1
|
Machulin AV, Deryusheva EI, Galzitskaya OV. Variation in base composition, structure-function relationships, and origins of structural repetition in bacterial rpsA gene. Biosystems 2024; 238:105196. [PMID: 38537772 DOI: 10.1016/j.biosystems.2024.105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Protein domain repeats are known to arise due to tandem duplications of internal genes. However, the understanding of the underlying mechanisms of this process is incomplete. The goal of this work was to investigate the mechanism of occurrence of repeat expansion based on studying the sequences of 1324 rpsA genes of bacterial S1 ribosomal proteins containing different numbers of S1 structural domains. The rpsA gene encodes ribosomal S1 protein, which is essential for cell viability as it interacts with both mRNA and proteins. Gene ontology (GO) analysis of S1 domains in ribosomal S1 proteins revealed that bacterial protein sequences in S1 mainly have 3 types of molecular functions: RNA binding activity, nucleic acid activity, and ribosome structural component. Our results show that the maximum value of rpsA gene identity for full-length proteins was found for S1 proteins containing six structural domains (58%). Analysis of consensus sequences showed that parts of the rpsA gene encoding separate S1 domains have no a strictly repetitive structure between groups containing different numbers of S1 domains. At the same time, gene regions encoding some conserved residues that form the RNA-binding site remain conserved. The detected phylogenetic similarity suggests that the proposed fold of the rpsA translation initiation region of Escherichia coli has functional value and is important for translational control of rpsA gene expression in other bacterial phyla, but not only in gamma Proteobacteria.
Collapse
Affiliation(s)
- Andrey V Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Moscow Region, Russia
| | - Evgeniya I Deryusheva
- Institute for Biological Instrumentation, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Moscow Region, Russia
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.
| |
Collapse
|
2
|
Aseev LV, Koledinskaya LS, Boni IV. Extraribosomal Functions of Bacterial Ribosomal Proteins-An Update, 2023. Int J Mol Sci 2024; 25:2957. [PMID: 38474204 DOI: 10.3390/ijms25052957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Ribosomal proteins (r-proteins) are abundant, highly conserved, and multifaceted cellular proteins in all domains of life. Most r-proteins have RNA-binding properties and can form protein-protein contacts. Bacterial r-proteins govern the co-transcriptional rRNA folding during ribosome assembly and participate in the formation of the ribosome functional sites, such as the mRNA-binding site, tRNA-binding sites, the peptidyl transferase center, and the protein exit tunnel. In addition to their primary role in a cell as integral components of the protein synthesis machinery, many r-proteins can function beyond the ribosome (the phenomenon known as moonlighting), acting either as individual regulatory proteins or in complexes with various cellular components. The extraribosomal activities of r-proteins have been studied over the decades. In the past decade, our understanding of r-protein functions has advanced significantly due to intensive studies on ribosomes and gene expression mechanisms not only in model bacteria like Escherichia coli or Bacillus subtilis but also in little-explored bacterial species from various phyla. The aim of this review is to update information on the multiple functions of r-proteins in bacteria.
Collapse
Affiliation(s)
- Leonid V Aseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | | | - Irina V Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| |
Collapse
|
3
|
Interaction between Phage T4 Protein RIII and Host Ribosomal Protein S1 Inhibits Endoribonuclease RegB Activation. Int J Mol Sci 2022; 23:ijms23169483. [PMID: 36012768 PMCID: PMC9409239 DOI: 10.3390/ijms23169483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Lytic viruses of bacteria (bacteriophages, phages) are intracellular parasites that take over hosts' biosynthetic processes for their propagation. Most of the knowledge on the host hijacking mechanisms has come from the studies of the lytic phage T4, which infects Escherichia coli. The integrity of T4 development is achieved by strict control over the host and phage processes and by adjusting them to the changing infection conditions. In this study, using in vitro and in vivo biochemical methods, we detected the direct interaction between the T4 protein RIII and ribosomal protein S1 of the host. Protein RIII is known as a cytoplasmic antiholin, which plays a role in the lysis inhibition function of T4. However, our results show that RIII also acts as a viral effector protein mainly targeting S1 RNA-binding domains that are central for all the activities of this multifunctional protein. We confirm that the S1-RIII interaction prevents the S1-dependent activation of endoribonuclease RegB. In addition, we propose that by modulating the multiple processes mediated by S1, RIII could act as a regulator of all stages of T4 infection including the lysis inhibition state.
Collapse
|
4
|
Screening of Bacteriophage Encoded Toxic Proteins with a Next Generation Sequencing-Based Assay. Viruses 2021; 13:v13050750. [PMID: 33923360 PMCID: PMC8145870 DOI: 10.3390/v13050750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022] Open
Abstract
Bacteriophage vB_EcoM_fHy-Eco03 (fHy-Eco03 for short) was isolated from a sewage sample based on its ability to infect an Escherichia coli clinical blood culture isolate. Altogether, 32 genes encoding hypothetical proteins of unknown function (HPUFs) were identified from the genomic sequence of fHy-Eco03. The HPUFs were screened for toxic properties (toxHPUFs) with a novel, Next Generation Sequencing (NGS)-based approach. This approach identifies toxHPUF-encoding genes through comparison of gene-specific read coverages in DNA from pooled ligation mixtures before electroporation and pooled transformants after electroporation. The performance and reliability of the NGS screening assay was compared with a plating efficiency-based method, and both methods identified the fHy-Eco03 gene g05 product as toxic. While the outcomes of the two screenings were highly similar, the NGS screening assay outperformed the plating efficiency assay in both reliability and efficiency. The NGS screening assay can be used as a high throughput method in the search for new phage-inspired antimicrobial molecules.
