1
|
Li J, Wang X, Zhang Y, Jia H, Bi Y. cGMP regulates hydrogen peroxide accumulation in calcium-dependent salt resistance pathway in Arabidopsis thaliana roots. PLANTA 2011; 234:709-22. [PMID: 21617988 DOI: 10.1007/s00425-011-1439-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/09/2011] [Indexed: 05/07/2023]
Abstract
3',5'-cyclic guanosine monophosphate (cGMP) is an important second messenger in plants. In the present study, roles of cGMP in salt resistance in Arabidopsis roots were investigated. Arabidopsis roots were sensitive to 100 mM NaCl treatment, displaying a great increase in electrolyte leakage and Na(+)/K(+) ratio and a decrease in gene expression of the plasma membrane (PM) H(+)-ATPase. However, application of exogenous 8Br-cGMP (an analog of cGMP), H(2)O(2) or CaCl(2) alleviated the NaCl-induced injury by maintaining a lower Na(+)/K(+) ratio and increasing the PM H(+)-ATPase gene expression. In addition, the inhibition of root elongation and seed germination under salt stress was removed by 8Br-cGMP. Further study indicated that 8Br-cGMP-induced higher NADPH levels for PM NADPH oxidase to generate H(2)O(2) by regulating glucose-6-phosphate dehydrogenase (G6PDH) activity. The effect of 8Br-cGMP and H(2)O(2) on ionic homeostasis was abolished when Ca(2+) was eliminated by glycol-bis-(2-amino ethyl ether)-N,N,N',N'-tetraacetic acid (EGTA, a Ca(2+) chelator) in Arabidopsis roots under salt stress. Taken together, cGMP could regulate H(2)O(2) accumulation in salt stress, and Ca(2+) was necessary in the cGMP-mediated signaling pathway. H(2)O(2), as the downstream component of cGMP signaling pathway, stimulated PM H(+)-ATPase gene expression. Thus, ion homeostasis was modulated for salt tolerance.
Collapse
Affiliation(s)
- Jisheng Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | | | | | | | | |
Collapse
|
2
|
Frey, Randall. Initial steps in the assembly of the vacuole-type H+-ATPase. PLANT PHYSIOLOGY 1998; 118:137-47. [PMID: 9733533 PMCID: PMC34850 DOI: 10.1104/pp.118.1.137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/1998] [Accepted: 05/28/1998] [Indexed: 05/22/2023]
Abstract
The plant vacuole is acidified by a complex multimeric enzyme, the vacuole-type H+-ATPase (V-ATPase). The initial association of ATPase subunits on membranes was studied using an in vitro assembly assay. The V-ATPase assembled onto microsomes when V-ATPase subunits were supplied. However, when the A or B subunit or the proteolipid were supplied individually, only the proteolipid associated with membranes. By using poly(A+) RNA depleted in the B subunit and proteolipid subunit mRNA, we demonstrated A subunit association with membranes at substoichiometric amounts of the B subunit or the 16-kD proteolipid. These data suggest that poly(A+) RNA-encoded proteins are required to catalyze the A subunit membrane assembly. Initial events were further studied by in vivo protein labeling. Consistent with a temporal ordering of V-ATPase assembly, membranes contained only the A subunit at early times; at later times both the A and B subunits were found on the membranes. A large-mass ATPase complex was not efficiently formed in the absence of membranes. Together, these data support a model whereby the A subunit is first assembled onto the membrane, followed by the B subunit.
Collapse
Affiliation(s)
- Frey
- Department of Biology, Indiana University-Purdue University at Indianapolis, 723 West Michigan Street, Indianapolis, Indiana 46202-5132, USA
| | | |
Collapse
|
3
|
Wada Y, Anraku Y. Chemiosmotic coupling of ion transport in the yeast vacuole: its role in acidification inside organelles. J Bioenerg Biomembr 1994; 26:631-7. [PMID: 7721725 DOI: 10.1007/bf00831538] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Acidification inside the vacuo-lysosome systems is ubiquitous in eukaryotic organisms and essential for organelle functions. The acidification of these organelles is accomplished by proton-translocating ATPase belonging to the V-type H(+)-ATPase superfamily. However, in terms of chemiosmotic energy transduction, electrogenic proton pumping alone is not sufficient to establish and maintain those compartments inside acidic. Current studies have shown that the in situ acidification depends upon the activity of V-ATPase and vacuolar anion conductance; the latter is required for shunting a membrane potential (interior positive) generated by the positively charged proton translocation. Yeast vacuoles possess two distinct Cl- transport systems both participating in the acidification inside the vacuole, a large acidic compartment with digestive and storage functions. These two transport systems have distinct characteristics for their kinetics of Cl- uptake or sensitivity to a stilbene derivative. One shows linear dependence on a Cl- concentration and is inhibited by 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS). The other shows saturable kinetics with an apparent Km for Cl- of approximately 20 mM. Molecular mechanisms of the chemiosmotic coupling in the vacuolar ion transport and acidification inside are discussed in detail.
