1
|
da Silva GS, Hernandes MBB, Toledo Junior JC. The Ubiquity of the Reaction of the Labile Iron Pool That Attenuates Peroxynitrite-Dependent Oxidation Intracellularly. Biomolecules 2024; 14:871. [PMID: 39062585 PMCID: PMC11274960 DOI: 10.3390/biom14070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Although the labile iron pool (LIP) biochemical identity remains a topic of debate, it serves as a universal homeostatically regulated and essential cellular iron source. The LIP plays crucial cellular roles, being the source of iron that is loaded into nascent apo-iron proteins, a process akin to protein post-translational modification, and implicated in the programmed cell death mechanism known as ferroptosis. The LIP is also recognized for its reactivity with chelators, nitric oxide, and peroxides. Our recent investigations in a macrophage cell line revealed a reaction of the LIP with the oxidant peroxynitrite. In contrast to the LIP's pro-oxidant interaction with hydrogen peroxide, this reaction is rapid and attenuates the peroxynitrite oxidative impact. In this study, we demonstrate the existence and antioxidant characteristic of the LIP and peroxynitrite reaction in various cell types. Beyond its potential role as a ubiquitous complementary or substitute protection system against peroxynitrite for cells, the LIP and peroxynitrite reaction may influence cellular iron homeostasis and ferroptosis by changing the LIP redox state and LIP binding properties and reactivity.
Collapse
Affiliation(s)
| | | | - José Carlos Toledo Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| |
Collapse
|
2
|
Kim K, Gao H, Li C, Li B. The glutathione biosynthesis is involved in metamorphosis, antioxidant function, and insecticide resistance in Tribolium castaneum. PEST MANAGEMENT SCIENCE 2024; 80:2698-2709. [PMID: 38308415 DOI: 10.1002/ps.7976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/06/2023] [Accepted: 01/13/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Reduced glutathione (GSH) synthesis is vital for redox homeostasis, cell-cycle regulation and apoptosis, and immune function. The glutamate-cysteine ligase catalytic subunit (Gclc) is the first and rate-limiting enzyme in GSH synthesis, suggesting the potential use of Gclc as a pesticide target. However, the functional characterization of Gclc, especially its contribution in metamorphosis, antioxidant status and insecticide resistance, is unclear in Tribolium castaneum. RESULTS In this study, we identified and cloned Gclc from T. castaneum (TcGclc) and found that its expression began to increase significantly from the late larvae (LL) stage (3.491 ± 0.490-fold). Furthermore, RNA interference-mediated knockdown of TcGclc resulted in three types of aberration (100% total aberration rate) caused by the downregulation of genes related to the 20-hydroxyecdysone (20E) pathway. This deficiency was partially rescued by exogenous 20E treatment (53.1% ± 3.2%), but not by antioxidant. Moreover, in the TcGclc knockdown group, GSH content was decreased to 62.3%, and total antioxidant capacity, glutathione peroxidase and total superoxide dismutase activities were reduced by 14.6%, 83.6%, and 82.3%, respectively. In addition, treatment with different insecticides upregulated expression of TcGclc significantly compared with a control group during the late larval stage (P < 0.01). CONCLUSION Our results indicate that TcGclc has an extensive role in metamorphosis, antioxidant function and insecticide resistance in T. castaneum, thereby expanding our understanding of GSH functions and providing a scientific basis for pest control. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- KumChol Kim
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Department of Life-Science, University of Science, Pyongyang, Democratic People's Republic of Korea
| | - Han Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
3
|
Amason ME, Li L, Harvest CK, Lacey CA, Miao EA. Validation of the Intermolecular Disulfide Bond in Caspase-2. BIOLOGY 2024; 13:49. [PMID: 38248479 PMCID: PMC10813798 DOI: 10.3390/biology13010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Caspases are a family of proteins involved in cell death. Although several caspase members have been well characterized, caspase-2 remains enigmatic. Caspase-2 has been implicated in several phenotypes, but there has been no consensus in the field about its upstream activating signals or its downstream protein targets. In addition, the unique ability of caspase-2 to form a disulfide-bonded dimer has not been studied in depth. Herein, we investigate the disulfide bond in the context of inducible dimerization, showing that disulfide bond formation is dimerization dependent. We also explore and review several stimuli published in the caspase-2 field, test ferroptosis-inducing stimuli, and study in vivo infection models. We hypothesize that the disulfide bond will ultimately prove to be essential for the evolved function of caspase-2. Proving this will require the discovery of cell death phenotypes where caspase-2 is definitively essential.
Collapse
Affiliation(s)
- Megan E. Amason
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lupeng Li
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carissa K. Harvest
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carolyn A. Lacey
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Edward A. Miao
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
4
|
Di Giorgio E, Choudhary H, Ferino A, Cortolezzis Y, Dalla E, D’Este F, Comelli M, Rapozzi V, Xodo LE. Suppression of the KRAS- NRF2 axis shifts arginine into the phosphocreatine energy system in pancreatic cancer cells. iScience 2023; 26:108566. [PMID: 38144458 PMCID: PMC10746371 DOI: 10.1016/j.isci.2023.108566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/21/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
In pancreatic ductal adenocarcinomas (PDAC), the KRASG12D-NRF2 axis controls cellular functions such as redox homeostasis and metabolism. Disruption of this axis through suppression of NRF2 leads to profound reprogramming of metabolism. Unbiased transcriptome and metabolome analyses showed that PDAC cells with disrupted KRASG12D-NRF2 signaling (NRF2-/- cells) shift from aerobic glycolysis to metabolic pathways fed by amino acids. Metabolome, RNA-seq and qRT-PCR analyses revealed a blockade of the urea cycle, making NRF2-/- cells dependent on exogenous arginine for survival. Arginine is channeled into anabolic pathways, including the synthesis of phosphocreatine, which generates an energy buffer essential for cell growth. A similar switch was observed in tumor clones that had survived FOLFIRINOX therapy or blockade of KRAS signaling. Inhibition of the creatine pathway with cyclocreatine reduced both ATP and invasion rate in 3D spheroids from NRF2-deficient PDAC cells. Our study provides basis for the rational development of combination therapies for pancreatic cancer.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy
| | - Himanshi Choudhary
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy
| | - Annalisa Ferino
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy
| | - Ylenia Cortolezzis
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy
| | - Emiliano Dalla
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy
| | - Francesca D’Este
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy
| | - Marina Comelli
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy
| | - Valentina Rapozzi
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy
| | - Luigi E. Xodo
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy
| |
Collapse
|
5
|
Novel vitamin K3 analogs containing 3-N-substituted aromatic and piperazine rings with selective in vitro anticancer activity against HeLa, U87 MG, and MCF-7 cells. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Abdelaziz AA, Nawaz M, Izzeldin I, Abubshait HA, Alsadig A, Gomaa M, Abubshait SA, Alsewdan D. Molecular docking and Anticancer Activity of Some Synthesized 1,4- naphthoquinone Derivatives against Human Cancer Cell Line. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
7
|
In Vitro and Computational Studies of Perezone and Perezone Angelate as Potential Anti-Glioblastoma Multiforme Agents. Molecules 2022; 27:molecules27051565. [PMID: 35268667 PMCID: PMC8911992 DOI: 10.3390/molecules27051565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma multiforme (GBM) represents the most malignant type of astrocytoma, with a life expectancy of two years. It has been shown that Poly (ADP-ribose) polymerase 1 (PARP-1) protein is over-expressed in GBM cells, while its expression in healthy tissue is low. In addition, perezone, a phyto-compound, is a PARP-1 inhibitor with anti-neoplastic activity. As a consequence, in the present study, both in vitro and computational evaluations of perezone and its chemically related compound, perezone angelate, as anti-GBM agents were performed. Hence, the anti-proliferative assay showed that perezone angelate induces higher cytotoxicity in the GBM cell line (U373 IC50 = 6.44 μM) than perezone (U373 IC50 = 51.20 μM) by induction of apoptosis. In addition, perezone angelate showed low cytotoxic activity in rat glial cells (IC50 = 173.66 μM). PARP-1 inhibitory activity (IC50 = 5.25 μM) and oxidative stress induction by perezone angelate were corroborated employing in vitro studies. In the other hand, the performed docking studies allowed explaining the PARP-1 inhibitory activity of perezone angelate, and ADMET studies showed its probability to permeate cell membranes and the blood–brain barrier, which is an essential characteristic of drugs to treat neurological diseases. Finally, it is essential to highlight that the results confirm perezone angelate as a potential anti-GBM agent.
Collapse
|
8
|
Kumar S, Theis T, Tschang M, Nagaraj V, Berthiaume F. Reactive Oxygen Species and Pressure Ulcer Formation after Traumatic Injury to Spinal Cord and Brain. Antioxidants (Basel) 2021; 10:antiox10071013. [PMID: 34202655 PMCID: PMC8300734 DOI: 10.3390/antiox10071013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 11/29/2022] Open
Abstract
Traumatic injuries to the nervous system, including the brain and spinal cord, lead to neurological dysfunction depending upon the severity of the injury. Due to the loss of motor (immobility) and sensory function (lack of sensation), spinal cord injury (SCI) and brain injury (TBI) patients may be bed-ridden and immobile for a very long-time. These conditions lead to secondary complications such as bladder/bowel dysfunction, the formation of pressure ulcers (PUs), bacterial infections, etc. PUs are chronic wounds that fail to heal or heal very slowly, may require multiple treatment modalities, and pose a risk to develop further complications, such as sepsis and amputation. This review discusses the role of oxidative stress and reactive oxygen species (ROS) in the formation of PUs in patients with TBI and SCI. Decades of research suggest that ROS may be key players in mediating the formation of PUs. ROS levels are increased due to the accumulation of activated macrophages and neutrophils. Excessive ROS production from these cells overwhelms intrinsic antioxidant mechanisms. While short-term and moderate increases in ROS regulate signal transduction of various bioactive molecules; long-term and excessively elevated ROS can cause secondary tissue damage and further debilitating complications. This review discusses the role of ROS in PU development after SCI and TBI. We also review the completed and ongoing clinical trials in the management of PUs after SCI and TBI using different technologies and treatments, including antioxidants.
Collapse
Affiliation(s)
- Suneel Kumar
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
- Correspondence: ; Tel.: +1-848-445-6581
| | - Thomas Theis
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (T.T.); (V.N.)
| | - Monica Tschang
- School of Art and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
| | - Vini Nagaraj
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (T.T.); (V.N.)
