1
|
Sun J, Matsubara T, Koide T, Lampi KJ, David LL, Takata T. Characterization of different-sized human αA-crystallin homomers and implications to Asp151 isomerization. PLoS One 2024; 19:e0306856. [PMID: 38991013 PMCID: PMC11238991 DOI: 10.1371/journal.pone.0306856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
Site-specific modifications of aspartate residues spontaneously occur in crystallin, the major protein in the lens. One of the primary modification sites is Asp151 in αA-crystallin. Isomerization and racemization alter the crystallin backbone structure, reducing its stability by inducing abnormal crystallin-crystallin interactions and ultimately leading to the insolubilization of crystallin complexes. These changes are considered significant factors in the formation of senile cataracts. However, the mechanisms driving spontaneous isomerization and racemization have not been experimentally demonstrated. In this study, we generated αA-crystallins with different homo-oligomeric sizes and/or containing an asparagine residue at position 151, which is more prone to isomerization and racemization. We characterized their structure, hydrophobicity, chaperone-like function, and heat stability, and examined their propensity for isomerization and racemization. The results show that the two differently sized αA-crystallin variants possessed similar secondary structures but exhibited different chaperone-like functions depending on their oligomeric sizes. The rate of isomerization and racemization of Asp151, as assessed by the deamidation of Asn151, was also found to depend on the oligomeric sizes of αA-crystallin. The predominant isomerization product via deamidation of Asn151 in the different-sized αA-crystallin variants was L-β-Asp in vitro, while various modifications occurred around Asp151 in vivo. The disparity between the findings of this in vitro study and in vivo studies suggests that the isomerization of Asp151 in vivo may be more complex than what occurs in vitro.
Collapse
Affiliation(s)
- Jiayue Sun
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | - Tamaki Koide
- Rexxam Corporation, Chuo-ku, Osaka-shi, Osaka, Japan
| | - Kirsten J. Lampi
- Oregon Health and Science University, Integrative Biosciences, Portland, Oregon, United States of America
| | - Larry L. David
- Oregon Health and Science University, Integrative Biosciences, Portland, Oregon, United States of America
| | - Takumi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori-cho, Sennan-gun, Osaka, Japan
| |
Collapse
|
2
|
Johnson GA, Kodati B, Nahomi RB, Pham JH, Krishnamoorthy VR, Phillips NR, Krishnamoorthy RR, Nagaraj RH, Stankowska DL. Mechanisms contributing to inhibition of retinal ganglion cell death by cell permeable peptain-1 under glaucomatous stress. Cell Death Discov 2024; 10:305. [PMID: 38942762 PMCID: PMC11213865 DOI: 10.1038/s41420-024-02070-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024] Open
Abstract
This study assesses the neuroprotective potential of CPP-P1, a conjugate of an anti-apoptotic peptain-1 (P1) and a cell-penetrating peptide (CPP) in in vitro, in vivo, and ex vivo glaucoma models. Primary retinal ganglion cells (RGCs) were subjected to either neurotrophic factor (NF) deprivation for 48 h or endothelin-3 (ET-3) treatment for 24 h and received either CPP-P1 or vehicle. RGC survival was analyzed using a Live/Dead assay. Axotomized human retinal explants were treated with CPP-P1 or vehicle for seven days, stained with RGC marker RBPMS, and RGC survival was analyzed. Brown Norway (BN) rats with elevated intraocular pressure (IOP) received weekly intravitreal injections of CPP-P1 or vehicle for six weeks. RGC function was evaluated using a pattern electroretinogram (PERG). RGC and axonal damage were also assessed. RGCs from ocular hypertensive rats treated with CPP-P1 or vehicle for seven days were isolated for transcriptomic analysis. RGCs subjected to 48 h of NF deprivation were used for qPCR target confirmation. NF deprivation led to a significant loss of RGCs, which was markedly reduced by CPP-P1 treatment. CPP-P1 also decreased ET-3-mediated RGC death. In ex vivo human retinal explants, CPP-P1 decreased RGC loss. IOP elevation resulted in significant RGC loss in mid-peripheral and peripheral retinas compared to that in naive rats, which was significantly reduced by CPP-P1 treatment. PERG amplitude decline in IOP-elevated rats was mitigated by CPP-P1 treatment. Following IOP elevation in BN rats, the transcriptomic analysis showed over 6,000 differentially expressed genes in the CPP-P1 group compared to the vehicle-treated group. Upregulated pathways included CREB signaling and synaptogenesis. A significant increase in Creb1 mRNA and elevated phosphorylated Creb were observed in CPP-P1-treated RGCs. Our study showed that CPP-P1 is neuroprotective through CREB signaling enhancement in several settings that mimic glaucomatous conditions. The findings from this study are significant as they address the pressing need for the development of efficacious therapeutic strategies to maintain RGC viability and functionality associated with glaucoma.
Collapse
Affiliation(s)
- Gretchen A Johnson
- North Texas Eye Research Institute, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Bindu Kodati
- North Texas Eye Research Institute, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Pharmacology and Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Rooban B Nahomi
- Department of Ophthalmology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Jennifer H Pham
- North Texas Eye Research Institute, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | - Nicole R Phillips
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Raghu R Krishnamoorthy
- North Texas Eye Research Institute, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Pharmacology and Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ram H Nagaraj
- Department of Ophthalmology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Dorota L Stankowska
- North Texas Eye Research Institute, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA.
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
3
|
Ghosh D, Agarwal M, Radhakrishna M. Molecular Insights into the Inhibitory Role of α-Crystallin against γD-Crystallin Aggregation. J Chem Theory Comput 2024; 20:1740-1752. [PMID: 38078935 DOI: 10.1021/acs.jctc.3c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Cataracts, a major cause of global blindness, contribute significantly to the overall prevalence of blindness. The opacification of the lens, resulting in cataract formation, primarily occurs due to the aggregation of crystallin proteins within the eye lens. Despite the high concentration of these crystallins, they remarkably maintain the lens transparency and refractive index. α-Crystallins (α-crys), acting as chaperones, play a crucial role in preventing crystallin aggregation, although the exact molecular mechanism remains uncertain. In this study, we employed a combination of molecular docking, all-atom molecular dynamics simulations, and advanced free energy calculations to investigate the interaction between γD-crystallin (γD-crys), a major structural protein of the eye lens, and α-crystallin proteins. Our findings demonstrate that α-crys exhibits an enhanced affinity for the NTD2 and CTD4 regions of γD-crys. The NTD2 and CTD4 regions form the interface between the N-terminal domain (NTD) and the C-terminal domain (CTD) of the γD-crys protein. By binding to the interface region between the NTD and CTD of the protein, α-crys effectively inhibits the formation of domain-swapped aggregates and mitigates protein aggregation. Analysis of the Markov state models using molecular dynamics trajectories confirms that minimum free energy conformations correspond to the binding of the α-crystallin domain (ACD) of α-crys to NTD2 and CTD4 that form the interdomain interface.
Collapse
Affiliation(s)
- Deepshikha Ghosh
- Department of Biological Sciences and Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gujarat 382355, India
| | - Manish Agarwal
- Computer Services Centre, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, Delhi 110016, India
| | - Mithun Radhakrishna
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gujarat 382355, India
- Center for Biomedical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gujarat 382355, India
| |
Collapse
|
4
|
Li H, Yu Y, Ruan M, Jiao F, Chen H, Gao J, Weng Y, Bao Y. The mechanism for thermal-enhanced chaperone-like activity of α-crystallin against UV irradiation-induced aggregation of γD-crystallin. Biophys J 2022; 121:2233-2250. [PMID: 35619565 DOI: 10.1016/j.bpj.2022.05.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
Exposure to solar UV irradiation damages γ-crystallin, leading to cataract formation via aggregation. α-Crystallin, as a small heat-shock protein (sHsps), efficiently suppresses this irreversible aggregation by selectively binding the denatured γ-crystallin monomer. In this study, liquid chromatography tandem mass spectrometry (LC-MS) was used to evaluate UV-325 nm irradiation-induced photodamage of human γD-crystallin in the presence of bovine α-crystallin, atomic force microscope (AFM) and dynamic light scattering (DLS) techniques were used to detect the quaternary structure changes of α-crystallin oligomer, and Fourier transform infrared (FTIR) spectroscopy and temperature-jump (T-jump) nanosecond time-resolved IR absorbance difference spectroscopy were used to probe the secondary structure changes of bovine α-crystallin. We find that the thermal-induced subunit dissociation of α-crystallin oligomer involves the breaking of hydrogen bonds at the dimeric interface, leading to three different spectral components at varied temperature regions as resolved from temperature-dependent IR spectra. Under UV-325 nm irradiation, unfolded γD-crystallin binds to the dissociated α-crystallin subunit to form αγ-complex, then follows the reassociation of αγ-complex to the partially dissociated α-crystallin oligomer. This prevents the aggregation of denatured γD-crystallin. The formation of the γD-bound α-crystallin oligomer is further confirmed by AFM and DLS analysis, which reveals an obvious size expansion in the reassociated αγ-oligomers. In addition, UV-325 nm irradiation causes a peptide bond cleavage of γD-crystallin at Ala158 in presence of α-crystallin. Our results suggest a very effective protection mechanism for subunits dissociated from α-crystallin oligomers against UV irradiation-induced aggregation of γD-crystallin, at an expense of a loss of a short C-terminal peptide in γD-crystallin.
