1
|
Yan X, Gu C, Yu Z, Ding L, He M, Xiao W, Zhao M, Qing Y, He L. Comprehensive analysis of transcriptome and metabolome analysis reveal new targets of Glaesserella parasuis glucose-specific enzyme IIBC (PtsG). Microb Pathog 2022; 172:105785. [PMID: 36150554 DOI: 10.1016/j.micpath.2022.105785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022]
Abstract
The ptsG (hpIIBCGlc) gene, belonging to the glucose-specific phosphotransferase system, encodes the bacterial glucose-specific enzyme IIBC. In this study, the effects of a deletion of the ptsG gene were investigated by metabolome and transcriptome analyses. At the transcriptional level, we identified 970 differentially expressed genes between ΔptsG and sc1401 (Padj<0.05) and 2072 co-expressed genes. Among these genes, those involved in methane metabolism, amino sugar and nucleotide sugar metabolism, starch and sucrose metabolism, pyruvate metabolism, phosphotransferase system (PTS), biotin metabolism, Two-component system and Terpenoid backbone biosynthesis showed significant changes in the ΔptsG mutant strain. Metabolome analysis revealed that a total of 310 metabolites were identified, including 20 different metabolites (p < 0.05). Among them, 15 metabolites were upregulated and 5 were downregulated in ΔptsG mutant strain. Statistical analysis revealed there were 115 individual metabolites having correlation, of which 89 were positive and 26 negative. These metabolites include amino acids, phosphates, amines, esters, nucleotides, benzoic acid and adenosine, among which amino acids and phosphate metabolites dominate. However, not all of these changes were attributable to changes in mRNA levels and must also be caused by post-transcriptional regulatory processes. The knowledge gained from this lays the foundation for further study on the role of ptsG in the pathogenic process of Glaesserella parasuis (G.parasuis).
Collapse
Affiliation(s)
- Xuefeng Yan
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Congwei Gu
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China; Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Zehui Yu
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China; Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Lingqiang Ding
- School of Life Science and Engineering, Hexi University, Zhangye, China
| | - Manli He
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China; Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Wudian Xiao
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China; Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Mingde Zhao
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China; Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Yunfeng Qing
- Animal Disease Prevention and Control Center of Zhaohua District, Guangyuan, China
| | - Lvqin He
- Experimental Animal Center, Technology Department, Southwest Medical University, Luzhou, China; Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China.
| |
Collapse
|
2
|
Pandi K, Chauhan AS, Gupta JA, Rathore AS. Microaerobic fermentation alters lactose metabolism in Escherichia coli. Appl Microbiol Biotechnol 2020; 104:5773-5785. [PMID: 32409946 DOI: 10.1007/s00253-020-10652-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/20/2020] [Accepted: 04/29/2020] [Indexed: 11/28/2022]
Abstract
Microaerobic fermentation has been shown to improve lactose transport and recombinant protein production in Escherichia coli. Mechanistic correlation between lactose and dissolved oxygen has been studied and it has been demonstrated that E. coli can switch its genetic machinery upon fluctuations in dissolved oxygen levels and thereby impact lactose transport, resulting in product formation. Continuous induction of lactose in microaerobic fermentation led to a 3.3-fold improvement in product titre of rLTNF oligomer and a 1.8-fold improvement in product titre of rSymlin oligomer as compared with traditional aerobic fermentation. Transcriptome profiling indicated that ribosome synthesis, lactose transport and amino acid synthesis genes were upregulated during microaerobic fermentation. Besides, novel lactose transporter setB was examined and it was observed that lactose uptake rate was 1.4-fold higher in microaerobic fermentation. The results indicate that microaerobic fermentation can offer a superior alternative for industrial production of recombinant therapeutics, industrial enzymes and metabolites in E. coli. KEY POINTS: • Microaerobic fermentation results in significantly improved protein production • Lactose transport, ribosome synthesis and amino acid synthesis are enhanced • Product titre improves by 1.8-3.3-fold.
