1
|
Hsieh JY, Chen KC, Wang CH, Liu GY, Ye JA, Chou YT, Lin YC, Lyu CJ, Chang RY, Liu YL, Li YH, Lee MR, Ho MC, Hung HC. Suppression of the human malic enzyme 2 modifies energy metabolism and inhibits cellular respiration. Commun Biol 2023; 6:548. [PMID: 37217557 DOI: 10.1038/s42003-023-04930-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 05/12/2023] [Indexed: 05/24/2023] Open
Abstract
Human mitochondrial NAD(P)+-dependent malic enzyme (ME2) is well-known for its role in cell metabolism, which may be involved in cancer or epilepsy. We present potent ME2 inhibitors based on cyro-EM structures that target ME2 enzyme activity. Two structures of ME2-inhibitor complexes demonstrate that 5,5'-Methylenedisalicylic acid (MDSA) and embonic acid (EA) bind allosterically to ME2's fumarate-binding site. Mutagenesis studies demonstrate that Asn35 and the Gln64-Tyr562 network are required for both inhibitors' binding. ME2 overexpression increases pyruvate and NADH production while decreasing the cell's NAD+/NADH ratio; however, ME2 knockdown has the opposite effect. MDSA and EA inhibit pyruvate synthesis and thus increase the NAD+/NADH ratio, implying that these two inhibitors interfere with metabolic changes by inhibiting cellular ME2 activity. ME2 silence or inhibiting ME2 activity with MDSA or EA decreases cellular respiration and ATP synthesis. Our findings suggest that ME2 is crucial for mitochondrial pyruvate and energy metabolism, as well as cellular respiration, and that ME2 inhibitors could be useful in the treatment of cancer or other diseases that involve these processes.
Collapse
Affiliation(s)
- Ju-Yi Hsieh
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Kun-Chi Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan ROC
| | - Guang-Yaw Liu
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan ROC
| | - Jie-An Ye
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan ROC
| | - Yu-Tung Chou
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Yi-Chun Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Cheng-Jhe Lyu
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Rui-Ying Chang
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Yi-Liang Liu
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Yen-Hsien Li
- Instrument Center, Office of Research and Development, National Chung Hsing University, Taichung, 40227, Taiwan ROC
- Department of Chemistry, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Mau-Rong Lee
- Department of Chemistry, National Chung Hsing University, Taichung, 402, Taiwan ROC
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan ROC.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 106, Taiwan ROC.
| | - Hui-Chih Hung
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan ROC.
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, 402, Taiwan ROC.
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, 402, Taiwan ROC.
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan ROC.
| |
Collapse
|
2
|
Grell TA, Mason M, Thompson AA, Gómez-Tamayo JC, Riley D, Wagner MV, Steele R, Ortiz-Meoz RF, Wadia J, Shaffer PL, Tresadern G, Sharma S, Yu X. Integrative structural and functional analysis of human malic enzyme 3: A potential therapeutic target for pancreatic cancer. Heliyon 2022; 8:e12392. [PMID: 36590518 PMCID: PMC9801130 DOI: 10.1016/j.heliyon.2022.e12392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Malic enzymes (ME1, ME2, and ME3) are involved in cellular energy regulation, redox homeostasis, and biosynthetic processes, through the production of pyruvate and reducing agent NAD(P)H. Recent studies have implicated the third and least well-characterized isoform, mitochondrial NADP+-dependent malic enzyme 3 (ME3), as a therapeutic target for pancreatic cancers. Here, we utilized an integrated structure approach to determine the structures of ME3 in various ligand-binding states at near-atomic resolutions. ME3 is captured in the open form existing as a stable tetramer and its dynamic Domain C is critical for activity. Catalytic assay results reveal that ME3 is a non-allosteric enzyme and does not require modulators for activity while structural analysis suggests that the inner stability of ME3 Domain A relative to ME2 disables allostery in ME3. With structural information available for all three malic enzymes, the foundation has been laid to understand the structural and biochemical differences of these enzymes and could aid in the development of specific malic enzyme small molecule drugs.
Collapse
Affiliation(s)
- Tsehai A.J. Grell
- Structural and Protein Sciences, Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Mark Mason
- Structural and Protein Sciences, Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Aaron A. Thompson
- Structural and Protein Sciences, Janssen Research and Development, LLC, San Diego, California 92121, United States
| | | | - Daniel Riley
- Lead Discovery and Molecular Pharmacology, Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Michelle V. Wagner
- Emerging Science Initiative, Janssen Research and Development, LLC, San Diego, California 92121, United States
| | - Ruth Steele
- Structural and Protein Sciences, Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Rodrigo F. Ortiz-Meoz
- Lead Discovery and Molecular Pharmacology, Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Jay Wadia
- Emerging Science Initiative, Janssen Research and Development, LLC, San Diego, California 92121, United States
| | - Paul L. Shaffer
- Structural and Protein Sciences, Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Gary Tresadern
- Computational Chemistry, Janssen Research and Development, LLC, Beerse, B2340, Belgium
| | - Sujata Sharma
- Structural and Protein Sciences, Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States,Structural and Protein Sciences, Janssen Research and Development, LLC, San Diego, California 92121, United States,Corresponding author.
| | - Xiaodi Yu
- Structural and Protein Sciences, Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States,Corresponding author.
| |
Collapse
|
3
|
Le XH, Lee CP, Monachello D, Millar AH. Metabolic evidence for distinct pyruvate pools inside plant mitochondria. NATURE PLANTS 2022; 8:694-705. [PMID: 35681019 DOI: 10.1038/s41477-022-01165-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The majority of the pyruvate inside plant mitochondria is either transported into the matrix from the cytosol via the mitochondria pyruvate carrier (MPC) or synthesized in the matrix by alanine aminotransferase (AlaAT) or NAD-malic enzyme (NAD-ME). Pyruvate from these origins could mix into a single pool in the matrix and contribute indistinguishably to respiration via the pyruvate dehydrogenase complex (PDC), or these molecules could maintain a degree of independence in metabolic regulation. Here we demonstrate that feeding isolated mitochondria with uniformly labelled 13C-pyruvate and unlabelled malate enables the assessment of pyruvate contribution from different sources to intermediate production in the tricarboxylic acid cycle. Imported pyruvate was the preferred source for citrate production even when the synthesis of NAD-ME-derived pyruvate was optimized. Genetic or pharmacological elimination of MPC activity removed this preference and allowed an equivalent amount of citrate to be generated from the pyruvate produced by NAD-ME. Increasing the mitochondrial pyruvate pool size by exogenous addition affected only metabolites from pyruvate transported by MPC, whereas depleting the pyruvate pool size by transamination to alanine affected only metabolic products derived from NAD-ME. PDC was more membrane-associated than AlaAT and NAD-ME, suggesting that the physical organization of metabolic machinery may influence metabolic rates. Together, these data reveal that the respiratory substrate supply in plants involves distinct pyruvate pools inside the matrix that can be flexibly mixed on the basis of the rate of pyruvate transport from the cytosol. These pools are independently regulated and contribute differentially to organic acid export from plant mitochondria.
Collapse
Affiliation(s)
- Xuyen H Le
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
| | - Chun Pong Lee
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
| | - Dario Monachello
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - A Harvey Millar
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia.
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
4
|
Parkinson EK, Adamski J, Zahn G, Gaumann A, Flores-Borja F, Ziegler C, Mycielska ME. Extracellular citrate and metabolic adaptations of cancer cells. Cancer Metastasis Rev 2021; 40:1073-1091. [PMID: 34932167 PMCID: PMC8825388 DOI: 10.1007/s10555-021-10007-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022]
Abstract
It is well established that cancer cells acquire energy via the Warburg effect and oxidative phosphorylation. Citrate is considered to play a crucial role in cancer metabolism by virtue of its production in the reverse Krebs cycle from glutamine. Here, we review the evidence that extracellular citrate is one of the key metabolites of the metabolic pathways present in cancer cells. We review the different mechanisms by which pathways involved in keeping redox balance respond to the need of intracellular citrate synthesis under different extracellular metabolic conditions. In this context, we further discuss the hypothesis that extracellular citrate plays a role in switching between oxidative phosphorylation and the Warburg effect while citrate uptake enhances metastatic activities and therapy resistance. We also present the possibility that organs rich in citrate such as the liver, brain and bones might form a perfect niche for the secondary tumour growth and improve survival of colonising cancer cells. Consistently, metabolic support provided by cancer-associated and senescent cells is also discussed. Finally, we highlight evidence on the role of citrate on immune cells and its potential to modulate the biological functions of pro- and anti-tumour immune cells in the tumour microenvironment. Collectively, we review intriguing evidence supporting the potential role of extracellular citrate in the regulation of the overall cancer metabolism and metastatic activity.
Collapse
Affiliation(s)
- E Kenneth Parkinson
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London, E1 2AD, UK.
