1
|
Brock SC, Goldenring JR, Crowe JE. Apical recycling systems regulate directional budding of respiratory syncytial virus from polarized epithelial cells. Proc Natl Acad Sci U S A 2003; 100:15143-8. [PMID: 14630951 PMCID: PMC299925 DOI: 10.1073/pnas.2434327100] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the major viral cause of serious lower respiratory tract illness in infants and young children worldwide. RSV infection is limited to the superficial layers of the respiratory epithelium in immunocompetent individuals. Consistent with this in vivo observation, we and others have found that RSV buds preferentially from the apical surface of infected polarized epithelial cells. In contrast, directional budding is not observed in nonpolarized human epithelial cells. These findings suggest that RSV uses specific cellular trafficking pathways to accomplish viral replication. The host cell proteins that regulate directional budding of RSV are undefined. Apical sorting of cellular proteins in polarized epithelial cells involves the apical recycling endosome (ARE). To investigate whether ARE-mediated protein sorting plays a role during RSV replication, we expressed a fragment of the myosin Vb tail that functions as a dominant negative inhibitor of ARE-mediated protein sorting in polarized Madin-Darby canine kidney cells. When these cells were infected with RSV, a >9,000-fold reduction in viral yield was observed. A similar effect on virus replication was observed when a carboxyl-terminal fragment of another ARE-associated protein, the Rab11 family interacting protein 1, was expressed in Madin-Darby canine kidney cells. These data suggest that RSV requires proper ARE-mediated protein sorting for efficient egress from the apical surface of polarized epithelial cells.
Collapse
Affiliation(s)
- Sean C Brock
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | |
Collapse
|
2
|
Caplan MJ, Rodriguez‐Boulan E. Epithelial Cell Polarity: Challenges and Methodologies. Compr Physiol 1997. [DOI: 10.1002/cphy.cp140117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Huang XF, Compans RW, Chen S, Lamb RA, Arvan P. Polarized apical targeting directed by the signal/anchor region of simian virus 5 hemagglutinin-neuraminidase. J Biol Chem 1997; 272:27598-604. [PMID: 9346896 DOI: 10.1074/jbc.272.44.27598] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To examine the possibility of independent cytoplasmic/transmembrane domain-based apical sorting, we have investigated paramyxovirus SV5 hemagglutinin-neuraminidase (HN), a type II membrane protein with a small N-terminal signal/anchor region. In SV5-infected Madin-Darby canine kidney (MDCK) cells, >90% of HN is found on the apical surface. We have expressed chimeric proteins in which the N terminus of HN, including its signal/anchor region, is attached to a (normally cytosolic) reporter pyruvate kinase (PK). PK itself expressed immediately downstream from a cleavable signal peptide was converted to a 58-kDa N-linked glycosylated form, which was secreted predominantly (80%) to the basolateral surface of MDCK cells. By contrast, stably expressed PK chimeras, now anchored as type II membrane proteins with either the first 48 or 72 amino acids of HN, received similar N-linked glycosylation, yet exhibited polarized transport with a preferentially (75%) apical distribution. These results suggest that the N-terminal signal/anchor region of HN contains independent sorting information for apical specific targeting in MDCK cells.
