1
|
Stiles JK, Hicock PI, Shah PH, Meade JC. Genomic organization, transcription, splicing and gene regulation inLeishmania. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1999.11813485] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
2
|
Stanojcic S, Sollelis L, Kuk N, Crobu L, Balard Y, Schwob E, Bastien P, Pagès M, Sterkers Y. Single-molecule analysis of DNA replication reveals novel features in the divergent eukaryotes Leishmania and Trypanosoma brucei versus mammalian cells. Sci Rep 2016; 6:23142. [PMID: 26976742 PMCID: PMC4791591 DOI: 10.1038/srep23142] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/17/2016] [Indexed: 01/29/2023] Open
Abstract
Leishmania and Trypanosoma are unicellular parasites that possess markedly original biological features as compared to other eukaryotes. The Leishmania genome displays a constitutive 'mosaic aneuploidy', whereas in Trypanosoma brucei, the megabase-sized chromosomes are diploid. We accurately analysed DNA replication parameters in three Leishmania species and Trypanosoma brucei as well as mouse embryonic fibroblasts (MEF). Active replication origins were visualized at the single molecule level using DNA molecular combing. More than one active origin was found on most DNA fibres, showing that the chromosomes are replicated from multiple origins. Inter-origin distances (IODs) were measured and found very large in trypanosomatids: the mean IOD was 160 kb in T. brucei and 226 kb in L. mexicana. Moreover, the progression of replication forks was faster than in any other eukaryote analyzed so far (mean velocity 1.9 kb/min in T. brucei and 2.4-2.6 kb/min in Leishmania). The estimated total number of active DNA replication origins in trypanosomatids is ~170. Finally, 14.4% of unidirectional replication forks were observed in T. brucei, in contrast to 1.5-1.7% in Leishmania and 4% in MEF cells. The biological significance of these original features is discussed.
Collapse
Affiliation(s)
- Slavica Stanojcic
- University of Montpellier, Faculty of Medicine, Laboratory of Parasitology-Mycology, Montpellier, F34090, France
| | - Lauriane Sollelis
- University of Montpellier, Faculty of Medicine, Laboratory of Parasitology-Mycology, Montpellier, F34090, France
| | - Nada Kuk
- University of Montpellier, Faculty of Medicine, Laboratory of Parasitology-Mycology, Montpellier, F34090, France
| | - Lucien Crobu
- CNRS 5290 - IRD 224 - University of Montpellier (UMR "MiVEGEC"), Montpellier, F34090, France
| | - Yves Balard
- University of Montpellier, Faculty of Medicine, Laboratory of Parasitology-Mycology, Montpellier, F34090, France
| | - Etienne Schwob
- Institute of Molecular Genetics, CNRS UMR5535 &University of Montpellier, Montpellier, F34293, France
| | - Patrick Bastien
- University of Montpellier, Faculty of Medicine, Laboratory of Parasitology-Mycology, Montpellier, F34090, France.,CNRS 5290 - IRD 224 - University of Montpellier (UMR "MiVEGEC"), Montpellier, F34090, France.,University Hospital Centre (CHU), Department of Parasitology-Mycology, Montpellier, F34090, France
| | - Michel Pagès
- CNRS 5290 - IRD 224 - University of Montpellier (UMR "MiVEGEC"), Montpellier, F34090, France
| | - Yvon Sterkers
- University of Montpellier, Faculty of Medicine, Laboratory of Parasitology-Mycology, Montpellier, F34090, France.,CNRS 5290 - IRD 224 - University of Montpellier (UMR "MiVEGEC"), Montpellier, F34090, France.,University Hospital Centre (CHU), Department of Parasitology-Mycology, Montpellier, F34090, France
| |
Collapse
|
3
|
Regulation of gene expression in protozoa parasites. J Biomed Biotechnol 2010; 2010:726045. [PMID: 20204171 PMCID: PMC2830571 DOI: 10.1155/2010/726045] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/10/2009] [Accepted: 01/08/2010] [Indexed: 12/25/2022] Open
Abstract
Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.