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Department of Experimental Genetics, Technical University of Munich, Munich, Germany.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Andreas Gaumann
- Institute of Pathology Kaufbeuren-Ravensburg, 87600, Kaufbeuren, Germany
| | - Fabian Flores-Borja
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London, E1 2AD, UK
| | - Christine Ziegler
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Maria E Mycielska
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany.
| |
Collapse
|
5
|
Mercaldi GF, Eufrásio AG, Ranzani AT, do Nascimento Faria J, Mota SGR, Fagundes M, Bruder M, Cordeiro AT. Trypanosoma cruzi Malic Enzyme Is the Target for Sulfonamide Hits from the GSK Chagas Box. ACS Infect Dis 2021; 7:2455-2471. [PMID: 34279922 DOI: 10.1021/acsinfecdis.1c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chagas disease, an infectious condition caused by Trypanosoma cruzi, lacks treatment with drugs with desired efficacy and safety profiles. To address this unmet medical need, a set of trypanocidal compounds were identified through a large multicenter phenotypic-screening initiative and assembled in the GSK Chagas Box. In the present work, we report the screening of the Chagas Box against T. cruzi malic enzymes (MEs) and the identification of three potent inhibitors of its cytosolic isoform (TcMEc). One of these compounds, TCMDC-143108 (1), came out as a nanomolar inhibitor of TcMEc, and 14 new derivatives were synthesized and tested for target inhibition and efficacy against the parasite. Moreover, we determined the crystallographic structures of TcMEc in complex with TCMDC-143108 (1) and six derivatives, revealing the allosteric inhibition site and the determinants of specificity. Our findings connect phenotypic hits from the Chagas Box to a relevant metabolic target in the parasite, providing data to foster new structure-activity guided hit optimization initiatives.
Collapse
Affiliation(s)
- Gustavo F. Mercaldi
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP 13083-970, Brazil
| | - Amanda G. Eufrásio
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP 13083-970, Brazil
- Faculty of Pharmaceutic Sciences, University of Campinas, Campinas, SP 13083-871, Brazil
| | - Americo T. Ranzani
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP 13083-970, Brazil
- Institute of Biology, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Jessica do Nascimento Faria
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP 13083-970, Brazil
| | - Sabrina G. R. Mota
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP 13083-970, Brazil
- Institute of Biology, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Michelle Fagundes
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP 13083-970, Brazil
| | - Marjorie Bruder
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP 13083-970, Brazil
| | - Artur T. Cordeiro
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP 13083-970, Brazil
- Faculty of Pharmaceutic Sciences, University of Campinas, Campinas, SP 13083-871, Brazil
| |
Collapse
|
6
|
Single nucleotide variants lead to dysregulation of the human mitochondrial NAD(P) +-dependent malic enzyme. iScience 2021; 24:102034. [PMID: 33554057 PMCID: PMC7847962 DOI: 10.1016/j.isci.2021.102034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/16/2020] [Accepted: 12/31/2020] [Indexed: 11/23/2022] Open
Abstract
Human mitochondrial NAD(P)+-dependent malic enzyme (ME2) is well recognized to associate with cancer cell metabolism, and the single nucleotide variants (SNVs) of ME2 may play a role in enzyme regulation. Here we reported that the SNVs of ME2 occurring in the allosteric sites lead to inactivation or overactivation of ME2. Two ME2-SNVs, ME2_R67Q and ME2-R484W, that demonstrated inactivating or overactivating enzyme activities of ME2, respectively, have different impact toward the cells. The cells with overactivating SNV enzyme, ME2_R484W, grow more rapidly and are more resistant to cellular senescence than the cells with wild-type or inactivating SNV enzyme, ME2_R67Q. Crystal structures of these two ME2-SNVs reveal that ME2_R67Q was an inactivating "dead form," and ME2_R484W was an overactivating "closed form" of the enzyme. The resolved ME2-SNV structures provide a molecular basis to explain the abnormal kinetic properties of these SNV enzymes.
Collapse
|
7
|
Hsieh JY, Shih WT, Kuo YH, Liu GY, Hung HC. Functional Roles of Metabolic Intermediates in Regulating the Human Mitochondrial NAD(P) +-Dependent Malic Enzyme. Sci Rep 2019; 9:9081. [PMID: 31235710 PMCID: PMC6591397 DOI: 10.1038/s41598-019-45282-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/30/2019] [Indexed: 02/08/2023] Open
Abstract
Human mitochondrial NAD(P)+-dependent malic enzyme (m-NAD(P)-ME) has a dimer of dimers quaternary structure with two independent allosteric sites in each monomer. Here, we reveal the different effects of nucleotide ligands on the quaternary structure regulation and functional role of the human m-NAD(P)-ME exosite. In this study, size distribution analysis was utilized to investigate the monomer-dimer-tetramer equilibrium of m-NAD(P)-ME in the presence of different ligands, and the monomer-dimer (Kd,12) and dimer-tetramer (Kd,24) dissociation constants were determined with these ligands. With NAD+, the enzyme formed more tetramers, and its Kd,24 (0.06 µM) was 6-fold lower than the apoenzyme Kd,24 (0.34 µM). When ATP was present, the enzyme displayed more dimers, and its Kd,24 (2.74 µM) was 8-fold higher than the apoenzyme. Similar to the apoenzyme, the ADP-bound enzyme was present as a tetramer with a small amount of dimers and monomers. These results indicate that NAD+ promotes association of the dimeric enzyme into tetramers, whereas ATP stimulates dissociation of the tetrameric enzyme into dimers, and ADP has little effect on the tetrameric stability of the enzyme. A series of exosite mutants were created using site-directed mutagenesis. Size distribution analysis and kinetic studies of these mutants with NAD+ or ATP indicated that Arg197, Asn482 and Arg556 are essential for the ATP binding and ATP-induced dissociation of human m-NAD(P)-ME. In summary, the present results demonstrate that nucleotides perform discrete functions regulating the quaternary structure and catalysis of m-NAD(P)-ME. Such regulation by the binding of different nucleotides may be critically associated with the physiological concentrations of these ligands.
Collapse
Affiliation(s)
- Ju-Yi Hsieh
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Wan-Ting Shih
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Hsuan Kuo
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Guang-Yaw Liu
- Institute of Biochemistry, Microbiology & Immunology, Chung Shan Medical University, Taichung, Taiwan.,Division of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Chih Hung
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan. .,Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan. .,iEGG & Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
8
|
α -Lipoic acid ameliorated oxidative stress induced by perilla oil, but the combination of these dietary factors was ineffective to cause marked deceases in serum lipid levels in rats. Nutr Res 2017; 48:49-64. [DOI: 10.1016/j.nutres.2017.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 09/30/2017] [Accepted: 10/06/2017] [Indexed: 01/07/2023]
|
9
|
Oren T, Nimri L, Yehuda-Shnaidman E, Staikin K, Hadar Y, Friedler A, Amartely H, Slutzki M, Pizio AD, Niv MY, Peri I, Graeve L, Schwartz B. Recombinant ostreolysin induces brown fat-like phenotype in HIB-1B cells. Mol Nutr Food Res 2017; 61. [PMID: 28464422 DOI: 10.1002/mnfr.201700057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/21/2017] [Accepted: 04/13/2017] [Indexed: 12/13/2022]
Abstract
SCOPE Brown adipose tissue (BAT) is the main regulator of thermogenesis by increasing energy expenditure through the uncoupling of oxidative metabolism from ATP synthesis. There is a growing body of evidence for BAT being the key responsible organ in combating obesity and its related disorders. Herein we propose the fungal protein ostreolysin (Oly), which has been previously shown to bind to cholesterol-enriched raft-like membrane domains (lipid rafts) of mammalian cells, as a suitable candidate for interaction with brown preadipocytes. The aim of the present study was therefore to characterize the mechanism by which a recombinant version of ostreolysin (rOly) induces brown adipocyte differentiation. METHODS AND RESULTS Primary isolated brown preadipocytes or HIB-1B brown preadipocyte cells were treated with rOly and the effects on morphology, lipid accumulation, respiration rate, and associated gene and protein expression were measured. rOly upregulated mRNA and protein levels of factors related to brown adipocyte differentiation, induced lipid droplet formation, and increased cellular respiration rate due to expression of uncoupling protein 1. rOly also upregulated β-tubulin expression, and therefore microtubules might be involved in its mechanism of action. CONCLUSION rOly promotes brown adipocyte differentiation, suggesting a new mechanism for rOly's contribution to the battle against obesity.