Collapse
Affiliation(s)
- Hao Li
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; College of Chemical Biology and Biotechnology, Beijing University Shenzhen Graduate School, Shenzhen, China; Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Yu
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Meixia Ruan
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fang Jiao
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hailong Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiali Gao
- College of Chemical Biology and Biotechnology, Beijing University Shenzhen Graduate School, Shenzhen, China; Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yuxiang Weng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Yongzhen Bao
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
5
|
Budnar P, Tangirala R, Bakthisaran R, Rao CM. Protein Aggregation and Cataract: Role of Age-Related Modifications and Mutations in α-Crystallins. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:225-241. [PMID: 35526854 DOI: 10.1134/s000629792203004x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
* The article is published as a part of the Special Issue "Protein Misfolding and Aggregation in Cataract Disorders" (Vol. 87, No. 2). ** To whom correspondence should be addressed. Cataract is a major cause of blindness. Due to the lack of protein turnover, lens proteins accumulate age-related and environmental modifications that alter their native conformation, leading to the formation of aggregation-prone intermediates, as well as insoluble and light-scattering aggregates, thus compromising lens transparency. The lens protein, α-crystallin, is a molecular chaperone that prevents protein aggregation, thereby maintaining lens transparency. However, mutations or post-translational modifications, such as oxidation, deamidation, truncation and crosslinking, can render α-crystallins ineffective and lead to the disease exacerbation. Here, we describe such mutations and alterations, as well as their consequences. Age-related modifications in α-crystallins affect their structure, oligomerization, and chaperone function. Mutations in α-crystallins can lead to the aggregation/intracellular inclusions attributable to the perturbation of structure and oligomeric assembly and resulting in the rearrangement of aggregation-prone regions. Such rearrangements can lead to the exposure of hitherto buried aggregation-prone regions, thereby populating aggregation-prone state(s) and facilitating amorphous/amyloid aggregation and/or inappropriate interactions with cellular components. Investigations of the mutation-induced changes in the structure, oligomer assembly, aggregation mechanisms, and interactomes of α-crystallins will be useful in fighting protein aggregation-related diseases.
Collapse
Affiliation(s)
- Prashanth Budnar
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Ramakrishna Tangirala
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Raman Bakthisaran
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Ch Mohan Rao
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
6
|
Timsina R, Trossi-Torres G, Thieme J, O'Dell M, Khadka NK, Mainali L. Alpha-Crystallin Association with the Model of Human and Animal Eye Lens-Lipid Membranes is Modulated by Surface Hydrophobicity of Membranes. Curr Eye Res 2022; 47:843-853. [PMID: 35179407 DOI: 10.1080/02713683.2022.2040539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE This research aims to probe the interaction of α-crystallin with a model of human, porcine, and mouse lens-lipid membranes. METHODS Cholesterol/model of human lens-lipid (Chol/MHLL), cholesterol/model of porcine lens-lipid (Chol/MPLL), and cholesterol/model of mouse lens-lipid (Chol/MMLL) membranes with 0 to 60 mol% Chol were prepared using the rapid solvent exchange method and probe-tip sonication. The hydrophobicity near the surface of model lens-lipid membranes and α-crystallin association with these membranes were investigated using the electron paramagnetic resonance spin-labeling approach. RESULTS With increased Chol content, the hydrophobicity near the surface of Chol/MHLL, Chol/MPLL, and Chol/MMLL membranes, the maximum percentage of membrane surface occupied (MMSO) by α-crystallin, and the association constant (Ka) decreased, showing that surface hydrophobicity of model lens-lipid membranes modulated the α-crystallin association with these membranes. The different MMSO and Ka for different model lens-lipid membranes with different rates of decrease of MMSO and Ka with increased Chol content and decreased hydrophobicity near the surface of these membranes suggested that the lipid composition also modulates α-crystallin association with membranes. Despite different lipid compositions, complete inhibition of α-crystallin association with model lens-lipid membranes was observed at saturating Chol content forming cholesterol bilayer domains (CBDs) with the lowest hydrophobicity near the surface of these membranes. The decreased mobility parameter with increased α-crystallin concentration suggested that membranes near the surface became less mobile due to α-crystallin association. The decreased mobility parameter and increased maximum splitting with increased Chol content suggested that membranes became less mobile and more ordered near the surface with increased Chol content. CONCLUSIONS This study suggested that the interaction of α-crystallin with model lens-lipid membranes is hydrophobic. Furthermore, our data indicated that Chol and CBDs reduce α-crystallin association with lens membrane, likely increase α-crystallin concentration in lens cytoplasm, and possibly favor the chaperone-like activity of α-crystallin maintaining lens cytoplasm homeostasis.
Collapse
Affiliation(s)
- Raju Timsina
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | | | - Jackson Thieme
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Matthew O'Dell
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| | - Nawal K Khadka
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID 83725, USA.,Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
7
|
Moghadam SS, Ghahramani M, Khoshaman K, Oryan A, Moosavi-Movahedi AA, Kurganov BI, Yousefi R. Relationship between the Structure and Chaperone Activity of Human αA-Crystallin after Its Modification with Diabetes-Associated Oxidative Agents and Protective Role of Antioxidant Compounds. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:91-105. [PMID: 35508905 DOI: 10.1134/s000629792202002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 06/14/2023]
Abstract
The study was aimed to evaluate the impact of peroxynitrite (PON, oxidative stress agent in diabetes), methylglyoxal (MGO, diabetes-associated reactive carbonyl compound), and their simultaneous application on the structural and functional features of human αA-crystallin (αA-Cry) using various spectroscopy techniques. Additionally, the surface tension and oligomer size distribution of the treated and untreated protein were tested using tensiometric analysis and dynamic light scattering, respectively. Our results indicated that the reaction of PON and MGO with human αA-Cry leads to the formation of new chromophores, alterations in the secondary to quaternary protein structure, reduction in the size of protein oligomers, and significant enhancement in the chaperone activity of αA-Cry. To reverse the effects of the tested compounds, ascorbic acid and glutathione (main components of lens antioxidant defense system) were applied. As expected, the two antioxidant compounds significantly prevented formation of high molecular weight aggregates of αA-Cry (according to SDS-PAGE). Our results suggest that the lens antioxidant defense system, in particular, glutathione, may provide a strong protection against rapid incidence and progression of diabetic cataract by preventing the destructive reactions of highly reactive DM-associated metabolites.
Collapse
Affiliation(s)
- Sogand Sasan Moghadam
- Protein Chemistry Laboratory, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Maryam Ghahramani
- Protein Chemistry Laboratory, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Kazem Khoshaman
- Protein Chemistry Laboratory, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Boris I Kurganov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Reza Yousefi
- Protein Chemistry Laboratory, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran.
