kinase mos. In Xenopus eggs, the initiation of anaphase II may therefore be prevented by an inhibitor of APC-dependent ubiquitination.
Collapse
Affiliation(s)
- E Vorlaufer
- Research Institute of Molecular Pathology, A-1030 Vienna, Austria
| | | |
Collapse
|
37
|
Cross DA, Smythe C. PD 98059 prevents establishment of the spindle assembly checkpoint and inhibits the G2-M transition in meiotic but not mitotic cell cycles in Xenopus. Exp Cell Res 1998; 241:12-22. [PMID: 9633509 DOI: 10.1006/excr.1998.4023] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most chemotherapeutic agents block DNA replication, damage DNA, or interfere with chromosome segregation. The existence of checkpoints, which monitor these events, indicates that mechanisms exist to avoid death when essential cellular events are inhibited. A molecular understanding of cellular checkpoints should therefore provide opportunities for the development of inhibitors of checkpoint controls which may increase the potency of chemotherapeutic drugs by inducing catastrophic cell cycle progression. The molecular dissection of cell cycle arrest points is facilitated in the Xenopus egg/oocyte system, in which cell-free systems retain both S/M and spindle assembly checkpoints. Members of the MAP kinase family have been shown to play a role in the induction of G2 to M transition during oocyte maturation and have been implicated in the maintenance of either cytostatic factor- or spindle assembly checkpoint-induced M-phase arrest. Here, we have examined the effects of the inhibitor of MAP kinase kinase activation, PD 98059, on cell cycle progression in Xenopus oocytes and in cell-free extracts. This inhibitor is highly specific for the kinase which activates the classical p42/p44 MAP kinase, having no effect on upstream activators of stress-activated protein kinases. We have found that PD 98059 inhibits oocyte maturation, consistent with a role for p42 MAP kinase as a rate-limiting component in the induction of meiosis, but had no effect on the timing of G2-M transition in cell-free extracts indicating that, unlike meiosis, p42 MAP kinase activation is not limiting for normal mitotic M phase entry. However, we found that cytostatic factor-induced metaphase arrest, as well as the spindle assembly checkpoint, were both abolished in the presence of the drug. These results demonstrate that p42 MAP kinase, and not some other member of the MAP kinase family, is responsible for both CSF- and checkpoint-induced metaphase arrest and suggest that PD 98059 and similar agents may have considerable therapeutic potential for the potentiation of chemotherapeutic regimes.
Collapse
Affiliation(s)
- D A Cross
- Department of Biochemistry, The University, Dundee, United Kingdom
| | | |
Collapse
|
38
|
Affiliation(s)
- T S Lewis
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder 80309, USA
| | | | | |
Collapse
|
39
|
Abstract
The mos proto-oncogene-encoded serine/threonine protein kinase plays a key cell cycle-regulatory role during meiosis. The Mos protein is required for the activation and stabilisation of M phase-promoting factor MPF. As a component of a large multiprotein complex known as the cytostatic factor (CSF), Mos is involved in causing metaphase II arrest of eggs in vertebrates. Upon expression in somatic cells, Mos causes cell cycle perturbations resulting in cytotoxicity and neoplastic transformation. All the known biological activities of Mos are mediated through activation of the mitogen activated protein (MAP) kinase pathway. Here we discuss the interrelationship between Mos and other cell cycle regulators.