Collapse
Affiliation(s)
- Y Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Japan
| | | |
Collapse
|
4
|
Harrison MA, Jones PC, Kim YI, Finbow ME, Findlay JB. Functional properties of a hybrid vacuolar H(+)-ATPase in Saccharomyces cells expressing the Nephrops 16-kDa proteolipid. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 221:111-20. [PMID: 8168500 DOI: 10.1111/j.1432-1033.1994.tb18719.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The hydrophobic 16-kDa polypeptide which forms gap-junction-like structures in the crustacean Nephrops norvegicus is a member of a highly conserved family of proteolipids involved in a variety of membrane transport functions in eukaryotic cells. This family also includes the product of the Saccharomyces cerevisiae VMA3 gene which encodes an integral membrane component of the vacuolar membrane H(+)-ATPase. The cDNA for the Nephrops proteolipid complements a mutation in the yeast VMA3 gene, resulting in assembly of a hybrid H(+)-ATPase comprising yeast catalytic subunits and Nephrops integral membrane components. The hybrid vacuolar ATPase was capable of ATP hydrolysis which was coupled to proton translocation and showed inhibitor binding and enzymological properties similar to those of wild-type V-ATPases (Km for ATP, 0.4 mM), suggesting that both yeast and crustacean proteolipids share conserved structure at regions of protein interaction. To facilitate isolation of the Nephrops proteolipid by affinity chromatography on a Ni(2+)-binding support, six C-terminal histidine residues were added to the proteolipid. This modification did not prohibit assembly into the hybrid H(+)-ATPase, although the resultant enzyme did have a markedly elevated Km (1.8 mM). The membrane-bound Vo sector of the ATPase was isolated by the affinity-chromatography procedure and reconstituted into synthetic vesicles. This complex was found to be impermeable to small cations in the absence of catalytic ATPase subunits either in situ in the vacuolar membrane or in the reconstituted system. The functional significance of this impermeability and the structure/function relationships between proteolipids from different sources are discussed.
Collapse
Affiliation(s)
- M A Harrison
- Department of Biochemistry and Molecular Biology, University of Leeds, England
| | | | | | | | | |
Collapse
|
5
|
Takase K, Kakinuma S, Yamato I, Konishi K, Igarashi K, Kakinuma Y. Sequencing and characterization of the ntp gene cluster for vacuolar-type Na(+)-translocating ATPase of Enterococcus hirae. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)78088-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
6
|
Reconstitution of transport function of vacuolar H(+)-translocating inorganic pyrophosphatase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)36690-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
7
|
Kane PM, Stevens TH. Subunit composition, biosynthesis, and assembly of the yeast vacuolar proton-translocating ATPase. J Bioenerg Biomembr 1992; 24:383-93. [PMID: 1400283 DOI: 10.1007/bf00762531] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The yeast vacuole is acidified by a vacuolar proton-translocating ATPase (H(+)-ATPase) that closely resembles the vacuolar H(+)-ATPases of other fungi, animals, and plants. The yeast enzyme is purified as a complex of eight subunits, which include both integral and peripheral membrane proteins. The genes for seven of these subunits have been cloned, and mutant strains lacking each of the subunits (vma mutants) have been constructed. Disruption of any of the subunit genes appears to abolish the function of the vacuolar H(+)-ATPase, supporting the subunit composition derived from biochemical studies. Genetic studies of vacuolar acidification have also revealed an additional set of gene products that are required for vacuolar H(+)-ATPase activity, but may not be part of the final enzyme complex. The biosynthesis, assembly, and targeting of the enzyme is being elucidated by biochemical and cell biological studies of the vma mutants. Initial results suggest that the peripheral and integral membrane subunits may be independently assembled.