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
BMP7 Increases UCP1-Dependent and Independent Thermogenesis with a Unique Gene Expression Program in Human Neck Area Derived Adipocytes. Pharmaceuticals (Basel) 2021; 14:ph14111078. [PMID: 34832860 PMCID: PMC8625022 DOI: 10.3390/ph14111078] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022] Open
Abstract
White adipocytes contribute to energy storage, accumulating lipid droplets, whereas brown and beige adipocytes mainly function in dissipating energy as heat primarily via the action of uncoupling protein 1 (UCP1). Bone morphogenic protein 7 (BMP7) was shown to drive brown adipocyte differentiation in murine interscapular adipose tissue. Here, we performed global RNA-sequencing and functional assays on adipocytes obtained from subcutaneous (SC) and deep-neck (DN) depots of human neck and differentiated with or without BMP7. We found that BMP7 did not influence differentiation but upregulated browning markers, including UCP1 mRNA and protein in SC and DN derived adipocytes. BMP7 also enhanced mitochondrial DNA content, levels of oxidative phosphorylation complex subunits, along with PGC1α and p-CREB upregulation, and fragmentation of mitochondria. Furthermore, both UCP1-dependent proton leak and UCP1-independent, creatine-driven substrate cycle coupled thermogenesis were augmented upon BMP7 addition. The gene expression analysis also shed light on the possible role of genes unrelated to thermogenesis thus far, including ACAN, CRYAB, and ID1, which were among the highest upregulated ones by BMP7 treatment in both types of adipocytes. Together, our study shows that BMP7 strongly upregulates thermogenesis in human neck area derived adipocytes, along with genes, which might have a supporting role in energy expenditure.
Collapse
|
9
|
Troussicot L, Burmann BM, Molin M. Structural determinants of multimerization and dissociation in 2-Cys peroxiredoxin chaperone function. Structure 2021; 29:640-654. [PMID: 33945778 DOI: 10.1016/j.str.2021.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022]
Abstract
Peroxiredoxins (PRDXs) are abundant peroxidases present in all kingdoms of life. Recently, they have been shown to also carry out additional roles as molecular chaperones. To address this emerging supplementary function, this review focuses on structural studies of 2-Cys PRDX systems exhibiting chaperone activity. We provide a detailed understanding of the current knowledge of structural determinants underlying the chaperone function of PRDXs. Specifically, we describe the mechanisms which may modulate their quaternary structure to facilitate interactions with client proteins and how they are coordinated with the functions of other molecular chaperones. Following an overview of PRDX molecular architecture, we outline structural details of the presently best-characterized peroxiredoxins exhibiting chaperone function and highlight common denominators. Finally, we discuss the remarkable structural similarities between 2-Cys PRDXs, small HSPs, and J-domain-independent Hsp40 holdases in terms of their functions and dynamic equilibria between low- and high-molecular-weight oligomers.
Collapse
Affiliation(s)
- Laura Troussicot
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden
| | - Björn M Burmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden.
| | - Mikael Molin
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden; Department of Biology and Biological Engineering, Chalmers University of Technology, 405 30 Göteborg, Sweden.
| |
Collapse
|
10
|
Augusteyn RC. α‐crystallin: a review of its structure and function. Clin Exp Optom 2021; 87:356-66. [PMID: 15575808 DOI: 10.1111/j.1444-0938.2004.tb03095.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 06/23/2004] [Accepted: 07/18/2004] [Indexed: 11/28/2022] Open
Abstract
alpha-crystallin, the major protein of the mammalian lens in most species, is an aggregate assembled from two polypeptides, each with a molecular weight around 20,000 Da. It is polydisperse and can be isolated in a variety of forms, including spherical particles with molecular weights ranging upwards from about 200 kDa. Sequence comparisons reveal that it is a member of the small heat shock protein (shsp) family. These proteins are aggregates assembled from polypeptides of 10 to 25 kDa that share a common central domain of about 90 residues (the 'alpha-crystallin domain') with variable N- and C-terminal extensions. alpha-crystallin has been intensively studied for more than 50 years but its three-dimensional structure remains unknown because it has not been possible to obtain crystals for X-ray studies and it is too large for NMR measurements. Structural information has been derived from a variety of solution studies. Because of the protein's polydispersity, interpretation of data has been difficult. This led to different viewpoints and vigorous debate on its structure and properties. Recently, the crystal structures of two closely-related small heat shock proteins have been determined. These have provided some insight into the structure of a-crystallin and explanations of previous observations. Like many other heat shock proteins, alpha-crystallin exhibits chaperone-like properties, including the ability to prevent the precipitation of denatured proteins and to increase cellular tolerance to stress. It has been suggested that these functions are important for the maintenance of lens transparency and the prevention of cataract.
Collapse
Affiliation(s)
- Robert C Augusteyn
- Vision Cooperative Research Centre, University of NSW, Sydney, Australia
| |
Collapse
|
11
|
Nucleosomal association and altered interactome underlie the mechanism of cataract caused by the R54C mutation of αA-crystallin. Biochim Biophys Acta Gen Subj 2021; 1865:129846. [PMID: 33444727 DOI: 10.1016/j.bbagen.2021.129846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND αA-crystallin plays an important role in eye lens development. Its N-terminal domain is implicated in several important biological functions. Mutations in certain conserved arginine residues in the N-terminal region of αA-crystallin lead to cataract with characteristic cytoplasmic/nuclear aggregation of the mutant protein. In this study, we attempt to gain mechanistic insights into the congenital cataract caused by the R54C mutation in human αA-crystallin. METHODS We used several spectroscopic techniques to investigate the structure and function of the wild-type and R54CαA-crystallin. Immunoprecipitation, chromatin-enrichment followed by western blotting, immunofluorescence and cell-viability assay were performed to study the interaction partners, chromatin-association, stress-like response and cell-death caused by the mutant. RESULTS Although R54CαA-crystallin exhibited slight changes in quaternary structure, its chaperone-like activity was comparable to that of wild-type. When expressed in lens epithelial cells, R54CαA-crystallin exhibited a speckled appearance in the nucleus rather than cytoplasmic localization. R54CαA-crystallin triggered a stress-like response, resulting in nuclear translocation of αB-crystallin, disassembly of cytoskeletal elements and activation of caspase 3, leading to apoptosis. Analysis of the "interactome" revealed an increase in interaction of the mutant protein with nucleosomal histones, and its association with chromatin. CONCLUSIONS The study shows that alteration of "interactome" and nucleosomal association, rather than loss of chaperone-like activity, is the molecular basis of cataract caused by the R54C mutation in αA-crystallin. GENERAL SIGNIFICANCE The study provides a novel mechanism of cataract caused by a mutant of αA-crystallin, and sheds light on the possible mechanism of stress and cell death caused by such nuclear inclusions.
Collapse
|
12
|
Budnar P, Singh NP, Rao CM. HSPB5 (αB-crystallin) confers protection against paraquat-induced oxidative stress at the organismal level in a tissue-dependent manner. Cell Stress Chaperones 2021; 26:229-239. [PMID: 33078332 PMCID: PMC7736594 DOI: 10.1007/s12192-020-01171-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/10/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress is one of the major and continuous stresses, an organism encounters during its lifetime. Tissues such as the brain, liver and muscles are more prone to damage by oxidative stress due to their metabolic activity, differences in physiological and adaptive processes. One of the defence mechanisms against continuous oxidative stress is a set of small heat shock proteins. αB-Crystallin/HSPB5, a small heat shock protein, gets upregulated under stress and acts as a molecular chaperone. In addition to acting as a molecular chaperone, HSPB5 is shown to have a role in other cytoprotective functions such as inhibition of apoptosis, prevention of oxidative stress and stabilisation of cytoskeletal system. Such protection in vivo, at the organism level, particularly in a tissue-dependent manner, has not been investigated. We have expressed HSPB5 in fat body (liver), neurons and specifically in dopaminergic and motor neurons in Drosophila and investigated its protective effect against paraquat-induced oxidative stress. We observed that expression of HSPB5 in neurons and fat body confers protection against paraquat-induced oxidative stress. Expression in dopaminergic neurons showed a higher protective effect. Our results clearly establish the protective ability of HSPB5 in vivo; the extent of protection, however, varies depending on the tissue in which it is expressed. Interestingly, neuronal expression of HSPB5 resulted in an improvement in negative geotropic behaviour, whereas specific expression in muscle tissue did not show such a beneficial effect.
Collapse
Affiliation(s)
- Prashanth Budnar
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Narendra Pratap Singh
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Ch Mohan Rao
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
13
|
Bose D, Chakrabarti A. Multiple Functions of Spectrin: Convergent Effects. J Membr Biol 2020; 253:499-508. [PMID: 32990795 DOI: 10.1007/s00232-020-00142-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
Spectrin is a multifunctional, multi-domain protein most well known in the membrane skeleton of mature human erythrocytes. Here we review the literature on the crosstalk of the chaperone activity of spectrin with its other functionalities. We hypothesize that the chaperone activity is derived from the surface exposed hydrophobic patches present in individual "spectrin-repeat" domains and show a competition between the membrane phospholipid binding functionality and chaperone activity of spectrin. Moreover, we show that post-translational modifications such as glycation which shield these surface exposed hydrophobic patches, reduce the chaperone function. On the other hand, oligomerization which is linked to increase of hydrophobicity is seen to increase it. We note that spectrin seems to prefer haemoglobin as its chaperone client, binding with it preferentially over other denatured proteins. Spectrin is also known to interact with unstable haemoglobin variants with a higher affinity than in the case of normal haemoglobin. We propose that chaperone activity of spectrin could be important in the cellular biochemistry of haemoglobin, particularly in the context of diseases.