Collapse
Affiliation(s)
- Kathiresan Pandi
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Ashish Singh Chauhan
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Jaya A Gupta
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
3
|
Laganenka L, Sander T, Lagonenko A, Chen Y, Link H, Sourjik V. Quorum Sensing and Metabolic State of the Host Control Lysogeny-Lysis Switch of Bacteriophage T1. mBio 2019; 10:e01884-19. [PMID: 31506310 PMCID: PMC6737242 DOI: 10.1128/mbio.01884-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/20/2019] [Indexed: 12/24/2022] Open
Abstract
Bacterial viruses, or bacteriophages, are highly abundant in the biosphere and have a major impact on microbial populations. Many examples of phage interactions with their hosts, including establishment of dormant lysogenic and active lytic states, have been characterized at the level of the individual cell. However, much less is known about the dependence of these interactions on host metabolism and signal exchange within bacterial communities. In this report, we describe a lysogenic state of the enterobacterial phage T1, previously known as a classical lytic phage, and characterize the underlying regulatory circuitry. We show that the transition from lysogeny to lysis depends on bacterial population density, perceived via interspecies autoinducer 2. Lysis is further controlled by the metabolic state of the cell, mediated by the cyclic-3',5'-AMP (cAMP) receptor protein (CRP) of the host. We hypothesize that such combinations of cell density and metabolic sensing may be common in phage-host interactions.IMPORTANCE The dynamics of microbial communities are heavily shaped by bacterium-bacteriophage interactions. But despite the apparent importance of bacteriophages, our understanding of the mechanisms controlling phage dynamics in bacterial populations, and particularly of the differences between the decisions that are made in the dormant lysogenic and active lytic states, remains limited. In this report, we show that enterobacterial phage T1, previously described as a lytic phage, is able to undergo lysogeny. We further demonstrate that the lysogeny-to-lysis decision occurs in response to changes in the density of the bacterial population, mediated by interspecies quorum-sensing signal AI-2, and in the metabolic state of the cell, mediated by cAMP receptor protein. We hypothesize that this strategy enables the phage to maximize its chances of self-amplification and spreading in bacterial population upon induction of the lytic cycle and that it might be common in phage-host interactions.
Collapse
Affiliation(s)
- Leanid Laganenka
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Timur Sander
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | | | - Yu Chen
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Hannes Link
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
4
|
Biological and regulatory roles of acid-induced small RNA RyeC in Salmonella Typhimurium. Biochimie 2018; 150:48-56. [PMID: 29730297 DOI: 10.1016/j.biochi.2018.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/01/2018] [Indexed: 12/23/2022]
Abstract
Salmonella Typhimurium is an enteric pathogen that has evolved masterful strategies to enable survival under stress conditions both within and outside a host. The acid tolerance response (ATR) is one such mechanism that enhances the viability of acid adapted bacteria to lethal pH levels. While numerous studies exist on the protein coding components of this response, there is very little data on the roles of small RNAs (sRNAs). These non-coding RNA molecules have recently been shown to play roles as regulators of bacterial stress response and virulence pathways. They function through complementary base pairing interactions with target mRNAs and affect their translation and/or stability. There are also a few that directly bind to proteins by mimicking their respective targets. Here, we identify several sRNAs expressed during the ATR of S. Typhimurium and characterize one highly induced candidate, RyeC. Further, we identify ptsI as a trans-encoded target that is directly regulated by this sRNA. From a functional perspective, over-expression of RyeC in Salmonella produced a general attenuation of several in vitro phenotypes including acid survival, motility, adhesion and invasion of epithelial cell lines as well as replication within macrophages. Together, this study highlights the diverse roles played by sRNAs in acid tolerance and virulence of S. Typhimurium.
Collapse
|
5
|
Wang Z, Wu J, Zhu L, Zhan X. Activation of glycerol metabolism in Xanthomonas campestris by adaptive evolution to produce a high-transparency and low-viscosity xanthan gum from glycerol. BIORESOURCE TECHNOLOGY 2016; 211:390-7. [PMID: 27030959 DOI: 10.1016/j.biortech.2016.03.096] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 05/06/2023]
Abstract
Many studies have focused on using crude glycerol from biodiesel to obtain valuable products, but few of these studies have focused on obtaining polysaccharides. A mutant strain of Xanthomonas campestris CCTCC M2015714 that could use glycerol to produce high-transparency and low-viscosity xanthan gum was obtained by adaptive evolution, and the yield of xanthan gum reached 11.0g/L. We found that transcriptional levels of genes related to glycerol metabolism (glpF, glpK, glpD, and fbp) in the mutant strain were all higher than those from the parent strain. Using 5g/L sucrose or glucose as starter substrate, cell growth time decreased from 36h to 24h and xanthan gum yield increased. Moreover, the mutant strain can tolerate high titer glycerol, and its activity was not affected by the impurities in crude glycerol. All these results proved that crude glycerol from biodiesel industries can be used for xanthan gum production.