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
| |
Collapse
|
9
|
Hernández-Rodríguez M, Mendoza Sánchez PI, Macías Perez ME, Cruz ER, Jiménez EM, Aceves-Hernández JM, Nicolás-Vázquez MI, Ruvalcaba RM. In vitro and computational studies of natural products related to perezone as anti-neoplastic agents. Biochimie 2020; 171-172:158-169. [DOI: 10.1016/j.biochi.2020.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 03/02/2020] [Indexed: 12/24/2022]
|
10
|
Hernández-Rodríguez M, Mendoza Sánchez PI, Macias Perez ME, Rosales Cruz E, Mera Jiménez E, Nicolás Vázquez MI, Miranda Ruvalcaba R. In vitro and computational studies showed that perezone inhibits PARP-1 and induces changes in the redox state of K562 cells. Arch Biochem Biophys 2019; 671:225-234. [PMID: 31063714 DOI: 10.1016/j.abb.2019.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022]
Abstract
Cancer is one of the leading causes of morbidity and mortality worldwide. This disease is characterized by uncontrolled growth and proliferation of abnormal cells with a high probability to develop metastasis. Recently, it was demonstrated that perezone, a sesquiterpene quinone, is capable to induce cell death in leukemia (K562), prostate (PC-3), colorectal (HCT-15) and lung (SKLU-1) cancer cell lines; however, its mechanism of action is unknown. Therefore, in this study, in vitro and computational studies were performed to determine the mechanism of action of perezone. Firstly, changes in K562 cell viability, as well as changes in the redox status of the cell in response to treatment with several concentrations of perezone were analyzed. The type of cell death induced, and the modification of the cell cycle were determined. In addition, MD simulations and docking studies were performed to investigate the interaction of perezone with seven regulators of the apoptotic process. Finally, the ability of perezone to inhibit PARP-1 was evaluated by in vitro studies. K562 cells treated with perezone exhibited decreased viability and more oxidized status, being this effect concentration-dependent. In addition, the increase of G0/G1 phase of cell cycle and apoptosis were observed. According to the performed computational studies conducted, perezone showed the highest affinity to PARP-1 enzyme being this complex the most stable due to the presence of a small and deep cavity in the active site, which allows perezone to fit deeply by forming hydrogen bonds and hydrophobic interactions, which drive this interaction. The activity of perezone as PARP-1 inhibitor was corroborated with an IC50 = 181.5 μM. The pro-apoptotic action of perezone may be related to PARP-1 inhibition and changes in the redox state of the cell. The obtained results allowed to understand the biological effect of perezone and, consequently, these could be employed to develop novel PARP-1 inhibitors.
Collapse
Affiliation(s)
- Maricarmen Hernández-Rodríguez
- Química inorgánica-orgánica del Departamento de Ciencias Químicas, de la Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo S/N, Santa María las Torres, Cuautitlán Izcalli, Estado de México, Mexico
| | - Pablo I Mendoza Sánchez
- Química inorgánica-orgánica del Departamento de Ciencias Químicas, de la Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo S/N, Santa María las Torres, Cuautitlán Izcalli, Estado de México, Mexico
| | - Martha Edith Macias Perez
- Laboratorio de Cultivo Celular, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón S/N, Santo Tomás, 11340 Ciudad de, Mexico
| | - Erika Rosales Cruz
- Laboratorio de Hematopatologia, Escuela Nacional de Ciencias Biologicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Santo Tomás, 11340 Ciudad de, Mexico
| | - Elvia Mera Jiménez
- Laboratorio de Cultivo Celular, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón S/N, Santo Tomás, 11340 Ciudad de, Mexico
| | - María Inés Nicolás Vázquez
- Química inorgánica-orgánica del Departamento de Ciencias Químicas, de la Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo S/N, Santa María las Torres, Cuautitlán Izcalli, Estado de México, Mexico.
| | - René Miranda Ruvalcaba
- Química inorgánica-orgánica del Departamento de Ciencias Químicas, de la Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo S/N, Santa María las Torres, Cuautitlán Izcalli, Estado de México, Mexico.
| |
Collapse
|
11
|
Mistry RK, Brewer AC. Redox-Dependent Regulation of Sulfur Metabolism in Biomolecules: Implications for Cardiovascular Health. Antioxid Redox Signal 2019; 30:972-991. [PMID: 28661184 DOI: 10.1089/ars.2017.7224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE Sulfur-containing amino acids are integral to the molecular mechanisms that underlie many aspects of cellular function and homeostasis, facilitated by reversible changes in the oxidation states of sulfur atoms. Sulfur-containing amino acids are metabolically linked by interacting pathways that impact the one-carbon metabolic cycle and generation of methyl groups, the folate cycle, and maintenance of the major cellular redox buffer; glutathione. Dysregulation of these pathways is associated with diverse pathologies, notably of the cardiovascular (CV) system, which are typically characterized by inappropriate plasma levels of sulfur-containing amino acids. Recent Advances: Perhaps not surprisingly, the cellular redox state has emerged as a major regulator of many enzymatic processes within these metabolic cycles. The metabolism of cysteine can also result in the production of hydrogen sulfide (H2S), a signaling molecule whose activity is potentially linked to intracellular levels of both reactive oxygen species (ROS) and molecular oxygen. CRITICAL ISSUES In most cases, the endogenous physiological sources of ROS that might mediate the interlinked metabolic pathways of sulfur-containing biomolecules remain unknown. However, the family of NADPH oxidases, and Nox4 in particular, is emerging as a likely candidate. FUTURE DIRECTIONS This review focuses on the current knowledge of key aspects of sulfur metabolism, which are regulated by redox-based chemical reactions, and the likely intracellular oxidant sources that might mediate this regulation. This knowledge will be important to guide future targeted therapeutic interventions in diverse CV disorders.
Collapse
Affiliation(s)
- Rajesh K Mistry
- Department of Cardiology, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| | - Alison C Brewer
- Department of Cardiology, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| |
Collapse
|
12
|
Bernhard A, Rasinger JD, Betancor MB, Caballero MJ, Berntssen MHG, Lundebye AK, Ørnsrud R. Tolerance and dose-response assessment of subchronic dietary ethoxyquin exposure in Atlantic salmon (Salmo salar L.). PLoS One 2019; 14:e0211128. [PMID: 30682099 PMCID: PMC6347454 DOI: 10.1371/journal.pone.0211128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/08/2019] [Indexed: 12/25/2022] Open
Abstract
Ethoxyquin (EQ; 6-Ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline) has been used as an antioxidant in feed components for pets, livestock and aquaculture. However, possible risks of EQ used in aquafeed for fish health have not yet been characterized. The present study investigated the toxicity and dose-response of subchronic dietary EQ exposure at doses ranging from 41 to 9666 mg EQ/kg feed in Atlantic salmon (Salmo salar L.). Feed at concentrations higher than 1173 mg EQ/kg were rejected by the fish, resulting in reduced feed intake and growth performance. No mortality was observed in fish exposed to any of the doses. A multi-omic screening of metabolome and proteome in salmon liver indicated an effect of dietary EQ on bioenergetics pathways and hepatic redox homeostasis in fish fed concentrations above 119 mg EQ/kg feed. Increased energy expenditure associated with an upregulation of hepatic fatty acid β-oxidation and induction and carbohydrate catabolic pathways resulted in a dose-dependent depletion of intracytoplasmic lipid vacuoles in liver histological sections, decreasing whole body lipid levels and altered purine/pyrimidine metabolism. Increased GSH and TBARS in the liver indicated a state of oxidative stress, which was associated with activation of the NRF2-mediated oxidative stress response and glutathione-mediated detoxification processes. However, no oxidative DNA damage was observed. As manifestation of altered energy metabolism, the depletion of liver intracytoplasmic lipid vacuoles was considered the critical endpoint for benchmark dose assessment, and a BMDL10 of 243 mg EQ/kg feed was derived as a safe upper limit of EQ exposure in Atlantic salmon.
Collapse
Affiliation(s)
| | | | - Monica B. Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Maria José Caballero
- Department of Morphology, Veterinary School, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | | | | | | |
Collapse
|
13
|
Red fruit (Pandanus conoideus Lam) oil stimulates nitric oxide production and reduces oxidative stress in endothelial cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
14
|
Gut microbiome disruption altered the biotransformation and liver toxicity of arsenic in mice. Arch Toxicol 2018; 93:25-35. [PMID: 30357543 DOI: 10.1007/s00204-018-2332-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022]
Abstract
The mammalian gut microbiome (GM) plays a critical role in xenobiotic biotransformation and can profoundly affect the toxic effects of xenobiotics. Previous in vitro studies have demonstrated that gut bacteria have the capability to metabolize arsenic (As); however, the specific roles of the gut microbiota in As metabolism in vivo and the toxic effects of As are largely unknown. Here, we administered sodium arsenite to conventionally raised mice (with normal microbiomes) and GM-disrupted mice with antibiotics to investigate the role of the gut microbiota in As biotransformation and its toxicity. We found that the urinary total As levels of GM-disrupted mice were much higher, but the fecal total As levels were lower, than the levels in the conventionally raised mice. In vitro experiments, in which the GM was incubated with As, also demonstrated that the gut bacteria could adsorb or take up As and thus reduce the free As levels in the culture medium. With the disruption of the gut microbiota, arsenic biotransformation was significantly perturbed. Of note, the urinary monomethylarsonic acid/dimethylarsinic acid ratio, a biomarker of arsenic metabolism and toxicity, was markedly increased. Meanwhile, the expression of genes of one-carbon metabolism, including folr2, bhmt, and mthfr, was downregulated, and the liver S-adenosylmethionine (SAM) levels were significantly decreased in the As-treated GM-disrupted mice only. Moreover, As exposure altered the expression of genes of the p53 signaling pathway, and the expression of multiple genes associated with hepatocellular carcinoma (HCC) was also changed in the As-treated GM-disrupted mice only. Collectively, disruption of the GM enhances the effect of As on one-carbon metabolism, which could in turn affect As biotransformation. GM disruption also increases the toxic effects of As and may increase the risk of As-induced HCC in mice.