Collapse
Affiliation(s)
- Dipayan Bose
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Abhijit Chakrabarti
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India. .,Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
14
|
Proteinaceous Transformers: Structural and Functional Variability of Human sHsps. Int J Mol Sci 2020; 21:ijms21155448. [PMID: 32751672 PMCID: PMC7432308 DOI: 10.3390/ijms21155448] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 02/04/2023] Open
Abstract
The proteostasis network allows organisms to support and regulate the life cycle of proteins. Especially regarding stress, molecular chaperones represent the main players within this network. Small heat shock proteins (sHsps) are a diverse family of ATP-independent molecular chaperones acting as the first line of defense in many stress situations. Thereby, the promiscuous interaction of sHsps with substrate proteins results in complexes from which the substrates can be refolded by ATP-dependent chaperones. Particularly in vertebrates, sHsps are linked to a broad variety of diseases and are needed to maintain the refractive index of the eye lens. A striking key characteristic of sHsps is their existence in ensembles of oligomers with varying numbers of subunits. The respective dynamics of these molecules allow the exchange of subunits and the formation of hetero-oligomers. Additionally, these dynamics are closely linked to the chaperone activity of sHsps. In current models a shift in the equilibrium of the sHsp ensemble allows regulation of the chaperone activity, whereby smaller oligomers are commonly the more active species. Different triggers reversibly change the oligomer equilibrium and regulate the activity of sHsps. However, a finite availability of high-resolution structures of sHsps still limits a detailed mechanistic understanding of their dynamics and the correlating recognition of substrate proteins. Here we summarize recent advances in understanding the structural and functional relationships of human sHsps with a focus on the eye-lens αA- and αB-crystallins.
Collapse
|
15
|
Chowdhury A, Choudhury A, Chakraborty S, Ghosh A, Banerjee V, Ganguly S, Bhaduri G, Banerjee R, Das K, Chatterjee IB. p-Benzoquinone-induced aggregation and perturbation of structure and chaperone function of α-crystallin is a causative factor of cigarette smoke-related cataractogenesis. Toxicology 2017; 394:11-18. [PMID: 29196190 DOI: 10.1016/j.tox.2017.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 02/08/2023]
Abstract
Cigarette smoking is a significant risk factor for cataract. However, the mechanism by which cigarette smoke (CS) causes cataract remains poorly understood. We had earlier shown that in CS-exposed guinea pig, p-benzoquinone (p-BQ) derived from CS in the lungs is carried by the circulatory system to distant organs and induces various smoke-related pathogeneses. Here, we observed that CS exposure caused accumulation of the p-BQ-protein adduct in the eye lens of guinea pigs. We also observed accumulation of the p-BQ-protein adduct in resected lens from human smokers with cataract. No such accumulation was observed in the lens of never smokers. p-BQ is a strong arylating agent that forms Michael adducts with serum albumin and haemoglobin resulting in alterations of structure and function. A major protein in the mammalian eye lens is αA-crystallin, which is a potent molecular chaperone. αA-crystallin plays a key role in maintaining the integrity and transparency of the lens. SDS-PAGE indicated that p-BQ induced aggregation of αA-crystallin. Various biophysical techniques including UV-vis spectroscopy, fluorescence spectroscopy, FT-IR, bis-ANS titration suggested a perturbation of structure and chaperone function of αA-crystallin upon p-BQ modification. Our results indicate that p-BQ is a causative agent involved in the modification of αA-crystallin and pathogenesis of CS-induced cataract. Our findings would educate public about the impacts of smoking on eye health and help to discourage them from smoking. The study might also help scientists to develop new drugs for the intervention of CS-induced cataract at an early stage.
Collapse
Affiliation(s)
- Aritra Chowdhury
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering & Biotechnology, Calcutta University College of Science, Kolkata 700019, India
| | - Aparajita Choudhury
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering & Biotechnology, Calcutta University College of Science, Kolkata 700019, India
| | - Shruti Chakraborty
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering & Biotechnology, Calcutta University College of Science, Kolkata 700019, India
| | - Arunava Ghosh
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering & Biotechnology, Calcutta University College of Science, Kolkata 700019, India
| | - Victor Banerjee
- Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata, 700 009, India
| | - Shinjini Ganguly
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering & Biotechnology, Calcutta University College of Science, Kolkata 700019, India
| | - Gautam Bhaduri
- Regional Institute of Opthalmology, Medical College, Kolkata, India
| | - Rajat Banerjee
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering & Biotechnology, Calcutta University College of Science, Kolkata 700019, India.
| | - Kalipada Das
- Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata, 700 009, India.
| | - Indu B Chatterjee
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering & Biotechnology, Calcutta University College of Science, Kolkata 700019, India.
| |
Collapse
|
16
|
Kurganov BI. Quantification of anti-aggregation activity of chaperones. Int J Biol Macromol 2017; 100:104-117. [DOI: 10.1016/j.ijbiomac.2016.07.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 12/11/2022]
|
17
|
Preis W, Bestehorn A, Buchner J, Haslbeck M. An alternative splice variant of human αA-crystallin modulates the oligomer ensemble and the chaperone activity of α-crystallins. Cell Stress Chaperones 2017; 22:541-552. [PMID: 28214988 PMCID: PMC5465031 DOI: 10.1007/s12192-017-0772-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 01/26/2023] Open
Abstract
In humans, ten genes encode small heat shock proteins with lens αA-crystallin and αB-crystallin representing two of the most prominent members. The canonical isoforms of αA-crystallin and αB-crystallin collaborate in the eye lens to prevent irreversible protein aggregation and preserve visual acuity. α-Crystallins form large polydisperse homo-oligomers and hetero-oligomers and as part of the proteostasis system bind substrate proteins in non-native conformations, thereby stabilizing them. Here, we analyzed a previously uncharacterized, alternative splice variant (isoform 2) of human αA-crystallin with an exchanged N-terminal sequence. This variant shows the characteristic α-crystallin secondary structure, exists on its own predominantly in a monomer-dimer equilibrium, and displays only low chaperone activity. However, the variant is able to integrate into higher order oligomers of canonical αA-crystallin and αB-crystallin as well as their hetero-oligomer. The presence of the variant leads to the formation of new types of higher order hetero-oligomers with an overall decreased number of subunits and enhanced chaperone activity. Thus, alternative mRNA splicing of human αA-crystallin leads to an additional, formerly not characterized αA-crystallin species which is able to modulate the properties of the canonical ensemble of α-crystallin oligomers.
Collapse
Affiliation(s)
- Waldemar Preis
- Department Chemie, Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Annika Bestehorn
- Department Chemie, Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Johannes Buchner
- Department Chemie, Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Martin Haslbeck
- Department Chemie, Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany.