Collapse
Affiliation(s)
- P M Kane
- Department of Chemistry, College of William and Mary, Williamsburg, Virginia 23187
| | | |
Collapse
|
8
|
Sze H, Ward JM, Lai S. Vacuolar H(+)-translocating ATPases from plants: structure, function, and isoforms. J Bioenerg Biomembr 1992; 24:371-81. [PMID: 1400282 DOI: 10.1007/bf00762530] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The vacuolar H(+)-translocating ATPase (V-type ATPase) plays a central role in the growth and development of plant cells. In a mature cell, the vacuole is the largest intracellular compartment, occupying about 90% of the cell volume. The proton electrochemical gradient (acid inside) formed by the vacuolar ATPase provides the primary driving force for the transport of numerous ions and metabolites against their electrochemical gradients. The uptake and release of solutes across the vacuolar membrane is fundamental to many cellular processes, such as osmoregulation, signal transduction, and metabolic regulation. Vacuolar ATPases may also reside on endomembranes, such as Golgi and coated vesicles, and thus may participate in intracellular membrane traffic, sorting, and secretion. Plant vacuolar ATPases are large complexes (400-650 kDa) composed of 7-10 different subunits. The peripheral sector of 5-6 subunits includes the nucleotide-binding catalytic and regulatory subunits of approximately 70 and approximately 60 kDa, respectively. Six copies of the 16-kDa proteolipid together with 1-3 other subunits make up the integral sector that forms the H+ conducting pathway. Isoforms of plant vacuolar ATPases are suggested by the variations in subunit composition observed among and within plant species, and by the presence of a small multigene family encoding the 16-kDa and 70-kDa subunits. Multiple genes may encode isoforms with specific properties required to serve the diverse functions of vacuoles and endomembrane compartments.
Collapse
Affiliation(s)
- H Sze
- Department of Botany, University of Maryland, College Park 20742
| | | | | |
Collapse
|
9
|
Manolson M, Proteau D, Preston R, Stenbit A, Roberts B, Hoyt M, Preuss D, Mulholland J, Botstein D, Jones E. The VPH1 gene encodes a 95-kDa integral membrane polypeptide required for in vivo assembly and activity of the yeast vacuolar H(+)-ATPase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49711-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
10
|
Lai S, Watson J, Hansen J, Sze H. Molecular cloning and sequencing of cDNAs encoding the proteolipid subunit of the vacuolar H(+)-ATPase from a higher plant. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98518-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
11
|
Maeshima M. H(+)-translocating inorganic pyrophosphatase of plant vacuoles. Inhibition by Ca2+, stabilization by Mg2+ and immunological comparison with other inorganic pyrophosphatases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 196:11-7. [PMID: 1848180 DOI: 10.1111/j.1432-1033.1991.tb15779.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effects of divalent cations, especially Ca2+ and Mg2+, on the proton-translocating inorganic pyrophosphatase purified from mung bean vacuoles were investigated to compare the enzyme with other pyrophosphatases. The pyrophosphatase was irreversibly inactivated by incubation in the absence of Mg2+. The removal of Mg2+ from the enzyme increased susceptibility to proteolysis by trypsin. Vacuolar pyrophosphatase required free Mg2+ as an essential cofactor (K0.5 = 42 microM). Binding of Mg2+ stabilizes and activates the enzyme. The formation of MgPPi is also an important role of magnesium ion. Apparent Km of the enzyme for MgPPi was about 130 microM. CaCl2 decreased the enzyme activity to less than 60% at 40 microM, and the inhibition was reversed by EGTA. Pyrophosphatase activity was measured under different conditions of Mg2+ and Ca2+ concentrations at pH 7.2. The rate of inhibition depended on the concentration of CaPPi, and the approximate Ki for CaPPi was 17 microM. A high concentration of free Ca2+ did not inhibit the enzyme at a low concentration of CaPPi. It appears that for Ca2+, at least, the inhibitory form is the Ca2(+)-PPi complex. Cd2+, Co2+ and Cu2+ also inhibited the enzyme. The antibody against the vacuolar pyrophosphatase did not react with rat liver mitochondrial or yeast cytosolic pyrophosphatases. Also, the antibody to the yeast enzyme did not react with the vacuolar enzyme. Thus, the catalytic properties of the vacuolar pyrophosphatase, such as Mg2+ requirement and sensitivity to Ca2+, are common to the other pyrophosphatases, but the vacuolar enzyme differs from them in subunit mass and immunoreactivity.