Collapse
Affiliation(s)
- B Singh
- Department of Molecular Pathology, University of Texas M. D. Anderson Cancer Center, Houston 77030, USA
| | | |
Collapse
|
40
|
Takenaka K, Moriguchi T, Nishida E. Activation of the protein kinase p38 in the spindle assembly checkpoint and mitotic arrest. Science 1998; 280:599-602. [PMID: 9554853 DOI: 10.1126/science.280.5363.599] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The mitogen-activated protein kinase (MAPK) superfamily comprises classical MAPK (also called ERK), c-Jun amino-terminal or stress-activated protein kinase (JNK or SAPK), and p38. Although MAPK is essential for meiotic processes in Xenopus oocytes and the spindle assembly checkpoint in Xenopus egg extracts, the role of members of the MAPK superfamily in M phase or the spindle assembly checkpoint during somatic cell cycles has not been elucidated. The kinase p38, but not MAPK or JNK, was activated in mammalian cultured cells when the cells were arrested in M phase by disruption of the spindle with nocodazole. Addition of activated recombinant p38 to Xenopus cell-free extracts caused arrest of the extracts in M phase, and injection of activated p38 into cleaving embryos induced mitotic arrest. Treatment of NIH 3T3 cells with a specific inhibitor of p38 suppressed activation of the checkpoint by nocodazole. Thus, p38 functions as a component of the spindle assembly checkpoint in somatic cell cycles.
Collapse
Affiliation(s)
- K Takenaka
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-01, Japan
| | | | | |
Collapse
|
41
|
Lane JD, Stebbings H. Phosphorylation of microtubule-associated proteins from the ovaries of hemipteran insects by MPF and MAP kinase: possible roles in the regulation of microtubules during oogenesis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 1998; 39:81-90. [PMID: 9846377 DOI: 10.1002/(sici)1520-6327(1998)39:2<81::aid-arch4>3.0.co;2-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nutritive tubes that link the developing oocytes to the nurse cells in ovarioles of hemipteran insects contain extensive arrays of microtubules. These are established, then later depolymerised, by developmentally regulated processes. Breakdown of the microtubules corresponds with the activation of M-phase promoting factor (MPF) and mitogen-activated protein kinase (MAP kinase), later in oogenesis, as the oocytes proceed to arrest at the first meiotic metaphase [Lane and Stebbings, Roux's Arch Dev Biol 205:150-159 (1995)]. The mechanisms that lead to the breakdown of nutritive tube microtubules are unknown. Here, we have investigated the possibility that the insect ovarian microtubules are regulated by MPF- or MAP kinase-dependent phosphorylation, focusing upon the prominent high molecular weight microtubule-associated protein (HMW MAP) enriched in this system, which is a potential target for protein kinase activity in vivo. We have purified the prominent HMW MAPs from the ovaries of two species of hemipterans, and have shown them to be substrates in vitro for the activities of MPF and MAP kinase. However, although the catalytic component of MPF (p34cdc2) is present within microtubule-rich portions of hemipteran ovarioles, we have found that neither this protein nor its regulatory partner (cyclin B) co-purify with microtubules during taxol-mediated microtubule isolation.
Collapse
Affiliation(s)
- J D Lane
- Department of Biology, University of Exeter, Washington Singer Laboratories, UK.
| | | |
Collapse
|
42
|
Abstract
In frog oocytes, activation of mitogen-activated protein kinase (MAPK, ERK) leads to activation of cdc2 and germinal vesicle breakdown (GVBD). By contrast, in starfish, MAPK is activated after GVBD. Here we have examined the relative involvements of MAPK and cdc2 in GVBD of Chaetopterus oocytes. MAPK was rapidly tyrosine-phosphorylated and activated (within 1-2 min) in response to exposure of the oocytes either to natural seawater (the normal trigger of GVBD in this organism) or to the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA), which can also elicit GVBD. This response preceded the tyrosine dephosphorylation and activation of cdc2 by several minutes. MAPK phosphorylation and activation were transient, lasting only until GVBD occurred and the spindle migrated to the cortex. The enzyme was not phosphorylated again as a result of egg activation. These results are consistent with the hypothesis that the activation of MAPK has a role in GVBD. However, PD 98059, a potent and selective inhibitor of MEK, the protein kinase that phosphorylates and activates MAPK, blocked the phosphorylation of MAPK but did not block GVBD, the dephosphorylation and activation of cdc2, or spindle formation and migration. Oocytes that underwent GVBD in PD 98059 could be fertilized and cleaved normally. Ionophore A23187, although it caused germinal vesicles to disappear and caused transient phosphorylation of MAPK, did not cause dephosphorylation of cdc2, and therefore this disappearance is artifactual. These results suggest that MAPK activation is neither obligatory nor sufficient for either GVBD or meiotic metaphase arrest in Chaetopterus and that activation of MAPK and cdc2 occur on independent, parallel pathways.