Collapse
Affiliation(s)
- Zichao Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Zhu
- Wuxi Galaxy Biotech Co. Ltd., Wuxi, Jiangsu 214125, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
|
7
|
Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2007; 70:939-1031. [PMID: 17158705 PMCID: PMC1698508 DOI: 10.1128/mmbr.00024-06] [Citation(s) in RCA: 998] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.
Collapse
Affiliation(s)
- Josef Deutscher
- Microbiologie et Génétique Moléculaire, INRA-CNRS-INA PG UMR 2585, Thiverval-Grignon, France.
| | | | | |
Collapse
|
8
|
Krin E, Sismeiro O, Danchin A, Bertin PN. The regulation of Enzyme IIA(Glc) expression controls adenylate cyclase activity in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1553-1559. [PMID: 11988530 DOI: 10.1099/00221287-148-5-1553] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
During the last few years, several genes, such as pap, bgl and flhDC, have been shown to be coregulated by the histone-like nucleoid-structuring (H-NS) protein and the cyclic AMP-catabolite activator protein (cAMP/CAP) complex, suggesting an interaction between both systems in the control of some cellular functions. In this study, the possible effect of H-NS on the cAMP level was investigated. In a CAP-deficient strain, the presence of an hns mutation results in a strong reduction in the amount of cAMP, due to a decrease in adenylate cyclase activity. This is caused by the reduced expression of crr, which encodes the Enzyme IIA(Glc) of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS), from its specific P2 promoter. This leads to a twofold reduction in the global amount of Enzyme IIA(Glc), the adenylate cyclase activator, responsible for the decrease in adenylate cyclase activity observed in the hns crp strain.
Collapse
Affiliation(s)
- Evelyne Krin
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| | - Odile Sismeiro
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| | - Antoine Danchin
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| | - Philippe N Bertin
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| |
Collapse
|
9
|
van der Vlag J, van't Hof R, van Dam K, Postma PW. Control of glucose metabolism by the enzymes of the glucose phosphotransferase system in Salmonella typhimurium. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 230:170-82. [PMID: 7601098 DOI: 10.1111/j.1432-1033.1995.0170i.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The quantitative role of the phosphoenolpyruvate:glucose phosphotransferase system (glucose phosphotransferase system) in glucose uptake and metabolism, and phosphotransferase-system-mediated regulation of glycerol uptake, was studied in vivo in Salmonella typhimurium. Expression plasmids were constructed which contained the genes encoding enzyme I (ptsI), HP (ptsH), IIAGlc (crr), and IICBGlc (ptsG) of the glucose phosphotransferase system behind inducible promoters. These plasmids allowed the controlled expression of each of the glucose phosphotransferase system proteins from about 30% to about 300% of its wild-type level. When enzyme I, HPr or IIAGlc were modulated between 30% and 300% of their wild-type value, hardly any effects on the growth rate on glucose, the glucose oxidation rate, the rate of methyl alpha-D-glucopyranoside (a glucose analog) uptake or the phosphotransferase-system-mediated inhibition of glycerol uptake by methyl alpha-D-glucopyranoside were observed. Employing the method of metabolic control analysis, it was shown that the enzyme flux control coefficients of these phosphotransferase system components on the different measured processes were close to zero. The enzyme flux control coefficient of IICBGlc on growth on glucose or glucose oxidation was also close to zero. In contrast, the enzyme flux control coefficient of IICBGlc on the flux through the glucose phosphotransferase system (transport and phosphorylation) was 0.72. The experimentally determined enzyme flux control coefficients allowed us to calculate the flux control coefficients of the phosphoenolpyruvate/pyruvate and methyl alpha-D-glucopyranoside/methyl alpha-D-glucopyranoside 6-phosphate couples and the process control coefficients of the phosphotransfer reactions of the glucose phosphotransferase system. We discuss the implications of these values and the possible control points in the glucose phosphotransferase system.