Collapse
|
4
|
Smith M, Bringaud F, Papadopoulou B. Organization and evolution of two SIDER retroposon subfamilies and their impact on the Leishmania genome. BMC Genomics 2009; 10:240. [PMID: 19463167 PMCID: PMC2689281 DOI: 10.1186/1471-2164-10-240] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 05/22/2009] [Indexed: 12/17/2022] Open
Abstract
Background We have recently identified two large families of extinct transposable elements termed Short Interspersed DEgenerated Retroposons (SIDERs) in the parasitic protozoan Leishmania major. The characterization of SIDER elements was limited to the SIDER2 subfamily, although members of both subfamilies have been shown to play a role in the regulation of gene expression at the post-transcriptional level. Apparent functional domestication of SIDERs prompted further investigation of their characterization, dissemination and evolution throughout the Leishmania genus, with particular attention to the disregarded SIDER1 subfamily. Results Using optimized statistical profiles of both SIDER1 and SIDER2 subgroups, we report the first automated and highly sensitive annotation of SIDERs in the genomes of L. infantum, L. braziliensis and L. major. SIDER annotations were combined to in-silico mRNA extremity predictions to generate a detailed distribution map of the repeat family, hence uncovering an enrichment of antisense-oriented SIDER repeats between the polyadenylation and trans-splicing sites of intergenic regions, in contrast to the exclusive sense orientation of SIDER elements within 3'UTRs. Our data indicate that SIDER elements are quite uniformly dispersed throughout all three genomes and that their distribution is generally syntenic. However, only 47.4% of orthologous genes harbor a SIDER element in all three species. There is evidence for species-specific enrichment of SIDERs and for their preferential association, especially for SIDER2s, with different metabolic functions. Investigation of the sequence attributes and evolutionary relationship of SIDERs to other trypanosomatid retroposons reveals that SIDER1 is a truncated version of extinct autonomous ingi-like retroposons (DIREs), which were functional in the ancestral Leishmania genome. Conclusion A detailed characterization of the sequence traits for both SIDER subfamilies unveils major differences. The SIDER1 subfamily is more heterogeneous and shows an evolutionary link with vestigial DIRE retroposons as previously observed for the ingi/RIME and L1Tc/NARTc couples identified in the T. brucei and T. cruzi genomes, whereas no identified DIREs are related to SIDER2 sequences. Although SIDER1s and SIDER2s display equivalent genomic distribution globally, the varying degrees of sequence conservation, preferential genomic disposition, and differential association to orthologous genes allude to an intricate web of SIDER assimilation in these parasitic organisms.
Collapse
Affiliation(s)
- Martin Smith
- Research Centre in Infectious Diseases, CHUL Research Centre, RC-709, 2705 Laurier Blvd, Quebec (QC), G1V4G2 Canada.
| | | | | |
Collapse
|
5
|
Lee JH, Nguyen TN, Schimanski B, Günzl A. Spliced leader RNA gene transcription in Trypanosoma brucei requires transcription factor TFIIH. EUKARYOTIC CELL 2007; 6:641-9. [PMID: 17259543 PMCID: PMC1865645 DOI: 10.1128/ec.00411-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Trypanosomatid parasites share a gene expression mode which differs greatly from that of their human and insect hosts. In these unicellular eukaryotes, protein-coding genes are transcribed polycistronically and individual mRNAs are processed from precursors by spliced leader (SL) trans splicing and polyadenylation. In trans splicing, the SL RNA is consumed through a transfer of its 5'-terminal part to the 5' end of mRNAs. Since all mRNAs are trans spliced, the parasites depend on strong and continuous SL RNA synthesis mediated by RNA polymerase II. As essential factors for SL RNA gene transcription in Trypanosoma brucei, the general transcription factor (GTF) IIB and a complex, consisting of the TATA-binding protein-related protein 4, the small nuclear RNA-activating protein complex, and TFIIA, were recently identified. Although T. brucei TFIIA and TFIIB are extremely divergent to their counterparts in other eukaryotes, their characterization suggested that trypanosomatids do form a class II transcription preinitiation complex at the SL RNA gene promoter and harbor orthologues of other known GTFs. TFIIH is a GTF which functions in transcription initiation, DNA repair, and cell cycle control. Here, we investigated whether a T. brucei TFIIH is important for SL RNA gene transcription and found that silencing the expression of the highly conserved TFIIH subunit XPD in T. brucei affected SL RNA gene synthesis in vivo, and depletion of this protein from extract abolished SL RNA gene transcription in vitro. Since we also identified orthologues of the TFIIH subunits XPB, p52/TFB2, and p44/SSL1 copurifying with TbXPD, we concluded that the parasite harbors a TFIIH which is indispensable for SL RNA gene transcription.