Collapse
Affiliation(s)
- W R Eckberg
- Department of Biology, Howard University, Washington, DC 20059, USA
| |
Collapse
|
43
|
Wang XM, Zhai Y, Ferrell JE. A role for mitogen-activated protein kinase in the spindle assembly checkpoint in XTC cells. J Cell Biol 1997; 137:433-43. [PMID: 9128253 PMCID: PMC2139774 DOI: 10.1083/jcb.137.2.433] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/1996] [Revised: 01/24/1997] [Indexed: 02/04/2023] Open
Abstract
The spindle assembly checkpoint prevents cells whose spindles are defective or chromosomes are misaligned from initiating anaphase and leaving mitosis. Studies of Xenopus egg extracts have implicated the Erk2 mitogen-activated protein kinase (MAP kinase) in this checkpoint. Other studies have suggested that MAP kinases might be important for normal mitotic progression. Here we have investigated whether MAP kinase function is required for mitotic progression or the spindle assembly checkpoint in vivo in Xenopus tadpole cells (XTC). We determined that Erk1 and/or Erk2 are present in the mitotic spindle during prometaphase and metaphase, consistent with the idea that MAP kinase might regulate or monitor the status of the spindle. Next, we microinjected purified recombinant XCL100, a Xenopus MAP kinase phosphatase, into XTC cells in various stages of mitosis to interfere with MAP kinase activation. We found that mitotic progression was unaffected by the phosphatase. However, XCL100 rendered the cells unable to remain arrested in mitosis after treatment with nocodazole. Cells injected with phosphatase at prometaphase or metaphase exited mitosis in the presence of nocodazole-the chromosomes decondensed and the nuclear envelope re-formed-whereas cells injected with buffer or a catalytically inactive XCL100 mutant protein remained arrested in mitosis. Coinjection of constitutively active MAP kinase kinase-1, which opposes XCL100's effects on MAP kinase, antagonized the effects of XCL100. Since the only known targets of MAP kinase kinase-1 are Erk1 and Erk2, these findings argue that MAP kinase function is required for the spindle assembly checkpoint in XTC cells.
Collapse
Affiliation(s)
- X M Wang
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305-5332, USA
| | | | | |
Collapse
|
44
|
Takenaka K, Gotoh Y, Nishida E. MAP kinase is required for the spindle assembly checkpoint but is dispensable for the normal M phase entry and exit in Xenopus egg cell cycle extracts. J Cell Biol 1997; 136:1091-7. [PMID: 9060473 PMCID: PMC2132469 DOI: 10.1083/jcb.136.5.1091] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/1996] [Revised: 12/18/1996] [Indexed: 02/03/2023] Open
Abstract
In Xenopus laevis egg cell cycle extracts that mimic early embryonic cell cycles, activation of MAP kinase and MAP kinase kinase occurs in M phase, slightly behind that of maturation promoting factor. To examine the possible role of MAP kinase in the in vitro cell cycle, we depleted the extracts of MAP kinase by using anti-Xenopus MAP kinase antibody. Like in the mock-treated extracts, the periodic activation and deactivation of MPF occurred normally in the MAP kinase-depleted extracts, suggesting that MAP kinase is dispensable for the normal M phase entry and exit in vitro. It has recently been reported that microtubule depolymerization by nocodazole treatment can block exit from mitosis in the extracts if enough sperm nuclei are present, and that the addition of MAP kinase-specific phosphatase MKP-1 overcomes this spindle assembly checkpoint, suggesting the involvement of MAP kinase in the checkpoint signal transduction. We show here that the spindle assembly checkpoint mechanism cannot operate in the MAP kinase-depleted extracts. But, adding recombinant Xenopus MAP kinase to the MAP kinase-depleted extracts restored the spindle assembly checkpoint. These results indicate unambiguously that classical MAP kinase is required for the spindle assembly checkpoint in the cell cycle extracts. In addition, we show that strong activation of MAP kinase by the addition of a constitutively active MAP kinase kinase kinase in the absence of sperm nuclei and nocodazole, induced mitotic arrest in the extracts. Therefore, activation of MAP kinase alone is sufficient for inducing the mitotic arrest in vitro.
