1
|
Grybchuk D, Procházková M, Füzik T, Konovalovas A, Serva S, Yurchenko V, Plevka P. Structures of L-BC virus and its open particle provide insight into Totivirus capsid assembly. Commun Biol 2022; 5:847. [PMID: 35986212 PMCID: PMC9391438 DOI: 10.1038/s42003-022-03793-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
L-BC virus persists in the budding yeast Saccharomyces cerevisiae, whereas other viruses from the family Totiviridae infect a diverse group of organisms including protists, fungi, arthropods, and vertebrates. The presence of totiviruses alters the fitness of the host organisms, for example, by maintaining the killer system in yeast or increasing the virulence of Leishmania guyanensis. Despite the importance of totiviruses for their host survival, there is limited information about Totivirus structure and assembly. Here we used cryo-electron microscopy to determine the structure of L-BC virus to a resolution of 2.9 Å. The L-BC capsid is organized with icosahedral symmetry, with each asymmetric unit composed of two copies of the capsid protein. Decamers of capsid proteins are stabilized by domain swapping of the C-termini of subunits located around icosahedral fivefold axes. We show that capsids of 9% of particles in a purified L-BC sample were open and lacked one decamer of capsid proteins. The existence of the open particles together with domain swapping within a decamer provides evidence that Totiviridae capsids assemble from the decamers of capsid proteins. Furthermore, the open particles may be assembly intermediates that are prepared for the incorporation of the virus (+) strand RNA. A 2.9 Å resolution structure of the L-BC virus provides insight into the contacts between capsid proteins and the mechanism of capsid assembly.
Collapse
|
2
|
Ramírez M, Martínez A, Molina F. New Insights into the Genome Organization of Yeast Double-Stranded RNA LBC Viruses. Microorganisms 2022; 10:173. [PMID: 35056622 PMCID: PMC8780742 DOI: 10.3390/microorganisms10010173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/14/2022] Open
Abstract
The yeasts Torulaspora delbrueckii (Td) and Saccharomyces cerevisiae (Sc) may show a killer phenotype that is encoded in dsRNA M viruses (V-M), which require the helper activity of another dsRNA virus (V-LA or V-LBC) for replication. Recently, two TdV-LBCbarr genomes, which share sequence identity with ScV-LBC counterparts, were characterized by high-throughput sequencing (HTS). They also share some similar characteristics with Sc-LA viruses. This may explain why TdV-LBCbarr has helper capability to maintain M viruses, whereas ScV-LBC does not. We here analyze two stretches with low sequence identity (LIS I and LIS II) that were found in TdV-LBCbarr Gag-Pol proteins when comparing with the homologous regions of ScV-LBC. These stretches may result from successive nucleotide insertions or deletions (indels) that allow compensatory frameshift events required to maintain specific functions of the RNA-polymerase, while modifying other functions such as the ability to bind V-M (+)RNA for packaging. The presence of an additional frameshifting site in LIS I may ensure the synthesis of a certain amount of RNA-polymerase until the new compensatory indel appears. Additional 5'- and 3'-extra sequences were found beyond V-LBC canonical genomes. Most extra sequences showed high identity to some stretches of the canonical genomes and can form stem-loop structures. Further, the 3'-extra sequence of two ScV-LBC genomes contains rRNA stretches. The origin and possible functions of these extra sequences are here discussed.
Collapse
Affiliation(s)
- Manuel Ramírez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain;
| | - Alberto Martínez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain;
| | - Felipe Molina
- Departamento de Bioquímica, Biología Molecular y Genética (Área de Genética), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain;
| |
Collapse
|
3
|
Zhang M, He Z, Huang X, Shu C, Zhou E. Genome Organizations and Functional Analyses of a Novel Gammapartitivirus from Rhizoctonia solani AG-1 IA Strain D122. Viruses 2021; 13:v13112254. [PMID: 34835059 PMCID: PMC8623816 DOI: 10.3390/v13112254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Here, we describe a novel double-stranded (ds) RNA mycovirus designated Rhizoctonia solani dsRNA virus 5 (RsRV5) from strain D122 of Rhizoctonia solani AG-1 IA, the causal agent of rice sheath blight. The RsRV5 genome consists of two segments of dsRNA (dsRNA-1, 1894 bp and dsRNA-2, 1755 bp), each possessing a single open reading frame (ORF). Sequence alignments and phylogenetic analyses showed that RsRV5 is a new member of the genus Gammapartitivirus in the family Partitiviridae. Transmission electron microscope (TEM) images revealed that RsRV5 has isometric viral particles with a diameter of approximately 20 nm. The mycovirus RsRV5 was successfully removed from strain D122 by using the protoplast regeneration technique, thus resulting in derivative isogenic RsRV5-cured strain D122-P being obtained. RsRV5-cured strain D122-P possessed the traits of accelerated mycelial growth rate, increased sclerotia production and enhanced pathogenicity to rice leaves compared with wild type RsRV5-infection strain D122. Transcriptome analysis showed that three genes were differentially expressed between two isogenic strains, D122 and D122-P. These findings provided new insights into the molecular mechanism of the interaction between RsRV5 and its host, D122 of R. solani AG-1 IA.