Collapse
Affiliation(s)
- Ju Huck Lee
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3301, USA
| | | | | | | |
Collapse
|
6
|
Nilsson D, Andersson B. Strand asymmetry patterns in trypanosomatid parasites. Exp Parasitol 2005; 109:143-9. [PMID: 15713445 DOI: 10.1016/j.exppara.2004.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2002] [Revised: 12/01/2004] [Accepted: 12/01/2004] [Indexed: 11/28/2022]
Abstract
The genome organization of kinetoplastid parasites is unusual, with chromosomes containing several long regions of polycistronically transcribed genes. The regions where the direction of transcription switches have been hypothesized to contain origins of replication and possibly also centromers and promoters. We report that overall strand asymmetry patterns can be observed in Trypanosoma cruzi and Trypanosoma brucei with optima on strand-switch regions. The base skews of T. cruzi and T. brucei divergent strand-switches show patterns analogous to those for bacterial origins of replication, but they differ from those of Leishmania major. Bias in codon usage and the trypanosomatid unidirectional gene clusters predict most of this skew, but fail to properly explain the same trend in intergenic regions, as does the current knowledge of regulatory sequences.
Collapse
Affiliation(s)
- Daniel Nilsson
- Center for Genomics and Bioinformatics, Karolinska Institutet, Berzeliusv. 35, SE-171 77 Stockholm, Sweden
| | | |
Collapse
|
7
|
Martínez-Calvillo S, Nguyen D, Stuart K, Myler PJ. Transcription initiation and termination on Leishmania major chromosome 3. EUKARYOTIC CELL 2004; 3:506-17. [PMID: 15075279 PMCID: PMC387636 DOI: 10.1128/ec.3.2.506-517.2004] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genome projects involving Leishmania and other trypanosomatids have revealed that most genes in these organisms are organized into large clusters of genes on the same DNA strand. We have previously shown that transcription of the entire Leishmania major Friedlin (LmjF) chromosome 1 (chr1) initiates bidirectionally between two divergent gene clusters. Here, we analyze transcription of LmjF chr3, which contains two convergent clusters of 67 and 30 genes, separated by a tRNA gene, with a single divergent protein-coding gene located close to the "left" telomere. Nuclear run-on analyses indicate that specific transcription of chr3 initiates bidirectionally between the single subtelomeric gene and the adjacent 67-gene cluster, close to the "right" telomere upstream of the 30-gene cluster, and upstream of the tRNA gene. Transcription on both strands terminates within the tRNA-gene region. Transient-transfection studies support the role of the tRNA-gene region as a transcription terminator for RNA polymerase II (Pol II) and Pol III, and also for Pol I.
Collapse
MESH Headings
- Amanitins/pharmacology
- Animals
- Artificial Gene Fusion
- Base Sequence
- Chromosomes/physiology
- Chromosomes/radiation effects
- DNA, Intergenic/genetics
- DNA, Intergenic/physiology
- DNA, Single-Stranded/analysis
- DNA-Directed RNA Polymerases/antagonists & inhibitors
- DNA-Directed RNA Polymerases/physiology
- Dicarboxylic Acids/pharmacology
- Genes, Protozoan/genetics
- Leishmania/genetics
- Leishmania/radiation effects
- Luciferases/analysis
- Luciferases/genetics
- Molecular Sequence Data
- Multigene Family/genetics
- Nucleic Acid Hybridization/methods
- Organophosphorus Compounds/pharmacology
- RNA, Messenger/analysis
- RNA, Transfer, Lys/genetics
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
- Transcription, Genetic/radiation effects
- Ultraviolet Rays
Collapse
|
8
|
Abstract
Transcription in the kinetoplastid protozoa shows substantial variation from the paradigms of eukaryotic gene expression, including polycistronic transcription, a paucity of RNA polymerase (RNAP) II promoters, no qualitative regulated transcription initiation for most protein-coding genes, transcription of some protein-coding genes by RNAP I, an exclusive subnuclear location for VSG transcription, the dependence of small nuclear RNA gene transcription on an upstream tRNA gene, and the synthesis of mitochondrial tRNAs in the nucleus. Here, we present a broad overview of what is known about transcription in the kinetoplastids and what has yet to be determined.