Collapse
Affiliation(s)
- K Takenaka
- Department of Genetics and Molecular Biology, Institute for Virus Research, Kyoto University, Sakyo-ku, Japan
| | | | | |
Collapse
|
45
|
Gebauer F, Richter JD. Synthesis and function of Mos: the control switch of vertebrate oocyte meiosis. Bioessays 1997; 19:23-8. [PMID: 9008414 DOI: 10.1002/bies.950190106] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
One distinguishing feature of vertebrate oocyte meiosis is its discontinuity; oocytes are released from their prophase I arrest, usually by hormonal stimulation, only to again halt at metaphase II, where they await fertilization. The product of the c-mos proto-oncogene, Mos, is a key regulator of this maturation process. Mos is a serine-threonine kinase that activates and/or stabilizes maturation-promoting factor (MPF), the master cell cycle switch, through a pathway that involves the mitogen-activated protein kinase (MAPK) cascade. Oocytes arrested at prophase I lack detectable levels of Mos, which must be synthesized from a pool of maternal mRNAs for proper maturation. While Mos is necessary throughout maturation in Xenopus, it seems to be required only for meiosis II in the mouse. The translational activation of c-mos mRNA at specific times during meiosis requires cytoplasmic polyadenylation. Cis- and trans-acting factors for polyadenylation are, therefore, essential elements of maturation.
Collapse
Affiliation(s)
- F Gebauer
- Worcester Foundation for Biomedical Research, Shrewsbury, MA 01545, USA
| | | |
Collapse
|
46
|
Abstract
Mos, a protein kinase, is specifically expressed and functions during meiotic maturation (or G2/M progression) of vertebrate oocytes. When expressed ectopically, however, it can also readily induce oncogenic transformation (or uncontrolled G1/S transitions) in somatic cells. In both of these cell types, Mos activates mitogen-activated protein kinase (MAPK), which seems largely to mediate its different functions in both oocyte maturation and cellular transformation. In oocyte maturation, the Mos-MAPK pathway probably serves to activate and stabilize M-phase promoting factor (MPF) (possibly by inhibiting some negative regulator(s) of this factor), while in cellular transformation, it seems to stabilize and activate the nuclear oncoprotein c-Fos as well as to induce transcription of its gene. Thus, the different functions of Mos in oocytes and somatic cells may arise chiefly from its different MAPK-mediated targets in the respective cell types. This review discusses the cellular basis that may enable Mos to act differently in oocytes and somatic cells.
Collapse
Affiliation(s)
- N Sagata
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
47
|
Abstract
Oscillations in the activity of cyclin-dependent kinases (CDKs) promote progression through the eukaryotic cell cycle. This review examines how proteolysis regulates CDK activity-by degrading CDK activators or inhibitors-and also how proteolysis may directly trigger the transition from metaphase to anaphase. Proteolysis during the cell cycle is mediated by two distinct ubiquitin-conjugation pathways. One pathway, requiring CDC34, initiates DNA replication by degrading a CDK inhibitor. The second pathway, involving a large protein complex called the anaphase-promoting complex or cyclosome, initiates chromosome segregation and exit from mitosis by degrading anaphase inhibitors and mitotic cyclins. Proteolysis therefore drives cell cycle progression not only by regulating CDK activity, but by directly influencing chromosome and spindle dynamics.