Collapse
|
15
|
Damasceno FC, Condeles AL, Lopes AKB, Facci RR, Linares E, Truzzi DR, Augusto O, Toledo JC. The labile iron pool attenuates peroxynitrite-dependent damage and can no longer be considered solely a pro-oxidative cellular iron source. J Biol Chem 2018; 293:8530-8542. [PMID: 29661935 DOI: 10.1074/jbc.ra117.000883] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/12/2018] [Indexed: 01/01/2023] Open
Abstract
The ubiquitous cellular labile iron pool (LIP) is often associated with the production of the highly reactive hydroxyl radical, which forms through a redox reaction with hydrogen peroxide. Peroxynitrite is a biologically relevant peroxide produced by the recombination of nitric oxide and superoxide. It is a strong oxidant that may be involved in multiple pathological conditions, but whether and how it interacts with the LIP are unclear. Here, using fluorescence spectroscopy, we investigated the interaction between the LIP and peroxynitrite by monitoring peroxynitrite-dependent accumulation of nitrosated and oxidized fluorescent intracellular indicators. We found that, in murine macrophages, removal of the LIP with membrane-permeable iron chelators sustainably accelerates the peroxynitrite-dependent oxidation and nitrosation of these indicators. These observations could not be reproduced in cell-free assays, indicating that the chelator-enhancing effect on peroxynitrite-dependent modifications of the indicators depended on cell constituents, presumably including LIP, that react with these chelators. Moreover, neither free nor ferrous-complexed chelators stimulated intracellular or extracellular oxidative and nitrosative chemistries. On the basis of these results, LIP appears to be a relevant and competitive cellular target of peroxynitrite or its derived oxidants, and thereby it reduces oxidative processes, an observation that may change the conventional notion that the LIP is simply a cellular source of pro-oxidant iron.
Collapse
Affiliation(s)
- Fernando Cruvinel Damasceno
- From the Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, CEP 14040-901 and
| | - André Luis Condeles
- From the Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, CEP 14040-901 and
| | - Angélica Kodama Bueno Lopes
- From the Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, CEP 14040-901 and
| | - Rômulo Rodrigues Facci
- From the Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, CEP 14040-901 and
| | - Edlaine Linares
- the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, CEP 05508-000, Brazil
| | - Daniela Ramos Truzzi
- the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, CEP 05508-000, Brazil
| | - Ohara Augusto
- the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, CEP 05508-000, Brazil
| | - José Carlos Toledo
- From the Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, CEP 14040-901 and
| |
Collapse
|
16
|
Light-switchable systems for remotely controlled drug delivery. J Control Release 2017; 267:67-79. [PMID: 28888917 DOI: 10.1016/j.jconrel.2017.09.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 08/28/2017] [Accepted: 09/05/2017] [Indexed: 12/31/2022]
Abstract
Light-switchable systems have recently received attention as a new mode of remotely controlled drug delivery. In the past, a multitude of nanomedicine studies have sought to enhance the specificity of drug delivery to target sites by focusing on receptors overexpressed on malignant cells or environmental features of diseases sites. Despite these immense efforts, however, there are few clinically available nanomedicines. We need a paradigm shift in drug delivery. One strategy that may overcome the limitations of pathophysiology-based drug delivery is the use of remotely controlled delivery technology. Unlike pathophysiology-based active drug targeting strategies, light-switchable systems are not affected by the heterogeneity of cells, tissue types, and/or microenvironments. Instead, they are triggered by remote light (i.e., near-infrared) stimuli, which are absorbed by photoresponsive molecules or three-dimensional nanostructures. The sequential conversion of light to heat or reactive oxygen species can activate drug release and allow it to be spatio-temporally controlled. Light-switchable systems have been used to activate endosomal drug escape, modulate the release of chemical and biological drugs, and alter nanoparticle structures to control the release rates of drugs. This review will address the limitations of pathophysiology-based drug delivery systems, the current status of light-based remote-switch systems, and future directions in the application of light-switchable systems for remotely controlled drug delivery.
Collapse
|
17
|
Teixeira J, Cagide F, Benfeito S, Soares P, Garrido J, Baldeiras I, Ribeiro JA, Pereira CM, Silva AF, Andrade PB, Oliveira PJ, Borges F. Development of a Mitochondriotropic Antioxidant Based on Caffeic Acid: Proof of Concept on Cellular and Mitochondrial Oxidative Stress Models. J Med Chem 2017; 60:7084-7098. [DOI: 10.1021/acs.jmedchem.7b00741] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- José Teixeira
- CIQUP/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
- CNC—Center
for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech
Building, Biocant Park, Cantanhede 3060-197, Portugal
| | - Fernando Cagide
- CIQUP/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Sofia Benfeito
- CIQUP/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Pedro Soares
- CIQUP/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Jorge Garrido
- CIQUP/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
- Department
of Chemical Engineering, School of Engineering (ISEP), Polytechnic Institute of Porto, Porto 4200-072, Portugal
| | - Inês Baldeiras
- Faculty
of Medicine, University of Coimbra, Coimbra 3004-504, Portugal
- Laboratory
of Neurochemistry, Coimbra University Hospital (CHUC), Coimbra 3000-075, Portugal
| | - José A. Ribeiro
- CIQUP/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Carlos M. Pereira
- CIQUP/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - António F. Silva
- CIQUP/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Paula B. Andrade
- REQUIMTE/LAQV-Laboratory
of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Paulo J. Oliveira
- CNC—Center
for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech
Building, Biocant Park, Cantanhede 3060-197, Portugal
| | - Fernanda Borges
- CIQUP/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| |
Collapse
|
18
|
Antioxidant capacity of phenolic compounds on human cell lines as affected by grape-tyrosinase and Botrytis-laccase oxidation. Food Chem 2017; 229:779-789. [DOI: 10.1016/j.foodchem.2017.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/14/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023]
|
19
|
Sthijns MM, Schiffers PM, Janssen GM, Lemmens KJ, Ides B, Vangrieken P, Bouwman FG, Mariman EC, Pader I, Arnér ES, Johansson K, Bast A, Haenen GR. Rutin protects against H 2 O 2 -triggered impaired relaxation of placental arterioles and induces Nrf2-mediated adaptation in Human Umbilical Vein Endothelial Cells exposed to oxidative stress. Biochim Biophys Acta Gen Subj 2017; 1861:1177-1189. [DOI: 10.1016/j.bbagen.2017.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/15/2017] [Accepted: 03/06/2017] [Indexed: 01/06/2023]
|
20
|
Kojima S, Ohshima Y, Nakatsukasa H, Tsukimoto M. Role of ATP as a Key Signaling Molecule Mediating Radiation-Induced Biological Effects. Dose Response 2017; 15:1559325817690638. [PMID: 28250717 PMCID: PMC5318813 DOI: 10.1177/1559325817690638] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adenosine triphosphate (ATP) serves as a signaling molecule for adaptive responses to a variety of cytotoxic agents and plays an important role in mediating the radiation stress-induced responses that serve to mitigate or repair the injurious effects of γ radiation on the body. Indeed, low doses of radiation may have a net beneficial effect by activating a variety of protective mechanisms, including antitumor immune responses. On the other hand, ATP signaling may be involved in the radiation resistance of cancer cells. Here, focusing on our previous work, we review the evidence that low-dose γ irradiation (0.25-0.5 Gy) induces release of extracellular ATP, and that the released ATP mediates multiple radiation-induced responses, including increased intracellular antioxidant synthesis, cell-mediated immune responses, induction of DNA damage repair systems, and differentiation of regulatory T cells.
Collapse
Affiliation(s)
- Shuji Kojima
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS), Chiba, Japan
| | - Yasuhiro Ohshima
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS), Chiba, Japan
| | - Hiroko Nakatsukasa
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS), Chiba, Japan
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS), Chiba, Japan
| |
Collapse
|
21
|
Sarkar S, Mukherjee S, Chattopadhyay A, Bhattacharya S. Differential modulation of cellular antioxidant status in zebrafish liver and kidney exposed to low dose arsenic trioxide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 135:173-182. [PMID: 27736677 DOI: 10.1016/j.ecoenv.2016.09.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Zebrafish were exposed to a nonlethal dose (1/350LC50; 50µg/L) of As2O3 and sampled at 7, 15, 30, 60 and 90 days of treatment. The oxidative stress response was assessed in terms of time-dependent histopathological changes, lipid peroxidation, GSH status, activities of detoxification enzymes and expression of antioxidant genes in liver and kidney. As2O3 treatment enhanced lipid peroxidation except at day 90 in liver and day 30 in kidney. Glutathione depleted significantly in the liver except on day 30; whereas in kidney, it increased initially but thereafter depleted significantly. The liver GST activity was high until day 30, low on day 60 and high on day 90. On the other hand, activity of GST in kidney remained high throughout the exposure. GR activity in liver decreased initially but augmented from 30 days onwards whereas in kidney it remained high until 30 days of exposure. Significant increase in GPx and CAT activities in liver and kidney confirmed oxidative stress in zebrafish which correlated with mRNA expression of antioxidant genes. Upregulation in mRNA level of Cu-Zn Sod in liver and kidney was prominent. Gpx1 upregulation was more conspicuous in kidney as compared to liver while the pattern of Cat expression was almost similar in both the organs. Among the mitochondrial genes, expression of Cox1 was significantly high only after 90 days in liver, while in kidney it enhanced at 7, 30 and 60 days of arsenic exposure. Ucp2 was upregulated in liver after 15 days of exposure but significantly downregulated at day 90; in kidney it remained unchanged at other time points except at day 90. An overall increased expression of Bcl2 further confirmed As2O3 induced oxidative stress in zebrafish liver and kidney. The pattern of mRNA expression of Nrf2 was not uniform and was in accordance to its downstream antioxidant genes. Present findings elucidate that low dose of As2O3 exposure induces a time dependent differential modulation of antioxidant status in liver and kidney of zebrafish in a tissue-specific manner.
Collapse
Affiliation(s)
- Shuvasree Sarkar
- Environmental Toxicology Laboratory, Department of Zoology, School of Life Sciences, Visva-Bharati University, Santiniketan, West Bengal 731235, India
| | - Sandip Mukherjee
- Environmental Toxicology Laboratory, Department of Zoology, School of Life Sciences, Visva-Bharati University, Santiniketan, West Bengal 731235, India
| | - Ansuman Chattopadhyay
- Molecular Genetics Laboratory, Department of Zoology, School of Life Sciences, Visva-Bharati University, Santiniketan, West Bengal 731235, India
| | - Shelley Bhattacharya
- Environmental Toxicology Laboratory, Department of Zoology, School of Life Sciences, Visva-Bharati University, Santiniketan, West Bengal 731235, India.
| |
Collapse
|
22
|
Vargason T, Howsmon DP, Melnyk S, James SJ, Hahn J. Mathematical modeling of the methionine cycle and transsulfuration pathway in individuals with autism spectrum disorder. J Theor Biol 2016; 416:28-37. [PMID: 28040439 DOI: 10.1016/j.jtbi.2016.12.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/23/2016] [Accepted: 12/28/2016] [Indexed: 01/08/2023]
Abstract
Previous research has shown a connection between metabolic abnormalities in the methionine cycle and transsulfuration pathway and autism spectrum disorder. Using clinical data from a case-control study investigating measurements of transmethylation and transsulfuration metabolites, a steady-state model of these metabolites in liver cells was developed and participant-specific parameters were identified. Comparison of mean parameter values and parameter distributions between neurotypical study participants and those on the autism spectrum revealed significant differences for four model parameters. Sensitivity analysis identified the parameter describing the rate of glutamylcysteine synthesis, the rate-limiting step in glutathione production, to be particularly important in determining steady-state metabolite concentrations. These results may provide insight into key reactions to target for potential intervention strategies relating to autism spectrum disorder.