Collapse
Affiliation(s)
- M Maeshima
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
12
|
Matsuura-Endo C, Maeshima M, Yoshida S. Subunit composition of vacuolar membrane H(+)-ATPase from mung bean. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 187:745-51. [PMID: 2137412 DOI: 10.1111/j.1432-1033.1990.tb15362.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The vacuolar H(+)-ATPase from mung bean hypocotyls was solubilized from the membrane with lysophosphatidycholine and purified by QAE-Toyopearl column chromatography. The purified ATPase was active only in the presence of exogenous phospholipid and was inhibited by nitrate, dicyclohexyl carbodiimide and Triton X-100, but not by vanadate or azide. Dodecyl sulfate/polyacrylamide gel electrophoresis of the purified ATPase yielded ten polypeptides of molecular masses of 68 kDa, 57 kDa, 44 kDa, 43 kDa, 38 kDa, 37 kDa 32 kDa, 16 kDa, 13 kDa and 12 kDa. All polypeptides remained in the peak activity fraction after glycerol density gradient centrifugation. Nine of them, excluding the 43-kDa polypeptide, comigrated in a polyacrylamide gradient gel in the presence of 0.1% Triton X-100. The 16-kDa polypeptide could be labeled with [14C]dicyclohexylcarbodiimide. The amino-terminal amino acid sequence of the isolated 68-kDa polypeptide generally agreed with that deduced from the cDNA for the carrot 69-kDa subunit [Zimniak, L., Dittrich, P., Gogarten, J. P., Kibak, H. & Taiz, L. (1988) J. Biol. Chem. 263, 9102-9112]. Thus, mung bean vacuolar H(+)-ATPase seems to consist of nine distinct subunits.
Collapse
Affiliation(s)
- C Matsuura-Endo
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
13
|
REA PHILIPA, TURNER JANICEC. Tonoplast Adenosine Triphosphatase and Inorganic Pyrophosphatase. METHODS IN PLANT BIOCHEMISTRY 1990. [DOI: 10.1016/b978-0-12-461013-2.50035-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
|
15
|
Parry RV, Turner JC, Rea PA. High Purity Preparations of Higher Plant Vacuolar H+-ATPase Reveal Additional Subunits. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)47213-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
Schobert B, Lanyi JK. Hysteretic behavior of an ATPase from the archaebacterium, Halobacterium saccharovorum. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)51558-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
17
|
Schweikl H, Klein U, Schindlbeck M, Wieczorek H. A Vacuolar-type ATPase, Partially Purified from Potassium Transporting Plasma Membranes of Tobacco Hornworm Midgut. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)60440-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
18
|
|
19
|
Manolson MF, Ouellette BF, Filion M, Poole RJ. cDNA sequence and homologies of the “57-kDa” nucleotide-binding subunit of the vacuolar ATPase from Arabidopsis. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)81313-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
20
|
Bowman EJ, Tenney K, Bowman BJ. Isolation of genes encoding the Neurospora vacuolar ATPase. Analysis of vma-1 encoding the 67-kDa subunit reveals homology to other ATPases. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68175-x] [Citation(s) in RCA: 164] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
21
|
Bowman BJ, Allen R, Wechser MA, Bowman EJ. Isolation of genes encoding the Neurospora vacuolar ATPase. Analysis of vma-2 encoding the 57-kDa polypeptide and comparison to vma-1. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68176-1] [Citation(s) in RCA: 138] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
22
|
The cDNA sequence of the 69-kDa subunit of the carrot vacuolar H+-ATPase. Homology to the beta-chain of F0F1-ATPases. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)76514-4] [Citation(s) in RCA: 204] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Kaestner KH, Randall SK, Sze H. N,N'-dicyclohexylcarbodiimide-binding proteolipid of the vacuolar H+-ATPase from oat roots. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)57297-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|