Collapse
|
5
|
Qureshi NS, Bains JK, Sreeramulu S, Schwalbe H, Fürtig B. Conformational switch in the ribosomal protein S1 guides unfolding of structured RNAs for translation initiation. Nucleic Acids Res 2019; 46:10917-10929. [PMID: 30124944 PMCID: PMC6237739 DOI: 10.1093/nar/gky746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/03/2018] [Indexed: 12/19/2022] Open
Abstract
Initiation of bacterial translation requires that the ribosome-binding site in mRNAs adopts single-stranded conformations. In Gram-negative bacteria the ribosomal protein S1 (rS1) is a key player in resolving of structured elements in mRNAs. However, the exact mechanism of how rS1 unfolds persistent secondary structures in the translation initiation region (TIR) is still unknown. Here, we show by NMR spectroscopy that Vibrio vulnificus rS1 displays a unique architecture of its mRNA-binding domains, where domains D3 and D4 provide the mRNA-binding platform and cover the nucleotide binding length of the full-length rS1. D5 significantly increases rS1’s chaperone activity, although it displays structural heterogeneity both in isolation and in presence of the other domains, albeit to varying degrees. The heterogeneity is induced by the switch between the two equilibrium conformations and is triggered by an order-to-order transition of two mutually exclusive secondary structures (β-strand-to-α-helix) of the ‘AERERI’ sequence. The conformational switching is exploited for melting of structured 5′-UTR’s, as the conformational heterogeneity of D5 can compensate the entropic penalty of complex formation. Our data thus provides a detailed understanding of the intricate coupling of protein and RNA folding dynamics enabling translation initiation of structured mRNAs.
Collapse
Affiliation(s)
- Nusrat Shahin Qureshi
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, Frankfurt am Main, Hessen 60438, Germany
| | - Jasleen Kaur Bains
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, Frankfurt am Main, Hessen 60438, Germany
| | - Sridhar Sreeramulu
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, Frankfurt am Main, Hessen 60438, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, Frankfurt am Main, Hessen 60438, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, Frankfurt am Main, Hessen 60438, Germany
| |
Collapse
|
6
|
Giraud P, Créchet JB, Uzan M, Bontems F, Sizun C. Resonance assignment of the ribosome binding domain of E. coli ribosomal protein S1. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:107-111. [PMID: 24682851 DOI: 10.1007/s12104-014-9554-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 03/15/2014] [Indexed: 06/03/2023]
Abstract
Ribosomal protein S1 is an essential actor for protein synthesis in Escherichia coli. It is involved in mRNA recruitment by the 30S ribosomal subunit and recognition of the correct start codon during translation initiation. E. coli S1 is a modular protein that contains six repeats of an S1 motif, which have distinct functions despite structural homology. Whereas the three central repeats have been shown to be involved in mRNA recognition, the two first repeats that constitute the N-terminal domain of S1 are responsible for binding to the 30S subunit. Here we report the almost complete (1)H, (13)C and (15)N resonance assignment of two fragments of the 30S binding region of S1. The first fragment comprises only the first repeat. The second corresponds to the entire ribosome binding domain. Since S1 is absent from all high resolution X-ray structures of prokaryotic ribosomes, these data provide a first step towards atomic level structural characterization of this domain by NMR. Chemical shift analysis of the first repeat provides evidence for structural divergence from the canonical OB-fold of an S1 motif. In contrast the second domain displays the expected topology for an S1 motif, which rationalizes the functional specialization of the two subdomains.
Collapse
Affiliation(s)
- Pierre Giraud
- CNRS UPR 2301, Institut de Chimie des Substances Naturelles, 91190, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
7
|
Multiple activities of RNA-binding proteins S1 and Hfq. Biochimie 2012; 94:1544-53. [DOI: 10.1016/j.biochi.2012.02.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/10/2012] [Indexed: 01/16/2023]
|
8
|
|
9
|
Delvillani F, Papiani G, Dehò G, Briani F. S1 ribosomal protein and the interplay between translation and mRNA decay. Nucleic Acids Res 2011; 39:7702-15. [PMID: 21685451 PMCID: PMC3177188 DOI: 10.1093/nar/gkr417] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
S1 is an ‘atypical’ ribosomal protein weakly associated with the 30S subunit that has been implicated in translation, transcription and control of RNA stability. S1 is thought to participate in translation initiation complex formation by assisting 30S positioning in the translation initiation region, but little is known about its role in other RNA transactions. In this work, we have analysed in vivo the effects of different intracellular S1 concentrations, from depletion to overexpression, on translation, decay and intracellular distribution of leadered and leaderless messenger RNAs (mRNAs). We show that the cspE mRNA, like the rpsO transcript, may be cleaved by RNase E at multiple sites, whereas the leaderless cspE transcript may also be degraded via an alternative pathway by an unknown endonuclease. Upon S1 overexpression, RNase E-dependent decay of both cspE and rpsO mRNAs is suppressed and these transcripts are stabilized, whereas cleavage of leaderless cspE mRNA by the unidentified endonuclease is not affected. Overall, our data suggest that ribosome-unbound S1 may inhibit translation and that part of the Escherichia coli ribosomes may actually lack S1.
Collapse
Affiliation(s)
- Francesco Delvillani
- Dipartimento di Scienze biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
| | | | | | | |
Collapse
|
10
|
Uzan M, Miller ES. Post-transcriptional control by bacteriophage T4: mRNA decay and inhibition of translation initiation. Virol J 2010; 7:360. [PMID: 21129205 PMCID: PMC3014915 DOI: 10.1186/1743-422x-7-360] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 12/03/2010] [Indexed: 01/02/2023] Open
Abstract
Over 50 years of biological research with bacteriophage T4 includes notable discoveries in post-transcriptional control, including the genetic code, mRNA, and tRNA; the very foundations of molecular biology. In this review we compile the past 10 - 15 year literature on RNA-protein interactions with T4 and some of its related phages, with particular focus on advances in mRNA decay and processing, and on translational repression. Binding of T4 proteins RegB, RegA, gp32 and gp43 to their cognate target RNAs has been characterized. For several of these, further study is needed for an atomic-level perspective, where resolved structures of RNA-protein complexes are awaiting investigation. Other features of post-transcriptional control are also summarized. These include: RNA structure at translation initiation regions that either inhibit or promote translation initiation; programmed translational bypassing, where T4 orchestrates ribosome bypass of a 50 nucleotide mRNA sequence; phage exclusion systems that involve T4-mediated activation of a latent endoribonuclease (PrrC) and cofactor-assisted activation of EF-Tu proteolysis (Gol-Lit); and potentially important findings on ADP-ribosylation (by Alt and Mod enzymes) of ribosome-associated proteins that might broadly impact protein synthesis in the infected cell. Many of these problems can continue to be addressed with T4, whereas the growing database of T4-related phage genome sequences provides new resources and potentially new phage-host systems to extend the work into a broader biological, evolutionary context.