Collapse
Affiliation(s)
- David A Campbell
- Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, 609 Charles E. Young Drive East, Los Angeles, CA 90095-1489, USA.
| | | | | |
Collapse
|
9
|
Robinson KA, Beverley SM. Improvements in transfection efficiency and tests of RNA interference (RNAi) approaches in the protozoan parasite Leishmania. Mol Biochem Parasitol 2003; 128:217-28. [PMID: 12742588 DOI: 10.1016/s0166-6851(03)00079-3] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Approaches which eliminate mRNA expression directly are ideally suited for reverse genetics applications in eukaryotic microbes which are asexual diploids, such as the protozoan parasite Leishmania. RNA interference (RNAi) approaches have been successful in many species, including the related parasite Trypanosoma brucei. For RNAi tests in Leishmania, we developed improved protocols for transient and stable DNA transfection, attaining efficiencies of up to 25 and 3%, respectively. This facilitated RNAi tests at the alpha-tubulin locus, whose inhibition gives a strong lethal phenotype in trypanosomatids. However, transient or stable transfection of DNAs encoding mRNAs for an alpha-tubulin stem-loop construct and GFP to monitor transfection resulted in no effect on parasite morphology, growth or tubulin expression in Leishmania major or L. donovani. Transient transfection of a 24-nucleotide double-stranded alpha-tubulin siRNA also had no effect. Similar results were obtained in studies targeting an introduced GFP gene with a GFP stem-loop construct. These data suggest that typical RNAi strategies may not work effectively in Leishmania, and raise the possibility that Leishmania is naturally deficient for RNAi activity, like Saccharomyces cerevisae. The implications to parasite biology, gene amplification, and genetic analysis are discussed.
Collapse
Affiliation(s)
- Kelly A Robinson
- Department of Molecular Microbiology, Washington University Medical School, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | |
Collapse
|
10
|
Martínez-Calvillo S, Yan S, Nguyen D, Fox M, Stuart K, Myler PJ. Transcription of Leishmania major Friedlin chromosome 1 initiates in both directions within a single region. Mol Cell 2003; 11:1291-9. [PMID: 12769852 DOI: 10.1016/s1097-2765(03)00143-6] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Almost nothing is known about the sequences involved in transcription initiation of protein-coding genes in the parasite Leishmania. We describe here the transcriptional analysis of chromosome 1 (chr1) from Leishmania major Friedlin (LmjF) which encodes the first 29 genes on one DNA strand, and the remaining 50 on the opposite strand. Strand-specific nuclear run-on assays showed that a low level of nonspecific transcription probably takes place over the entire chromosome, but an approximately 10-fold higher level of coding strand-specific RNA polymerase II (Pol II)-mediated transcription initiates within the strand-switch region. 5' RACE studies localized the initiation sites to a <100 bp region. Transfection studies support the presence of a bidirectional promoter within the strand-switch region, but suggest that other factors are also involved in Pol II transcription. Thus, while in most eukaryotes each gene possesses its own promoter, a single region seems to drive the expression of the entire chr1 in LmjF.
Collapse
Affiliation(s)
- Santiago Martínez-Calvillo
- Seattle Biomedical Research Institute, and Department of Pathobiology, University of Washington, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Trypanosomatid protozoans cause important diseases of humans and their domestic livestock. Various molecular genetic tools are now allowing rapid progress in understanding many of the unique aspects of the molecular and cell biology of these organisms. Diploidy and the lack or difficulty of sexual crossing has been a challenge for forward genetics, but powerful selections and functional complementation have helped to overcome it in Leishmania. RNA interference has been adapted for forward genetics in trypanosomes, in which it is also a powerful tool for reverse genetics. Interestingly, the efficacy of different genetic tools has steered research into different aspects of the biology of these parasites.
Collapse
Affiliation(s)
- Stephen M Beverley
- Department of Molecular Microbiology, Washington University Medical School, St Louis, Missouri 63110, USA.