Collapse
Affiliation(s)
- Troy Vargason
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Daniel P Howsmon
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Stepan Melnyk
- Department of Pediatrics, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - S Jill James
- Department of Pediatrics, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Juergen Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.
| |
Collapse
|
23
|
Moriwaki S, Into T, Suzuki K, Miyauchi M, Takata T, Shibayama K, Niida S. γ-Glutamyltranspeptidase is an endogenous activator of Toll-like receptor 4-mediated osteoclastogenesis. Sci Rep 2016; 6:35930. [PMID: 27775020 PMCID: PMC5075938 DOI: 10.1038/srep35930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/07/2016] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation-associated bone destruction, which is observed in rheumatoid arthritis (RA) and periodontitis, is mediated by excessive osteoclastogenesis. We showed previously that γ-glutamyltranspeptidase (GGT), an enzyme involved in glutathione metabolism, acts as an endogenous activator of such pathological osteoclastogenesis, independent of its enzymatic activity. GGT accumulation is clinically observed in the joints of RA patients, and, in animals, the administration of recombinant GGT to the gingival sulcus as an in vivo periodontitis model induces an increase in the number of osteoclasts. However, the underlying mechanisms of this process remain unclear. Here, we report that Toll-like receptor 4 (TLR4) recognizes GGT to activate inflammation-associated osteoclastogenesis. Unlike lipopolysaccharide, GGT is sensitive to proteinase K treatment and insensitive to polymyxin B treatment. TLR4 deficiency abrogates GGT-induced osteoclastogenesis and activation of NF-κB and MAPK signaling in precursor cells. Additionally, GGT does not induce osteoclastogenesis in cells lacking the signaling adaptor MyD88. The administration of GGT to the gingival sulcus induces increased osteoclastogenesis in wild-type mice, but does not induce it in TLR4-deficient mice. Our findings elucidate a novel mechanism of inflammation-associated osteoclastogenesis, which involves TLR4 recognition of GGT and subsequent activation of MyD88-dependent signaling.
Collapse
Affiliation(s)
- Sawako Moriwaki
- Biobank, Medical Genome Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Takeshi Into
- Department of Oral Microbiology, Division of Oral Infections and Health Sciences, Asahi University School of Dentistry, Mizuho 501-0296, Japan
| | - Keiko Suzuki
- Department of Pharmacology, School of Dentistry, Showa University, Tokyo 142-8555, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathology, Institute of Biomedical &Health Sciences, Hiroshima University, Hiroshima 734-8522, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathology, Institute of Biomedical &Health Sciences, Hiroshima University, Hiroshima 734-8522, Japan
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Shumpei Niida
- Biobank, Medical Genome Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| |
Collapse
|
24
|
Proanthocyanidins Attenuation of Chronic Lead-Induced Liver Oxidative Damage in Kunming Mice via the Nrf2/ARE Pathway. Nutrients 2016; 8:nu8100656. [PMID: 27775649 PMCID: PMC5084042 DOI: 10.3390/nu8100656] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/05/2016] [Accepted: 10/14/2016] [Indexed: 02/07/2023] Open
Abstract
Lead is harmful for human health and animals. Proanthocyanidins (PCs), a natural antioxidant, possess a broad spectrum of pharmacological and medicinal properties. However, its protective effects against lead-induced liver damage have not been clarified. This study was aimed to evaluate the protective effect of PCs on the hepatotoxicity of male Kunming mice induced by chronic lead exposure. A total of 70 healthy male Kunming mice were averagely divided into four groups: control group, i.e., the group exposed to lead, the group treated with PCs, and the group co-treated with lead and PCs. The mice exposed to lead were given water containing 0.2% lead acetate. Mice treated in the PCs and PCs lead co-treated groups were given PC (100 mg/kg) in 0.9% saline by oral gavage. Lead exposure caused a significant elevation in the liver function parameters, lead level, lipid peroxidation, and inhibition of antioxidant enzyme activities. The induction of oxidative stress and histological alterations in the liver were minimized by co-treatment with PCs. Meanwhile, the number of Transferase-Mediated Deoxyuridine Triphosphate-Biotin Nick End Labeling (TUNEL)-positive cells was significantly reduced in the PCs/lead co-treated group compared to the lead group. In addition, the lead group showed an increase in the expression level of Bax, while the expression of Bcl-2 was decreased. Furthermore, the lead group showed an increase in the expression level of endoplasmic reticulum (ER) stress-related genes and protein (GRP78 and CHOP). Co-treated with PCs significantly reversed these expressions in the liver. PCs were, therefore, demonstrated to have protective, antioxidant, and anti-ER stress and anti-apoptotic activities in liver damage caused by chronic lead exposure in the Kunming mouse. This may be due to the ability of PCs to enhance the ability of liver tissue to protect against oxidative stress via the Nrf2/ARE signaling pathway, resulting in decreasing ER stress and apoptosis of liver tissue.
Collapse
|
25
|
Lee SY, Ko KS. Effects of S-Adenosylmethionine and Its Combinations With Taurine and/or Betaine on Glutathione Homeostasis in Ethanol-induced Acute Hepatotoxicity. J Cancer Prev 2016; 21:164-172. [PMID: 27722142 PMCID: PMC5051590 DOI: 10.15430/jcp.2016.21.3.164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 01/21/2023] Open
Abstract
Background Exposure to ethanol abuse and severe oxidative stress are risk factors for hepatocarcinoma. The aim of this study was to evaluate the effects of S-adenosylmethionine (SAMe) and its combinations with taurine and/or betaine on the level of glutathione (GSH), a powerful antioxidant in the liver, in acute hepatotoxicity induced by ethanol. Methods To examine the effects of SAMe and its combinations with taurine and/or betaine on ethanol-induced hepatotoxicity, AML12 cells and C57BL/6 mice were pretreated with SAMe, taurine, and/or betaine, followed by ethanol challenge. Cell viability was detected with an MTT assay. GSH concentration and mRNA levels of GSH synthetic enzymes were measured using GSH reductase and quantitative real-time reverse transcriptase-PCR. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were measured with commercially available kits. Results Pretreatment of SAMe, with or without taurine and/or betaine, attenuated decreases in GSH levels and mRNA expression of the catalytic subunit of glutamate-cysteine ligase (GCL), the rate-limiting enzyme for GSH synthesis, in ethanol-treated cells and mice. mRNA levels of the modifier subunit of GCL and glutathione synthetase were increased in mice treated with SAMe combinations. SAMe, taurine, and/or betaine pretreatment restored serum ALT and AST levels to control levels in the ethanol-treated group. Conclusions Combinations of SAMe with taurine and/or betaine have a hepatoprotective effect against ethanol-induced liver injury by maintaining GSH homeostasis.
Collapse
Affiliation(s)
- Seo Yeon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | - Kwang Suk Ko
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| |
Collapse
|
26
|
Glutathione - From antioxidant to post-translational modifier. Arch Biochem Biophys 2016; 595:64-7. [PMID: 27095218 DOI: 10.1016/j.abb.2015.11.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 04/24/2015] [Accepted: 09/14/2015] [Indexed: 01/16/2023]
Abstract
Helmut Sies is one of the leading investigators in the multiple roles of glutathione (GSH) in biology. He has pioneered work on the role of GSH in preventing oxidative stress, in transport of GSSG, in protection of protein thiols from irreversible oxidation through mixed disulfide formation and demonstrated a role of protein glutathionylation in response to hormonal stimulation well before redox signaling became a major subject of investigation. Here I will describe the roles of GSH in several aspects of biology, the work of my laboratory in those findings, and how Helmut Sies work influenced our studies.
Collapse
|
27
|
Forman HJ. Redox signaling: An evolution from free radicals to aging. Free Radic Biol Med 2016; 97:398-407. [PMID: 27393004 PMCID: PMC4996735 DOI: 10.1016/j.freeradbiomed.2016.07.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 06/30/2016] [Accepted: 07/04/2016] [Indexed: 12/11/2022]
Abstract
Redox biology has evolved from studies of the pathology that involves oxidants to an understanding of how oxidants participate in normal as well as aberrant signal transduction. Although the concept that signal transduction involved changes in the redox state dates from the 1930s, the modern history of redox biology began with the discovery of superoxide dismutase by McCord and Fridovich. The initial focus was on free radicals and damage of macromolecules, which remains an important topic. But, over time it was realized that hydroperoxides, especially H2O2 produced by NADPH oxidases, and electrophiles derived from lipid peroxidation or metabolism, played essential roles in physiologically relevant signaling. The mechanisms through which H2O2 and other electrophiles signal became an important area of study that provided insight into how these reactive molecules were involved in major signaling pathways and regulation of transcription factors. Thus, the field of redox signaling that is the overlap of signal transduction with redox biology was established. Alterations in redox signaling are observed in aging, but we also now know that redox signaling is essential in physiological homeostasis and that sustained deviation from redox homeostasis results in disease. This is a review of the history of redox biology from a personal perspective of nearly fifty years working in this field that hopefully provides some insights for the reader.
Collapse
Affiliation(s)
- Henry Jay Forman
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, United States
| |
Collapse
|
28
|
Ursini F, Maiorino M, Forman HJ. Redox homeostasis: The Golden Mean of healthy living. Redox Biol 2016; 8:205-15. [PMID: 26820564 PMCID: PMC4732014 DOI: 10.1016/j.redox.2016.01.010] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 12/20/2022] Open
Abstract
The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve “reactive oxygen species” rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles (parahormesis). In summary, while hormesis, although globally protective, results in setting up of a new phenotype, parahormesis contributes to health by favoring maintenance of homeostasis. Redox homeostasis is the continuously challenged oxidative/nucleophilic balance. Rheostatic redox signaling enzymes maintain oxidative/nucleophilic homeostasis. Phytochemicals assist redox homeostasis through oxidative feedback (parahormesis). Adaptation and hormesis while protective establish a new phenotype and set point.