Collapse
Affiliation(s)
- Marc Uzan
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695-7615, USA
| | | |
Collapse
|
11
|
Uzan M. RNA processing and decay in bacteriophage T4. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:43-89. [PMID: 19215770 DOI: 10.1016/s0079-6603(08)00802-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacteriophage T4 is the archetype of virulent phage. It has evolved very efficient strategies to subvert host functions to its benefit and to impose the expression of its genome. T4 utilizes a combination of host and phage-encoded RNases and factors to degrade its mRNAs in a stage-dependent manner. The host endonuclease RNase E is used throughout the phage development. The sequence-specific, T4-encoded RegB endoribonuclease functions in association with the ribosomal protein S1 to functionally inactivate early transcripts and expedite their degradation. T4 polynucleotide kinase plays a role in this process. Later, the viral factor Dmd protects middle and late mRNAs from degradation by the host RNase LS. T4 codes for a set of eight tRNAs and two small, stable RNA of unknown function that may contribute to phage virulence. Their maturation is assured by host enzymes, but one phage factor, Cef, is required for the biogenesis of some of them. The tRNA gene cluster also codes for a homing DNA endonuclease, SegB, responsible for spreading the tRNA genes to other T4-related phage.
Collapse
Affiliation(s)
- Marc Uzan
- Institut Jacques Monod, CNRS-Universites Paris, Paris, France
| |
Collapse
|
12
|
Zajančkauskaite A, Truncaite L, Strazdaite-Žieliene Ž, Nivinskas R. Involvement of the Escherichia coli endoribonucleases G and E in the secondary processing of RegB-cleaved transcripts of bacteriophage T4. Virology 2008; 375:342-53. [DOI: 10.1016/j.virol.2008.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 09/05/2007] [Accepted: 02/23/2008] [Indexed: 11/16/2022]
|
13
|
Aliprandi P, Sizun C, Perez J, Mareuil F, Caputo S, Leroy JL, Odaert B, Laalami S, Uzan M, Bontems F. S1 ribosomal protein functions in translation initiation and ribonuclease RegB activation are mediated by similar RNA-protein interactions: an NMR and SAXS analysis. J Biol Chem 2008; 283:13289-301. [PMID: 18211890 DOI: 10.1074/jbc.m707111200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ribosomal protein S1, in Escherichia coli, is necessary for the recognition by the ribosome of the translation initiation codon of most messenger RNAs. It also participates in other functions. In particular, it stimulates the T4 endoribonuclease RegB, which inactivates some of the phage mRNAs, when their translation is no longer required, by cleaving them in the middle of their Shine-Dalgarno sequence. In each function, S1 seems to target very different RNAs, which led to the hypothesis that it possesses different RNA-binding sites. We previously demonstrated that the ability of S1 to activate RegB is carried by a fragment of the protein formed of three consecutive domains (domains D3, D4, and D5). The same fragment plays a central role in all other functions. We analyzed its structural organization and its interactions with three RNAs: two RegB substrates and a translation initiation region. We show that these three RNAs bind the same area of the protein through a set of systematic (common to the three RNAs) and specific (RNA-dependent) interactions. We also show that, in the absence of RNA, the D4 and D5 domains are associated, whereas the D3 and D4 domains are in equilibrium between open (noninteracting) and closed (weakly interacting) forms and that RNA binding induces a structural reorganization of the fragment. All of these results suggest that the ability of S1 to recognize different RNAs results from a high adaptability of both its structure and its binding surface.
Collapse
Affiliation(s)
- Pascale Aliprandi
- CNRS, Antenne de l'ICSN à l'Ecole Polytechnique, Ecole Polytechnique, 91128 Palaiseau, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Selivanova OM, Fedorova YY, Serduyk IN. Proteolysis of ribosomal protein S1 from Escherichia coli and Thermus thermophilus leads to formation of two different fragments. BIOCHEMISTRY (MOSCOW) 2007; 72:1225-32. [DOI: 10.1134/s0006297907110089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Skorski P, Proux F, Cheraiti C, Dreyfus M, Hermann-Le Denmat S. The deleterious effect of an insertion sequence removing the last twenty percent of the essential Escherichia coli rpsA gene is due to mRNA destabilization, not protein truncation. J Bacteriol 2007; 189:6205-12. [PMID: 17616604 PMCID: PMC1951931 DOI: 10.1128/jb.00445-07] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribosomal protein S1, the product of the essential rpsA gene, consists of six imperfect repeats of the same motif. Besides playing a critical role in translation initiation on most mRNAs, S1 also specifically autoregulates the translation of its own messenger. ssyF29 is a viable rpsA allele that carries an IS10R insertion within the coding sequence, resulting in a protein lacking the last motif (S1DeltaC). The growth of ssyF29 cells is slower than that of wild-type cells. Moreover, translation of a reporter rpsA-lacZ fusion is specifically stimulated, suggesting that the last motif is necessary for autoregulation. However, in ssyF29 cells the rpsA mRNA is also strongly destabilized; this destabilization, by causing S1DeltaC shortage, might also explain the observed slow-growth and autoregulation defect. To fix this ambiguity, we have introduced an early stop codon in the rpsA chromosomal gene, resulting in the synthesis of the S1DeltaC protein without an IS10R insertion (rpsADeltaC allele). rpsADeltaC cells grow much faster than their ssyF29 counterparts; moreover, in these cells S1 autoregulation and mRNA stability are normal. In vitro, the S1DeltaC protein binds mRNAs (including its own) almost as avidly as wild-type S1. These results demonstrate that the last S1 motif is dispensable for translation and autoregulation: the defects seen with ssyF29 cells reflect an IS10R-mediated destabilization of the rpsA mRNA, probably due to facilitated exonucleolytic degradation.
Collapse
Affiliation(s)
- Patricia Skorski
- Ecole Normale Supérieure, Laboratoire de Génétique Moléculaire-CNRS UMR8541, Paris, France
| | | | | | | | | |
Collapse
|
16
|
Odaert B, Saïda F, Bontems F. 1H, 13C and 15N resonance assignment of phage T4 endoribonuclease RegB. BIOMOLECULAR NMR ASSIGNMENTS 2007; 1:73-74. [PMID: 19636830 DOI: 10.1007/s12104-007-9021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Revised: 03/23/2007] [Accepted: 04/30/2007] [Indexed: 05/28/2023]
Abstract
RegB is involved in the control of the phage T4 life cycle. It inactivates the phage early mRNAs when their translation is no more required. We determined its structure and identified residues involved in substrate binding. For this, all backbone and 90% of side-chain resonance frequencies were assigned.