Collapse
Affiliation(s)
- Tom Oren
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lili Nimri
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Einav Yehuda-Shnaidman
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Katy Staikin
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Assaf Friedler
- Institute of Chemistry, the Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, Israel
| | - Hadar Amartely
- Institute of Chemistry, the Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, Israel
| | - Michal Slutzki
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Antonella Di Pizio
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Masha Y Niv
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Irena Peri
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lutz Graeve
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart, Germany
| | - Betty Schwartz
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
10
|
Ranzani AT, Nowicki C, Wilkinson SR, Cordeiro AT. Identification of Specific Inhibitors of Trypanosoma cruzi Malic Enzyme Isoforms by Target-Based HTS. SLAS DISCOVERY 2017; 22:1150-1161. [PMID: 28459632 DOI: 10.1177/2472555217706649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease. The lack of an efficient and safe treatment supports the research into novel metabolic targets, with the malic enzyme (ME) representing one such potential candidate. T. cruzi expresses a cytosolic (TcMEc) and a mitochondrial (TcMEm) ME isoform, with these activities functioning to generate NADPH, a key source of reducing equivalents that drives a range of anabolic and protective processes. To identify specific inhibitors that target TcMEs, two independent high-throughput screening strategies using a diversity library containing 30,000 compounds were employed. IC50 values of 262 molecules were determined for both TcMEs, as well as for three human ME isoforms, with the inhibitors clustered into six groups according to their chemical similarity. The most potent hits belonged to a sulfonamide group that specifically target TcMEc. Moreover, several selected inhibitors of both TcMEs showed a trypanocidal effect against the replicative forms of T. cruzi. The chemical diversity observed among those compounds that inhibit TcMEs activity emphasizes the druggability of these enzymes, with a sulfonamide-based subset of compounds readily able to block TcMEc function at a low nanomolar range.
Collapse
Affiliation(s)
- Americo T Ranzani
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Sao Paulo, Brazil.,Institute of Biology, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Cristina Nowicki
- Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológica (IQUIFIB-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Shane R Wilkinson
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Artur T Cordeiro
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Sao Paulo, Brazil
| |
Collapse
|
11
|
Baris TZ, Wagner DN, Dayan DI, Du X, Blier PU, Pichaud N, Oleksiak MF, Crawford DL. Evolved genetic and phenotypic differences due to mitochondrial-nuclear interactions. PLoS Genet 2017; 13:e1006517. [PMID: 28362806 PMCID: PMC5375140 DOI: 10.1371/journal.pgen.1006517] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/01/2016] [Indexed: 02/05/2023] Open
Abstract
The oxidative phosphorylation (OxPhos) pathway is responsible for most aerobic ATP production and is the only pathway with both nuclear and mitochondrial encoded proteins. The importance of the interactions between these two genomes has recently received more attention because of their potential evolutionary effects and how they may affect human health and disease. In many different organisms, healthy nuclear and mitochondrial genome hybrids between species or among distant populations within a species affect fitness and OxPhos functions. However, what is less understood is whether these interactions impact individuals within a single natural population. The significance of this impact depends on the strength of selection for mito-nuclear interactions. We examined whether mito-nuclear interactions alter allele frequencies for ~11,000 nuclear SNPs within a single, natural Fundulus heteroclitus population containing two divergent mitochondrial haplotypes (mt-haplotypes). Between the two mt-haplotypes, there are significant nuclear allele frequency differences for 349 SNPs with a p-value of 1% (236 with 10% FDR). Unlike the rest of the genome, these 349 outlier SNPs form two groups associated with each mt-haplotype, with a minority of individuals having mixed ancestry. We use this mixed ancestry in combination with mt-haplotype as a polygenic factor to explain a significant fraction of the individual OxPhos variation. These data suggest that mito-nuclear interactions affect cardiac OxPhos function. The 349 outlier SNPs occur in genes involved in regulating metabolic processes but are not directly associated with the 79 nuclear OxPhos proteins. Therefore, we postulate that the evolution of mito-nuclear interactions affects OxPhos function by acting upstream of OxPhos.
Collapse
Affiliation(s)
- Tara Z. Baris
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
- * E-mail:
| | - Dominique N. Wagner
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| | - David I. Dayan
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| | - Xiao Du
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| | - Pierre U. Blier
- Dept de Biologie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Quebec, Canada
| | - Nicolas Pichaud
- Dept de Biologie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Quebec, Canada
| | - Marjorie F. Oleksiak
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| | - Douglas L. Crawford
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| |
Collapse
|
12
|
Ide T. Physiological activities of the combination of fish oil and α-lipoic acid affecting hepatic lipogenesis and parameters related to oxidative stress in rats. Eur J Nutr 2017; 57:1545-1561. [DOI: 10.1007/s00394-017-1440-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/13/2017] [Indexed: 01/05/2023]
|
13
|
Hsieh JY, Li SY, Tsai WC, Liu JH, Lin CL, Liu GY, Hung HC. A small-molecule inhibitor suppresses the tumor-associated mitochondrial NAD(P)+-dependent malic enzyme (ME2) and induces cellular senescence. Oncotarget 2016; 6:20084-98. [PMID: 26008970 PMCID: PMC4652989 DOI: 10.18632/oncotarget.3907] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/06/2015] [Indexed: 11/25/2022] Open
Abstract
Here, we found a natural compound, embonic acid (EA), that can specifically inhibit the enzymatic activity of mitochondrial NAD(P)+-dependent malic enzyme (m-NAD(P)-ME, ME2) either in vitro or in vivo. The in vitro IC50 value of EA for m-NAD(P)-ME was 1.4 ± 0.4 μM. Mutagenesis and binding studies revealed that the putative binding site of EA on m-NAD(P)-ME is located at the fumarate binding site or at the dimer interface near the site. Inhibition studies reveal that EA displayed a non-competitive inhibition pattern, which demonstrated that the binding site of EA was distinct from the active site of the enzyme. Therefore, EA is thought to be an allosteric inhibitor of m-NAD(P)-ME. Both EA treatment and knockdown of m-NAD(P)-ME by shRNA inhibited the growth of H1299 cancer cells. The protein expression and mRNA synthesis of m-NAD(P)-ME in H1299 cells were not influenced by EA, suggesting that the EA-inhibited H1299 cell growth occurs through the suppression of in vivo m-NAD(P)-ME activity EA treatment further induced the cellular senescence of H1299 cells. However, down-regulation of the enzyme-induced cellular senescence was not through p53. Therefore, the EA-evoked senescence of H1299 cells may occur directly through the inhibition of ME2 or a p53-independent pathway.
Collapse
Affiliation(s)
- Ju-Yi Hsieh
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Institute of Microbiology & Immunology, Chung Shan Medical University, and Division of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shao-Yu Li
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Wen-Chen Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Institute of Microbiology & Immunology, Chung Shan Medical University, and Division of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jyung-Hurng Liu
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan.,Agricultural Biotechnology Center (ABC), National Chung Hsing University, Taichung, Taiwan
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Guang-Yaw Liu
- Institute of Microbiology & Immunology, Chung Shan Medical University, and Division of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Chih Hung
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan.,Agricultural Biotechnology Center (ABC), National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
14
|
Structural characteristics of the nonallosteric human cytosolic malic enzyme. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1773-83. [PMID: 24998673 DOI: 10.1016/j.bbapap.2014.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 11/22/2022]
Abstract
Human cytosolic NADP(+)-dependent malic enzyme (c-NADP-ME) is neither a cooperative nor an allosteric enzyme, whereas mitochondrial NAD(P)(+)-dependent malic enzyme (m-NAD(P)-ME) is allosterically activated by fumarate. This study examines the molecular basis for the different allosteric properties and quaternary structural stability of m-NAD(P)-ME and c-NADP-ME. Multiple residues corresponding to the fumarate-binding site were mutated in human c-NADP-ME to correspond to those found in human m-NAD(P)-ME. Additionally, the crystal structure of the apo (ligand-free) human c-NADP-ME conformation was determined. Kinetic studies indicated no significant difference between the wild-type and mutant enzymes in Km,NADP, Km,malate, and kcat. A chimeric enzyme, [51-105]_c-NADP-ME, was designed to include the putative fumarate-binding site of m-NAD(P)-ME at the dimer interface of c-NADP-ME; however, this chimera remained nonallosteric. In addition to fumarate activation, the quaternary structural stability of c-NADP-ME and m-NAD(P)-ME is quite different; c-NADP-ME is a stable tetramer, whereas m-NAD(P)-ME exists in equilibrium between a dimer and a tetramer. The quaternary structures for the S57K/N59E/E73K/S102D and S57K/N59E/E73K/S102D/H74K/D78P/D80E/D87G mutants of c-NADP-ME are tetrameric, whereas the K57S/E59N/K73E/D102S m-NAD(P)-ME quadruple mutant is primarily monomeric with some dimer formation. These results strongly suggest that the structural features near the fumarate-binding site and the dimer interface are highly related to the quaternary structural stability of c-NADP-ME and m-NAD(P)-ME. In this study, we attempt to delineate the structural features governing the fumarate-induced allosteric activation of malic enzyme.