Collapse
Affiliation(s)
- Meiling Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (Z.H.); (X.H.)
- School of Biological and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Zhenrui He
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (Z.H.); (X.H.)
| | - Xiaotong Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (Z.H.); (X.H.)
| | - Canwei Shu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (Z.H.); (X.H.)
- Correspondence: (C.S.); (E.Z.)
| | - Erxun Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (Z.H.); (X.H.)
- Correspondence: (C.S.); (E.Z.)
| |
Collapse
|
4
|
Hou J, Zhang S, Zhang X, Wang K, Zhang Q, Shi Y. Insights into ferulic acid detoxification mechanism by using a novel adsorbent, AEPA 250: The microinteraction of ferulic acid with AEPA 250 and Saccharomyces cerevisiae. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125685. [PMID: 34088183 DOI: 10.1016/j.jhazmat.2021.125685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
In this study, a novel adsorbent, Air Environment-prepared Adsorbent at 250 ℃ (AEPA250), was used to detoxify the main fermentation inhibitor (ferulic acid) present in the alkali-pretreated hydrolysate. AEPA250 reduced the effective concentration of ferulic acid by its adsorption, thereby decreasing the possible interaction of ferulic acid with Saccharomyces cerevisiae. The results indicated that AEPA250 functionalized with hydroxyl, carboxyl, and amino groups under acidic conditions with higher binding energies (-45.667, -27.046, and -11.008 kcal mol-1, respectively) and electronic cloud overlap and shorter bond distances (1.015, 1.010, and 2.094 Å, respectively) than those under the other pH conditions. These differences revealed that the electrostatic interaction dominated ferulic acid adsorption on AEPA250. Additionally, under acidic conditions and for carboxyl group functionalized AEPA250, energy band gap values of Eg1 were higher than those of Eg2, indicating that ferulic acid provided the π-electrons for the π-π electron donor-acceptor interactions with AEPA250. Furthermore, ferulic acid detoxification after AEPA250 adsorption caused the regulation of YDR316W-B and YPR137C-B genes of S. cerevisiae. These results might contribute to the development of other more efficient adsorbents and pretreatment methods and allow yeast engineering for improving the scale-up and self-sufficient production of bioethanol in the future.
Collapse
Affiliation(s)
- Jinju Hou
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Shudong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Xiaotong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Kainan Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China.
| | - Yuhan Shi
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| |
Collapse
|
5
|
Buskirk SW, Rokes AB, Lang GI. Adaptive evolution of nontransitive fitness in yeast. eLife 2020; 9:62238. [PMID: 33372653 PMCID: PMC7886323 DOI: 10.7554/elife.62238] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/25/2020] [Indexed: 12/25/2022] Open
Abstract
A common misconception is that evolution is a linear ‘march of progress’, where each organism along a line of descent is more fit than all those that came before it. Rejecting this misconception implies that evolution is nontransitive: a series of adaptive events will, on occasion, produce organisms that are less fit compared to a distant ancestor. Here we identify a nontransitive evolutionary sequence in a 1000-generation yeast evolution experiment. We show that nontransitivity arises due to adaptation in the yeast nuclear genome combined with the stepwise deterioration of an intracellular virus, which provides an advantage over viral competitors within host cells. Extending our analysis, we find that nearly half of our ~140 populations experience multilevel selection, fixing adaptive mutations in both the nuclear and viral genomes. Our results provide a mechanistic case-study for the adaptive evolution of nontransitivity due to multilevel selection in a 1000-generation host/virus evolution experiment. It is widely accepted in biology that all life on Earth gradually evolved over billions of years from a single ancestor. Yet, there is still much about this process that is not fully understood. Evolution is often thought of as progressing in a linear fashion, with each new generation being better adapted to its environment than the last. But it has been proposed that evolution is also nontransitive: this means even if each generation is ‘fitter’ than its immediate predecessor, these series of adaptive changes will occasionally result in organisms that are less fit than their distant ancestors. Laboratory experiments of evolution are a good way to test evolutionary theories because they allow researchers to create scenarios that are impossible to observe in natural populations, such as an organism competing against its extinct ancestors. Buskirk et al. set up such an experiment using yeast to determine whether nontransitive effects can be observed in the direct descendants of an organism. At the start of the experiment, the yeast cells were host to a non-infectious ‘killer’ virus that is common among yeast. Cells containing the virus produce a toxin that destroys other yeast that lack the virus. The populations of yeast were given a nutrient-rich broth in which to grow and subjected to a simple evolutionary pressure: to grow fast, which limits the amount of resources available. As the yeast evolved, they gained beneficial genetic mutations that allowed them to outcompete their neighbors, and they passed these traits down to their descendants. Some of these mutations occurred not in the yeast genome, but in the genome of the killer virus, and this stopped the yeast infected with the virus from producing the killer toxin. Over time, other mutations resulted in the infected yeast no longer being immune to the toxin. Thus, when Buskirk et al. pitted these yeast against their distant ancestors, the new generation were destroyed by the toxins the older generation produced. These findings provide the first experimental evidence for nontransitivity along a line of descent. The results have broad implications for our understanding of how evolution works, casting doubts over the idea that evolution always involves a direct progression towards new, improved traits.