Collapse
Affiliation(s)
- Benoît Odaert
- ICSN-RMN, Ecole-Polytechnique (équipe CNRS), Palaiseau, 91128, France
| | | | | |
Collapse
|
17
|
Timchenko AA, Shiryaev VM, Fedorova YY, Kihara H, Kimura K, Willumeit R, Garamus VM, Selivanova OM. Conformation of Thermus thermophilus ribosomal protein S1 in solution at different ionic strengths. Biophysics (Nagoya-shi) 2007. [DOI: 10.1134/s0006350907020030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Durand S, Richard G, Bisaglia M, Laalami S, Bontems F, Uzan M. Activation of RegB endoribonuclease by S1 ribosomal protein requires an 11 nt conserved sequence. Nucleic Acids Res 2006; 34:6549-60. [PMID: 17130171 PMCID: PMC1702504 DOI: 10.1093/nar/gkl911] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The T4 RegB endoribonuclease cleaves specifically in the middle of the -GGAG- sequence, leading to inactivation and degradation of early phage mRNAs. In vitro, RegB activity is very weak but can be enhanced 10- to 100-fold by the Escherichia coli ribosomal protein S1. Not all RNAs carrying the GGAG motif are cleaved by RegB, suggesting that additional information is required to obtain a complete RegB target site. In this work, we find that in the presence of S1, the RegB target site is an 11 nt long single-stranded RNA carrying the 100% conserved GGA triplet at the 5′ end and a degenerate, A-rich, consensus sequence immediately downstream. Our data support the notion that RegB alone recognizes only the trinucleotide GGA, which it cleaves very inefficiently, and that stimulation of RegB activity by S1 depends on the nucleotide immediately 3′ to -GGA-.
Collapse
Affiliation(s)
| | | | - Marco Bisaglia
- ICSN-RMN, Institut de Chimie des Substances Naturelles, CNRS, 91190 Gif sur Yvette and Ecole Polytechnique91128 Palaiseau, France
| | | | - François Bontems
- ICSN-RMN, Institut de Chimie des Substances Naturelles, CNRS, 91190 Gif sur Yvette and Ecole Polytechnique91128 Palaiseau, France
| | - Marc Uzan
- To whom correspondence should be addressed. Tel: 33-1 44277973; Fax: 33-1 44275716;
| |
Collapse
|
19
|
Odaert B, Saïda F, Aliprandi P, Durand S, Créchet JB, Guerois R, Laalami S, Uzan M, Bontems F. Structural and functional studies of RegB, a new member of a family of sequence-specific ribonucleases involved in mRNA inactivation on the ribosome. J Biol Chem 2006; 282:2019-28. [PMID: 17046813 DOI: 10.1074/jbc.m608271200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RegB endoribonuclease participates in the bacteriophage T4 life cycle by favoring early messenger RNA breakdown. RegB specifically cleaves GGAG sequences found in intergenic regions, mainly in translation initiation sites. Its activity is very low but can be enhanced up to 100-fold by the ribosomal 30 S subunit or by ribosomal protein S1. RegB has no significant sequence homology to any known protein. Here we used NMR to solve the structure of RegB and map its interactions with two RNA substrates. We also generated a collection of mutants affected in RegB function. Our results show that, despite the absence of any sequence homology, RegB has structural similarities with two Escherichia coli ribonucleases involved in mRNA inactivation on translating ribosomes: YoeB and RelE. Although these ribonucleases have different catalytic sites, we propose that RegB is a new member of the RelE/YoeB structural and functional family of ribonucleases specialized in mRNA inactivation within the ribosome.
Collapse
Affiliation(s)
- Benoît Odaert
- ICSN-RMN, Institut de Chimie des Substances Naturelles, CNRS de Gif-sur-Yvette, 91190 Gif-sur-Yvette et Ecole Polytechnique, 91128 Palaiseau, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Salavati R, Ernst NL, O'Rear J, Gilliam T, Tarun S, Stuart K. KREPA4, an RNA binding protein essential for editosome integrity and survival of Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2006; 12:819-31. [PMID: 16601201 PMCID: PMC1440894 DOI: 10.1261/rna.2244106] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Accepted: 02/08/2006] [Indexed: 05/08/2023]
Abstract
The 20S editosome, a multiprotein complex, catalyzes the editing of most mitochondrial mRNAs in trypanosomatids by uridylate insertion and deletion. RNAi mediated inactivation of expression of KREPA4 (previously TbMP24), a component of the 20S editosome, in procyclic form Trypanosoma brucei resulted in inhibition of cell growth, loss of RNA editing, and disappearance of 20S editosomes. Levels of MRP1 and REAP-1 proteins, which may have roles in editing but are not editosome components, were unaffected. Tagged KREPA4 protein is incorporated into 20S editosomes in vivo with no preference for either insertion or deletion subcomplexes. Consistent with its S1-like motif, recombinant KREPA4 protein binds synthetic gRNA with a preference for the 3' oligo (U) tail. These data suggest that KREPA4 is an RNA binding protein that may be specific for the gRNA Utail and also is important for 20S editosome stability.
Collapse
Affiliation(s)
- Reza Salavati
- Seattle Biomedical Research Institute, Washington 98109-5219, USA
| | | | | | | | | | | |
Collapse
|
21
|
Truncaite L, Zajanckauskaite A, Arlauskas A, Nivinskas R. Transcription and RNA processing during expression of genes preceding DNA ligase gene 30 in T4-related bacteriophages. Virology 2006; 344:378-90. [PMID: 16225899 DOI: 10.1016/j.virol.2005.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 07/01/2005] [Accepted: 09/02/2005] [Indexed: 10/25/2022]
Abstract
Early gene expression in bacteriophage T4 is controlled primarily by the unique early promoters, while T4-encoded RegB endoribonuclease promotes degradation of many early messages contributing to the rapid shift of gene expression from the early to middle stages. The regulatory region for the genes clustered upstream of DNA ligase gene 30 of T4 was known to carry two strong early promoters and two putative RegB sites. Here, we present the comparative analysis of the regulatory events in this region of 16 T4-type bacteriophages. The regulatory elements for control of this gene cluster, such as rho-independent terminator, at least one early promoter, the sequence for stem-loop structure, and the RegB cleavage sites have been found to be conserved in the phages studied. Also, we present experimental evidence that the initial cleavage by RegB of phages TuIa and RB69 enables degradation of early phage mRNAs by the major Escherichia coli endoribonuclease, RNase E.