| |
Collapse
|
18
|
Karumanchi DK, Gaillard ER, Dillon J. Early Diagnosis of Diabetes through the Eye. Photochem Photobiol 2015; 91:1497-504. [DOI: 10.1111/php.12524] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/10/2015] [Indexed: 12/24/2022]
Affiliation(s)
| | - Elizabeth R. Gaillard
- Department of Chemistry and Biochemistry; Northern Illinois University; DeKalb IL
- Department of Biology; Northern Illinois University; DeKalb IL
| | - James Dillon
- Department of Chemistry and Biochemistry; Northern Illinois University; DeKalb IL
| |
Collapse
|
19
|
Karumanchi DK, Karunaratne N, Lurio L, Dillon JP, Gaillard ER. Non-enzymatic glycation of α-crystallin as an in vitro model for aging, diabetes and degenerative diseases. Amino Acids 2015. [DOI: 10.1007/s00726-015-2052-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Raju M, Santhoshkumar P, Krishna Sharma K. Alpha-crystallin-derived peptides as therapeutic chaperones. Biochim Biophys Acta Gen Subj 2015; 1860:246-51. [PMID: 26141743 DOI: 10.1016/j.bbagen.2015.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/19/2015] [Accepted: 06/26/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND The demonstration of chaperone-like activity in peptides (mini-chaperones) derived from α-crystallin's chaperone region has generated significant interest in exploring the therapeutic potential of peptide chaperones in diseases of protein aggregation. Recent studies in experimental animals show that mini-chaperones could reach intended targets and alter the disease phenotype. Although mini-chaperones show potential benefits against protein aggregation diseases, they do tend to form aggregates on storage. There is thus a need to fine-tune peptide chaperones to increase their solubility, pharmacokinetics, and biological efficacy. SCOPE OF REVIEW This review summarizes the properties and the potential therapeutic roles of mini-chaperones in protein aggregation diseases and highlights some of the refinements needed to increase the stability and biological efficacy of mini-chaperones while maintaining or enhancing their chaperone-like activity against precipitation of unfolding proteins. MAJOR CONCLUSIONS Mini-chaperones suppress the aggregation of proteins, block amyloid fibril formation, stabilize mutant proteins, sequester metal ions, and exhibit antiapoptotic properties. Much work must be done to fine-tune mini-chaperones and increase their stability and biological efficacy. Peptide chaperones could have a great therapeutic value in diseases associated with protein aggregation and apoptosis. GENERAL SIGNIFICANCE Accumulation of misfolded proteins is a primary cause for many age-related diseases, including cataract, macular degeneration, and various neurological diseases. Stabilization of native proteins is a logical therapeutic approach for such diseases. Mini-chaperones, with their inherent antiaggregation and antiapoptotic properties, may represent an effective therapeutic molecule to prevent the cascade of protein conformational disorders. Future studies will further uncover the therapeutic potential of mini-chaperones. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Murugesan Raju
- Department of Ophthalmology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Puttur Santhoshkumar
- Department of Ophthalmology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - K Krishna Sharma
- Department of Ophthalmology, University of Missouri School of Medicine, Columbia, MO 65212, USA; Department of Biochemistry, University of Missouri School of Medicine, Columbia, MO 65212, USA.
| |
Collapse
|
21
|
Haslbeck M, Peschek J, Buchner J, Weinkauf S. Structure and function of α-crystallins: Traversing from in vitro to in vivo. Biochim Biophys Acta Gen Subj 2015; 1860:149-66. [PMID: 26116912 DOI: 10.1016/j.bbagen.2015.06.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/10/2015] [Accepted: 06/22/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND The two α-crystallins (αA- and αB-crystallin) are major components of our eye lenses. Their key function there is to preserve lens transparency which is a challenging task as the protein turnover in the lens is low necessitating the stability and longevity of the constituent proteins. α-Crystallins are members of the small heat shock protein family. αB-crystallin is also expressed in other cell types. SCOPE OF THE REVIEW The review summarizes the current concepts on the polydisperse structure of the α-crystallin oligomer and its chaperone function with a focus on the inherent complexity and highlighting gaps between in vitro and in vivo studies. MAJOR CONCLUSIONS Both α-crystallins protect proteins from irreversible aggregation in a promiscuous manner. In maintaining eye lens transparency, they reduce the formation of light scattering particles and balance the interactions between lens crystallins. Important for these functions is their structural dynamics and heterogeneity as well as the regulation of these processes which we are beginning to understand. However, currently, it still remains elusive to which extent the in vitro observed properties of α-crystallins reflect the highly crowded situation in the lens. GENERAL SIGNIFICANCE Since α-crystallins play an important role in preventing cataract in the eye lens and in the development of diverse diseases, understanding their mechanism and substrate spectra is of importance. To bridge the gap between the concepts established in vitro and the in vivo function of α-crystallins, the joining of forces between different scientific disciplines and the combination of diverse techniques in hybrid approaches are necessary. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Martin Haslbeck
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Jirka Peschek
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany.
| | - Sevil Weinkauf
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany.
| |
Collapse
|
22
|
Biswas A, Karmakar S, Chowdhury A, Das KP. Interaction of α-crystallin with some small molecules and its effect on its structure and function. Biochim Biophys Acta Gen Subj 2015; 1860:211-21. [PMID: 26073614 DOI: 10.1016/j.bbagen.2015.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/23/2015] [Accepted: 06/09/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND α-Crystallin acts like a molecular chaperone by interacting with its substrate proteins and thus prevents their aggregation. It also interacts with various kinds of small molecules that affect its structure and function. SCOPE OF REVIEW In this article we will present a review of work done with respect to the interaction of ATP, peptide generated from lens crystallin and other proteins and some bivalent metal ions with α-crystallin and discuss the role of these interactions on its structure and function and cataract formation. We will also discuss the interaction of some hydrophobic fluorescence probes and surface active agents with α-crystallin. MAJOR CONCLUSIONS Small molecule interaction controls the structure and function of α-crystallin. ATP and Zn+2 stabilize its structure and enhance chaperone function. Therefore the depletion of these small molecules can be detrimental to maintenance of lens transparency. However, the accumulation of small peptides due to protease activity in the lens can also be harmful as the interaction of these peptides with α-crystallin and other crystallin proteins in the lens promotes aggregation and loss of lens transparency. The use of hydrophobic probe has led to a wealth of information regarding the location of substrate binding site and nature of chaperone-substrate interaction. Interaction of surface active agents with α-crystallin has helped us to understand the structural stability and oligomeric dissociation in α-crystallin. GENERAL SIGNIFICANCE These interactions are very helpful in understanding the mechanistic details of the structural changes and chaperone function of α-crystallin. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- A Biswas
- Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata 700 009, India.
| | - S Karmakar
- Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata 700 009, India.
| | - A Chowdhury
- Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata 700 009, India.
| | - K P Das
- Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata 700 009, India.
| |
Collapse
|
23
|
Treweek TM, Meehan S, Ecroyd H, Carver JA. Small heat-shock proteins: important players in regulating cellular proteostasis. Cell Mol Life Sci 2015; 72:429-451. [PMID: 25352169 PMCID: PMC11113218 DOI: 10.1007/s00018-014-1754-5] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/15/2014] [Accepted: 10/01/2014] [Indexed: 12/13/2022]
Abstract
Small heat-shock proteins (sHsps) are a diverse family of intra-cellular molecular chaperone proteins that play a critical role in mitigating and preventing protein aggregation under stress conditions such as elevated temperature, oxidation and infection. In doing so, they assist in the maintenance of protein homeostasis (proteostasis) thereby avoiding the deleterious effects that result from loss of protein function and/or protein aggregation. The chaperone properties of sHsps are therefore employed extensively in many tissues to prevent the development of diseases associated with protein aggregation. Significant progress has been made of late in understanding the structure and chaperone mechanism of sHsps. In this review, we discuss some of these advances, with a focus on mammalian sHsp hetero-oligomerisation, the mechanism by which sHsps act as molecular chaperones to prevent both amorphous and fibrillar protein aggregation, and the role of post-translational modifications in sHsp chaperone function, particularly in the context of disease.
Collapse
Affiliation(s)
- Teresa M Treweek
- Graduate School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW, 2522, Australia.
| | - Sarah Meehan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Heath Ecroyd
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW, 2522, Australia.
- School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia.
| |
Collapse
|
24
|
Borzova VA, Markossian KA, Muranov KO, Polyansky NB, Kleymenov SY, Kurganov BI. Quantification of anti-aggregation activity of UV-irradiated α-crystallin. Int J Biol Macromol 2015; 73:84-91. [DOI: 10.1016/j.ijbiomac.2014.10.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 10/22/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
|
25
|
Bakthisaran R, Tangirala R, Rao CM. Small heat shock proteins: Role in cellular functions and pathology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:291-319. [PMID: 25556000 DOI: 10.1016/j.bbapap.2014.12.019] [Citation(s) in RCA: 312] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 01/18/2023]
Abstract
Small heat shock proteins (sHsps) are conserved across species and are important in stress tolerance. Many sHsps exhibit chaperone-like activity in preventing aggregation of target proteins, keeping them in a folding-competent state and refolding them by themselves or in concert with other ATP-dependent chaperones. Mutations in human sHsps result in myopathies, neuropathies and cataract. Their expression is modulated in diseases such as Alzheimer's, Parkinson's and cancer. Their ability to bind Cu2+, and suppress generation of reactive oxygen species (ROS) may have implications in Cu2+-homeostasis and neurodegenerative diseases. Circulating αB-crystallin and Hsp27 in the plasma may exhibit immunomodulatory and anti-inflammatory functions. αB-crystallin and Hsp20 exhitbit anti-platelet aggregation: these beneficial effects indicate their use as potential therapeutic agents. sHsps have roles in differentiation, proteasomal degradation, autophagy and development. sHsps exhibit a robust anti-apoptotic property, involving several stages of mitochondrial-mediated, extrinsic apoptotic as well as pro-survival pathways. Dynamic N- and C-termini and oligomeric assemblies of αB-crystallin and Hsp27 are important factors for their functions. We propose a "dynamic partitioning hypothesis" for the promiscuous interactions and pleotropic functions exhibited by sHsps. Stress tolerance and anti-apoptotic properties of sHsps have both beneficial and deleterious consequences in human health and diseases. Conditional and targeted modulation of their expression and/or activity could be used as strategies in treating several human disorders. The review attempts to provide a critical overview of sHsps and their divergent roles in cellular processes particularly in the context of human health and disease.