Collapse
|
15
|
Hsieh JY, Liu JH, Yang PC, Lin CL, Liu GY, Hung HC. Fumarate analogs act as allosteric inhibitors of the human mitochondrial NAD(P)+-dependent malic enzyme. PLoS One 2014; 9:e98385. [PMID: 24911153 PMCID: PMC4049574 DOI: 10.1371/journal.pone.0098385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/02/2014] [Indexed: 11/20/2022] Open
Abstract
Human mitochondrial NAD(P)+-dependent malic enzyme (m-NAD(P)-ME) is allosterically activated by the four-carbon trans dicarboxylic acid, fumarate. Previous studies have suggested that the dicarboxylic acid in a trans conformation around the carbon-carbon double bond is required for the allosteric activation of the enzyme. In this paper, the allosteric effects of fumarate analogs on m-NAD(P)-ME are investigated. Two fumarate-insensitive mutants, m-NAD(P)-ME_R67A/R91A and m-NAD(P)-ME_K57S/E59N/K73E/D102S, as well as c-NADP-ME, were used as the negative controls. Among these analogs, mesaconate, trans-aconitate, monomethyl fumarate and monoethyl fumarate were allosteric activators of the enzyme, while oxaloacetate, diethyl oxalacetate, and dimethyl fumarate were found to be allosteric inhibitors of human m-NAD(P)-ME. The IC50 value for diethyl oxalacetate was approximately 2.5 mM. This paper suggests that the allosteric inhibitors may impede the conformational change from open form to closed form and therefore inhibit m-NAD(P)-ME enzyme activity.
Collapse
Affiliation(s)
- Ju-Yi Hsieh
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Jyung-Hurng Liu
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Pai-Chun Yang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Guang-Yaw Liu
- Institute of Microbiology & Immunology, Chung Shan Medical University, and Division of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail: (HCH); (GYL)
| | - Hui-Chih Hung
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center (ABC), National Chung Hsing University, Taichung, Taiwan
- * E-mail: (HCH); (GYL)
| |
Collapse
|
16
|
Wen Y, Xu L, Chen FL, Gao J, Li JY, Hu LH, Li J. Discovery of a novel inhibitor of NAD(P)(+)-dependent malic enzyme (ME2) by high-throughput screening. Acta Pharmacol Sin 2014; 35:674-84. [PMID: 24681895 DOI: 10.1038/aps.2013.189] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/01/2013] [Indexed: 12/21/2022] Open
Abstract
AIM Malic enzymes are oxidative decarboxylases with NAD(+) or NAD(P)(+) as cofactor that catalyze the conversion of L-malate to pyruvate and CO2. The aim of this study was to discover and characterize a potent inhibitor of human NAD(P)(+)-dependent malic enzyme 2 (ME2). METHODS Recombinant human ME2-His-Tag fusion protein was overexpressed in E coli and purified with Ni-NTA resin. A high-throughput screening (HTS) assay was developed to find ME2 inhibitors. Detergent Brij-35 was used to exclude false positives. The characteristics of the inhibitor were analyzed with enzyme kinetics analysis. A thermal shift assay for ME2 was carried out to verify the binding of the inhibitor with the enzyme. RESULTS An HTS system for discovering ME2 inhibitors was established with a Z' factor value of 0.775 and a signal-to-noise ratio (S/N) of 9.80. A library containing 12 683 natural products was screened. From 47 hits, NPD387 was identified as an inhibitor of ME2. The primary structure-activity relationship study on NPD387 derivatives showed that one derivative NPD389 was more potent than the parent compound NPD387 (the IC50 of NPD389 was 4.63 ± 0.36 μmol/L or 5.59 ± 0.38 μmol/L, respectively, in the absence or presence of 0.01% Brij-35 in the assay system). The enzyme kinetics analysis showed that NPD389 was a fast-binding uncompetitive inhibitor with respect to the substrate NAD(+) and a mixed-type inhibitor with respect to the substrate L-malate. CONCLUSION NPD389 is a potent ME2 inhibitor that binds to the enzyme in a fast-binding mode, acting as an uncompetitive inhibitor with respect to the substrate NAD(+) and a mixed-type inhibitor with respect to the substrate L-malate.
Collapse
|
17
|
Ide T. Combined effect of sesamin and soybean phospholipid on hepatic fatty acid metabolism in rats. J Clin Biochem Nutr 2014; 54:210-8. [PMID: 24894022 PMCID: PMC4042142 DOI: 10.3164/jcbn.13-83] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 01/21/2014] [Indexed: 11/22/2022] Open
Abstract
We studied the combined effect of sesamin (1:1 mixture of sesamin and episesamine) and soybean phospholipid on lipid metabolism in rats. Male rats were fed diets supplemented with 0 or 2 g/kg sesamin, and containing 0 or 50 g/kg soybean phospholipid, for 19 days. Sesamin and soybean phospholipid decreased serum triacylglycerol concentrations and the combination of these compounds further decreased the parameter in an additive fashion. Soybean phospholipid but not sesamin reduced the hepatic concentration of triacylglycerol. The combination failed to cause a strong decrease in hepatic triacylglycerol concentration, presumably due to the up-regulation of Cd36 by sesamin. Combination of sesamin and soybean phospholipid decreased the activity and mRNA levels of hepatic lipogenic enzymes in an additive fashion. Sesamin strongly increased the parameters of hepatic fatty acid oxidation enzymes. Soybean phospholipid increased hepatic activity of 3-hydroxyacyl-CoA dehydrogenase although it failed to affect the activity of other enzymes involved in fatty acid oxidation. Sesamin strongly increased hepatic concentration of carnitine. Sesamin and soybean phospholipid combination further increased this parameter, accompanying a parallel increase in mRNA expression of carnitine transporter. These changes can account for the strong decrease in serum triacylglycerol in rats fed a diet containing both sesamin and soybean phospholipid.
Collapse
Affiliation(s)
- Takashi Ide
- Department of Food and Nutrition, Faculty of Human Life, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama 352-8510, Japan
| |
Collapse
|
18
|
Morimoto Y, Honda K, Ye X, Okano K, Ohtake H. Directed evolution of thermotolerant malic enzyme for improved malate production. J Biosci Bioeng 2013; 117:147-152. [PMID: 23932397 DOI: 10.1016/j.jbiosc.2013.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022]
Abstract
The directed evolution of the thermotolerant NADP(H)-dependent malic enzyme from Thermococcus kodakarensis was conducted to alter the cofactor preference of the enzyme from NADP(H) to NAD(H). The construction and screening of two generations of mutant libraries led to the isolation of a triple mutant that exhibited 6-fold higher kcat/Km with NAD(+) than the wild type. We serendipitously found that, in addition to the change in the cofactor preference, the reaction specificity of the mutant enzyme was altered. The reductive carboxylation of pyruvate to malate catalyzed by the wild type enzyme is accompanied by HCO(3)(-)-independent reduction of pyruvate and gives lactate as a byproduct. The reaction specificity of the triple mutant was significantly shifted to malate production and the mutant gave a less amount of the byproduct than the wild type. When the triple mutant enzyme was used as a catalyst for pyruvate carboxylation with NADH, the enzyme gave 1.2 times higher concentration of malate than the wild type with NADPH. Single-point mutation analysis revealed that the substitution of Arg221 with Gly is responsible for the shift in reaction specificity. This finding may shed light on the catalytic mechanisms of malic enzymes and other related CO2- and/or HCO(3)(-)-fixing enzymes.
Collapse
Affiliation(s)
- Yumi Morimoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kohsuke Honda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Xiaoting Ye
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kenji Okano
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hisao Ohtake
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
19
|
de Bari L, Moro L, Passarella S. Prostate cancer cells metabolize d
-lactate inside mitochondria via a d
-lactate dehydrogenase which is more active and highly expressed than in normal cells. FEBS Lett 2013; 587:467-73. [DOI: 10.1016/j.febslet.2013.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/21/2012] [Accepted: 01/06/2013] [Indexed: 10/27/2022]
|
20
|
Ide T, Azechi A, Suzuki N, Kunimatsu Y, Nakajima C, Kitade S. Effects of dietary α-lipoic acid enantiomers on hepatic fatty acid metabolism in rats. J Funct Foods 2013. [DOI: 10.1016/j.jff.2012.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Ide T, Azechi A, Kitade S, Kunimatsu Y, Suzuki N, Nakajima C. Combined effect of sesamin and α-lipoic acid on hepatic fatty acid metabolism in rats. Eur J Nutr 2012; 52:1015-27. [DOI: 10.1007/s00394-012-0408-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/18/2012] [Indexed: 11/30/2022]
|
22
|
Li T, Huo L, Pulley C, Liu A. Decarboxylation mechanisms in biological system. Bioorg Chem 2012; 43:2-14. [PMID: 22534166 DOI: 10.1016/j.bioorg.2012.03.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 03/04/2012] [Accepted: 03/19/2012] [Indexed: 11/30/2022]
Abstract
This review examines the mechanisms propelling cofactor-independent, organic cofactor-dependent and metal-dependent decarboxylase chemistry. Decarboxylation, the removal of carbon dioxide from organic acids, is a fundamentally important reaction in biology. Numerous decarboxylase enzymes serve as key components of aerobic and anaerobic carbohydrate metabolism and amino acid conversion. In the past decade, our knowledge of the mechanisms enabling these crucial decarboxylase reactions has continued to expand and inspire. This review focuses on the organic cofactors biotin, flavin, NAD, pyridoxal 5'-phosphate, pyruvoyl, and thiamin pyrophosphate as catalytic centers. Significant attention is also placed on the metal-dependent decarboxylase mechanisms.