Collapse
Affiliation(s)
- Sean W Buskirk
- Department of Biological Sciences, Lehigh University, Bethlehem, United States
| | - Alecia B Rokes
- Department of Biological Sciences, Lehigh University, Bethlehem, United States
| | - Gregory I Lang
- Department of Biological Sciences, Lehigh University, Bethlehem, United States
| |
Collapse
|
6
|
Abstract
Saccharomyces cerevisiae has been a key experimental organism for the study of infectious diseases, including dsRNA viruses, ssRNA viruses, and prions. Studies of the mechanisms of virus and prion replication, virus structure, and structure of the amyloid filaments that are the basis of yeast prions have been at the forefront of such studies in these classes of infectious entities. Yeast has been particularly useful in defining the interactions of the infectious elements with cellular components: chromosomally encoded proteins necessary for blocking the propagation of the viruses and prions, and proteins involved in the expression of viral components. Here, we emphasize the L-A dsRNA virus and its killer-toxin-encoding satellites, the 20S and 23S ssRNA naked viruses, and the several infectious proteins (prions) of yeast.
Collapse
|
7
|
Clinical isolates of Trichomonas vaginalis concurrently infected by strains of up to four Trichomonasvirus species (Family Totiviridae). J Virol 2011; 85:4258-70. [PMID: 21345965 DOI: 10.1128/jvi.00220-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Trichomonas vaginalis, which causes the most common nonviral sexually transmitted disease worldwide, is itself commonly infected by nonsegmented double-stranded RNA (dsRNA) viruses from the genus Trichomonasvirus, family Totiviridae. To date, cDNA sequences of one or more strains of each of three trichomonasvirus species have been reported, and gel electrophoresis showing several different dsRNA molecules obtained from a few T. vaginalis isolates has suggested that more than one virus strain might concurrently infect the same parasite cell. Here, we report the complete cDNA sequences of 3 trichomonasvirus strains, one from each of the 3 known species, infecting a single, agar-cloned clinical isolate of T. vaginalis, confirming the natural capacity for concurrent (in this case, triple) infections in this system. We furthermore report the complete cDNA sequences of 11 additional trichomonasvirus strains, from 4 other clinical isolates of T. vaginalis. These additional strains represent the three known trichomonasvirus species, as well as a newly identified fourth species. Moreover, 2 of these other T. vaginalis isolates are concurrently infected by strains of all 4 trichomonasvirus species (i.e., quadruple infections). In sum, the full-length cDNA sequences of these 14 new trichomonasviruses greatly expand the existing data set for members of this genus and substantiate our understanding of their genome organizations, protein-coding and replication signals, diversity, and phylogenetics. The complexity of this virus-host system is greater than has been previously well recognized and suggests a number of important questions relating to the pathogenesis and disease outcomes of T. vaginalis infections of the human genital mucosa.