Collapse
Affiliation(s)
- Fulvio Ursini
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, I-35121 Padova, Italy
| | - Matilde Maiorino
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, I-35121 Padova, Italy
| | - Henry Jay Forman
- Andrus Gerontology Center of the Davis School of Gerontology, University of Southern, California, 3715 McClintock Ave, Los Angeles, CA 90089-0191, USA
| |
Collapse
|
29
|
Fukuoka A, Matsushita K, Morikawa T, Takano H, Yoshimoto T. Diesel exhaust particles exacerbate allergic rhinitis in mice by disrupting the nasal epithelial barrier. Clin Exp Allergy 2015. [DOI: 10.1111/cea.12597] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- A. Fukuoka
- Laboratory of Allergic Diseases; Institute for Advanced Medical Sciences; Hyogo College of Medicine; Nishinomiya Hyogo Japan
| | - K. Matsushita
- Laboratory of Allergic Diseases; Institute for Advanced Medical Sciences; Hyogo College of Medicine; Nishinomiya Hyogo Japan
| | - T. Morikawa
- Laboratory of Allergic Diseases; Institute for Advanced Medical Sciences; Hyogo College of Medicine; Nishinomiya Hyogo Japan
- Department of Otorhinolaryngology-Head and Neck Surgery; Faculty of Medical Science; University of Fukui; Fukui Japan
| | - H. Takano
- Environmental Health Division; Department of Environmental Engineering; Graduate School of Engineering; Kyoto University; Kyoto Japan
| | - T. Yoshimoto
- Laboratory of Allergic Diseases; Institute for Advanced Medical Sciences; Hyogo College of Medicine; Nishinomiya Hyogo Japan
- Department of Immunology; Hyogo College of Medicine; Nishinomiya Hyogo Japan
| |
Collapse
|
30
|
Zhang H, Davies KJA, Forman HJ. Oxidative stress response and Nrf2 signaling in aging. Free Radic Biol Med 2015; 88:314-336. [PMID: 26066302 PMCID: PMC4628850 DOI: 10.1016/j.freeradbiomed.2015.05.036] [Citation(s) in RCA: 593] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/29/2015] [Accepted: 05/31/2015] [Indexed: 12/20/2022]
Abstract
Increasing oxidative stress, a major characteristic of aging, has been implicated in a variety of age-related pathologies. In aging, oxidant production from several sources is increased, whereas antioxidant enzymes, the primary lines of defense, are decreased. Repair systems, including the proteasomal degradation of damaged proteins, also decline. Importantly, the adaptive response to oxidative stress declines with aging. Nrf2/EpRE signaling regulates the basal and inducible expression of many antioxidant enzymes and the proteasome. Nrf2/EpRE activity is regulated at several levels, including transcription, posttranslation, and interactions with other proteins. This review summarizes current studies on age-related impairment of Nrf2/EpRE function and discusses the changes in Nrf2 regulatory mechanisms with aging.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology
| | - Kelvin J A Davies
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology; Division of Molecular & Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Henry Jay Forman
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology; School of Natural Science, University of California at Merced, Merced, CA 95344, USA.
| |
Collapse
|
31
|
Riebel M, Sabel A, Claus H, Fronk P, Xia N, Li H, König H, Decker H. Influence of Laccase and Tyrosinase on the Antioxidant Capacity of Selected Phenolic Compounds on Human Cell Lines. Molecules 2015; 20:17194-207. [PMID: 26393557 PMCID: PMC6332179 DOI: 10.3390/molecules200917194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/25/2015] [Accepted: 09/11/2015] [Indexed: 11/17/2022] Open
Abstract
Polyphenolic compounds affect the color, odor and taste of numerous food products of plant origin. In addition to the visual and gustatory properties, they serve as radical scavengers and have antioxidant effects. Polyphenols, especially resveratrol in red wine, have gained increasing scientific and public interest due to their presumptive beneficial impact on human health. Enzymatic oxidation of phenolic compounds takes place under the influence of polyphenol oxidases (PPO), including tyrosinase and laccase. Several studies have demonstrated the radical scavenger effect of plants, food products and individual polyphenols in vitro, but, apart from resveratrol, such impact has not been proved in physiological test systems. Furthermore, only a few data exist on the antioxidant capacities of the enzymatic oxidation products of phenolic compounds generated by PPO. We report here first results about the antioxidant effects of phenolic substances, before and after oxidation by fungal model tyrosinase and laccase. In general, the common chemical 2,2-diphenyl-1-picrylhydrazyl assay and the biological tests using two different types of cell cultures (monocytes and endothelial cells) delivered similar results. The phenols tested showed significant differences with respect to their antioxidant activity in all test systems. Their antioxidant capacities after enzymatic conversion decreased or increased depending on the individual PPO used.
Collapse
Affiliation(s)
- Matthias Riebel
- Institute for Molecular Biophysics, Johannes Gutenberg University of Mainz, Jakob-Welder-Weg, 26, 55128 Mainz, Germany.
| | - Andrea Sabel
- Institute for Microbiology and Wine Research, Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg, 15, 55128 Mainz, Germany.
| | - Harald Claus
- Institute for Microbiology and Wine Research, Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg, 15, 55128 Mainz, Germany.
| | - Petra Fronk
- Institute for Molecular Biophysics, Johannes Gutenberg University of Mainz, Jakob-Welder-Weg, 26, 55128 Mainz, Germany.
| | - Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center of Mainz, Obere Zahlbacher Str. 67, 55131 Mainz, Germany.
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center of Mainz, Obere Zahlbacher Str. 67, 55131 Mainz, Germany.
| | - Helmut König
- Institute for Microbiology and Wine Research, Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg, 15, 55128 Mainz, Germany.
| | - Heinz Decker
- Institute for Molecular Biophysics, Johannes Gutenberg University of Mainz, Jakob-Welder-Weg, 26, 55128 Mainz, Germany.
| |
Collapse
|
32
|
Stutz H, Bresgen N, Eckl PM. Analytical tools for the analysis of β-carotene and its degradation products. Free Radic Res 2015; 49:650-80. [PMID: 25867077 PMCID: PMC4487603 DOI: 10.3109/10715762.2015.1022539] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/20/2015] [Indexed: 02/07/2023]
Abstract
β-Carotene, the precursor of vitamin A, possesses pronounced radical scavenging properties. This has centered the attention on β-carotene dietary supplementation in healthcare as well as in the therapy of degenerative disorders and several cancer types. However, two intervention trials with β-carotene have revealed adverse effects on two proband groups, that is, cigarette smokers and asbestos-exposed workers. Beside other causative reasons, the detrimental effects observed have been related to the oxidation products of β-carotene. Their generation originates in the polyene structure of β-carotene that is beneficial for radical scavenging, but is also prone to oxidation. Depending on the dominant degradation mechanism, bond cleavage might occur either randomly or at defined positions of the conjugated electron system, resulting in a diversity of cleavage products (CPs). Due to their instability and hydrophobicity, the handling of standards and real samples containing β-carotene and related CPs requires preventive measures during specimen preparation, analyte extraction, and final analysis, to avoid artificial degradation and to preserve the initial analyte portfolio. This review critically discusses different preparation strategies of standards and treatment solutions, and also addresses their protection from oxidation. Additionally, in vitro oxidation strategies for the generation of oxidative model compounds are surveyed. Extraction methods are discussed for volatile and non-volatile CPs individually. Gas chromatography (GC), (ultra)high performance liquid chromatography (U)HPLC, and capillary electrochromatography (CEC) are reviewed as analytical tools for final analyte analysis. For identity confirmation of analytes, mass spectrometry (MS) is indispensable, and the appropriate ionization principles are comprehensively discussed. The final sections cover analysis of real samples and aspects of quality assurance, namely matrix effects and method validation.
Collapse
Affiliation(s)
- H. Stutz
- Division of Chemistry and Bioanalytics, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - N. Bresgen
- Division of Genetics, Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - P. M. Eckl
- Division of Genetics, Department of Cell Biology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
33
|
Mihara S, Shibamoto T. The role of flavor and fragrance chemicals in TRPA1 (transient receptor potential cation channel, member A1) activity associated with allergies. Allergy Asthma Clin Immunol 2015; 11:11. [PMID: 25897313 PMCID: PMC4404258 DOI: 10.1186/s13223-015-0074-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/18/2015] [Indexed: 01/07/2023] Open
Abstract
TRPA1 has been proposed to be associated with diverse sensory allergic reactions, including thermal (cold) nociception, hearing and allergic inflammatory conditions. Some naturally occurring compounds are known to activate TRPA1 by forming a Michael addition product with a cysteine residue of TRPA1 through covalent protein modification and, in consequence, to cause allergic reactions. The anti-allergic property of TRPA1 agonists may be due to the activation and subsequent desensitization of TRPA1 expressed in sensory neurons. In this review, naturally occurring TRPA1 antagonists, such as camphor, 1,8-cineole, menthol, borneol, fenchyl alcohol and 2-methylisoborneol, and TRPA1 agonists, including thymol, carvacrol, 1'S-1'- acetoxychavicol acetate, cinnamaldehyde, α-n-hexyl cinnamic aldehyde and thymoquinone as well as isothiocyanates and sulfides are discussed.
Collapse
Affiliation(s)
- Satoru Mihara
- 2-10-12 Nishinippori, Arakawa-ku, Tokyo, 116-0013 Japan
| | - Takayuki Shibamoto
- Department of Environmental Toxicology, University of California Davis, Davis, CA 95616 USA
| |
Collapse
|
34
|
Niu WN, Yadav PK, Adamec J, Banerjee R. S-glutathionylation enhances human cystathionine β-synthase activity under oxidative stress conditions. Antioxid Redox Signal 2015; 22:350-61. [PMID: 24893130 PMCID: PMC4307034 DOI: 10.1089/ars.2014.5891] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AIMS Cystathionine β-synthase (CBS) catalyzes the first and rate-limiting step in the two-step trans-sulfuration pathway that converts homocysteine to cysteine. It is also one of three major enzymes responsible for the biogenesis of H2S, a signaling molecule. We have previously demonstrated that CBS is activated in cells challenged by oxidative stress, but the underlying molecular mechanism of this regulation has remained unclear. RESULTS Here, we demonstrate that S-glutathionylation of CBS enhances its activity ∼2-fold in vitro. Loss of this post-translational modification in the presence of dithiothreitol results in reversal to basal activity. Cys346 was identified as the site for S-glutathionylation by a combination of mass spectrometric, mutagenesis, and activity analyses. To test the physiological relevance of S-glutathionylation-dependent regulation of CBS, HEK293 cells were oxidatively challenged with peroxide, which is known to enhance the trans-sulfuration flux. Under these conditions, CBS glutathionylation levels increased and were correlated with a ∼3-fold increase in CBS activity. INNOVATION Collectively, our results reveal a novel post-translational modification of CBS, that is, glutathionylation, which functions as an allosteric activator under oxidative stress conditions permitting enhanced synthesis of both cysteine and H2S. CONCLUSIONS Our study elucidates a molecular mechanism for increased cysteine and therefore glutathione, synthesis via glutathionylation of CBS. They also demonstrate the potential for increased H2S production under oxidative stress conditions, particularly in tissues where CBS is a major source of H2S.