Collapse
Affiliation(s)
- Lidija Truncaite
- Department of Gene Engineering, Institute of Biochemistry, Mokslininku 12, 08662 Vilnius, Lithuania
| | | | | | | |
Collapse
|
22
|
Saïda F, Odaert B, Uzan M, Bontems F. First structural investigation of the restriction ribonuclease RegB: NMR spectroscopic conditions, 13C/15N double-isotopic labelling and two-dimensional heteronuclear spectra. Protein Expr Purif 2004; 34:158-65. [PMID: 14766312 DOI: 10.1016/j.pep.2003.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 11/06/2003] [Indexed: 11/24/2022]
Abstract
The bacteriophage T4 genome-encoded ribonuclease RegB is the unique well-defined restriction endoribonuclease. This protein cleaves with an almost absolute specificity its RNA substrate in the middle of the GGAG tetranucleotide mainly found in the Shine-Dalgarno sequence (required for the prokaryotic initiation of the translation). This protein has no significant homology to any known ribonuclease and its structure has never been investigated. The extreme toxicity of this ribonuclease prevents the expression of large quantities for structural studies. Here, we show that the toxicity of RegB can be bypassed by using the RegB H48A point mutant and explain why resolving the structure of this mutant is relevant. For nuclear magnetic resonance (NMR) purposes, we report the preparation of highly pure (13)C/(15)N double-labelled 1.2mM samples of RegB H48A using a high yield expression procedure in minimal medium (30 mg/L). We also present a set of solution conditions that maintain the concentrated samples of this protein stable for long periods at the NMR-required temperature. Finally, we present the first (1)H/(15)N and (1)H/(13)C two-dimensional NMR spectra of RegB H48A. These spectra show that the protein is folded and that the full structural analysis of RegB by NMR is feasible.
Collapse
Affiliation(s)
- Fakhri Saïda
- Laboratoire ICSN-RMN, Institut de Chimie des Substances Naturelles, Ecole polytechnique, route de Saclay, 91128 Palaiseau Cedex, France.
| | | | | | | |
Collapse
|
23
|
Sevo M, Buratti E, Venturi V. Ribosomal protein S1 specifically binds to the 5' untranslated region of the Pseudomonas aeruginosa stationary-phase sigma factor rpoS mRNA in the logarithmic phase of growth. J Bacteriol 2004; 186:4903-9. [PMID: 15262927 PMCID: PMC451656 DOI: 10.1128/jb.186.15.4903-4909.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rpoS gene encodes the stationary-phase sigma factor (RpoS or sigma(s)), which was identified in several gram-negative bacteria as a central regulator controlling the expression of genes involved in cell survival in response to cessation of growth (stationary phase) and providing cross-protection against various stresses. In Pseudomonas aeruginosa, the levels of sigma(s) increase dramatically at the onset of the stationary phase and are regulated at the transcriptional and posttranscriptional levels. The P. aeruginosa rpoS gene is transcribed as a monocistronic rpoS mRNA transcript comprised of an unusually long 373-bp 5' untranslated region (5' UTR). In this study, the 5' UTR and total protein extracts from P. aeruginosa logarithmic and stationary phases of growth were used in order to investigate the protein-RNA interactions that may modulate the translational process. It was observed that a 69-kDa protein, which corresponded to ribosomal protein S1, preferentially binds the 5' UTR of the rpoS mRNA in the logarithmic phase and not in the stationary phase. This is the first report of a protein-rpoS mRNA 5' UTR interaction in P. aeruginosa, and the possible involvement of protein S1 in translation regulation of rpoS is discussed.
Collapse
Affiliation(s)
- Milica Sevo
- Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, 34012 Trieste, Italy
| | | | | |
Collapse
|
24
|
Bisaglia M, Laalami S, Uzan M, Bontems F. Activation of the RegB endoribonuclease by the S1 ribosomal protein is due to cooperation between the S1 four C-terminal modules in a substrate-dependant manner. J Biol Chem 2003; 278:15261-71. [PMID: 12576472 DOI: 10.1074/jbc.m212731200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RegB protein, encoded by the T4 bacteriophage genome, is a ribonuclease involved in the inactivation of the phage early messenger RNAs. Its in vitro activity is very low but can be enhanced up to 100-fold in the presence of the ribosomal protein S1. The latter is made of six repeats of a conserved module found in many other proteins of RNA metabolism. Considering the difference between its size (556 amino acids) and that of several RegB substrates (10 nucleotides), we wondered whether all six modules are necessary for RegB activation. We studied the influence of twelve S1 fragments on the cleavage efficiency of three short substrates. RegB activation requires the cooperation of different sets of modules depending on the substrates. Two RNAs are quite well cleaved in the presence of the fragment formed by the fourth and fifth modules, whereas the third requires the presence of the four C-terminal domains. However, NMR interaction experiments showed that, despite these differences, the interactions of the substrates with either the bi- or tetra-modules are similar, suggesting a common interaction surface. In the case of the tetra-module the interactions involve all four domains, raising the question of the spatial organization of this region.