Collapse
|
8
|
Lim WS, Jeong JH, Jeong RD, Yoo YB, Yie SW, Kim KH. Complete nucleotide sequence and genome organization of a dsRNA partitivirus infecting Pleurotus ostreatus. Virus Res 2005; 108:111-9. [PMID: 15681061 DOI: 10.1016/j.virusres.2004.08.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2004] [Revised: 08/18/2004] [Accepted: 08/26/2004] [Indexed: 11/26/2022]
Abstract
The nucleotide sequences of the genomic dsRNA mycovirus infecting Pleurotus ostreatus (P. ostreatus virus 1; PoV1) were determined and compared to the sequences of the other mycoviruses belonging to partitiviruses and totivirues. PoV1 dsRNA-1 and dsRNA-2 had genomes of 2296 and 2223 nucleotides, respectively. The purified virus preparations contained isometric particles of 28-30 nm in diameter, and also the same two dsRNAs were isolated from purified virus preparations. The sequences of PoV1 dsRNA-1 and dsRNA-2 had GC contents of 48.4 and 51.5%, respectively. dsRNA-1 had 78 and 97 nucleotides of 5'- and 3'-untranslated region (UTR) while dsRNA-2 had 114 and 198 nucleotides of 5'- and 3'-UTR, respectively. Computer analysis of putative open reading frame (ORF) shows that dsRNA-1 and dsRNA-2 contain a single ORF encoding proteins of 82.2 and 71.1 kDa that show high sequence identity with RNA-dependent RNA polymerase and capsid protein of partitiviruses, respectively. When compared to other dsRNA mycoviruses in a phylogenetic analysis they were found to form a distinct virus clade with partitiviruses, and were more distantly related to totiviruses.
Collapse
Affiliation(s)
- Won-Seok Lim
- School of Agricultural Biotechnology and Center for Plant Molecular Genetics and Breeding Research, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | |
Collapse
|
9
|
Tang J, Naitow H, Gardner NA, Kolesar A, Tang L, Wickner RB, Johnson JE. The structural basis of recognition and removal of cellular mRNA 7-methyl G 'caps' by a viral capsid protein: a unique viral response to host defense. J Mol Recognit 2005; 18:158-68. [PMID: 15597333 DOI: 10.1002/jmr.724] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The single segment, double-stranded RNA genome of the L-A virus (L-A) of yeast encodes two proteins: the major coat protein Gag (76 kDa) and the Gag-Pol fusion protein (180 kDa). The icosahedral L-A capsid is formed by 120 copies of Gag and has architecture similar to that seen in the reovirus, blue tongue virus and rice dwarf virus inner protein shells. Gag chemically removes the m7GMP caps from host cellular mRNAs. Previously we identified a trench on the outer surface of Gag that included His154, to which caps are covalently attached. Here we report the refined L-A coordinates at 3.4 angstroms resolution with additional structural features and the structure of L-A with bound m7GDP at 6.5 angstroms resolution, which shows the conformational change of the virus upon ligand binding. Based on site-directed mutations, residues in or adjacent to the trench that are essential (or dispensable) for the decapping reaction are described here. Along with His154, the reaction requires a cluster of positive charge adjoining the trench and residues Tyr 452, Tyr150 and either Tyr or Phe at position 538. A tentative mechanism for decapping is proposed.
Collapse
Affiliation(s)
- Jinghua Tang
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Weiler F, Rehfeldt K, Bautz F, Schmitt MJ. The Zygosaccharomyces bailii antifungal virus toxin zygocin: cloning and expression in a heterologous fungal host. Mol Microbiol 2002; 46:1095-105. [PMID: 12421314 DOI: 10.1046/j.1365-2958.2002.03225.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Zygocin, a monomeric protein toxin secreted by a virus-infected killer strain of the osmotolerant spoilage yeast Zygosaccharomyces bailii, kills a broad spectrum of human and phytopathogenic yeasts and filamentous fungi by disrupting cytoplasmic membrane function. The toxin is encoded by a double-stranded (ds)RNA killer virus (ZbV-M, for Z. bailii virus M) that stably persists within the yeast cell cytosol. In this study, the protein toxin was purified, its N-terminal amino acid sequence was determined, and a full-length cDNA copy of the 2.1 kb viral dsRNA genome was cloned and successfully expressed in a heterologous fungal system. Sequence analysis as well as zygocin expression in Schizosaccharomyces pombe indicated that the toxin is in vivo expressed as a 238-amino-acid preprotoxin precursor (pptox) consisting of a hydrophobic N-terminal secretion signal, followed by a potentially N-glycosylated pro-region and terminating in a classical Kex2p endopeptidase cleavage site that generates the N-terminus of the mature and biologically active protein toxin in a late Golgi compartment. Matrix-assisted laser desorption mass spectrometry further indicated that the secreted toxin is a monomeric 10.4 kDa protein lacking detectable post-translational modifications. Furthermore, we present additional evidence that in contrast with other viral antifungal toxins, zygocin immunity is not mediated by the toxin precursor itself and, therefore, heterologous pptox expression in a zygocin-sensitive host results in a suicidal phenotype. Final sequence comparisons emphasize the conserved pattern of functional elements present in dsRNA killer viruses that naturally infect phylogenetically distant hosts (Saccharomyces cerevisiae and Z. bailii) and reinforce models for the sequence elements that are in vivo required for viral RNA packaging and replication.