Collapse
Affiliation(s)
- J van der Vlag
- E. C. Slater Instituut, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
10
|
van der Vlag J, van Dam K, Postma PW. Quantification of the regulation of glycerol and maltose metabolism by IIAGlc of the phosphoenolpyruvate-dependent glucose phosphotransferase system in Salmonella typhimurium. J Bacteriol 1994; 176:3518-26. [PMID: 8206828 PMCID: PMC205539 DOI: 10.1128/jb.176.12.3518-3526.1994] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The amount of IIAGlc, one of the proteins of the phosphoenolpyruvate:glucose phosphotransferase system (PTS), was modulated over a broad range with the help of inducible expression plasmids in Salmonella typhimurium. The in vivo effects of different levels of IIAGlc on glycerol and maltose metabolism were studied. The inhibition of glycerol uptake, by the addition of a PTS sugar, was sigmoidally related to the amount of IIAGlc. For complete inhibition of glycerol uptake, a minimal ratio of about 3.6 mol of IIAGlc to 1 mol of glycerol kinase (tetramer) was required. Varying the level of IIAGlc (from 0 to 1,000% of the wild-type level) did not affect the growth rate on glycerol, the rate of glycerol uptake, or the synthesis of glycerol kinase. In contrast, the growth rate on maltose, the rate of maltose uptake, and the synthesis of the maltose-binding protein increased two- to fivefold with increasing levels of IIAGlc. In the presence of cyclic AMP, the maximal levels were obtained at all IIAGlc concentrations. The synthesis of the MalK protein, the target of IIAGlc, was not affected by varying the levels of IIAGlc. The inhibition of maltose uptake was sigmoidally related to the amount of IIAGlc. For complete inhibition of maltose uptake by a PTS sugar, a ratio of about 18 mol of IIAGlc to 1 mol of MalK protein (taken as a dimer) was required.
Collapse
Affiliation(s)
- J van der Vlag
- E. C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
11
|
Postma PW, Lengeler JW, Jacobson GR. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 1993; 57:543-94. [PMID: 8246840 PMCID: PMC372926 DOI: 10.1128/mr.57.3.543-594.1993] [Citation(s) in RCA: 850] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general proteins, enzyme I and HPr, and a number of carbohydrate-specific enzymes, the enzymes II. PTS proteins are phosphoproteins in which the phospho group is attached to either a histidine residue or, in a number of cases, a cysteine residue. After phosphorylation of enzyme I by PEP, the phospho group is transferred to HPr. The enzymes II are required for the transport of the carbohydrates across the membrane and the transfer of the phospho group from phospho-HPr to the carbohydrates. Biochemical, structural, and molecular genetic studies have shown that the various enzymes II have the same basic structure. Each enzyme II consists of domains for specific functions, e.g., binding of the carbohydrate or phosphorylation. Each enzyme II complex can consist of one to four different polypeptides. The enzymes II can be placed into at least four classes on the basis of sequence similarity. The genetics of the PTS is complex, and the expression of PTS proteins is intricately regulated because of the central roles of these proteins in nutrient acquisition. In addition to classical induction-repression mechanisms involving repressor and activator proteins, other types of regulation, such as antitermination, have been observed in some PTSs. Apart from their role in carbohydrate transport, PTS proteins are involved in chemotaxis toward PTS carbohydrates. Furthermore, the IIAGlc protein, part of the glucose-specific PTS, is a central regulatory protein which in its nonphosphorylated form can bind to and inhibit several non-PTS uptake systems and thus prevent entry of inducers. In its phosphorylated form, P-IIAGlc is involved in the activation of adenylate cyclase and thus in the regulation of gene expression. By sensing the presence of PTS carbohydrates in the medium and adjusting the phosphorylation state of IIAGlc, cells can adapt quickly to changing conditions in the environment. In gram-positive bacteria, it has been demonstrated that HPr can be phosphorylated by ATP on a serine residue and this modification may perform a regulatory function.