Collapse
Affiliation(s)
- Marco Bisaglia
- ICSN-RMN, Ecole Polytechnique, 91128 Palaiseau, France and the Institut Jacques Monod, 1 Place Jussieu, 75005 Paris, France
| | | | | | | |
Collapse
|
25
|
Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W. Bacteriophage T4 genome. Microbiol Mol Biol Rev 2003; 67:86-156, table of contents. [PMID: 12626685 PMCID: PMC150520 DOI: 10.1128/mmbr.67.1.86-156.2003] [Citation(s) in RCA: 562] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage T4 has provided countless contributions to the paradigms of genetics and biochemistry. Its complete genome sequence of 168,903 bp encodes about 300 gene products. T4 biology and its genomic sequence provide the best-understood model for modern functional genomics and proteomics. Variations on gene expression, including overlapping genes, internal translation initiation, spliced genes, translational bypassing, and RNA processing, alert us to the caveats of purely computational methods. The T4 transcriptional pattern reflects its dependence on the host RNA polymerase and the use of phage-encoded proteins that sequentially modify RNA polymerase; transcriptional activator proteins, a phage sigma factor, anti-sigma, and sigma decoy proteins also act to specify early, middle, and late promoter recognition. Posttranscriptional controls by T4 provide excellent systems for the study of RNA-dependent processes, particularly at the structural level. The redundancy of DNA replication and recombination systems of T4 reveals how phage and other genomes are stably replicated and repaired in different environments, providing insight into genome evolution and adaptations to new hosts and growth environments. Moreover, genomic sequence analysis has provided new insights into tail fiber variation, lysis, gene duplications, and membrane localization of proteins, while high-resolution structural determination of the "cell-puncturing device," combined with the three-dimensional image reconstruction of the baseplate, has revealed the mechanism of penetration during infection. Despite these advances, nearly 130 potential T4 genes remain uncharacterized. Current phage-sequencing initiatives are now revealing the similarities and differences among members of the T4 family, including those that infect bacteria other than Escherichia coli. T4 functional genomics will aid in the interpretation of these newly sequenced T4-related genomes and in broadening our understanding of the complex evolution and ecology of phages-the most abundant and among the most ancient biological entities on Earth.
Collapse
Affiliation(s)
- Eric S Miller
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Shiryaev VM, Selivanova OM, Hartsch T, Nazimov IV, Spirin AS. Ribosomal protein S1 from Thermus thermophilus: its detection, identification and overproduction. FEBS Lett 2002; 525:88. [PMID: 12163167 DOI: 10.1016/s0014-5793(02)03092-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribosomal protein S1 has been identified in Thermus thermophilus ribosomes. The gene of ribosomal protein S1 from Thermus thermophilus has been cloned and overexpressed in Escherichia coli. A procedure for purification of the protein has been developed.
Collapse
Affiliation(s)
- Vyacheslav M Shiryaev
- Institute of Protein Research, Russian Academy of Sciences, 142290, Moscow Region, Pushchino, Russia
| | | | | | | | | |
Collapse
|
27
|
Moll I, Grill S, Gründling A, Bläsi U. Effects of ribosomal proteins S1, S2 and the DeaD/CsdA DEAD-box helicase on translation of leaderless and canonical mRNAs in Escherichia coli. Mol Microbiol 2002; 44:1387-96. [PMID: 12068815 DOI: 10.1046/j.1365-2958.2002.02971.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Leaderless mRNAs beginning with the AUG initiating codon occur in all kingdoms of life. It has been previously reported that translation of the leaderless cI mRNA is stimulated in an Escherichia coli rpsB mutant deficient in ribosomal protein S2. Here, we have studied this phenomenon at the molecular level by making use of an E. coli rpsB(ts) mutant. The analysis of the ribosomes isolated under the non-permissive conditions revealed that in addition to ribosomal protein S2, ribosomal protein S1 was absent, demonstrating that S2 is essential for binding of S1 to the 30S ribosomal subunit. In vitro translation assays and the selective translation of a leaderless mRNA in vivo at the non-permissive temperature corroborate and extend previous in vitro ribosome binding studies in that S1 is indeed dispensable for translation of leaderless mRNAs. The deaD/csdA gene, encoding the "DeaD/CsdA" DEAD-box helicase, has been isolated as a multicopy suppressor of rpsB(ts) mutations. Here, we show that expression of a plasmid-borne DeaD/CsdA gene restores both S1 and S2 on the ribosome at the non-permissive temperature in the rpsB(ts) strain, which in turn leads to suppression of the translational defect affecting canonical mRNSa. These data are discussed in terms of a model, wherein DeaD/CsdA is involved in ribosome biogenesis rather than acting directly on mRNA.
Collapse
Affiliation(s)
- Isabella Moll
- Instiotute of Microbiology and Genetics, Vienna Biocenter, 1030 Vienna, Austria
| | | | | | | |
Collapse
|
28
|
Affiliation(s)
- M Uzan
- Institut Jacques Monod, UMR 7592-CNRS-Universités Paris 6 and 7, 75251 Paris, France
| |
Collapse
|
29
|
Lebars I, Hu RM, Lallemand JY, Uzan M, Bontems F. Role of the substrate conformation and of the S1 protein in the cleavage efficiency of the T4 endoribonuclease RegB. J Biol Chem 2001; 276:13264-72. [PMID: 11118457 DOI: 10.1074/jbc.m010680200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The T4 endoribonuclease RegB is involved in the inactivation of the phage early messengers. It cuts specifically in the middle of GGAG sequences found in early messenger intergenic regions but not GGAG sequences located in coding sequences or in late messengers. In vitro RegB activity is very low but is enhanced by a factor up to 100 by the ribosomal protein S1. In the absence of clear sequence motif distinguishing substrate and non-substrate GGAG-containing RNAs, we postulated the existence of a structural determinant. To test this hypothesis, we correlated the structure, probed by NMR spectroscopy, with the cleavage propensity of short RNA molecules derived from an artificial substrate. A kinetic analysis of the cleavage was performed in the presence and absence of S1. In the absence of S1, RegB efficiently hydrolyses substrates in which the last G of the GGAG motif is located in a short stem between two loops. Both strengthening and weakening of this structure strongly decrease the cleavage rate, indicating that this structure constitutes a positive cleavage determinant. Based on our results and those of others, we speculate that S1 favors the formation of the structure recognized by RegB and can thus be considered a "presentation protein."
Collapse
Affiliation(s)
- I Lebars
- Groupe de Resonance Magnétique Nucléaire, Laboratoire Département de Chimie, Synthèse Organique, Ecole Polytechnique, 91128 Palaiseau, France
| | | | | | | | | |
Collapse
|
30
|
Abstract
It is becoming increasingly clear that the complex machines involved in transcription and translation, the two major activities leading to gene expression, communicate directly with one another by sharing proteins. For some proteins, such as ribosomal proteins S10 and L4, there is strong evidence of their participation in both processes, and much is known about their role in both activities. The exact roles and interactions of other proteins, such as Nus factors B and G, in both transcription and translation remain a mystery. Although there are not, at present, many examples of such shared proteins, the importance of understanding their behavior and intimate involvement with two major cellular machines is beginning to be appreciated. Studies related to the dual activities of these proteins and searches for more examples of proteins shared between the transcription and translation machines should lead to a better understanding of the communication between these two activities and the purposes it serves.