Collapse
Affiliation(s)
- Frank Weiler
- Angewandte Molekularbiologie, Universität des Saarlandes, Saarbrücken, Germany
| | | | | | | |
Collapse
|
11
|
Yoo JS, Cheong HK, Lee BJ, Kim YB, Cheong C. Solution structure of the SL1 RNA of the M1 double-stranded RNA virus of Saccharomyces cerevisiae. Biophys J 2001; 80:1957-66. [PMID: 11259308 PMCID: PMC1301384 DOI: 10.1016/s0006-3495(01)76165-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The 20-nucleotide SL1 VBS RNA, 5'-GGAGACGC[GAUUC]GCGCUCC (bulged A underlined and loop bases in brackets), plays a crucial role in viral particle binding to the plus strand and packaging of the RNA. Its structure was determined by NMR spectroscopy. Structure calculations gave a precisely defined structure, with an average pairwise root mean square deviation (RMSD) of 1.28 A for the entire molecule, 0.57 A for the loop region (C8-G14), and 0.46 A for the bulge region (G4-G7, C15-C17). Base stacking continues for three nucleotides on the 5' side of the loop. The final structure contains a single hydrogen bond involving the guanine imino proton and the carbonyl O(2) of the cytosine between the nucleotides on the 5' and 3' ends of the loop, although they do not form a Watson-Crick base pair. All three pyrimidine bases in the loop point toward the major groove, which implies that Cap-Pol protein may recognize the major groove of the SL1 loop region. The bulged A5 residue is stacked in the stem, but nuclear Overhauser enhancements (NOEs) suggest that A5 spends part of the time in the bulged-out conformation. The rigid conformation of the upper stem and loop regions may allow the SL1 VBS RNA to interact with Cap-Pol protein without drastically changing its own conformation.
Collapse
Affiliation(s)
- J S Yoo
- Magnetic Resonance Team, Korea Basic Science Institute, Taejon 305-333, Korea
| | | | | | | | | |
Collapse
|
12
|
Fujimura T, Esteban R. Recognition of RNA encapsidation signal by the yeast L-A double-stranded RNA virus. J Biol Chem 2000; 275:37118-26. [PMID: 10954712 DOI: 10.1074/jbc.m005245200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The encapsidation signal of the yeast L-A virus contains a 24-nucleotide stem-loop structure with a 5-nucleotide loop and an A bulged at the 5' side of the stem. The Pol part of the Gag-Pol fusion protein is responsible for encapsidation of viral RNA. Opened empty viral particles containing Gag-Pol specifically bind to this encapsidation signal in vitro. We found that binding to empty particles protected the bulged A and the flanking-two nucleotides from cleavage by Fe(II)-EDTA-generated hydroxyl radicals. The five nucleotides of the loop sequence ((4190)GAUCC(4194)) were not protected. However, T1 RNase protection and in vitro mutagenesis experiments indicated that G(4190) is essential for binding. Although the sequence of the other four nucleotides of the loop is not essential, data from RNase protection and chemical modification experiments suggested that C(4194) was also directly involved in binding to empty particles rather than indirectly through its potential base pairing with G(4190). These results suggest that the Pol domain of Gag-Pol contacts the encapsidation signal at two sites: one, the bulged A, and the other, G and C bases at the opening of the loop. These two sites are conserved in the encapsidation signal of M1, a satellite RNA of the L-A virus.
Collapse
Affiliation(s)
- T Fujimura
- Instituto de Microbiologia Bioquimica/Departamento de Microbiologia y Genética, Consejo Superior de Investigaciones Cientificas/Universidad de Salamanca, Salamanca 37007, Spain.
| | | |
Collapse
|
13
|
Lopinski JD, Dinman JD, Bruenn JA. Kinetics of ribosomal pausing during programmed -1 translational frameshifting. Mol Cell Biol 2000; 20:1095-103. [PMID: 10648594 PMCID: PMC85227 DOI: 10.1128/mcb.20.4.1095-1103.2000] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the Saccharomyces cerevisiae double-stranded RNA virus, programmed -1 ribosomal frameshifting is responsible for translation of the second open reading frame of the essential viral RNA. A typical slippery site and downstream pseudoknot are necessary for this frameshifting event, and previous work has demonstrated that ribosomes pause over the slippery site. The translational intermediate associated with a ribosome paused at this position is detected, and, using in vitro translation and quantitative heelprinting, the rates of synthesis, the ribosomal pause time, the proportion of ribosomes paused at the slippery site, and the fraction of paused ribosomes that frameshift are estimated. About 10% of ribosomes pause at the slippery site in vitro, and some 60% of these continue in the -1 frame. Ribosomes that continue in the -1 frame pause about 10 times longer than it takes to complete a peptide bond in vitro. Altering the rate of translational initiation alters the rate of frameshifting in vivo. Our in vitro and in vivo experiments can best be interpreted to mean that there are three methods by which ribosomes pass the frameshift site, only one of which results in frameshifting.