Collapse
Affiliation(s)
- Raman Bakthisaran
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ramakrishna Tangirala
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ch Mohan Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
26
|
Lu SY, Kumar Reddy DN, Huang FY. The Chaperone-like Activity and Structure of Mutant H119G of Rat Lens αB-crystallin: A Study of Divalent Metal Ion Binding Site. J CHIN CHEM SOC-TAIP 2014. [DOI: 10.1002/jccs.201400032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Lomiwes D, Hurst S, Dobbie P, Frost D, Hurst R, Young O, Farouk M. The protection of bovine skeletal myofibrils from proteolytic damage post mortem by small heat shock proteins. Meat Sci 2014; 97:548-57. [DOI: 10.1016/j.meatsci.2014.03.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 11/12/2013] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
|
28
|
Ray N, Roy S, Singha S, Chandra B, Dasgupta AK, Sarkar A. Design of heat shock-resistant surfaces to prevent protein aggregation: Enhanced chaperone activity of immobilized α-Crystallin. Bioconjug Chem 2014; 25:888-95. [PMID: 24689782 DOI: 10.1021/bc500097q] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
α-Crystallin is a multimeric protein belonging to the family of small heat shock proteins, which function as molecular chaperones by resisting heat and oxidative stress induced aggregation of other proteins. We immobilized α-Crystallin on a self-assembled monolayer on glass surface and studied its activity in terms of the prevention of aggregation of aldolase. We discovered that playing with grafted protein density led to interesting variations in the chaperone activity of immobilized α-Crystallin. This result is in accordance with the hypothesis that dynamicity of subunits plays a vital role in the functioning of α-Crystallin and might be able to throw light on the structure-activity relationship. We showed that the chaperone activity of a certain number of immobilized α-Crystallins was superior compared to a solution containing an equivalent number of the protein and 10 times the number of the protein at temperatures >60 °C. The α-Crystallin grafted surfaces retained activity on reuse. This could also lead to the design of potent heat-shock resistant surfaces that can find wide applications in storage and shipping of protein based biopharmaceuticals.
Collapse
Affiliation(s)
- Namrata Ray
- Department, of Organic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | | | | | | | | | | |
Collapse
|
29
|
Mohr BG, Dobson CM, Garman SC, Muthukumar M. Electrostatic origin of in vitro aggregation of human γ-crystallin. J Chem Phys 2014; 139:121914. [PMID: 24089726 DOI: 10.1063/1.4816367] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The proteins α-, β-, and γ-crystallins are the major components of the lens in the human eye. Using dynamic light scattering method, we have performed in vitro investigations of protein-protein interactions in dilute solutions of human γ-crystallin and α-crystallin. We find that γ-crystallin spontaneously aggregates into finite-sized clusters in phosphate buffer solutions. There are two distinct populations of unaggregated and aggregated γ-crystallins in these solutions. On the other hand, α-crystallin molecules are not aggregated into large clusters in solutions of α-crystallin alone. When α-crystallin and γ-crystallin are mixed in phosphate buffer solutions, we demonstrate that the clusters of γ-crystallin are prevented. By further investigating the roles of temperature, protein concentration, pH, salt concentration, and a reducing agent, we show that the aggregation of γ-crystallin under our in vitro conditions arises from non-covalent electrostatic interactions. In addition, we show that aggregation of γ-crystallin occurs under the dilute in vitro conditions even in the absence of oxidizing agents that can induce disulfide cross-links, long considered to be responsible for human cataracts. Aggregation of γ-crystallin when maintained under reducing conditions suggests that oxidation does not contribute to the aggregation in dilute solutions.
Collapse
Affiliation(s)
- Benjamin G Mohr
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | |
Collapse
|
30
|
Lomiwes D, Farouk M, Wiklund E, Young O. Small heat shock proteins and their role in meat tenderness: A review. Meat Sci 2014; 96:26-40. [DOI: 10.1016/j.meatsci.2013.06.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 06/07/2013] [Indexed: 01/28/2023]
|
31
|
Thermal stress induced aggregation of aquaporin 0 (AQP0) and protection by α-crystallin via its chaperone function. PLoS One 2013; 8:e80404. [PMID: 24312215 PMCID: PMC3842347 DOI: 10.1371/journal.pone.0080404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/02/2013] [Indexed: 11/22/2022] Open
Abstract
Aquaporin 0 (AQP0) formerly known as membrane intrinsic protein (MIP), is expressed exclusively in the lens during terminal differentiation of fiber cells. AQP0 plays an important role not only in the regulation of water content but also in cell-to-cell adhesion of the lens fiber cells. We have investigated the thermal stress-induced structural alterations of detergent (octyl glucoside)-solubilized calf lens AQP0. The results show an increase in the amount of AQP0 that aggregated as the temperature increased from 40°C to 65°C. α-Crystallin, molecular chaperone abundantly present in the eye lens, completely prevented the AQP0 aggregation at a 1∶1 (weight/weight) ratio. Since α-crystallin consists of two gene products namely αA- and αB-crystallins, we have tested the recombinant proteins on their ability to prevent thermal-stress induced AQP0 aggregation. In contrast to the general observation made with other target proteins, αA-crystallin exhibited better chaperone-like activity towards AQP0 compared to αB-crystallin. Neither post-translational modifications (glycation) nor C-terminus truncation of AQP0 have any appreciable effect on its thermal aggregation properties. α-Crystallin offers similar protection against thermal aggregation as in the case of the unmodified AQP0, suggesting that αcrystallin may bind to either intracellular loops or other residues of AQP0 that become exposed during thermal stress. Far-UV circular dichroism studies indicated a loss of αhelical structures when AQP0 was subjected to temperatures above 45°C, and the presence of α-crystallin stabilized these secondary structures. We report here, for the first time, that α-crystallin protects AQP0 from thermal aggregation. Since stress-induced structural perturbations of AQP0 may affect the integrity of the lens, presence of the molecular chaperone, α-crystallin (particularly αA-crystallin) in close proximity to the lens membrane is physiologically relevant.
Collapse
|
32
|
Palmieri V, Maulucci G, Maiorana A, Papi M, De Spirito M. α-Crystallin Modulates its Chaperone Activity by Varying the Exposed Surface. Chembiochem 2013; 14:2362-70. [DOI: 10.1002/cbic.201300447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Indexed: 11/10/2022]
|
33
|
|
34
|
Lu SY, Huang FY. Effects of Divalent Metal Ions on the Chaperone Activity and Structure of Rat Lens H18G Mutant αB-Crystallin. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201300110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Chowdhury A, Mojumdar SS, Choudhury A, Banerjee R, Das KP, Sasmal DK, Bhattacharyya K. Deoxycholate induced tetramer of αA-crystallin and sites of phosphorylation: Fluorescence correlation spectroscopy and femtosecond solvation dynamics. J Chem Phys 2012; 136:155101. [DOI: 10.1063/1.3702810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
36
|
The thermal structural transition of alpha-crystallin modulates subunit interactions and increases protein solubility. PLoS One 2012; 7:e30705. [PMID: 22347398 PMCID: PMC3274527 DOI: 10.1371/journal.pone.0030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 12/28/2011] [Indexed: 11/23/2022] Open
Abstract
Background Alpha crystallin is an oligomer composed of two types of subunits, alpha-A and alpha-B crystallin, and is the major constituent of human lens. The temperature induced condensation of alpha-crystallin, the main cause for eye lens opacification (cataract), is a two step-process, a nucleation followed by an aggregation phase, and a protective effect towards the aggregation is exhibited over the alpha crystallin phase transition temperature (Tc = 318.16 K). Methods/Results To investigate if a modulation of the subunit interactions over Tc could trigger the protective mechanism towards the aggregation, we followed, by using simultaneously static and dynamic light scattering, the temperature induced condensation of alpha-crystallin. By developing a mathematical model able to uncouple the nucleation and aggregation processes, we find a previously unobserved transition in the nucleation rate constant. Its temperature dependence allows to determine fundamental structural parameters, the chemical potential (Δμ) and the interfacial tension (γ) of the aggregating phase, that characterize subunit interactions. Conclusions/General Significance The decrease of both Δμ and γ at Tc, and a relative increase in solubility, reveal a significative decrease in the strenght of alpha-crystallin subunits interactions, which protects from supramolecolar condensation in hypertermic conditions. On the whole, we suggest a general approach able to understand the structural and kinetic mechanisms involved in aggregation-related diseases and in drugs development and testing.