Collapse
Affiliation(s)
- Tingfeng Li
- Department of Biochemistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | | | | | | |
Collapse
|
23
|
Pon J, Napoli E, Luckhart S, Giulivi C. Mitochondrial NAD+-dependent malic enzyme from Anopheles stephensi: a possible novel target for malaria mosquito control. Malar J 2011; 10:318. [PMID: 22029897 PMCID: PMC3228860 DOI: 10.1186/1475-2875-10-318] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 10/26/2011] [Indexed: 11/15/2022] Open
Abstract
Background Anopheles stephensi mitochondrial malic enzyme (ME) emerged as having a relevant role in the provision of pyruvate for the Krebs' cycle because inhibition of this enzyme results in the complete abrogation of oxygen uptake by mitochondria. Therefore, the identification of ME in mitochondria from immortalized A. stephensi (ASE) cells and the investigation of the stereoselectivity of malate analogues are relevant in understanding the physiological role of ME in cells of this important malaria parasite vector and its potential as a possible novel target for insecticide development. Methods To characterize the mitochondrial ME from immortalized ASE cells (Mos. 43; ASE), mass spectrometry analyses of trypsin fragments of ME, genomic sequence analysis and biochemical assays were performed to identify the enzyme and evaluate its activity in terms of cofactor dependency and inhibitor preference. Results The encoding gene sequence and primary sequences of several peptides from mitochondrial ME were found to be highly homologous to the mitochondrial ME from Anopheles gambiae (98%) and 59% homologous to the mitochondrial NADP+-dependent ME isoform from Homo sapiens. Measurements of ME activity in mosquito mitochondria isolated from ASE cells showed that (i) Vmax with NAD+ was 3-fold higher than that with NADP+, (ii) addition of Mg2+ or Mn2+ increased the Vmax by 9- to 21-fold, with Mn2+ 2.3-fold more effective than Mg2+, (iii) succinate and fumarate increased the activity by 2- and 5-fold, respectively, at sub-saturating concentrations of malate, (iv) among the analogs of L-malate tested as inhibitors of the NAD+-dependent ME catalyzed reaction, small (2- to 3-carbons) organic diacids carrying a 2-hydroxyl/keto group behaved as the most potent inhibitors of ME activity (e.g., oxaloacetate, tartronic acid and oxalate). Conclusions The biochemical characterization of Anopheles stephensi ME is of critical relevance given its important role in bioenergetics, suggesting that it is a suitable target for insecticide development.
Collapse
Affiliation(s)
- Jennifer Pon
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, USA
| | | | | | | |
Collapse
|
24
|
Hong KW, Shin YB, Kim KH, Oh BS. Differentially Expressed Genes by Inhibition of C-terminal Src Kinase by siRNA in Human Vascular Smooth Muscle Cells and Their Association with Blood Pressure. Genomics Inform 2011. [DOI: 10.5808/gi.2011.9.3.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
25
|
Determinants of nucleotide-binding selectivity of malic enzyme. PLoS One 2011; 6:e25312. [PMID: 21980421 PMCID: PMC3183043 DOI: 10.1371/journal.pone.0025312] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/31/2011] [Indexed: 11/19/2022] Open
Abstract
Malic enzymes have high cofactor selectivity. An isoform-specific distribution of residues 314, 346, 347 and 362 implies that they may play key roles in determining the cofactor specificity. Currently, Glu314, Ser346, Lys347 and Lys362 in human c-NADP-ME were changed to the corresponding residues of human m-NAD(P)-ME (Glu, Lys, Tyr and Gln, respectively) or Ascaris suum m-NAD-ME (Ala, Ile, Asp and His, respectively). Kinetic data demonstrated that the S346K/K347Y/K362Q c-NADP-ME was transformed into a debilitated NAD⁺-utilizing enzyme, as shown by a severe decrease in catalytic efficiency using NADP⁺ as the cofactor without a significant increase in catalysis using NAD⁺ as the cofactor. However, the S346K/K347Y/K362H enzyme displayed an enhanced value for k(cat,NAD), suggesting that His at residue 362 may be more beneficial than Gln for NAD⁺ binding. Furthermore, the S346I/K347D/K362H mutant had a very large K(m,NADP) value compared to other mutants, suggesting that this mutant exclusively utilizes NAD⁺ as its cofactor. Since the S346K/K347Y/K362Q, S346K/K347Y/K362H and S346I/K347D/K362H c-NADP-ME mutants did not show significant reductions in their K(m,NAD) values, the E314A mutation was then introduced into these triple mutants. Comparison of the kinetic parameters of each triple-quadruple mutant pair (for example, S346K/K347Y/K362Q versus E314A/S346K/K347Y/K362Q) revealed that all of the K(m) values for NAD⁺ and NADP(+) of the quadruple mutants were significantly decreased, while either k(cat,NAD) or k(cat,NADP) was substantially increased. By adding the E314A mutation to these triple mutant enzymes, the E314A/S346K/K347Y/K362Q, E314A/S346K/K347Y/K362H and E314A/S346I/K347D/K362H c-NADP-ME variants are no longer debilitated but become mainly NAD⁺-utilizing enzymes by a considerable increase in catalysis using NAD⁺ as the cofactor. These results suggest that abolishing the repulsive effect of Glu314 in these quadruple mutants increases the binding affinity of NAD⁺. Here, we demonstrate that a series of E314A-containing c-NADP-ME quadruple mutants have been changed to NAD⁺-utilizing enzymes by abrogating NADP⁺ binding and increasing NAD⁺ binding.
Collapse
|
26
|
Ren JG, Seth P, Everett P, Clish CB, Sukhatme VP. Induction of erythroid differentiation in human erythroleukemia cells by depletion of malic enzyme 2. PLoS One 2010; 5. [PMID: 20824065 PMCID: PMC2932743 DOI: 10.1371/journal.pone.0012520] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Accepted: 07/20/2010] [Indexed: 11/18/2022] Open
Abstract
Malic enzyme 2 (ME2) is a mitochondrial enzyme that catalyzes the conversion of malate to pyruvate and CO2 and uses NAD as a cofactor. Higher expression of this enzyme correlates with the degree of cell de-differentiation. We found that ME2 is expressed in K562 erythroleukemia cells, in which a number of agents have been found to induce differentiation either along the erythroid or the myeloid lineage. We found that knockdown of ME2 led to diminished proliferation of tumor cells and increased apoptosis in vitro. These findings were accompanied by differentiation of K562 cells along the erythroid lineage, as confirmed by staining for glycophorin A and hemoglobin production. ME2 knockdown also totally abolished growth of K562 cells in nude mice. Increased ROS levels, likely reflecting increased mitochondrial production, and a decreased NADPH/NADP+ ratio were noted but use of a free radical scavenger to decrease inhibition of ROS levels did not reverse the differentiation or apoptotic phenotype, suggesting that ROS production is not causally involved in the resultant phenotype. As might be expected, depletion of ME2 induced an increase in the NAD+/NADH ratio and ATP levels fell significantly. Inhibition of the malate-aspartate shuttle was insufficient to induce K562 differentiation. We also examined several intracellular signaling pathways and expression of transcription factors and intermediate filament proteins whose expression is known to be modulated during erythroid differentiation in K562 cells. We found that silencing of ME2 leads to phospho-ERK1/2 inhibition, phospho-AKT activation, increased GATA-1 expression and diminished vimentin expression. Metabolomic analysis, conducted to gain insight into intermediary metabolic pathways that ME2 knockdown might affect, showed that ME2 depletion resulted in high orotate levels, suggesting potential impairment of pyrimidine metabolism. Collectively our data point to ME2 as a potentially novel metabolic target for leukemia therapy.
Collapse
Affiliation(s)
- Jian-Guo Ren
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pankaj Seth
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter Everett
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Clary B. Clish
- Metabolite Profiling Initiative, The Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, United States of America
| | - Vikas P. Sukhatme
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
27
|
Su KL, Chang KY, Hung HC. Effects of structural analogues of the substrate and allosteric regulator of the human mitochondrial NAD(P)+-dependent malic enzyme. Bioorg Med Chem 2009; 17:5414-9. [PMID: 19595601 DOI: 10.1016/j.bmc.2009.06.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 06/19/2009] [Accepted: 06/20/2009] [Indexed: 11/19/2022]
Abstract
Fumarate, a four-carbon trans dicarboxylic acid, is the allosteric activator of the human mitochondrial NAD(P)(+)-dependent malic enzyme (m-NAD(P)-ME). In this paper, we discuss the effects of the structural analogues of fumarate on human m-NAD(P)-ME. Succinate, a dicarboxylic acid with a carbon-carbon single bond, can also activate the enzyme, but the activating effect of succinate is less than that of fumarate. Succinamide, a diamide of succinate, cannot activate the enzyme and is a poor active-site inhibitor. The cis isomer of fumarate, maleic acid, significantly inhibits the ME activity, suggesting that the trans configuration of fumarate is crucial for operating the allosteric regulation of the enzyme. Other dicarboxylic acids, including glutaconic acid, malonic acid and alpha-ketoglutarate, cannot activate the enzyme and inversely inhibit enzyme activity. Our data suggest that these structural analogues are mainly active-site inhibitors, although they may enter the allosteric site to inhibit the enzyme. Furthermore, these data also suggest that the dicarboxylic acid must be in a trans conformation for allosteric activation of the enzyme.