Collapse
Affiliation(s)
- J D Lopinski
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | | | |
Collapse
|
14
|
Abstract
Ure2p of Saccharomyces cerevisiae normally functions in blocking utilization of a poor nitrogen source when a good nitrogen source is available. The non-Mendelian genetic element [URE3] is a prion (infectious protein) form of Ure2p, so that overexpression of Ure2p induces the de novo appearance of infectious [URE3]. Earlier studies defined a prion domain comprising Ure2p residues 1 to 64 and a nitrogen regulation domain included in residues 66 to 354. We find that deletion of individual runs of asparagine within the prion domain reduce prion-inducing activity. Although residues 1 to 64 are sufficient for prion induction, the fragment from residues 1 to 80 is a more efficient inducer of [URE3]. In-frame deletion of a region around residue 224 does not affect nitrogen regulation but does eliminate prion induction by the remainder of Ure2p. Larger deletions removing the region around residue 224 and more of the C-terminal part of Ure2p restore prion-inducing ability. A fragment of Ure2p lacking the original prion domain does not induce [URE3], but surprisingly, further deletion of residues 151 to 157 and 348 to 354 leaves a fragment that can do so. The region from 66 to 80 and the region around residue 224 are both necessary for this second prion-inducing activity. Thus, each of two nonoverlapping parts of Ure2p is sufficient to induce the appearance of the [URE3] prion.
Collapse
Affiliation(s)
- M L Maddelein
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | |
Collapse
|
15
|
Abstract
The role of the nucleocapsid protein of HIV-1 Gag in virus assembly was investigated using Gag truncation mutants, a nucleocapsid deletion mutant, and point mutations in the nucleocapsid region of Gag, in transfected COS cells, and in stable T-cell lines. Consistent with previous investigations, a truncation containing only the matrix and capsid regions of Gag was unable to assemble efficiently into particles; also, the pelletable material released was lighter than the density of wild-type HIV-1. A deletion mutant lacking p7 nucleocapsid but containing the C-terminal p6 protein was also inefficient in particle release and released lighter particles, while a truncation containing only the first zinc finger of p7 could assemble more efficiently into virions. These results clearly show that p7 is indispensable for virus assembly and release. Some point mutations in the N-terminal basic domain and in the basic linker region between the two zinc fingers, which had been previously shown to have reduced RNA binding in vitro [Schmalzbauer, E., Strack, B., Dannull, J., Guehmann, S., and Moelling, K. (1996). J. Virol. 70: 771-777], were shown to reduce virus assembly dramatically when expressed in full-length viral clones. A fusion protein consisting of matrix and capsid fused to a heterologous viral protein known to have nonspecific RNA binding activity [Ribas, J. C., Fujimura, T., and Wickner, R. B. (1994) J. Biol. Chem. 269: 28420-28428] released pelletable material slightly more efficiently than matrix and capsid alone, and these particles had density higher than matrix and capsid alone. These results demonstrate the essential role of HIV-1 nucleocapsid in the virus assembly process and show that the positively charged N terminus of p7 is critical for this role.
Collapse
Affiliation(s)
- L Dawson
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Hygiene and Public Health, Baltimore, Maryland, 21205, USA
| | | |
Collapse
|
16
|
Edskes HK, Ohtake Y, Wickner RB. Mak21p of Saccharomyces cerevisiae, a homolog of human CAATT-binding protein, is essential for 60 S ribosomal subunit biogenesis. J Biol Chem 1998; 273:28912-20. [PMID: 9786894 DOI: 10.1074/jbc.273.44.28912] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mak21-1 mutants are unable to propagate M1 double-stranded RNA, a satellite of the L-A double-stranded RNA virus, encoding a secreted protein toxin lethal to yeast strains that do not carry M1. We cloned MAK21 using its map location and found that Mak21p is homologous to a human and mouse CAATT-binding protein and open reading frames in Schizosaccharomyces pombe and Caenorhabditis elegans. Although the human protein regulates Hsp70 production, Mak21p is essential for growth and necessary for 60 S ribosomal subunit biogenesis. mak21-1 mutants have decreased levels of L-A coat protein and L-A double-stranded RNA. Electroporation with reporter mRNAs shows that mak21-1 cells cannot optimally express mRNAs which, like L-A viral mRNA, lack 3'-poly(A) or 5'-cap structures but can normally express mRNA with both cap and poly(A). The virus propagation phenotype of mak21-1 is suppressed by ski2 or ski6 mutations, each of which derepresses translation of non-poly(A) mRNA.