Collapse
Affiliation(s)
- R W King
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | | | | | | |
Collapse
|
48
|
Kosako H, Gotoh Y, Nishida E. Multiple roles of the mitogen-activated protein kinase kinase/mitogen-activated protein kinase cascade in Xenopus laevis. Dev Growth Differ 1996. [DOI: 10.1046/j.1440-169x.1996.t01-5-00001.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Kosako H, Akamatsu Y, Tsurushita N, Lee KK, Gotoh Y, Nishida E. Isolation and characterization of neutralizing single-chain antibodies against Xenopus mitogen-activated protein kinase kinase from phage display libraries. Biochemistry 1996; 35:13212-21. [PMID: 8855960 DOI: 10.1021/bi960956f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
MAP kinase kinase (MAPKK) is a dual specificity protein kinase that phosphorylates and activates MAP kinase in vivo. In this study, four mouse monoclonal single-chain Fv (scFv) antibodies (Y1-6, Y1-7, Y3-6, and Y3-11) that can specifically bind to Xenopus MAPKK were isolated from combinatorial scFv-displaying phage libraries. Three scFv clones (Y1-6, Y1-7, and Y3-6) were shown to efficiently inhibit MAPKK activity in vitro. Point mutation (D98K) at VH-CDR3 of one (Y1-6) of these three clones markedly reduced its neutralizing activity. The wild-type scFv (Y1-6) inhibited the Mos-induced MAP kinase activation and germinal vesicle breakdown when injected into immature Xenopus oocytes, whereas the mutant scFv, Y1-6 (D98K), did not. The three neutralizing scFv clones (Y1-6, Y1-7, and Y3-6) were shown to bind to NH2-terminal residues 1-23 of Xenopus MAPKK, whereas the epitope of a Y3-11 clone with no neutralizing activity was shown to lie between residues 33 and 67 of MAPKK. Furthermore, a synthetic peptide (the N16 peptide) corresponding to residues 2-17 of MAPKK suppressed the neutralizing activity of the wild-type Y1-6, and a rabbit polyclonal antibody against the N16 peptide was found to possess a strong neutralizing activity against MAPKK. These results demonstrate that the neutralizing antibodies characterized here inhibit the kinase activity of MAPKK by binding to the NH2-terminal segment of MAPKK.
Collapse
Affiliation(s)
- H Kosako
- Department of Genetics and Molecular Biology, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Rooney RD, Tuazon PT, Meek WE, Carroll EJ, Hagen JJ, Gump EL, Monnig CA, Lugo T, Traugh JA. Cleavage arrest of early frog embryos by the G protein-activated protein kinase PAK I. J Biol Chem 1996; 271:21498-504. [PMID: 8702934 DOI: 10.1074/jbc.271.35.21498] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
PAK I is a member of the PAK (p21-activated protein kinase) family and is activated by Cdc42 (Jakobi, R., Chen, C.-J., Tuazon, P. T., and Traugh, J. A. (1996) J. Biol. Chem. 271, 6206-6211). To examine the effects of PAK I on cleavage arrest, subfemtomole amounts of endogenously active (58 kDa) and inactive (60 kDa) PAK I and a tryptic peptide (37 kDa) containing the active catalytic domain were injected into one blastomere of 2-cell frog embryos. Active PAK I resulted in cleavage arrest in the injected blastomere at mitotic metaphase, whereas the uninjected blastomere progressed through mid- to late cleavage. Injection of other protein kinases at similar concentrations had no effect on cleavage. Endogenous PAK I was highly active in frog oocytes, and antibody to PAK I reacted specifically with protein of 58-60 kDa. PAK I protein was decreased at 60 min post-fertilization, with little or no PAK I protein or activity detectable at 80 min post-fertilization or in 2-cell embryos. At the 4-cell stage PAK I protein increased, but the protein kinase was present primarily as an inactive form. Rac2 and Cdc42, but not Rac 1, were identified in oocytes and throughout early embryo development. Thus, PAK I appears to be a potent cytostatic protein kinase involved in maintaining cells in a non-dividing state. PAK I activity is high in oocytes and appears to be regulated by degradation/synthesis and through autophosphorylation via binding of Cdc42. PAK I may act through regulation of the stress-activated protein kinase signaling pathway and/or by direct regulation of multiple metabolic pathways.
Collapse
Affiliation(s)
- R D Rooney
- Department of Biochemistry, University of California, Riverside, California 92521, USA
| | | | | | | | | | | | | | | | | |
Collapse
|