Collapse
Affiliation(s)
- C L Squires
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | |
Collapse
|
31
|
Boni IV, Artamonova VS, Dreyfus M. The last RNA-binding repeat of the Escherichia coli ribosomal protein S1 is specifically involved in autogenous control. J Bacteriol 2000; 182:5872-9. [PMID: 11004188 PMCID: PMC94711 DOI: 10.1128/jb.182.20.5872-5879.2000] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/1999] [Accepted: 08/01/2000] [Indexed: 11/20/2022] Open
Abstract
The ssyF29 mutation, originally selected as an extragenic suppressor of a protein export defect, has been mapped within the rpsA gene encoding ribosomal protein S1. Here, we examine the nature of this mutation and its effect on translation. Sequencing of the rpsA gene from the ssyF mutant has revealed that, due to an IS10R insertion, its product lacks the last 92 residues of the wild-type S1 protein corresponding to one of the four homologous repeats of the RNA-binding domain. To investigate how this truncation affects translation, we have created two series of Escherichia coli strains (rpsA(+) and ssyF) bearing various translation initiation regions (TIRs) fused to the chromosomal lacZ gene. Using a beta-galactosidase assay, we show that none of these TIRs differ in activity between ssyF and rpsA(+) cells, except for the rpsA TIR: the latter is stimulated threefold in ssyF cells, provided it retains at least ca. 90 nucleotides upstream of the start codon. Similarly, the activity of this TIR can be severely repressed in trans by excess S1, again provided it retains the same minimal upstream sequence. Thus, the ssyF stimulation requires the presence of the rpsA translational autogenous operator. As an interpretation, we propose that the ssyF mutation relieves the residual repression caused by normal supply of S1 (i.e., that it impairs autogenous control). Thus, the C-terminal repeat of the S1 RNA-binding domain appears to be required for autoregulation, but not for overall mRNA recognition.
Collapse
Affiliation(s)
- I V Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow, Russia.
| | | | | |
Collapse
|
32
|
Sanson B, Hu RM, Troitskayadagger E, Mathy N, Uzan M. Endoribonuclease RegB from bacteriophage T4 is necessary for the degradation of early but not middle or late mRNAs. J Mol Biol 2000; 297:1063-74. [PMID: 10764573 DOI: 10.1006/jmbi.2000.3626] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The RegB endoribonuclease from bacteriophage T4 cleaves early mRNAs specifically in the middle of the sequence GGAG. We show here that RegB is required for the degradation of bulk T4 early mRNA. In the absence of RegB, the chemical half-life of early transcripts is increased nearly fourfold, whereas their functional half-life is increased twofold. RegB also regulates the translation of several prereplicative genes. The synthesis of several early proteins is down-regulated, probably as a consequence of RegB cleavages in the Shine-Dalgarno sequence of these genes. The synthesis of several other proteins is up-regulated, suggesting that processing by RegB might improve translation by changing the conformation of a transcript. In contrast, RegB does not affect the average half-life of middle and late mRNA. An analysis of the susceptibility to RegB of many GGAG motifs carried by these mRNA species showed that most middle and all late GGAG-carrying mRNAs escape RegB processing in spite of the fact that the enzyme is acting at least until ten minutes post-infection. The sensitivity or resistance to RegB observed during phage infection could be reproduced in uninfected Escherichia coli cells and in vitro. This shows that the GGAG-carrying RNAs that are uncut during T4 infection are not substrates, whatever the period of the T4 cycle when the transcripts are made.
Collapse
MESH Headings
- Bacteriophage T4/enzymology
- Bacteriophage T4/genetics
- Bacteriophage T4/growth & development
- Bacteriophage T4/physiology
- Base Sequence
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- Escherichia coli/virology
- Gene Expression Regulation, Viral
- Genes, Immediate-Early/genetics
- Genes, Viral/genetics
- Half-Life
- Mutation/genetics
- Nucleic Acid Conformation
- Plasmids/genetics
- Protein Biosynthesis/genetics
- RNA Processing, Post-Transcriptional
- RNA Stability/genetics
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Substrate Specificity
- Time Factors
- Transcription, Genetic/genetics
- Viral Proteins/biosynthesis
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- B Sanson
- Institut Jacques Monod, UMR7592 du CNRS-Universités Paris 6 et Paris 7, 2, Place Jussieu, Paris, Cedex 05, 75251, France
| | | | | | | | | |
Collapse
|
33
|
Grunberg-Manago M. Messenger RNA stability and its role in control of gene expression in bacteria and phages. Annu Rev Genet 2000; 33:193-227. [PMID: 10690408 DOI: 10.1146/annurev.genet.33.1.193] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The stability of mRNA in prokaryotes depends on multiple factors and it has not yet been possible to describe the process of mRNA degradation in terms of a unique pathway. However, important advances have been made in the past 10 years with the characterization of the cis-acting RNA elements and the trans-acting cellular proteins that control mRNA decay. The trans-acting proteins are mainly four nucleases, two endo- (RNase E and RNase III) and two exonucleases (PNPase and RNase II), and poly(A) polymerase. RNase E and PNPase are found in a multienzyme complex called the degradosome. In addition to the host nucleases, phage T4 encodes a specific endonuclease called RegB. The cis-acting elements that protect mRNA from degradation are stable stem-loops at the 5' end of the transcript and terminators or REP sequences at their 3' end. The rate-limiting step in mRNA decay is usually an initial endonucleolytic cleavage that often occurs at the 5' extremity. This initial step is followed by directional 3' to 5' degradation by the two exonucleases. Several examples, reviewed here, indicate that mRNA degradation is an important step at which gene expression can be controlled. This regulation can be either global, as in the case of growth rate-dependent control, or specific, in response to changes in the environmental conditions.
Collapse
|
34
|
Abstract
The maturation and degradation of RNA molecules are essential features of the mechanism of gene expression, and provide the two main points for post-transcriptional regulation. Cells employ a functionally diverse array of nucleases to carry out RNA maturation and turnover. Viruses also employ cellular ribonucleases, or even use their own in their reproductive cycles. Studies on bacterial ribonucleases, and in particular those from Escherichia coli, are providing insight into ribonuclease structure, mechanism, and regulation. Ongoing biochemical and genetic analyses are revealing that many ribonucleases are phylogenetically conserved, and exhibit overlapping functional roles and perhaps common catalytic mechanisms. This article reviews the salient features of bacterial ribonucleases, with a focus on those of E. coli, and in particular, ribonuclease III. RNase III participates in a number of RNA maturation and RNA decay pathways, and is regulated by phosphorylation in the T7 phage-infected cell. Plasmid and phage RNAs, in addition to cellular transcripts, are RNase III targets. RNase III orthologues occur in eukaryotic cells, and play key functional roles. As such, RNase III provides an important model with which to understand mechanisms of RNA maturation, RNA decay, and gene regulation.