Collapse
Affiliation(s)
- Kuo-Liang Su
- Department of Life Sciences, National Chung-Hsing University, 250, Kuo-Kuang Road, Taichung 40227, Taiwan
| | | | | |
Collapse
|
28
|
Hsieh JY, Su KL, Ho PT, Hung HC. Long-range interaction between the enzyme active site and a distant allosteric site in the human mitochondrial NAD(P)+-dependent malic enzyme. Arch Biochem Biophys 2009; 487:19-27. [PMID: 19464998 DOI: 10.1016/j.abb.2009.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 04/28/2009] [Accepted: 05/15/2009] [Indexed: 11/28/2022]
Abstract
Our previous study has suggested that mutation of the amino acid residue Asp102 has a significant effect on the fumarate-mediated activation of human mitochondrial NAD(P)+-dependent malic enzyme (m-NAD(P)-ME). In this paper, we examine the cationic amino acid residue Arg98, which is adjacent to Asp102 and is highly conserved in most m-NAD(P)-MEs. A series of R98/D102 mutants were created to examine the possible interactions between Arg98 and Asp102 using the double-mutant cycle analysis. Kinetic analysis revealed that the catalytic efficiency of the enzyme was severely affected by mutating both Arg98 and Asp102 residues. However, the binding energy of these mutant enzymes to fumarate as determined by analysis of the K(A,Fum) values, show insignificant differences, indicating that the mutation of Arg98 and Asp102 did not cause a significant decrease in the binding affinity of fumarate. The overall coupling energies for R98K/D102N as determined by analysis of the k(cat)/K(m) and K(A,Fum) values were -2.95 and -0.32kcal/mol, respectively. According to these results, we conclude that substitution of both Arg98 and Asp102 residues has a synergistic effect on the catalytic ability of the enzyme.
Collapse
Affiliation(s)
- Ju-Yi Hsieh
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
| | | | | | | |
Collapse
|
29
|
Dual roles of Lys(57) at the dimer interface of human mitochondrial NAD(P)+-dependent malic enzyme. Biochem J 2009; 420:201-9. [PMID: 19236308 DOI: 10.1042/bj20090076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human m-NAD(P)-ME [mitochondrial NAD(P)+-dependent ME (malic enzyme)] is a homotetramer, which is allosterically activated by the binding of fumarate. The fumarate-binding site is located at the dimer interface of the NAD(P)-ME. In the present study, we decipher the functional role of the residue Lys57, which resides at the fumarate-binding site and dimer interface, and thus may be involved in the allosteric regulation and subunit-subunit interaction of the enzyme. In the present study, Lys57 is replaced with alanine, cysteine, serine and arginine residues. Site-directed mutagenesis and kinetic analysis strongly suggest that Lys57 is important for the fumarate-induced activation and quaternary structural organization of the enzyme. Lys57 mutant enzymes demonstrate a reduction of Km and an elevation of kcat following induction by fumarate binding, and also display a much higher maximal activation threshold than WT (wild-type), indicating that these Lys57 mutant enzymes have lower affinity for the effector fumarate. Furthermore, mutation of Lys57 in m-NAD(P)-ME causes the enzyme to become less active and lose co-operativity. It also increased K0.5,malate and decreased kcat values, indicating that the catalytic power of these mutant enzymes was significantly impaired following mutation of Lys57. Analytical ultracentrifugation analysis demonstrates that the K57A, K57S and K57C mutant enzymes dissociate predominantly into dimers, with some monomers present, whereas the K57R mutant forms a mixture of dimers and tetramers, with a small amount of the enzyme in monomeric form. The dimeric form of these Lys57 mutants, however, cannot be reconstituted into tetramers with the addition of fumarate. Modelling structures of the Lys57 mutant enzymes show that the hydrogen bond network in the dimer interface where Lys57 resides may be reduced compared with WT. Although the fumarate-induced activation effects are partially maintained in these Lys57 mutant enzymes, the mutant enzymes cannot be reconstituted into tetramers through fumarate binding and cannot recover their full enzymatic activity. In the present study, we demonstrate that the Lys57 residue plays dual functional roles in the structural integrity of the allosteric site and in the subunit-subunit interaction at the dimer interface of human m-NAD(P)-ME.
Collapse
|
30
|
Hsieh JY, Chen SH, Hung HC. Functional roles of the tetramer organization of malic enzyme. J Biol Chem 2009; 284:18096-105. [PMID: 19416979 DOI: 10.1074/jbc.m109.005082] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Malic enzyme has a dimer of dimers quaternary structure in which the dimer interface associates more tightly than the tetramer interface. In addition, the enzyme has distinct active sites within each subunit. The mitochondrial NAD(P)(+)-dependent malic enzyme (m-NAD(P)-ME) isoform behaves cooperatively and allosterically and exhibits a quaternary structure in dimer-tetramer equilibrium. The cytosolic NADP(+)-dependent malic enzyme (c-NADP-ME) isoform is noncooperative and nonallosteric and exists as a stable tetramer. In this study, we analyze the essential factors governing the quaternary structure stability for human c-NADP-ME and m-NAD(P)-ME. Site-directed mutagenesis at the dimer and tetramer interfaces was employed to generate a series of dimers of c-NADP-ME and m-NAD(P)-ME. Size distribution analysis demonstrated that human c-NADP-ME exists mainly as a tetramer, whereas human m-NAD(P)-ME exists as a mixture of dimers and tetramers. Kinetic data indicated that the enzyme activity of c-NADP-ME is not affected by disruption of the interface. There are no significant differences in the kinetic properties between AB and AD dimers, and the dimeric form of c-NADP-ME is as active as tetramers. In contrast, disrupting the interface of m-NAD(P)-ME causes the enzyme to be less active than wild type and to become less cooperative for malate binding; the k(cat) values of mutants decreased with increasing K(d,24) values, indicating that the dissociation of subunits at the dimer or tetramer interfaces significantly affects the enzyme activity. The above results suggest that the tetramer is required for a fully functional m-NAD(P)-ME. Taken together, the analytical ultracentrifugation data and the kinetic analysis of these interface mutants demonstrate the differential role of tetramer organization for the c-NADP-ME and m-NAD(P)-ME isoforms. The regulatory mechanism of m-NAD(P)-ME is closely related to the tetramer formation of this isoform.
Collapse
Affiliation(s)
- Ju-Yi Hsieh
- Department of Life Sciences, National Chung-Hsing University, 250, Kuo-Kuang Road, Taichung 40227, Taiwan
| | | | | |
Collapse
|
31
|
Hsieh JY, Chiang YH, Chang KY, Hung HC. Functional role of fumarate site Glu59 involved in allosteric regulation and subunit-subunit interaction of human mitochondrial NAD(P)+-dependent malic enzyme. FEBS J 2009; 276:983-94. [PMID: 19141113 DOI: 10.1111/j.1742-4658.2008.06834.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we report on the role of Glu59 in the fumarate-mediated allosteric regulation of the human mitochondrial NAD(P)+-dependent malic enzyme (m-NAD-ME). In the present study, Glu59 was substituted by Asp, Gln or Leu. Our kinetic data strongly indicated that the charge properties of this residue significantly affect the allosteric activation of the enzyme. The E59L enzyme shows nonallosteric kinetics and the E59Q enzyme displays a much higher threshold in enzyme activation with elevated activation constants, K(A,Fum) and alphaK(A,Fum). The E59D enzyme, although retaining the allosteric property, is quite different from the wild-type in enzyme activation. The K(A,Fum) and alphaK(A,Fum) of E59D are also much greater than those of the wild-type, indicating that not only the negative charge of this residue but also the group specificity and side chain interactions are important for fumarate binding. Analytical ultracentrifugation analysis shows that both the wild-type and E59Q enzymes exist as a dimer-tetramer equilibrium. In contrast to the E59Q mutant, the E59D mutant displays predominantly a dimer form, indicating that the quaternary stability in the dimer interface is changed by shortening one carbon side chain of Glu59 to Asp59. The E59L enzyme also shows a dimer-tetramer model similar to that of the wild-type, but it displays more dimers as well as monomers and polymers. Malate cooperativity is not significantly notable in the E59 mutant enzymes, suggesting that the cooperativity might be related to the molecular geometry of the fumarate-binding site. Glu59 can precisely maintain the geometric specificity for the substrate cooperativity. According to the sequence alignment analysis and our experimental data, we suggest that charge effect and geometric specificity are both critical factors in enzyme regulation. Glu59 discriminates human m-NAD-ME from mitochondrial NADP+-dependent malic enzyme and cytosolic NADP+-dependent malic enzyme in fumarate activation and malate cooperativity.