Collapse
Affiliation(s)
- H K Edskes
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | |
Collapse
|
17
|
Ribas JC, Wickner RB. The Gag domain of the Gag-Pol fusion protein directs incorporation into the L-A double-stranded RNA viral particles in Saccharomyces cerevisiae. J Biol Chem 1998; 273:9306-11. [PMID: 9535925 DOI: 10.1074/jbc.273.15.9306] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The L-A double-stranded RNA virus of yeast encodes its major coat protein, Gag, and a Gag-Pol fusion protein made by a -1 ribosomal frameshift, a coding strategy used by many retroviruses. We find that cells expressing only Gag from one plasmid and only Gag-Pol (in frame) from a separate plasmid can support the propagation of M1 double-stranded RNA, encoding the killer toxin. We use this system to separately investigate the functions of Gag and the Gag part of Gag-Pol. L-A contains two fusion protein molecules per particle, and although N-terminal acetylation of Gag is essential for viral assembly, it is completely dispensable for function of Gag-Pol. In general, the requirements on Gag for viral assembly and propagation are more stringent than on the Gag part of Gag-Pol. Finally, we directly show that it is Gag that instructs the incorporation of Gag-Pol into the viral particles.
Collapse
Affiliation(s)
- J C Ribas
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | |
Collapse
|
18
|
Köhler S, Wang CC. Site-specific binding of polymerase-containing particles of the Giardia lamblia double-stranded RNA virus to the viral plus-strand RNA. RESEARCH IN VIROLOGY 1997; 148:311-21. [PMID: 9403930 DOI: 10.1016/s0923-2516(97)89127-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The non-segmented, double-stranded RNA genome of the Giardia lamblia virus (GLV) contains two genes encoding the major capsid protein (gag) and a fusion of gag with the viral RNA-dependent RNA polymerase (pol). Computer analysis of the viral RNA genome revealed three putative stem-loop structures that were predicted to mediate replication, transcription and packaging of the GLV genomic RNA by binding to the pol domain of the virus-encoded fusion protein. To provide evidence of these postulated RNA/protein interactions, gel retardation assays were employed to examine the potential binding capacity of various viral RNA genome-related sequences to native GLV protein(s). Viral proteins were obtained by disrupting purified GLV particles under low-ionic-strength conditions. The resulting viral protein particles maintained their RNA polymerase activity in the presence of GLV genomic RNA and thus appeared to be suitable tools for the analyses of GLV-protein-mediated binding reactions. A 72-nt short single-stranded in vitro transcript containing a putative stem-loop structure predicted to participate in the packaging of GLV (+)-strand RNA bound specifically to the disrupted virus particles. RNAs containing modified motifs of this stem-loop structure failed to bind to the GLV capsid.
Collapse
Affiliation(s)
- S Köhler
- University of California San Francisco, Department of Pharmaceutical Chemistry 94143-0466, USA
| | | |
Collapse
|
19
|
Russell PJ, Bennett AM, Love Z, Baggott DM. Cloning, sequencing and expression of a full-length cDNA copy of the M1 double-stranded RNA virus from the yeast, Saccharomyces cerevisiae. Yeast 1997; 13:829-36. [PMID: 9234671 DOI: 10.1002/(sici)1097-0061(199707)13:9<829::aid-yea144>3.0.co;2-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Strains of the budding yeast, Saccharomyces cerevisiae, may contain one or more cytoplasmic viruses with double-stranded RNA (dsRNA) genomes. The killer phenomenon in yeast, in which one cell secretes a killer toxin that is lethal to another cell, is dependent upon the presence of the L-A and M1 dsRNA viruses. The L-A viral genome encodes proteins for the viral capsid, and for synthesis and encapsidation of single-stranded RNA replication cycle intermediates. The M1 virus depends upon the L-A-encoded proteins for its capsid and for the replication of its killer-toxin-encoding genome. A full-length cDNA clone of an M genome has been made from a single dsRNA molecule and shown to encode functional killer and killer-immunity functions. The sequence of the clone indicates minor differences from previously published sequences of parts of the M1 genome and of the complete genome of S14 (an internal deletion derivative of M1) but no unreported amino acid variants and no changes in putative secondary structures of the single-stranded RNA. A 118-nucleotide contiguous segment of the M1 genome has not previously been reported; 92 of those nucleotides comprise a segment of A nucleotides in the AU-rich bubble that follows the toxin-encoding reading frame.