Collapse
Affiliation(s)
- X F Huang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35209, USA
| | | | | | | | | |
Collapse
|
4
|
Arvan P, Kim PS, Kuliawat R, Prabakaran D, Muresan Z, Yoo SE, Abu Hossain S. Intracellular protein transport to the thyrocyte plasma membrane: potential implications for thyroid physiology. Thyroid 1997; 7:89-105. [PMID: 9086577 DOI: 10.1089/thy.1997.7.89] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We present a snapshot of developments in epithelial biology that may prove helpful in understanding cellular aspects of the machinery designed for the synthesis of thyroid hormones on the thyroglobulin precursor. The functional unit of the thyroid gland is the follicle, delimited by a monolayer of thyrocytes. Like the cells of most simple epithelia, thyrocytes exhibit specialization of the cell surface that confronts two different extracellular environments-apical and basolateral, which are separated by tight junctions. Specifically, the basolateral domain faces the interstitium/bloodstream, while the apical domain is in contact with the lumen that is the primary target for newly synthesized thyroglobulin secretion and also serves as a storage depot for previously secreted protein. Thyrocytes use their polarity in several important ways, such as for maintaining basolaterally located iodide uptake and T4 deiodination, as well apically located iodide efflux and iodination machinery. The mechanisms by which this organization is established, fall in large part under the more general cell biological problem of intracellular sorting and trafficking of different proteins en route to the cell surface. Nearly all exportable proteins begin their biological life after synthesis in an intracellular compartment known as the endoplasmic reticulum (ER), upon which different degrees of difficulty may be encountered during nascent polypeptide folding and initial export to the Golgi complex. In these initial stages, ER molecular chaperones can assist in monitoring protein folding and export while themselves remaining as resident proteins of the thyroid ER. After export from the ER, most subsequent sorting for protein delivery to apical or basolateral surfaces of thyrocytes occurs within another specialized intracellular compartment known as the trans-Golgi network. Targeting information encoded in secretory proteins and plasma membrane proteins can be exposed or buried at different stages along the export pathway, which is likely to account for sorting and specific delivery of different newly-synthesized proteins. Defects in either burying or exposing these structural signals, and consequent abnormalities in protein transport, may contribute to different thyroid pathologies.
Collapse
Affiliation(s)
- P Arvan
- Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Kundu A, Avalos RT, Sanderson CM, Nayak DP. Transmembrane domain of influenza virus neuraminidase, a type II protein, possesses an apical sorting signal in polarized MDCK cells. J Virol 1996; 70:6508-15. [PMID: 8709291 PMCID: PMC190689 DOI: 10.1128/jvi.70.9.6508-6515.1996] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The influenza virus neuraminidase (NA), a type II transmembrane protein, is directly transported to the apical plasma membrane in polarized MDCK cells. By using deletion mutants and chimeric constructs of influenza virus NA with the human transferrin receptor, a type II basolateral transmembrane protein, we investigated the location of the apical sorting signal of influenza virus NA. When these mutant and chimeric proteins were expressed in stably transfected polarized MDCK cells, the transmembrane domain of NA, and not the cytoplasmic tail, provided a determinant for apical targeting in polarized MDCK cells and this transmembrane signal was sufficient for sorting and transport of the ectodomain of a reporter protein (transferrin receptor) directly to the apical plasma membrane of polarized MDCK cells. In addition, by using differential detergent extraction, we demonstrated that influenza virus NA and the chimeras which were transported to the apical plasma membrane also became insoluble in Triton X-100 but soluble in octylglucoside after extraction from MDCK cells during exocytic transport. These data indicate that the transmembrane domain of NA provides the determinant(s) both for apical transport and for association with Triton X-100-insoluble lipids.
Collapse
Affiliation(s)
- A Kundu
- Jonsson Comprehensive Cancer Center, Department of Microbiology and Immunology, University of California at Los Angeles 90095-1747, USA
| | | | | | | |
Collapse
|
6
|
Arreaza G, Brown DA. Sorting and intracellular trafficking of a glycosylphosphatidylinositol-anchored protein and two hybrid transmembrane proteins with the same ectodomain in Madin-Darby canine kidney epithelial cells. J Biol Chem 1995; 270:23641-7. [PMID: 7559531 DOI: 10.1074/jbc.270.40.23641] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We compared the trafficking of the glycosylphosphatidylinositol (GPI)-anchored placental alkaline phosphatase (PLAP) and two chimeric transmembrane proteins containing the PLAP ectodomain in stably transfected Madin-Darby canine kidney epithelial cells to determine whether different mechanisms might be used in apical sorting of GPI-anchored and transmembrane proteins. PLAP-G, which contained the transmembrane and cytoplasmic domains of the vesicular stomatitis virus glycoprotein, was delivered directly to the basolateral surface. PLAP-HA contained the transmembrane and cytoplasmic domains of influenza hemagglutinin. Both PLAP and PLAP-HA were delivered directly to the apical membrane. PLAP becomes insoluble in Triton X-100 during biosynthetic transport, as it associates with detergent-resistant membranes. Neither hybrid protein was detergent insoluble, though the small amount of PLAP that was missorted to the basolateral surface was insoluble. We examined the effects of three drugs known to interfere with membrane trafficking on sorting and delivery of PLAP and the hybrid proteins. Monensin had no effect on sorting or surface expression of any of the proteins. Nocodazole affected the sorting of both PLAP and PLAP-HA but not of PLAP-G. Brefeldin A appeared to disrupt the sorting of PLAP and PLAP-HA but not of PLAP-G. This conclusion was tempered by the observation that this drug affected the distribution of proteins at the cell surface. Thus, sorting and transport of GPI-anchored and apical transmembrane proteins are similar in a number of respects.