Collapse
Affiliation(s)
- Ju-Yi Hsieh
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
| | | | | | | |
Collapse
|
32
|
Hsieh JY, Hung HC. Engineering of the cofactor specificities and isoform-specific inhibition of malic enzyme. J Biol Chem 2008; 284:4536-44. [PMID: 19091740 DOI: 10.1074/jbc.m807008200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Malic enzyme (ME) is a family of enzymes that catalyze a reversible oxidative decarboxylation of l-malate to pyruvate with simultaneous reduction of NAD(P)(+) to NAD(P)H. According to the cofactor specificity, the mammalian enzyme can be categorized into three isoforms. The cytosolic (c) and mitochondrial (m) NADP(+)-dependent MEs utilize NADP(+) as the cofactor. The mitochondrial NAD(P)(+)-dependent ME can use either NAD(+) or NADP(+) as the cofactor. In addition, the m-NAD(P)-ME isoform can be inhibited by ATP and allosterically activated by fumarate. In this study, we delineated the determinants for cofactor specificity and isoform-specific inhibition among the ME isoforms. Our data strongly suggest that residue 362 is the decisive factor determining cofactor preference. All the mutants containing Q362K (Q362K, K346S/Q362K, Y347K/Q362K, and K346S/Y347K/Q362K) have a larger k(cat,NADP) value compared with the k(cat,NAD) value, indicating that the enzyme has changed to use NADP(+) as the preferred cofactor. Furthermore, we suggest that Lys-346 in m-NAD(P)-ME is crucial for the isoform-specific ATP inhibition. The enzymes containing the K346S mutation (K346S, K346S/Y347K, K346S/Q362K, and K346S/Y347K/Q362K) are much less inhibited by ATP and have a larger K(i,ATP) value. Kinetic analysis also suggests that residue 347 functions in cofactor specificity. Here we demonstrate that the human K346S/Y347K/Q362K m-NAD(P)-ME has completely shifted its cofactor preference to become an NADP(+)-specific ME. In the triple mutant, Lys-362, Lys-347, and Ser-346 work together and function synergistically to increase the binding affinity for NADP(+).
Collapse
Affiliation(s)
- Ju-Yi Hsieh
- Department of Life Sciences and Institute of Bioinformatics, National Chung-Hsing University, Taichung 40227, Taiwan
| | | |
Collapse
|
33
|
Hsieh JY, Liu GY, Hung HC. Influential factor contributing to the isoform-specific inhibition by ATP of human mitochondrial NAD(P)+-dependent malic enzyme: functional roles of the nucleotide binding site Lys346. FEBS J 2008; 275:5383-92. [PMID: 18959763 DOI: 10.1111/j.1742-4658.2008.06668.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Human mitochondrial NAD(P)(+)-dependent malic enzyme (m-NAD-ME) is a malic enzyme isoform with dual cofactor specificity, ATP inhibition and substrate cooperativity. The determinant of ATP inhibition in malic enzyme isoforms has not yet been identified. Sequence alignment of nucleotide-binding sites of ME isoforms revealed that Lys346 is conserved uniquely in m-NAD-ME. In other ME isoforms, this residue is serine. As the inhibitory effect of ATP is more pronounced on m-NAD-ME than on other ME isoforms, we have examined the possible role of Lys346 by replacing it to alanine, serine or arginine. Our kinetic data indicate that the K346S mutant enzyme displays a shift in its cofactor preference from NAD(+) to NADP(+) upon increasing k(cat,NADP) and decreasing K(m,NADP). Furthermore, the cooperative binding of malate becomes less significant in human m-NAD-ME after mutation of Lys346. The h value for the wild-type is close to 2, but those of the K346 mutants are approximately 1.5. The K346 mutants can also be activated by fumarate and the cooperative effect can be abolished by fumarate, suggesting that the allosteric property is retained in these mutants. Our data strongly suggest that Lys346 in human m-NAD-ME is required for ATP inhibition. Mutation of Lys346 to Ser or Ala causes the enzyme to be much less sensitive to ATP, similar to cytosolic NADP-dependent malic enzyme. Substitution of Lys to Arg did not change the isoform-specific inhibition of the enzyme by ATP. The inhibition constants of ATP are increased for K346S and K346A, but are similar to those of the wild-type for K346R, suggesting that the positive charge rather than group specificity is required for binding affinity of ATP. Thus, ATP inhibition is proposed to be determined by the electrostatic potential involving the positive charge on the side chain of Lys346.
Collapse
Affiliation(s)
- Ju-Yi Hsieh
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
| | | | | |
Collapse
|
34
|
Wang J, Tan H, Zhao ZK. Over-expression, purification, and characterization of recombinant NAD-malic enzyme from Escherichia coli K12. Protein Expr Purif 2006; 53:97-103. [PMID: 17215140 DOI: 10.1016/j.pep.2006.11.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2006] [Revised: 11/27/2006] [Accepted: 11/29/2006] [Indexed: 11/25/2022]
Abstract
NAD(+)-dependent malic enzyme (NAD-ME) gene from Escherichia coli K12 was inserted into an expression vector pET24b(+) and transformed into E. coli BL21 (DE3). Recombinant NAD-ME was expressed upon IPTG induction, purified with affinity chromatography, and biochemically characterized. The results showed that recombinant NAD-ME could be produced mainly in a soluble form. The monomeric molecular weight of recombinant NAD-ME was about 65 kDa, whereas monomer, homotetramer, and homooctamer were formed in solution as revealed by nondenaturing polyacrylamide gel electrophoresis analysis. Finally, the K(m) values of NAD-ME for L-malate and NAD were determined as 0.420+/-0.174 and 0.097+/-0.038 mM, respectively, at pH 7.2. By using this over-expression and purification system, recombinant E. coli K12 NAD-ME can now be obtained in large quantity necessary for further biochemical characterization and applications.
Collapse
Affiliation(s)
- Jinxia Wang
- Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
| | | | | |
Collapse
|
35
|
Hsieh JY, Liu GY, Chang GG, Hung HC. Determinants of the dual cofactor specificity and substrate cooperativity of the human mitochondrial NAD(P)+-dependent malic enzyme: functional roles of glutamine 362. J Biol Chem 2006; 281:23237-45. [PMID: 16757477 DOI: 10.1074/jbc.m603451200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human mitochondrial NAD(P)+-dependent malic enzyme (m-NAD-ME) is a malic enzyme isoform with dual cofactor specificity and substrate binding cooperativity. Previous kinetic studies have suggested that Lys362 in the pigeon cytosolic NADP+-dependent malic enzyme has remarkable effects on the binding of NADP+ to the enzyme and on the catalytic power of the enzyme (Kuo, C. C., Tsai, L. C., Chin, T. Y., Chang, G.-G., and Chou, W. Y. (2000) Biochem. Biophys. Res. Commun. 270, 821-825). In this study, we investigate the important role of Gln362 in the transformation of cofactor specificity from NAD+ to NADP+ in human m-NAD-ME. Our kinetic data clearly indicate that the Q362K mutant shifted its cofactor preference from NAD+ to NADP+. The Km(NADP) and kcat(NADP) values for this mutant were reduced by 4-6-fold and increased by 5-10-fold, respectively, compared with those for the wild-type enzyme. Furthermore, up to a 2-fold reduction in Km(NADP)/Km(NAD) and elevation of kcat(NADP)/kcat(NAD) were observed for the Q362K enzyme. Mutation of Gln362 to Ala or Asn did not shift its cofactor preference. The Km(NADP)/Km(NAD) and kcat(NADP)/kcat(NAD) values for Q362A and Q362N were comparable with those for the wild-type enzyme. The DeltaG values for Q362A and Q362N with either NAD+ or NADP+ were positive, indicating that substitution of Gln with Ala or Asn at position 362 brings about unfavorable cofactor binding at the active site and thus significantly reduces the catalytic efficiency. Our data also indicate that the cooperative binding of malate became insignificant in human m-NAD-ME upon mutation of Gln362 to Lys because the sigmoidal phenomenon appearing in the wild-type enzyme was much less obvious that that in Q362K. Therefore, mutation of Gln362 to Lys in human m-NAD-ME alters its kinetic properties of cofactor preference, malate binding cooperativity, and allosteric regulation by fumarate. However, the other Gln362 mutants, Q362A and Q362N, have conserved malate binding cooperativity and NAD+ specificity. In this study, we provide clear evidence that the single mutation of Gln362 to Lys in human m-NAD-ME changes it to an NADP+-dependent enzyme, which is characteristic because it is non-allosteric, non-cooperative, and NADP+-specific.