Collapse
Affiliation(s)
- P J Russell
- Biology Department, Reed College, Portland, OR 97202, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Saccharomyces cerevisiae is host to the dsRNA viruses L-A (including its killer toxin-encoding satellite, M) and L-BC, the 20S and 23S ssRNA replicons, and the putative prions, [URE3] and [PSI]. review the genetic and biochemical evidence indicating that [URE3] and [PSI] are prion forms of Ure2p and Sup35p, respectively. Each has an N-terminal domain involved in propagation or generation of the prion state and a C-terminal domain responsible for the protein's normal function, nitrogen regulation, or translation termination, respectively. The L-A dsRNA virus expression, replication, and RNA packaging are reviewed. L-A uses a -1 ribosomal frameshift to produce a Gag-Pol fusion protein. The host SK12, SK13 and SK18 proteins block translation of nonpoly(A) mRNAs (such as viral mRNA). Mutants deficient in 60S ribosomal subunits replicate L-A poorly, but not if cells are also ski-. Interaction of 60S subunits with the 3' polyA is suggested. SKI1/XRN1 is a 5'--> 3' exoribonuclease that degrades uncapped mRNAs. The viral Gag protein decapitates cellular mRNAs apparently to decoy this enzyme from working on viral mRNA.
Collapse
Affiliation(s)
- R B Wickner
- National Institute of Diabetes, Digestive and Kidney Disease, National Institute of Health, Bethesda, Maryland 20892-0830, USA
| |
Collapse
|
21
|
|
22
|
Ribas JC, Wickner RB. RNA-dependent RNA polymerase activity related to the 20S RNA replicon of Saccharomyces cerevisiae. Yeast 1996; 12:1219-28. [PMID: 8905926 DOI: 10.1002/(sici)1097-0061(19960930)12:12%3c1219::aid-yea14%3e3.0.co;2-n] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Saccharomyces cerevisiae contains two double-stranded RNA (dsRNA) viruses (L-A and L-BC) and two different single-stranded (ssRNA) replicons (20S RNA and 23S RNA). Replicase (dsRNA synthesis on a ssRNA template) and transcriptase (ssRNA synthesis on a dsRNA template) activities have been described for L-A and L-BC viruses, but not for 20S or 23S RNA. We report the characterization of a new in vitro RNA replicase activity in S. cerevisiae. This activity is detected after partial purification of a particulate fraction in CsCl gradients where it migrates at the density of free protein. The activity does not require the presence of L-A or L-BC viruses or 23S RNA, and its presence or absence is correlated with the presence or absence of the 20S RNA replicon. Strains lacking both this RNA polymerase activity and 20S RNA acquire this activity when they acquire 20S RNA by cytoduction (cytoplasmic mixing). This polymerase activity converts added ssRNA to dsRNA by synthesis of the complementary strand, but has no specificity for the 3' end or internal template sequence. Although it replicates all tested RNA templates, it has a template size requirement, being unable to replicate templates larger than 1 kb. The replicase makes dsRNA from a ssRNA template, but many single-stranded products due to a terminal transferase activity are also formed. These results suggest that, in contrast to the L-A and L-BC RNA polymerases, dissociation of 20S RNA polymerase from its RNA (or perhaps some cellular factor) makes the enzyme change its specificity.
Collapse
Affiliation(s)
- J C Ribas
- Section on Genetics of Simple Eukaryotes, National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD 20892-0830, USA
| | | |
Collapse
|
23
|
Ribas JC, Wickner RB. Saccharomyces cerevisiae L-BC double-stranded RNA virus replicase recognizes the L-A positive-strand RNA 3' end. J Virol 1996; 70:292-7. [PMID: 8523538 PMCID: PMC189816 DOI: 10.1128/jvi.70.1.292-297.1996] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
L-A and L-BC are two double-stranded RNA viruses present in almost all strains of Saccharomyces cerevisiae. L-A, the major species, has been extensively characterized with in vitro systems established, but little is known about L-BC. Here we report in vitro template-dependent transcription, replication, and RNA recognition activities of L-BC. The L-BC replicase activity converts positive, single-stranded RNA to double-stranded RNA by synthesis of the complementary RNA strand. Although L-A and L-BC do not interact in vivo, in vitro L-BC virions can replicate the positive, single-stranded RNA of L-A and its satellite, M1, with the same 3' end sequence and stem-loop requirements shown by L-A virions for its own template. However, the L-BC virions do not recognize the internal replication enhancer of the L-A positive strand. In a direct comparison of L-A and L-BC virions, each preferentially recognizes its own RNA for binding, replication, and transcription. These results suggest a close evolutionary relation of these two viruses, consistent with their RNA-dependent RNA polymerase sequence similarities.
Collapse
Affiliation(s)
- J C Ribas
- Section on Genetics of Simple Eukaryotes, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892-0830, USA
| | | |
Collapse
|