| |
Collapse
|
12
|
Mishra M, Bennett JR, Chaudhuri G. Increased efficacy of antileishmanial antisense phosphorothioate oligonucleotides in Leishmania amazonensis overexpressing ribonuclease H. Biochem Pharmacol 2001; 61:467-76. [PMID: 11226381 PMCID: PMC3088082 DOI: 10.1016/s0006-2952(00)00568-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribonuclease H (RNase H), an enzyme that cleaves an RNA sequence base-paired with a complementary DNA sequence, is proposed to be the mediator of antisense phosphorothioate oligonucleotide (S-oligo) lethality in a cell. To understand the role of RNase H in the killing of the parasitic protozoan Leishmania by antisense S-oligos, we expressed an episomal copy of the Trypanosoma brucei RNase H1 gene inside L. amazonensis promastigotes and amastigotes that constitutively express firefly luciferase. Our hypothesis was that S-oligo-directed degradation of target mRNA is facilitated in a cell that has higher RNase H activity. Increased inhibition of luciferase mRNA expression by anti-luciferase S-oligo and by anti-miniexon S-oligo in these stably transfected promastigotes overexpressing RNase H1 was correlated to the higher activity of RNase H in these cells. The efficiency of killing of the RNase H overexpressing amastigotes inside L. amazonensis-infected macrophages by anti-miniexon S-oligo was higher than in the control cells. Thus, RNase H appears to play an important role in the antisense S-oligo-mediated killing of Leishmania. Chemical modification of S-oligos that stimulate RNase H and/or co-treatment of cells with an activator of RNase H may be useful for developing an antisense approach against leishmaniasis. The transgenic Leishmania cells overexpressing RNase H should be a good model system for the antisense-mediated gene expression ablation studies in these parasites.
Collapse
Affiliation(s)
- Manjari Mishra
- Department of Microbiology, Meharry Medical College, 1005 D. B. Todd Jr. Blvd., Nashville, TN 37208, USA
| | - Jabbar R. Bennett
- Department of Anatomy & Physiology, Meharry Medical College, 1005 D. B. Todd Jr. Blvd., Nashville, TN 37208, USA
| | - Gautam Chaudhuri
- Department of Microbiology, Meharry Medical College, 1005 D. B. Todd Jr. Blvd., Nashville, TN 37208, USA
- Corresponding author. Tel.: +1-615-327-6499; fax: +1-615-327-5559. (G. Chaudhuri)
| |
Collapse
|
13
|
Myler PJ, Audleman L, deVos T, Hixson G, Kiser P, Lemley C, Magness C, Rickel E, Sisk E, Sunkin S, Swartzell S, Westlake T, Bastien P, Fu G, Ivens A, Stuart K. Leishmania major Friedlin chromosome 1 has an unusual distribution of protein-coding genes. Proc Natl Acad Sci U S A 1999; 96:2902-6. [PMID: 10077609 PMCID: PMC15867 DOI: 10.1073/pnas.96.6.2902] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leishmania are evolutionarily ancient protozoans (Kinetoplastidae) and important human pathogens that cause a spectrum of diseases ranging from the asymptomatic to the lethal. The Leishmania genome is relatively small [ approximately 34 megabases (Mb)], lacks substantial repetitive DNA, and is distributed among 36 chromosomes pairs ranging in size from 0.3 Mb to 2.5 Mb, making it a useful candidate for complete genome sequence determination. We report here the nucleotide sequence of the smallest chromosome, chr1. The sequence of chr1 has a 257-kilobase region that is densely packed with 79 protein-coding genes. This region is flanked by telomeric and subtelomeric repetitive elements that vary in number and content among the chr1 homologs, resulting in an approximately 27.5-kilobase size difference. Strikingly, the first 29 genes are all encoded on one DNA strand, whereas the remaining 50 genes are encoded on the opposite strand. Based on the gene density of chr1, we predict a total of approximately 9,800 genes in Leishmania, of which 40% may encode unknown proteins.
Collapse
Affiliation(s)
- P J Myler
- Seattle Biomedical Research Institute, 4 Nickerson Street, Seattle, WA 98109-1651, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dresel A, Clos J. Transcription of the Leishmania major Hsp70-I gene locus does not proceed through the noncoding region. Exp Parasitol 1997; 86:206-12. [PMID: 9225771 DOI: 10.1006/expr.1997.4161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Primary transcripts in kinetoplastid protozoa are generally assumed to be multicistronic. We have analyzed the transcription in the gene locus which encodes the 70-kDa heat shock protein by using nuclear run-on analysis. We find that RNA synthesis in the Hsp70-I gene locus either is terminated or pauses within the intergenic region approximately 250 nt downstream of the polyadenylation site. We therefore propose a discontinuous mode of transcription in the Hsp70 genes of Leishmania major.
Collapse
Affiliation(s)
- A Dresel
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | |
Collapse
|
15
|
Affiliation(s)
- A K Cruz
- Departamento de Bioquímica, Faculdade de Medicina de Ribeirao Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|