Collapse
Affiliation(s)
- G Arreaza
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook 11794-5215, USA
| | | |
Collapse
|
7
|
Thomas D, Roth M. The basolateral targeting signal in the cytoplasmic domain of glycoprotein G from vesicular stomatitis virus resembles a variety of intracellular targeting motifs related by primary sequence but having diverse targeting activities. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)40742-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
8
|
Kundu A, Nayak DP. Analysis of the signals for polarized transport of influenza virus (A/WSN/33) neuraminidase and human transferrin receptor, type II transmembrane proteins. J Virol 1994; 68:1812-8. [PMID: 8107243 PMCID: PMC236643 DOI: 10.1128/jvi.68.3.1812-1818.1994] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In polarized MDCK cells influenza virus (A/WSN/33) neuraminidase (NA) and human transferrin receptor (TR), type II glycoproteins, when expressed from cloned cDNAs, were transported and accumulated preferentially on the apical and basolateral surfaces, respectively. We have investigated the signals for polarized sorting by constructing chimeras between NA and TR and by making deletion mutants. NATR delta 90, which contains the cytoplasmic tail and transmembrane domain of NA and the ectodomain of TR, was found to be localized predominantly on the apical membrane, whereas TRNA delta 35, containing the cytoplasmic and transmembrane domains of TR and the ectodomain of NA, was expressed preferentially on the basolateral membrane. TR delta 57, a TR deletion mutant lacking 57 amino acids in the TR cytoplasmic tail, did not exhibit any polarized expression and was present on both apical and basolateral surfaces, whereas a deletion mutant (NA delta 28-35) lacking amino acid residues from 28 to 35 in the transmembrane domain of NA resulted in secretion of the NA ectodomain predominantly from the apical side. These results taken together indicate that the cytoplasmic tail of TR was sufficient for basolateral transport, but influenza virus NA possesses two sorting signals, one in the cytoplasmic or transmembrane domain and the other within the ectodomain, both of which are independently able to transport the protein to the apical plasma membrane.
Collapse
Affiliation(s)
- A Kundu
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles 90024-1747
| | | |
Collapse
|
9
|
Tashiro M, Seto JT, Klenk HD, Rott R. Possible involvement of microtubule disruption in bipolar budding of a Sendai virus mutant, F1-R, in epithelial MDCK cells. J Virol 1993; 67:5902-10. [PMID: 8396659 PMCID: PMC238010 DOI: 10.1128/jvi.67.10.5902-5910.1993] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Envelope glycoproteins F and HN of wild-type Sendai virus are transported to the apical plasma membrane domain of polarized epithelial MDCK cells, where budding of progeny virus occurs. On the other hand, a pantropic mutant, F1-R, buds bipolarly at both the apical and basolateral domains, and the viral glycoproteins have also been shown to be transported to both of these domains (M. Tashiro, M. Yamakawa, K. Tobita, H.-D. Klenk, R. Rott, and J.T. Seto, J. Virol. 64:4672-4677, 1990). MDCK cells were infected with wild-type virus and treated with the microtubule-depolymerizing drugs colchicine and nocodazole. Budding of the virus and surface expression of the glycoproteins were found to occur in a nonpolarized fashion similar to that found in cells infected with F1-R. In uninfected cells, the drugs were shown to interfere with apical transport of a secretory cellular glycoprotein, gp80, and basolateral uptake of [35S]methionine as well as to disrupt microtubule structure, indicating that cellular polarity of MDCK cells depends on the presence of intact microtubules. Infection by the F1-R mutant partially affected the transport of gp80, uptake of [35S]methionine, and the microtubule network, whereas wild-type virus had a marginal effect. These results suggest that apical transport of the glycoproteins of wild-type Sendai virus in MDCK cells depends on intact microtubules and that bipolar budding by F1-R is possibly due, at least in part, to the disruption of microtubules. Nucleotide sequence analyses of the viral genes suggest that the mutated M protein of F1-R might be involved in the alteration of microtubules.