Collapse
Affiliation(s)
- Wei-Ning Niu
- 1 The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an, China
| | | | | | | |
Collapse
|
35
|
Emodin augments cisplatin cytotoxicity in platinum-resistant ovarian cancer cells via ROS-dependent MRP1 downregulation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:107671. [PMID: 25580427 PMCID: PMC4279181 DOI: 10.1155/2014/107671] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 01/15/2023]
Abstract
The intracellular level of reactive oxygen species (ROS) is closely associated with chemosensitivity of cancer cells. Overexpression of ATP binding cassette transporter MRP1 is correlated with resistance to platinum drugs. In this study, we tested the hypothesis that emodin, a potent ROS generator, may increase sensitivity of cisplatin-(cDDP-) resistant ovarian carcinoma cells to cDDP cytotoxicity via ROS-mediated suppression of MRP1 expression. Using the isogenic pair of the human ovarian carcinoma cell line COC1 and its cDDP resistant variant COC1/DDP, we found that ROS level in the cDDP-sensitive ovarian cancer cells was significantly higher than that in the cDDP-resistant cells. Emodin enhanced ROS production in COC1/DDP cells and consequently sensitized them to cDDP-induced apoptosis. These effects were reversed by addition of the antioxidant N-acetyl-L-cysteine (NAC). Cotreatment with emodin and cDDP inhibited the tumor growth in vivo by increasing tumor cell apoptosis. The emodin-enhanced cDDP cytotoxicity was attributable to downregulation of multidrug resistance-related protein 1 (MRP1) expression. Together, these results suggest that emodin could act as an adjunct to enhance the anticancer effect of cDDP likely through ROS-related downregulation of MRP1 expression, and may be of therapeutic potential in cDDP-refractory ovarian carcinomas.
Collapse
|
36
|
Damasceno FC, Facci RR, da Silva TM, Toledo JC. Mechanisms and kinetic profiles of superoxide-stimulated nitrosative processes in cells using a diaminofluorescein probe. Free Radic Biol Med 2014; 77:270-80. [PMID: 25242205 DOI: 10.1016/j.freeradbiomed.2014.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 09/01/2014] [Accepted: 09/06/2014] [Indexed: 11/18/2022]
Abstract
In this study, we examined the mechanisms and kinetic profiles of intracellular nitrosative processes using diaminofluorescein (DAF-2) as a target in RAW 264.7 cells. The intracellular formation of the fluorescent, nitrosated product diaminofluorescein triazol (DAFT) from both endogenous and exogenous nitric oxide (NO) was prevented by deoxygenation and by cell membrane-permeable superoxide (O2(-)) scavengers but not by extracellular bovine Cu,Zn-SOD. In addition, the DAFT formation rate decreased in the presence of cell membrane-permeable Mn porphyrins that are known to scavenge peroxynitrite (ONOO(-)) but was enhanced by HCO3(-)/CO2. Together, these results indicate that nitrosative processes in RAW 264.7 cells depend on endogenous intracellular O2(-) and are stimulated by ONOO(-)/CO2-derived radical oxidants. The N2O3 scavenger sodium azide (NaN3) only partially attenuated the DAFT formation rate and only with high NO (>120 nM), suggesting that DAFT formation occurs by nitrosation (azide-susceptible DAFT formation) and predominantly by oxidative nitrosylation (azide-resistant DAFT formation). Interestingly, the DAFT formation rate increased linearly with NO concentrations of up to 120-140 nM but thereafter underwent a sharp transition and became insensitive to NO. This behavior indicates the sudden exhaustion of an endogenous cell substrate that reacts rapidly with NO and induces nitrosative processes, consistent with the involvement of intracellular O2(-). On the other hand, intracellular DAFT formation stimulated by a fixed flux of xanthine oxidase-derived extracellular O2(-) that also occurs by nitrosation and oxidative nitrosylation increased, peaked, and then decreased with increasing NO, as previously observed. Thus, our findings complementarily show that intra- and extracellular O2(-)-dependent nitrosative processes occurring by the same chemical mechanisms do not necessarily depend on NO concentration and exhibit different unusual kinetic profiles with NO dynamics, depending on the biological compartment in which NO and O2(-) interact.
Collapse
Affiliation(s)
- Fernando Cruvinel Damasceno
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Rômulo Rodrigues Facci
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Thalita Marques da Silva
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - José Carlos Toledo
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, CEP 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
37
|
Yilmaz-Ozden T, Can A, Karatug A, Pala-Kara Z, Okyar A, Bolkent S. Carbon tetrachloride-induced kidney damage and protective effect of Amaranthus lividus L. in rats. Toxicol Ind Health 2014; 32:1143-52. [DOI: 10.1177/0748233714555390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study was designed to evaluate the protective effect of water extract of Amaranthus lividus L. ( A. lividus) (Amaranthaceae) on carbon tetrachloride (CCl4)-induced toxicity in kidneys of rats. For this purpose, male albino Wistar rats were pretreated with A. lividus (250 and 500 mg/kg body weight (b.w.)) daily for 9 days and a single dose of CCl4 was applied intraperitoneally (50% in olive oil; 1.5 mL/kg b.w.) on the 10th day. All rats were killed 24 h after CCl4 administration, and kidneys were excised and used for determination of histopathological and biochemical parameters. CCl4 administration caused a remarkable increase in lipid peroxidation (LPO) and glutathione levels and glutathione- S-transferase, glutathione peroxidase, glutathione reductase, superoxide dismutase, myeloperoxidase (MPO) activities and a decrease in catalase (CAT) activity when compared to the control group. Pretreatment with A. lividus (250 and 500 mg/kg b.w.) significantly prevented the elevation in LPO level and MPO activity as well as protected the decrease in CAT activity but did not alter other biochemical parameters. The protective effect of A. lividus was further evident through the decreased histological alterations in kidneys. In conclusion, this study has indicated that A. lividus possesses protective and antioxidant effects against CCl4-induced oxidative kidney damage.
Collapse
Affiliation(s)
- Tugba Yilmaz-Ozden
- Department of Biochemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Ayse Can
- Department of Biochemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Ayse Karatug
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Zeliha Pala-Kara
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Alper Okyar
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Sehnaz Bolkent
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|
38
|
Kim Y, Kim DC, Cho ES, Ko SO, Kwon WY, Suh GJ, Shin HK. Antioxidant and anti-inflammatory effects of selenium in oral buccal mucosa and small intestinal mucosa during intestinal ischemia-reperfusion injury. JOURNAL OF INFLAMMATION-LONDON 2014; 11:36. [PMID: 25383045 PMCID: PMC4223162 DOI: 10.1186/s12950-014-0036-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 10/21/2014] [Indexed: 12/04/2022]
Abstract
Background The aim of this study were to investigate whether selenium treatment attenuates lipid peroxidation and downregulates the NF-κB pathway in small intestinal mucosa and to examine whether the effect of selenium is also observed in oral buccal mucosa, during small intestinal IR injury. Materials and methods Eighteen rats were assigned into three groups: sham, IR, and IR + selenium. Saline or selenium was administered through a tail vein. 24 hours later, the superior mesenteric artery was exposed and clamped in the IR and IR + selenium groups. After ischemic and reperfusion period, animals were sacrificed and oral buccal mucosa and small intestinal mucosa were harvested. Results Glutathione peroxidase activity and cytoplasmic IκB-α expression was higher in the IR + selenium group than that in the IR group. A malondialdehyde level, cytoplasmic phosphorylated inhibitor κB-α, nuclear NF-κB p65 expressions, and NF-κB p65 DNA-binding activity were lower in the IR + selenium group than those in the IR group. Conclusion A selenium treatment may cause increased GPx activity, attenuated lipid peroxidation, and downregulated the NF-κB pathway during small intestinal IR injury. Furthermore, these therapeutic benefits of selenium can be observed in oral buccal mucosa as well as small intestinal mucosa.