Collapse
Affiliation(s)
- A W Nicholson
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
35
|
Alexander C, Faber N, Klaff P. Characterization of protein-binding to the spinach chloroplast psbA mRNA 5' untranslated region. Nucleic Acids Res 1998; 26:2265-72. [PMID: 9580673 PMCID: PMC147569 DOI: 10.1093/nar/26.10.2265] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RNA-binding proteins play a major role in regulating mRNA metabolism in chloroplasts. In this work we characterized two proteins, of 43 and 47 kDa, which bind to the spinach psbA mRNA 5' untranslated region (psbA encoding the D1 protein of photosystem II). The 43 kDa protein, which is present in the stroma and in membranes, co-sediments with a complex of 68S. It was purified, and the N-terminal sequence was determined. Upon homology search it was identified as the chloroplast homologue of the Escherichia coli ribosomal protein S1. The 47 kDa protein, which, in contrast with the 43 kDa protein, sediments with a small sedimentation coefficient, is only detected in the stromal fraction. It is soluble in an uncomplexed form. By deletion analysis, an element within the psbA mRNA 5' untranslated region was identified that is necessary but not sufficient for binding of stromal proteins. The 'central protein binding element' ranges from nucleotide -49 to -9 of the psbA mRNA 5' untranslated region. It comprises the Shine-Dalgarno-like GGAG motif and, 7 nucleotides upstream, an endonucleolytic cleavage site involved in psbA mRNA degradation in vitro . The mechanistic impacts of this region in relation to RNA-binding proteins are discussed.
Collapse
Affiliation(s)
- C Alexander
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
36
|
Yeh LS, Hsu T, Karam JD. Divergence of a DNA replication gene cluster in the T4-related bacteriophage RB69. J Bacteriol 1998; 180:2005-13. [PMID: 9555879 PMCID: PMC107123 DOI: 10.1128/jb.180.8.2005-2013.1998] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The genomes of bacteriophages T4 and RB69 are phylogenetically related but diverge in nucleotide sequence at many loci and are incompatible with each other in vivo. We describe here the biological implications of divergence in a genomic segment that encodes four essential DNA replication proteins: gp45 (sliding clamp), gp44/62 complex (clamp loader), and gp46 (a recombination protein). We have cloned, sequenced, and expressed several overlapping segments of the RB69 gene 46-45.2-(rpbA)-45-44-62 cluster and compared its features to those of the homologous gene cluster from T4. The deduced primary structures of all four RB69 replication proteins and gp45.2 from this cluster are very similar (80 to 95% similarity) to those of their respective T4 homologs. In contrast, the rpbA region (which encodes a nonessential protein in T4) is highly diverged (approximately 49% similarity) between the two phage genomes and does not encode protein in RB69. Expression studies and patterns of high divergence of intercistronic nucleotide sequences of this cluster suggest that T4 and RB69 evolved similar transcriptional and translational control strategies for the cistrons contained therein, but with different specificities. In plasmid-phage complementation assays, we show that posttranslationally, RB69 and T4 homologs of gp45 and the gp44/62 complex can be effectively exchanged between the two phage replicase assemblies; however, we also show results which suggest that mixed clamp loader complexes consisting of T4 gp62 and RB69 gp44 subunits are not active for phage DNA replication. Thus, specificity of the gp44-gp62 interaction in the clamp loader marks a point of departure between the T4 and RB69 replication systems.
Collapse
Affiliation(s)
- L S Yeh
- Department of Biochemistry, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
37
|
Wilson HR, Kameyama L, Zhou JG, Guarneros G, Court DL. Translational repression by a transcriptional elongation factor. Genes Dev 1997; 11:2204-13. [PMID: 9303536 PMCID: PMC275398 DOI: 10.1101/gad.11.17.2204] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/1997] [Accepted: 07/14/1997] [Indexed: 02/05/2023]
Abstract
One of the classical positive regulators of gene expression is bacteriophage lambda N protein. N regulates the transcription of early phage genes by participating in the formation of a highly processive, terminator-resistant transcription complex and thereby stimulates the expression of genes lying downstream of transcriptional terminators. Also included in this antiterminating transcription complex are an RNA site (NUT) and host proteins (Nus). Here we demonstrate that N has an additional, hitherto unknown regulatory role, as a repressor of the translation of its own gene. N-dependent repression does not occur when NUT is deleted, demonstrating that N-mediated antitermination and translational repression both require the same cis-acting site in the RNA. In addition, we have identified one nut and several host mutations that eliminate antitermination and not translational repression, suggesting the independence of these two N-mediated mechanisms. Finally, the position of nutL with respect to the gene whose expression is repressed is important.
Collapse
Affiliation(s)
- H R Wilson
- ABL-Basic Research Program, National Cancer Institute-Frederick Cancer Research and Development Center, Maryland 21702-1201, USA
| | | | | | | | | |
Collapse
|
38
|
Bycroft M, Hubbard TJ, Proctor M, Freund SM, Murzin AG. The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold. Cell 1997; 88:235-42. [PMID: 9008164 DOI: 10.1016/s0092-8674(00)81844-9] [Citation(s) in RCA: 325] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The S1 domain, originally identified in ribosomal protein S1, is found in a large number of RNA-associated proteins. The structure of the S1 RNA-binding domain from the E. coli polynucleotide phosphorylase has been determined using NMR methods and consists of a five-stranded antiparallel beta barrel. Conserved residues on one face of the barrel and adjacent loops form the putative RNA-binding site. The structure of the S1 domain is very similar to that of cold shock protein, suggesting that they are both derived from an ancient nucleic acid-binding protein. Enhanced sequence searches reveal hitherto unidentified S1 domains in RNase E, RNase II, NusA, EMB-5, and other proteins.
Collapse
Affiliation(s)
- M Bycroft
- Department of Chemistry, University of Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|