Collapse
|
37
|
Wei YY, Huang CW, Chou WY, Lee HJ. α-Crystallin protects human arginosuccinate lyase activity under freeze–thaw conditions. Biochimie 2012; 94:566-73. [DOI: 10.1016/j.biochi.2011.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 09/08/2011] [Indexed: 11/26/2022]
|
38
|
Prabhu S, Raman B, Ramakrishna T, Rao CM. HspB2/myotonic dystrophy protein kinase binding protein (MKBP) as a novel molecular chaperone: structural and functional aspects. PLoS One 2012; 7:e29810. [PMID: 22272249 PMCID: PMC3260166 DOI: 10.1371/journal.pone.0029810] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 12/03/2011] [Indexed: 02/07/2023] Open
Abstract
The small heat shock protein, human HspB2, also known as Myotonic Dystrophy Kinase Binding Protein (MKBP), specifically associates with and activates Myotonic Dystrophy Protein Kinase (DMPK), a serine/threonine protein kinase that plays an important role in maintaining muscle structure and function. The structure and function of HspB2 are not well understood. We have cloned and expressed the protein in E.coli and purified it to homogeneity. Far-UV circular dichroic spectrum of the recombinant HspB2 shows a β-sheet structure. Fluorescence spectroscopic studies show that the sole tryptophan residue at the 130th position is almost completely solvent-exposed. Bis-ANS binding shows that though HspB2 exhibits accessible hydrophobic surfaces, it is significantly less than that exhibited by another well characterized small HSP, αB-crystallin. Sedimentation velocity measurements show that the protein exhibits concentration-dependent oligomerization. Fluorescence resonance energy transfer study shows that HspB2 oligomers exchange subunits. Interestingly, HspB2 exhibits target protein-dependent chaperone-like activity: it exhibits significant chaperone-like activity towards dithiothreitol (DTT)-induced aggregation of insulin and heat-induced aggregation of alcohol dehydrogenase, but only partially prevents the heat-induced aggregation of citrate synthase, co-precipitating with the target protein. It also significantly prevents the ordered amyloid fibril formation of α-synuclein. Thus, our study, for the first time, provides biophysical characterization on the structural aspects of HspB2, and shows that it exhibits target protein-dependent chaperone-like activity.
Collapse
Affiliation(s)
- Sankaralingam Prabhu
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | - Bakthisaran Raman
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | - Tangirala Ramakrishna
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
- * E-mail: (TR); (CMR)
| | - Ch Mohan Rao
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
- * E-mail: (TR); (CMR)
| |
Collapse
|
39
|
Roman SG, Chebotareva NA, Eronina TB, Kleymenov SY, Makeeva VF, Poliansky NB, Muranov KO, Kurganov BI. Does the Crowded Cell-like Environment Reduce the Chaperone-like Activity of α-Crystallin? Biochemistry 2011; 50:10607-23. [DOI: 10.1021/bi201030y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Svetlana G. Roman
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
- Department of Physics, Moscow State University, Leninskie Gory, Moscow 119992, Russia
| | - Natalia A. Chebotareva
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Tatyana B. Eronina
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Sergey Yu. Kleymenov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
- Kol’tsov Institute of Developmental
Biology, Russian Academy of Sciences, Vavilova
st. 26, Moscow 119991, Russia
| | - Valentina F. Makeeva
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Nikolay B. Poliansky
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st. 4, Moscow 119991, Russia
| | - Konstantin O. Muranov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st. 4, Moscow 119991, Russia
| | - Boris I. Kurganov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| |
Collapse
|
40
|
Validandi V, Reddy VS, Srinivas PNBS, Mueller NH, Bhagyalaxmi SG, Padma T, Petrash JM, Reddy GB. Temperature-dependent structural and functional properties of a mutant (F71L) αA-crystallin: molecular basis for early onset of age-related cataract. FEBS Lett 2011; 585:3884-9. [PMID: 22085609 DOI: 10.1016/j.febslet.2011.10.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 10/15/2011] [Accepted: 10/25/2011] [Indexed: 11/20/2022]
Abstract
Previously we identified a novel mutation (F71L) in the αA-crystallin gene associated with early onset of age-related cataract. However, it is not known how the missense substitution translates into reduced chaperone-like activity (CLA), and how the structural and functional changes lead to early onset of the disease. Herein, we show that under native conditions the F71L-mutant is not significantly different from wild-type with regard to secondary and tertiary structural organization, hydrophobicity and the apparent molecular mass of oligomer but has substantial differences in structural and functional properties following a heat treatment. Wild-type αA-crystallin demonstrated increased CLA, whereas the F71L-mutant substantially lost its CLA upon heat treatment. Further, unlike the wild-type αA-subunit, F71L-subunit did not protect the αB-subunit in hetero-oligomeric complex from heat-induced aggregation. Moreover, hetero-oligomer containing F71L and αB in 3:1 ratio had significantly lower CLA upon thermal treatment compared to its unheated control. These results indicate that α-crystallin complexes containing F71L-αA subunits are less stable and have reduced CLA. Therefore, F71L may lead to earlier onset of cataract due to interaction with several environmental factors (e.g., temperature in this case) along with the aging process.
Collapse
Affiliation(s)
- Vakdevi Validandi
- Biochemistry Division, National Institute of Nutrition, Hyderabad, India
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Suragani M, Rasheedi S, Hasnain SE, Ehtesham NZ. The translation initiation factor, PeIF5B, from Pisum sativum displays chaperone activity. Biochem Biophys Res Commun 2011; 414:390-6. [PMID: 21964295 DOI: 10.1016/j.bbrc.2011.09.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 09/16/2011] [Indexed: 12/01/2022]
Abstract
We earlier documented the structural and functional characterization of PeIF5B factor from Pisum sativum that shows strong homology to the universal translation initiation factor eIF5B (Rasheedi et al., 2007, 2010 [12,13]). We now show that PeIF5B is an unusually thermo-stable protein resisting temperatures up to 95 °C. PeIF5B prevents thermal aggregation of heat labile proteins, such as citrate synthase (CS) and NdeI, under heat stress or chemical denaturation conditions and promotes their functional folding. It also prevents the aggregation of DTT induced insulin reduction. GTP appears to stimulate PeIF5B-mediated chaperone activity. In-vivo, PeIF5B over expression significantly enhances, the viability of Escherichia coli cells after heat stress (50 °C). These observations lead us to conclude that PeIF5B, in addition to its role in protein translation, has chaperone like activity and could be likely involved in protein folding and protection from stress.
Collapse
Affiliation(s)
- Madhuri Suragani
- Molecular Biology Unit, National Institute of Nutrition, Hyderabad 500 007, India
| | | | | | | |
Collapse
|
42
|
Adhikari AS, Singh BN, Rao KS, Rao CM. αB-crystallin, a small heat shock protein, modulates NF-κB activity in a phosphorylation-dependent manner and protects muscle myoblasts from TNF-α induced cytotoxicity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1532-42. [PMID: 21640763 DOI: 10.1016/j.bbamcr.2011.04.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 04/27/2011] [Accepted: 04/27/2011] [Indexed: 01/29/2023]
Abstract
αB-crystallin, a member of the small heat shock protein family, has been implicated in various biological functions including response to heat shock, differentiation and apoptosis, the mechanisms of which have not been well understood. Myoblasts, the precursor cells in muscle regeneration, when subjected to growth factor deprivation differentiate to form myotubes or undergo apoptosis. During differentiation, myoblasts express elevated levels of αB-crystallin as well as TNF-α but the connecting link between these proteins in cell signaling is not clearly understood. We have therefore investigated the role of αB-crystallin in TNF-α induced regulation of NF-κB. We demonstrate that in response to TNF-α treatment, αB-crystallin associates with IKKβ and activate its kinase activity, facilitating the degradation of phosphorylated I-kBα, a prime step in NF-κB activation. Reducing the level of αB-crystallin using the RNAi approach reduces the translocation of p65, further confirming the role of αB-crystallin in NF-κB activation. Our study shows that the ability of αB-crystallin to activate NF-κB depends on its phosphorylation status. The present study shows that αB-crystallin-dependent NF-κB activation protects myoblasts from TNF-α induced cytoxicity by enhancing the expression of the anti-apoptotic protein, Bcl 2. Thus, our study identifies yet another mechanism by which αB-crystallin exerts its anti-apoptotic activity.