Collapse
Affiliation(s)
- M Tashiro
- Department of Virology, Jichi Medical School, Tochigi-ken, Japan
| | | | | | | |
Collapse
|
10
|
Vesicular stomatitis virus glycoprotein contains a dominant cytoplasmic basolateral sorting signal critically dependent upon a tyrosine. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53695-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
11
|
Corbeil D, Boileau G, Lemay G, Crine P. Expression and polarized apical secretion in Madin-Darby canine kidney cells of a recombinant soluble form of neutral endopeptidase lacking the cytosolic and transmembrane domains. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)45949-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
12
|
Affiliation(s)
- R W Compans
- Department of Microbiology, University of Alabama, Birmingham 35294
| | | |
Collapse
|
13
|
Abstract
Polarized epithelial cells play fundamental roles in the ontogeny and function of a variety of tissues and organs in mammals. The morphogenesis of a sheet of polarized epithelial cells (the trophectoderm) is the first overt sign of cellular differentiation in early embryonic development. In the adult, polarized epithelial cells line all body cavities and occur in tissues that carry out specialized vectorial transport functions of absorption and secretion. The generation of this phenotype is a multistage process requiring extracellular cues and the reorganization of proteins in the cytoplasm and on the plasma membrane; once established, the phenotype is maintained by the segregation and retention of specific proteins and lipids in distinct apical and basal-lateral plasma membrane domains.
Collapse
Affiliation(s)
- E Rodriguez-Boulan
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, NY 10021
| | | |
Collapse
|
14
|
Affiliation(s)
- K Simons
- European Molecular Biology Laboratory, Heidelberg, Federal Republic of Germany
| | | |
Collapse
|
15
|
Kilpatrick DR, Srinivas RV, Compans RW. Expression of the spleen focus-forming virus envelope gene in a polarized epithelial cell line. Virology 1988; 164:547-50. [PMID: 2835865 DOI: 10.1016/0042-6822(88)90571-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Friend spleen focus-forming virus (F-SFFV) encodes a glycoprotein designated gp52, which is defective in its intracellular transport and accumulates in the rough endoplasmic reticulum. Only 3-5% of the mature form of gp52 eventually reaches the cell surface. Compared to transport-competent murine leukemia virus (MuLV) glycoproteins, the gp52 molecule exhibits several structural differences which may have resulted in the possible loss of signals required for transport to the cell surface. To determine the effect of these alterations on the specific sites of surface expression of the molecule, the SFFV env gene was expressed from a vaccinia virus recombinant in a polarized epithelial cell line in which retrovirus glycoproteins are expressed exclusively on basolateral surfaces. We also determined the site of expression of a chimeric env protein which contains the external domain of SFFV gp52 the transmembrane, and the cytoplasmic tail residues of Friend MuLV. The wild-type and chimeric env gene products were defective in transport, and remained primarily in an unprocessed form in MDCK cells or CV-1 cells. However, both glycoproteins were detected at low levels on the basolateral surfaces of MDCK cells, a line of polarized epithelial cells. These results indicate that the presence or absence of a cytoplasmic tail as well as a 585-base deletion in the external domain has no affect on the site of polarized expression of a murine retrovirus glycoprotein.
Collapse
Affiliation(s)
- D R Kilpatrick
- Department of Microbiology, University of Alabama, Birmingham 35294
| | | | | |
Collapse
|
16
|
Effects of deletion of the cytoplasmic domain upon surface expression and membrane stability of a viral envelope glycoprotein. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47704-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|