Collapse
Affiliation(s)
- Yongsoo Kim
- Department of Oral & Maxillofaical Surgery, School of Dentistry and Institute of Oral Bioscience, Research Institute of Chonbuk National University Hospital, Chonbuk National University, 664-14, Duckjindong, Chonju, 561-756 Chonbuk Korea
| | - Dong Chil Kim
- Department of Oral & Maxillofaical Surgery, School of Dentistry and Institute of Oral Bioscience, Research Institute of Chonbuk National University Hospital, Chonbuk National University, 664-14, Duckjindong, Chonju, 561-756 Chonbuk Korea
| | - Eui-Sic Cho
- Department of Oral & Maxillofaical Surgery, School of Dentistry and Institute of Oral Bioscience, Research Institute of Chonbuk National University Hospital, Chonbuk National University, 664-14, Duckjindong, Chonju, 561-756 Chonbuk Korea
| | - Seung-O Ko
- Department of Oral & Maxillofaical Surgery, School of Dentistry and Institute of Oral Bioscience, Research Institute of Chonbuk National University Hospital, Chonbuk National University, 664-14, Duckjindong, Chonju, 561-756 Chonbuk Korea
| | - Woon Yong Kwon
- Department of Emergency Medicine, Seoul National University College of Medicine, 101 Daehak-Ro Jongno-Gu, Seoul, 110-744 Korea
| | - Gil Joon Suh
- Department of Emergency Medicine, Seoul National University College of Medicine, 101 Daehak-Ro Jongno-Gu, Seoul, 110-744 Korea
| | - Hyo-Keun Shin
- Department of Oral & Maxillofaical Surgery, School of Dentistry and Institute of Oral Bioscience, Research Institute of Chonbuk National University Hospital, Chonbuk National University, 664-14, Duckjindong, Chonju, 561-756 Chonbuk Korea
| |
Collapse
|
39
|
Hema R, Vemanna RS, Sreeramulu S, Reddy CP, Senthil-Kumar M, Udayakumar M. Stable expression of mtlD gene imparts multiple stress tolerance in finger millet. PLoS One 2014; 9:e99110. [PMID: 24922513 PMCID: PMC4055669 DOI: 10.1371/journal.pone.0099110] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/09/2014] [Indexed: 11/19/2022] Open
Abstract
Finger millet is susceptible to abiotic stresses, especially drought and salinity stress, in the field during seed germination and early stages of seedling development. Therefore developing stress tolerant finger millet plants combating drought, salinity and associated oxidative stress in these two growth stages is important. Cellular protection through osmotic adjustment and efficient free radical scavenging ability during abiotic stress are important components of stress tolerance mechanisms in plants. Mannitol, an osmolyte, is known to scavenge hydroxyl radicals generated during various abiotic stresses and thereby minimize stress damage in several plant species. In this study transgenic finger millet plants expressing the mannitol biosynthetic pathway gene from bacteria, mannitol-1-phosphate dehydrogenase (mtlD), were developed through Agrobacterium tumefaciens-mediated genetic transformation. mtlD gene integration in the putative transgenic plants was confirmed by Southern blot. Further, performance of transgenic finger millet under drought, salinity and oxidative stress was studied at plant level in T1 generation and in T1 and T2 generation seedlings. Results from these experiments showed that transgenic finger millet had better growth under drought and salinity stress compared to wild-type. At plant level, transgenic plants showed better osmotic adjustment and chlorophyll retention under drought stress compared to the wild-type. However, the overall increase in stress tolerance of transgenics for the three stresses, especially for oxidative stress, was only marginal compared to other mtlD gene expressing plant species reported in the literature. Moreover, the Agrobacterium-mediated genetic transformation protocol developed for finger millet in this study can be used to introduce diverse traits of agronomic importance in finger millet.
Collapse
Affiliation(s)
- Ramanna Hema
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, India
| | - Ramu S. Vemanna
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, India
| | - Shivakumar Sreeramulu
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, India
| | | | - Muthappa Senthil-Kumar
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, India
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| | - Makarla Udayakumar
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, India
| |
Collapse
|
40
|
Barbosa DJ, Capela JP, Silva R, Ferreira LM, Branco PS, Fernandes E, Bastos ML, Carvalho F. "Ecstasy"-induced toxicity in SH-SY5Y differentiated cells: role of hyperthermia and metabolites. Arch Toxicol 2013; 88:515-31. [PMID: 24177245 DOI: 10.1007/s00204-013-1147-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/07/2013] [Indexed: 01/10/2023]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA; "ecstasy") is a recreational hallucinogenic drug of abuse known to elicit neurotoxic properties. Hepatic formation of neurotoxic metabolites is thought to play a major role in MDMA-related neurotoxicity, though the mechanisms involved are still unclear. Here, we studied the neurotoxicity mechanisms and stability of MDMA and 6 of its major human metabolites, namely α-methyldopamine (α-MeDA) and N-methyl-α-methyldopamine (N-Me-α-MeDA) and their correspondent glutathione (GSH) and N-acetyl-cysteine (NAC) conjugates, under normothermic (37 °C) or hyperthermic conditions (40 °C), using cultured SH-SY5Y differentiated cells. We showed that MDMA metabolites exhibited toxicity to SH-SY5Y differentiated cells, being the GSH and NAC conjugates more toxic than their catecholic precursors and MDMA. Furthermore, whereas the toxicity of the catechol metabolites was potentiated by hyperthermia, NAC-conjugated metabolites revealed higher toxicity under normothermia and GSH-conjugated metabolites-induced toxicity was temperature-independent. Moreover, a time-dependent decrease in extracellular concentration of MDMA metabolites was observed, which was potentiated by hyperthermia. The antioxidant NAC significantly protected against the neurotoxic effects of MDMA metabolites. MDMA metabolites increased intracellular glutathione levels, though depletion in thiol content was observed in MDMA-exposed cells. Finally, the neurotoxic effects induced by the MDMA metabolite N-Me-α-MeDA involved caspase 3 activation. In conclusion, this study evaluated the stability of MDMA metabolites in vitro, and demonstrated that the catechol MDMA metabolites and their GSH and NAC conjugates, rather than MDMA itself, exhibited neurotoxic actions in SH-SY5Y differentiated cells, which were differently affected by hyperthermia, thus highlighting a major role for reactive metabolites and hyperthermia in MDMA's neurotoxicity.
Collapse
Affiliation(s)
- Daniel José Barbosa
- REQUIMTE (Rede de Química e Tecnologia), Toxicology Laboratory, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal,
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Pimkaew P, Suksen K, Somkid K, Chokchaisiri R, Jariyawat S, Chuncharunee A, Suksamrarn A, Piyachaturawat P. Zederone, a Sesquiterpene from Curcuma elata Roxb, is Hepatotoxic in Mice. Int J Toxicol 2013; 32:454-62. [DOI: 10.1177/1091581813504595] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The present study aimed to investigate the hepatotoxicity of zederone isolated from Curcuma elata in mice. Adult male mice were intraperitoneally injected with a single dose of zederone (50-300 mg/kg body weight [BW]). Twenty-four hours after the injection, zederone induced liver enlargement with scattered white foci over the organ. The medium lethal dose (LD50) value at 24 hours of zederone was approximately 223 mg/kg BW. Hepatic centrilobular necrosis with marked increases in plasma alanine transaminase activity and total bilirubin levels was observed. Zederone at a dose of 200 mg/kg BW markedly decreased the activity of superoxide dismutase and the hepatic glutathione content, whereas the activity of catalase was not altered. The compound at this dose also increased the messenger RNA (mRNA) expression of Cyp2b10 and Cyp3a11, which are the main drug-metabolizing enzymes in the liver. The mRNA expression of proinflammatory cytokine tumor necrosis factor α was increased. The nuclear factor-E2-related factor 2 protein, which is the transcription factor regulating the antioxidant gene expression, was decreased. The histopathology of massive hepatic centrilobular necrosis with an increase in the expression of cytochrome P450 (Cyp) suggests that the possible potentiation of zederone-induced hepatotoxicity implicated the induction of Cyps, which leads to the formation of biological reactive metabolites and that cause the oxidative stress and liver cell injuries.
Collapse
Affiliation(s)
- Prapapan Pimkaew
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kanoknetr Suksen
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Koravit Somkid
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ratchanaporn Chokchaisiri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
- Division of Chemistry, School of Science, University of Phayao, Phayao, Thailand
| | - Surawat Jariyawat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Aporn Chuncharunee
- Department of Anatomy, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Pawinee Piyachaturawat
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
42
|
Kim Y, Lee JJ, Lee SG, Jung SH, Han JH, Yang SY, Yun E, Song GY, Myung CS. 5,8-Dimethoxy-2-Nonylamino-Naphthalene-1,4-Dione Inhibits Vascular Smooth Muscle Cell Proliferation by Blocking Autophosphorylation of PDGF-Receptor β. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:203-8. [PMID: 23776396 PMCID: PMC3682080 DOI: 10.4196/kjpp.2013.17.3.203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 11/15/2022]
Abstract
As the abnormal proliferation of vascular smooth muscle cells (VSMCs) plays a critical role in the development of atherosclerosis and vascular restenosis, a candidate drug with antiproliferative properties is needed. We investigated the antiproliferative action and underlying mechanism of a newly synthesized naphthoquinone derivative, 5,8-dimethoxy-2-nonylamino-naphthalene-1,4-dione (2-nonylamino-DMNQ), using VSMCs treated with platelet-derived growth factor (PDGF). 2-Nonylamino-DMNQ inhibited proliferation and cell number of VSMCs induced by PDGF, but not epidermal growth factor (EGF), in a concentration-dependent manner without any cytotoxicity. This derivative suppressed PDGF-induced [(3)H]-thymidine incorporation, cell cycle progression from G0/G1 to S phase, and the phosphorylation of phosphor-retinoblastoma protein (pRb) as well as the expression of cyclin E/D, cyclin-dependent kinase (CDK) 2/4, and proliferating cell nuclear antigen (PCNA). Importantly, 2-nonylamino-DMNQ inhibited the phosphorylation of PDGF receptorβ(PDGF-Rβ) enhanced by PDGF at Tyr(579), Tyr(716), Tyr(751), and Tyr(1021) residues. Subsequently, 2-nonylamino-DMNQ inhibited PDGF-induced phosphorylation of STAT3, ERK1/2, Akt, and PLCγ1. Therefore, our results indicate that 2-nonylamino-DMNQ inhibits PDGF-induced VSMC proliferation by blocking PDGF-Rβ autophosphorylation, and subsequently PDGF-Rβ-mediated downstream signaling pathways.
Collapse
Affiliation(s)
- Yohan Kim
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lu SC. Glutathione synthesis. Biochim Biophys Acta Gen Subj 2012; 1830:3143-53. [PMID: 22995213 DOI: 10.1016/j.bbagen.2012.09.008] [Citation(s) in RCA: 1546] [Impact Index Per Article: 128.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/05/2012] [Accepted: 09/10/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Glutathione (GSH) is present in all mammalian tissues as the most abundant non-protein thiol that defends against oxidative stress. GSH is also a key determinant of redox signaling, vital in detoxification of xenobiotics, and regulates cell proliferation, apoptosis, immune function, and fibrogenesis. Biosynthesis of GSH occurs in the cytosol in a tightly regulated manner. Key determinants of GSH synthesis are the availability of the sulfur amino acid precursor, cysteine, and the activity of the rate-limiting enzyme, glutamate cysteine ligase (GCL), which is composed of a catalytic (GCLC) and a modifier (GCLM) subunit. The second enzyme of GSH synthesis is GSH synthetase (GS). SCOPE OF REVIEW This review summarizes key functions of GSH and focuses on factors that regulate the biosynthesis of GSH, including pathological conditions where GSH synthesis is dysregulated. MAJOR CONCLUSIONS GCL subunits and GS are regulated at multiple levels and often in a coordinated manner. Key transcription factors that regulate the expression of these genes include NF-E2 related factor 2 (Nrf2) via the antioxidant response element (ARE), AP-1, and nuclear factor kappa B (NFκB). There is increasing evidence that dysregulation of GSH synthesis contributes to the pathogenesis of many pathological conditions. These include diabetes mellitus, pulmonary and liver fibrosis, alcoholic liver disease, cholestatic liver injury, endotoxemia and drug-resistant tumor cells. GENERAL SIGNIFICANCE GSH is a key antioxidant that also modulates diverse cellular processes. A better understanding of how its synthesis is regulated and dysregulated in disease states may lead to improvement in the treatment of these disorders. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
Affiliation(s)
- Shelly C Lu
- Keck School of Medicine USC, Los Angeles, CA 90033, USA.