Collapse
Affiliation(s)
- P W Postma
- E. C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
12
|
Reizer J, Sutrina S, Wu L, Deutscher J, Reddy P, Saier MH. Functional interactions between proteins of the phosphoenolpyruvate:sugar phosphotransferase systems of Bacillus subtilis and Escherichia coli. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50403-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
13
|
Erni B. Group translocation of glucose and other carbohydrates by the bacterial phosphotransferase system. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 137:127-48. [PMID: 1428669 DOI: 10.1016/s0074-7696(08)62675-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- B Erni
- Institut für Biochemie, Universität Bern, Switzerland
| |
Collapse
|
14
|
LiCalsi C, Crocenzi T, Freire E, Roseman S. Sugar transport by the bacterial phosphotransferase system. Structural and thermodynamic domains of enzyme I of Salmonella typhimurium. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55026-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
15
|
Plumbridge JA. Induction of the nag regulon of Escherichia coli by N-acetylglucosamine and glucosamine: role of the cyclic AMP-catabolite activator protein complex in expression of the regulon. J Bacteriol 1990; 172:2728-35. [PMID: 2158978 PMCID: PMC208918 DOI: 10.1128/jb.172.5.2728-2735.1990] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The divergent nag regulon located at 15.5 min on the Escherichia coli map encodes genes necessary for growth on N-acetylglucosamine and glucosamine. Full induction of the regulon requires both the presence of N-acetylglucosamine and a functional cyclic AMP (cAMP)-catabolite activator protein (CAP) complex. Glucosamine produces a lower level of induction of the regulon. A nearly symmetric consensus CAP-binding site is located in the intergenic region between nagE (encoding EIINag) and nagB (encoding glucosamine-6-phosphate deaminase). Expression of both nagE and nagB genes is stimulated by cAMP-CAP, but the effect is more pronounced for nagE. In fact, very little expression of nagE is observed in the absence of cAMP-CAP, whereas 50% maximum expression of nagB is observed with N-acetylglucosamine in the absence of cAMP-CAP. Two mRNA 5' ends separated by about 100 nucleotides were located before nagB, and both seem to be similarly subject to N-acetylglucosamine induction and cAMP-CAP stimulation. To induce the regulon, N-acetylglucosamine or glucosamine must enter the cell, but the particular transport mechanism used is not important.
Collapse
|
16
|
Saier MH. Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Microbiol Rev 1989; 53:109-20. [PMID: 2651862 PMCID: PMC372719 DOI: 10.1128/mr.53.1.109-120.1989] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The bacterial phosphotransferase system (PTS) functions in a variety of regulatory capacities. One of the best characterized of these is the process by which the PTS regulates inducer uptake and catabolite repression. Early genetic and physiological evidence supported a mechanism whereby the phosphorylation state of an enzyme of the PTS, the enzyme III specific for glucose (IIIGlc), allosterically inhibits the activities of a number of permeases and catabolic enzymes, the lactose, galactose, melibiose, and maltose permeases, as well as glycerol kinase. Extensive biochemical evidence now supports this model. Evidence is also available showing that substrate binding to those target proteins enhances their affinities for IIIGlc. In the case of the lactose permease, this positively cooperative interaction represents a well documented example of transmembrane signaling, demonstrated both in vivo and in vitro. Although the PTS-mediated regulation of cyclic AMP synthesis (catabolite repression) is not as well defined from a mechanistic standpoint, a model involving allosteric activation of adenylate cyclase by phospho-IIIGlc, together with the evidence supporting it, is presented. These regulatory mechanisms may prove to be operative in gram-positive as well as gram-negative bacteria, but the former organisms may have introduced variations on the theme by covalently attaching IIIGlc-like moieties to some of the target permeases and catabolic enzymes. It appears likely that the general process of PTS-catalyzed protein phosphorylation-dephosphorylation will prove to be important to the regulation of numerous bacterial physiological processes, including chemotaxis, intermediary metabolism, gene transcription, and virulence.
Collapse
|
17
|
Sugar transport by the bacterial phosphotransferase system. Reconstitution of inducer exclusion in Salmonella typhimurium membrane vesicles. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47723-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
18
|
Saffen DW, Presper KA, Doering TL, Roseman S. Sugar transport by the bacterial phosphotransferase system. Molecular cloning and structural analysis of the Escherichia coli ptsH, ptsI, and crr genes. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47721-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|