Collapse
Affiliation(s)
- Amit S Adhikari
- Centre for cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad 500 007, India
| | | | | | | |
Collapse
|
43
|
Raju M, Santhoshkumar P, Henzl TM, Sharma KK. Identification and characterization of a copper-binding site in αA-crystallin. Free Radic Biol Med 2011; 50:1429-36. [PMID: 21300147 PMCID: PMC3081936 DOI: 10.1016/j.freeradbiomed.2011.01.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 12/30/2010] [Accepted: 01/28/2011] [Indexed: 10/18/2022]
Abstract
Previous studies have shown that both αA- and αB-crystallins bind Cu2+, suppress the formation of Cu2+-mediated active oxygen species, and protect ascorbic acid from oxidation by Cu2+. αA- and αB-crystallins are small heat shock proteins with molecular chaperone activity. In this study we show that the mini-αA-crystallin, a peptide consisting of residues 71-88 of αA-crystallin, prevents copper-induced oxidation of ascorbic acid. Evaluation of binding of copper to mini-αA-crystallin showed that each molecule of mini-αA-crystallin binds one copper molecule. Isothermal titration calorimetry and nanospray mass spectrometry revealed dissociation constants of 10.72 and 9.9 μM, respectively. 1,1'-Bis(4-anilino)naphthalene-5,5'-disulfonic acid interaction with mini-αA-crystallin was reduced after binding of Cu2+, suggesting that the same amino acids interact with these two ligands. Circular dichroism spectrometry showed that copper binding to mini-αA-crystallin peptide affects its secondary structure. Substitution of the His residue in mini-αA-crystallin with Ala abolished the redox-suppression activity of the peptide. During the Cu2+-induced ascorbic acid oxidation assay, a deletion mutant, αAΔ70-77, showed about 75% loss of ascorbic acid protection compared to the wild-type αA-crystallin. This difference indicates that the 70-77 region is the primary Cu2+-binding site(s) in human native full-size αA-crystallin. The role of the chaperone site in Cu2+ binding in native αA-crystallin was confirmed by the significant loss of chaperone activity by the peptide after Cu2+ binding.
Collapse
Affiliation(s)
- Murugesan Raju
- Department of Ophthalmology, University of Missouri, Columbia, Missouri 65212 U.S.A
| | - Puttur Santhoshkumar
- Department of Ophthalmology, University of Missouri, Columbia, Missouri 65212 U.S.A
| | - T. Michael Henzl
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65212 U.S.A
| | - K. Krishna Sharma
- Department of Ophthalmology, University of Missouri, Columbia, Missouri 65212 U.S.A
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65212 U.S.A
- Corresponding author: - Department of Ophthalmology, University of Missouri-Columbia, 1 Hospital drive, Columbia, MO 65212, USA; Phone: (573) 882-8478; Fax: (573) 884-4100; (K. Sharma)
| |
Collapse
|
44
|
The thermal structural transition of α-crystallin inhibits the heat induced self-aggregation. PLoS One 2011; 6:e18906. [PMID: 21573059 PMCID: PMC3090392 DOI: 10.1371/journal.pone.0018906] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 03/23/2011] [Indexed: 11/19/2022] Open
Abstract
-crystallin, the major constituent of human lens, is a member of the heat-shock proteins family and it is known to have a quaternary structural transition at . The presence of calcium ions and/or temperature changes induce supramolecular self-aggregation, a process of relevance in the cataractogenesis. Here we investigate the potential effect of the bovine -crystallin's structural transition on the self-aggregation process. Along all the temperatures investigated, aggregation proceeds by forming intermediate molecular assemblies that successively aggregate in clusters. The final morphology of the aggregates, above and below , is similar, but the aggregation kinetics are completely different. The size of the intermediate molecular assemblies, and their repulsive energy barrier show a marked increase while crossing . Our results highlight the key role of heat modified form of -crystallin in protecting from aggregation and preserving the transparency of the lens under hyperthermic conditions.
Collapse
|
45
|
Chen Q, Yan M, Xiang F, Zhou X, Liu Y, Zheng F. Characterization of a mutant R11H αB-crystallin associated with human inherited cataract. Biol Chem 2010; 391:1391-400. [DOI: 10.1515/bc.2010.143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
αB-Crystallin plays an important part in cataract development. A novel mutation (R11H) was previously detected by our group. In the present study, we set out to investigate the possible molecular mechanism by which the R11H mutation causes cataract. We found that the mutant αB-crystallin exhibits folding defects, decreased surface hydrophobicity and enhanced chaperone-like activity compared with the wild-type αB-crystallin. The mutant protein shows nearly the same molecular mass and thermal stability as the wild-type form. Transfection studies revealed that the R11H mutant was remarkably similar to the wild-type protein in its subcellular distribution, but has an abnormal ability to induce cell apoptosis. These results suggest that the changes in hydrophobic exposure and the abnormal ability to induce programmed cell death of the mutant protein are likely to be responsible for the onset of cataract.
Collapse
|
46
|
Pang M, Su JT, Feng S, Tang ZW, Gu F, Zhang M, Ma X, Yan YB. Effects of congenital cataract mutation R116H on αA-crystallin structure, function and stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:948-56. [PMID: 20079887 DOI: 10.1016/j.bbapap.2010.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 12/11/2009] [Accepted: 01/07/2010] [Indexed: 10/20/2022]
|
47
|
Singh BN, Rao KS, Rao CM. Ubiquitin–proteasome-mediated degradation and synthesis of MyoD is modulated by αB-crystallin, a small heat shock protein, during muscle differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:288-99. [DOI: 10.1016/j.bbamcr.2009.11.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 11/11/2009] [Accepted: 11/24/2009] [Indexed: 11/15/2022]
|
48
|
Rasmussen T, Kasimova MR, Jiskoot W, van de Weert M. The Chaperone-like Protein α-Crystallin Dissociates Insulin Dimers and Hexamers. Biochemistry 2009; 48:9313-20. [DOI: 10.1021/bi900451j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tue Rasmussen
- Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Marina R. Kasimova
- Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Wim Jiskoot
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Marco van de Weert
- Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
Fluorescence study on Interactions of α–Crystallin with the Molten Globule State of 1, 4–β–D–Glucan Glucanohydrolase from Thermomonospora sp. induced by guanidine hydrochloride. J Fluoresc 2009; 19:967-73. [DOI: 10.1007/s10895-009-0496-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Accepted: 06/05/2009] [Indexed: 10/20/2022]
|
50
|
Markossian KA, Yudin IK, Kurganov BI. Mechanism of suppression of protein aggregation by α-crystallin. Int J Mol Sci 2009; 10:1314-1345. [PMID: 19399251 PMCID: PMC2672032 DOI: 10.3390/ijms10031314] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/13/2009] [Accepted: 03/18/2009] [Indexed: 11/30/2022] Open
Abstract
This review summarizes experimental data illuminating the mechanism of suppression of heat-induced protein aggregation by alpha-crystallin, one of the small heat shock proteins. The dynamic light scattering data show that the initial stage of thermal aggregation of proteins is the formation of the initial aggregates involving hundreds of molecules of the denatured protein. Further sticking of the starting aggregates proceeds in a regime of diffusion-limited cluster-cluster aggregation. The protective effect of alpha-crystallin is due to transition of the aggregation process to the regime of reaction-limited cluster-cluster aggregation, wherein the sticking probability for the colliding particles becomes lower than unity.
Collapse
Affiliation(s)
- Kira A. Markossian
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, 119071, Moscow, Russia
- Author to whom correspondence should be addressed; E-Mail:
; Fax: +7 495 954 2732
| | - Igor K. Yudin
- Oil and Gas Research Institute, Russian Academy of Sciences, Gubkina st. 3, 117971, Moscow, Russia
| | - Boris I. Kurganov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, 119071, Moscow, Russia
| |
Collapse
|