| |
Collapse
|
44
|
Cheshchevik VT, Lapshina EA, Dremza IK, Zabrodskaya SV, Reiter RJ, Prokopchik NI, Zavodnik IB. Rat liver mitochondrial damage under acute or chronic carbon tetrachloride-induced intoxication: protection by melatonin and cranberry flavonoids. Toxicol Appl Pharmacol 2012; 261:271-9. [PMID: 22521486 DOI: 10.1016/j.taap.2012.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/30/2012] [Accepted: 04/05/2012] [Indexed: 02/07/2023]
Abstract
In current societies, the risk of toxic liver damage has markedly increased. The aim of the present work was to carry out further research into the mechanism(s) of liver mitochondrial damage induced by acute (0.8 g/kg body weight, single injection) or chronic (1.6g/ kg body weight, 30 days, biweekly injections) carbon tetrachloride - induced intoxication and to evaluate the hepatoprotective potential of the antioxidant, melatonin, as well as succinate and cranberry flavonoids in rats. Acute intoxication resulted in considerable impairment of mitochondrial respiratory parameters in the liver. The activity of mitochondrial succinate dehydrogenase (complex II) decreased (by 25%, p<0.05). Short-term melatonin treatment (10 mg/kg, three times) of rats did not reduce the degree of toxic mitochondrial dysfunction but decreased the enhanced NO production. After 30-day chronic intoxication, no significant change in the respiratory activity of liver mitochondria was observed, despite marked changes in the redox-balance of mitochondria. The activities of the mitochondrial enzymes, succinate dehydrogenase and glutathione peroxidase, as well as that of cytoplasmic catalase in liver cells were inhibited significantly. Mitochondria isolated from the livers of the rats chronically treated with CCl₄ displayed obvious irreversible impairments. Long-term melatonin administration (10 mg/kg, 30 days, daily) to chronically intoxicated rats diminished the toxic effects of CCl₄, reducing elevated plasma activities of alanine aminotransferase and aspartate aminotransferase and bilirubin concentration, prevented accumulation of membrane lipid peroxidation products in rat liver and resulted in apparent preservation of the mitochondrial ultrastructure. The treatment of the animals by the complex of melatonin (10 mg/kg) plus succinate (50 mg/kg) plus cranberry flavonoids (7 mg/kg) was even more effective in prevention of toxic liver injury and liver mitochondria damage.
Collapse
Affiliation(s)
- V T Cheshchevik
- Institute for Pharmacology and Biochemistry, National Academy of Sciences of Belarus, Len. Kom. Blvd. 50, 230017 Grodno, Belarus
| | | | | | | | | | | | | |
Collapse
|
45
|
Berti SL, Nasi GM, Garcia C, Castro FLD, Nunes ML, Rojas DB, Moraes TB, Dutra-Filho CS, Wannmacher CMD. Pyruvate and creatine prevent oxidative stress and behavioral alterations caused by phenylalanine administration into hippocampus of rats. Metab Brain Dis 2012; 27:79-89. [PMID: 22101931 DOI: 10.1007/s11011-011-9271-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/08/2011] [Indexed: 11/25/2022]
Abstract
Phenylketonuria is characterized by a variable degree of mental retardation and other neurological features whose mechanisms are not fully understood. In the present study we investigated the effect of intrahippocampal administration of phenylalanine, isolated or associated with pyruvate or creatine, on rat behavior and on oxidative stress. Sixty-day-old male Wistar rats were randomly divided into 6 groups: saline; phenylalanine; pyruvate; creatine; phenylalanine + pyruvate; phenylalanine + creatine. Phenylalanine was administered bilaterally in the hippocampus one hour before training; pyruvate, at the same doses, was administered in the hippocampus one hour before phenylalanine; creatine was administered intraperitoneally twice a day for 5 days before training; controls received saline solution at same volumes than the other substances. Parameters of exploratory behavior and of emotionality were assessed in both training and test sessions in the open field task. Rats receiving phenylalanine did not habituate to the open field along the sessions, indicating deficit of learning/memory, but parameters of emotionality were normal, not interfering in the habituation process. Pyruvate or creatine administration prevented the lack of habituation caused by phenylalanine. Pyruvate and creatine also prevented alterations provoked by phenylalanine on lipid peroxidation, total content of sulfhydryls, total radical-trapping antioxidant potential and total antioxidant reactivity. The results suggest that the behavioral alterations provoked by intra-hippocampal administration of phenylalanine may be caused, at least in part, by oxidative stress and/or energy deficit. If this also occurs in PKU, it is possible that pyruvate and creatine supplementation to the phenylalanine-restricted diet might be beneficial to phenylketonuric patients.
Collapse
Affiliation(s)
- Simone Luisa Berti
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Niculescu VC, Muresan N, Salageanu A, Tucureanu C, Marinescu G, Chirigiu L, Lepadatu C. Novel 2,3-disubstituted 1,4-naphthoquinone derivatives and their metal complexes – Synthesis and in vitro cytotoxic effect against mouse fibrosarcoma L929 cells. J Organomet Chem 2012. [DOI: 10.1016/j.jorganchem.2011.10.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Hadzi-Petrushev N, Jankulovski N, Hristov K, Mladenov M. L-2-oxothiazolidine-4-carboxylate influence on age- and heat exposure-dependent redox changes in rat's blood plasma. J Physiol Sci 2011; 61:437-42. [PMID: 21786149 PMCID: PMC10717713 DOI: 10.1007/s12576-011-0165-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 07/03/2011] [Indexed: 10/18/2022]
Abstract
In the present study, we investigated both the age- and heat exposure-related redox changes of blood plasma by analyzing GSH, thiol status and carbonyl groups. Our results clearly indicated that the plasma redox balance shifted toward oxidation during both aging and acute heat exposure. To further confirm this age- and heat exposure-related redox shift, we quantified the changes in thiol content. The total thiol level was found to be significantly decreased in the aged group. A similar pattern can be explained by low levels of serum GSH in old rats compared to young rats. The significance of the present study are the data showing increased oxidative stress in plasma during aging, attributed to a decrease in major antioxidant components in serum. OTC treatment, in relation to C=O regarded as a marker of oxidative damage was probably much more effective in increasing of GSH synthesis than in prevention of protein oxidation.
Collapse
Affiliation(s)
- Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss, Cyril and Methodius University, P.O. Box 162, Skopje, 1000 Macedonia
| | - Nikola Jankulovski
- Medical Faculty, Ss, Cyril and Methodius University, Skopje, 1000 Macedonia
| | - Kiril Hristov
- Department of Membrane Ion Channels, Institute of Biophysics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss, Cyril and Methodius University, P.O. Box 162, Skopje, 1000 Macedonia
- Department of Membrane Ion Channels, Institute of Biophysics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
48
|
ATP Released from Low-dose Gamma Ray-irradiated Cells Activates Intracellular Antioxidant Systems via Purine Receptors. ACTA ACUST UNITED AC 2011. [DOI: 10.3793/jaam.8.108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, Yi J, Ryu DY. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 100:151-9. [PMID: 20060176 DOI: 10.1016/j.aquatox.2009.12.012] [Citation(s) in RCA: 336] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 12/02/2009] [Accepted: 12/12/2009] [Indexed: 05/08/2023]
Abstract
Silver nanoparticles (AgNPs) may induce deleterious effects in aquatic life on environmental release. The hepatotoxicity of AgNPs was assessed in the liver of adult zebrafish, with the aim of studying the roles of oxidative damage and apoptosis. Zebrafish were exposed to an AgNP solution in which free Ag+ ions were absent at the time of treatment. However, the metal-sensitive metallothionein 2 (MT2) mRNA was induced in the liver tissues of AgNP-treated zebrafish, suggesting that Ag+ ions were released from AgNPs after treatment. It is also possible that MT2 mRNA was induced in the liver tissues by AgNP-generated free radicals. A number of cellular alterations including disruption of hepatic cell cords and apoptotic changes were observed in histological analysis of the liver tissues. The levels of malondialdehyde, a byproduct of cellular lipid peroxidation, and total glutathione were increased in the tissues after treatment with AgNPs. The mRNA levels of the oxyradical-scavenging enzymes catalase and glutathione peroxidase 1a were reduced in the tissues. AgNP treatment induced DNA damage, as demonstrated by analysis with the double-strand break marker γ-H2AX and the expression of p53 protein in liver tissues. In addition, the p53-related pro-apoptotic genes Bax, Noxa, and p21 were upregulated after treatment with AgNPs. These data suggest that oxidative stress and apoptosis are associated with AgNP toxicity in the liver of adult zebrafish.
Collapse
Affiliation(s)
- Ji Eun Choi
- College of Veterinary Medicine, Seoul National University, 599 Gwanak, Gwanak, Seoul, 151-742, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Forman HJ. Reactive oxygen species and alpha,beta-unsaturated aldehydes as second messengers in signal transduction. Ann N Y Acad Sci 2010; 1203:35-44. [PMID: 20716281 DOI: 10.1111/j.1749-6632.2010.05551.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Signaling by H(2)O(2), alpha,beta-unsaturated aldehydes, such as 4-hydroxy-2-nonenal (HNE) and related chemical species, is thought to differ from signaling by other second messengers because the oxidants and other electrophiles can readily undergo nonenzymatic reactions and are therefore classified as "reactive." This brief review will describe how and when the chemistry of signaling is similar or differs from classic second messengers, such as cyclic AMP, or posttranslational signaling, such as farnesylation or ubiquitination. The chemistry of cysteine provides a common factor that underlies signaling by H(2)O(2) and HNE. Nonetheless, as H(2)O(2) and HNE are rapidly metabolized in vivo, spatial considerations are extremely important in their actions. Therefore, the locations of sources of H(2)O(2) and alpha,beta-unsaturated aldehydes, the NADPH oxidases, mitochondria, membrane lipids, and redox cycling toxicants, as well as their targets, are key factors. The activation of the JNK pathway by HNE and endogenously generated H(2)O(2) illustrates these principles.
Collapse
Affiliation(s)
- Henry Jay Forman
- School of Natural Sciences, University of California, Merced, California, USA.
| |
Collapse
|