Collapse
Affiliation(s)
- Ju-Yi Hsieh
- Department of Life Sciences, National Chung-Hsing University, Taichung 40227
| | | | | | | |
Collapse
|
36
|
Hung HC, Kuo MW, Chang GG, Liu GY. Characterization of the functional role of allosteric site residue Asp102 in the regulatory mechanism of human mitochondrial NAD(P)+-dependent malate dehydrogenase (malic enzyme). Biochem J 2006; 392:39-45. [PMID: 15989682 PMCID: PMC1317662 DOI: 10.1042/bj20050641] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human mitochondrial NAD(P)+-dependent malate dehydrogenase (decarboxylating) (malic enzyme) can be specifically and allosterically activated by fumarate. X-ray crystal structures have revealed conformational changes in the enzyme in the absence and in the presence of fumarate. Previous studies have indicated that fumarate is bound to the allosteric pocket via Arg67 and Arg91. Mutation of these residues almost abolishes the activating effect of fumarate. However, these amino acid residues are conserved in some enzymes that are not activated by fumarate, suggesting that there may be additional factors controlling the activation mechanism. In the present study, we tried to delineate the detailed molecular mechanism of activation of the enzyme by fumarate. Site-directed mutagenesis was used to replace Asp102, which is one of the charged amino acids in the fumarate binding pocket and is not conserved in other decarboxylating malate dehydrogenases. In order to explore the charge effect of this residue, Asp102 was replaced by alanine, glutamate or lysine. Our experimental data clearly indicate the importance of Asp102 for activation by fumarate. Mutation of Asp102 to Ala or Lys significantly attenuated the activating effect of fumarate on the enzyme. Kinetic parameters indicate that the effect of fumarate was mainly to decrease the K(m) values for malate, Mg2+ and NAD+, but it did not notably elevate kcat. The apparent substrate K(m) values were reduced by increasing concentrations of fumarate. Furthermore, the greatest effect of fumarate activation was apparent at low malate, Mg2+ or NAD+ concentrations. The K(act) values were reduced with increasing concentrations of malate, Mg2+ and NAD+. The Asp102 mutants, however, are much less sensitive to regulation by fumarate. Mutation of Asp102 leads to the desensitization of the co-operative effect between fumarate and substrates of the enzyme.
Collapse
Affiliation(s)
- Hui-Chih Hung
- *Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan, Republic of China
- To whom correspondence should be addressed (email or email )
| | - Meng-Wei Kuo
- *Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan, Republic of China
| | - Gu-Gang Chang
- †Faculty of Life Sciences, Institute of Biochemistry, and Structural Biology Program, National Yang-Ming University, Taipei 112, Taiwan, Republic of China
| | - Guang-Yaw Liu
- ‡Institute of Immunology, Chung-Shan Medical University, Taichung 402, Taiwan, Republic of China
- To whom correspondence should be addressed (email or email )
| |
Collapse
|
37
|
Hung HC, Chien YC, Hsieh JY, Chang GG, Liu GY. Functional roles of ATP-binding residues in the catalytic site of human mitochondrial NAD(P)+-dependent malic enzyme. Biochemistry 2005; 44:12737-45. [PMID: 16171388 DOI: 10.1021/bi050510b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human mitochondrial NAD(P)+-dependent malic enzyme is inhibited by ATP. The X-ray crystal structures have revealed that two ATP molecules occupy both the active and exo site of the enzyme, suggesting that ATP might act as an allosteric inhibitor of the enzyme. However, mutagenesis studies and kinetic evidences indicated that the catalytic activity of the enzyme is inhibited by ATP through a competitive inhibition mechanism in the active site and not in the exo site. Three amino acid residues, Arg165, Asn259, and Glu314, which are hydrogen-bonded with NAD+ or ATP, are chosen to characterize their possible roles on the inhibitory effect of ATP for the enzyme. Our kinetic data clearly demonstrate that Arg165 is essential for catalysis. The R165A enzyme had very low enzyme activity, and it was only slightly inhibited by ATP and not activated by fumarate. The values of K(m,NAD) and K(i,ATP) to both NAD+ and malate were elevated. Elimination of the guanidino side chain of R165 made the enzyme defective on the binding of NAD+ and ATP, and it caused the charge imbalance in the active site. These effects possibly caused the enzyme to malfunction on its catalytic power. The N259A enzyme was less inhibited by ATP but could be fully activated by fumarate at a similar extent compared with the wild-type enzyme. For the N259A enzyme, the value of K(i,ATP) to NAD+ but not to malate was elevated, indicating that the hydrogen bonding between ATP and the amide side chain of this residue is important for the binding stability of ATP. Removal of this side chain did not cause any harmful effect on the fumarate-induced activation of the enzyme. The E314A enzyme, however, was severely inhibited by ATP and only slightly activated by fumarate. The values of K(m,malate), K(m,NAD), and K(i,ATP) to both NAD+ and malate for E314A were reduced to about 2-7-folds compared with those of the wild-type enzyme. It can be concluded that mutation of Glu314 to Ala eliminated the repulsive effects between Glu314 and malate, NAD+, or ATP, and thus the binding affinities of malate, NAD+, and ATP in the active site of the enzyme were enhanced.
Collapse
Affiliation(s)
- Hui-Chih Hung
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan.
| | | | | | | | | |
Collapse
|
38
|
Kuo CW, Hung HC, Tong L, Chang GG. Metal-Induced reversible structural interconversion of human mitochondrial NAD(P)+-dependent malic enzyme. Proteins 2004; 54:404-11. [PMID: 14747989 DOI: 10.1002/prot.10635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Human mitochondrial NAD(P)+-dependent malic enzyme was strongly inhibited by Lu3+. The X-ray crystal structures indicated a structural change between the metal-free and Lu3+-containing enzymes (Yang Z, Batra R, Floyd DL, Hung HC, Chang GG, Tong L. Biochem Biophys Res Commun 2000;274:440-444). We characterized the reversible slow-binding mechanism and the structural interconversion between Mn2+- and Lu3+-containing human mitochondrial malic enzymes. When Lu3+ was added, the activity of the human enzyme showed a downward curve over time, similar to that of the pigeon enzyme. The rate of the transformation (k(obs)) from the initial rate to the steady-state rate increased hyperbolically with the concentration of Lu3+, suggesting the involvement of an isomerization step. Lu3+ had a much higher affinity for the isomerized form (K*(i,Lu (app)) = 4.8 microM) than that of the native form (K(i,Lu (app)) = 148 microM). When an excess of Mn2+ was added to the Lu3+-inhibited enzyme, assays of the kinetic activity showed an upward trend, indicating reactivation. This result also indicated that the reactivation was a slow process. Fluorescence quenching experiments confirmed that the Lu3+-induced isomerization was completely reversible. The dynamic quenching constants for the metal-free, Mn2+-containing, and Lu3+-containing enzyme were 3.08, 3.07, and 3.8 M(-1), respectively. When the Lu3+-containing enzyme was treated with excess Mn2+, the dynamic quenching constant returned to the original value (3.09 M(-1)). These results indicated that binding of Mn2+ did not induce any conformational change in the enzyme. The open form transformed to the closed form only after substrate binding. Lu3+, on the other hand, transformed the open form into a catalytically inactive form. Excess Mn2+ could replace Lu3+ in the metal binding site and convert the inactive form back into the open form. This reversible process was slow in both directions because of the same but opposite structural change involved.
Collapse
Affiliation(s)
- Chu-Wei Kuo
- Institute of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | | | | | | |
Collapse
|
39
|
Chang GG, Tong L. Structure and function of malic enzymes, a new class of oxidative decarboxylases. Biochemistry 2004; 42:12721-33. [PMID: 14596586 DOI: 10.1021/bi035251+] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Malic enzyme is a tetrameric protein with double dimer structure in which the dimer interface is more intimately contacted than the tetramer interface. Each monomeric unit of the enzyme is composed of four structural domains, which show a different folding topology from those of the other oxidative decarboxylases. The active center is located at the interface between domains B and C. For human mitochondrial malic enzyme, there is an exo nucleotide-binding site for the inhibitor ATP and an allosteric site for the activator fumarate, located at the tetramer and dimer interfaces, respectively. Crystal structures of the enzyme in various complexed forms indicate that the enzyme may exist in equilibrium among two open and two closed forms. Interconversion among these forms involves rigid-body movements of the four structural domains. Substrate binding at the active site shifts the open form to the closed form that represents an active site closure. Fumarate binding at the allosteric site induces the interconversion between forms I and II, which is mediated by the movements of domains A and D. Structures of malic enzyme from different sources are compared with an emphasis on the differences and their implications to structure-function relationships. The binding modes of the substrate, product, cofactors, and transition-state analogue at the active site, as well as ATP and fumarate at the exo site and allosteric site, respectively, provide a clear account for the catalytic mechanism, nucleotide specificities, allosteric regulation, and functional roles of the quaternary structure. The proposed catalytic mechanism involves tyrosine-112 and lysine-183 as the general acid and base, respectively. In addition, a divalent metal ion (Mn(2+) or Mg(2+)) is essential in helping the catalysis. Binding of the metal ion also plays an important role in stabilizing the quaternary structural integrity of the enzyme.
Collapse
Affiliation(s)
- Gu-Gang Chang
- Faculty of Life Sciences, Institute of Biochemistry, Proteome Research Center, National Yang-Ming University, Taipei 112, Taiwan.
| | | |
Collapse
|
40
|
Tao X, Yang Z, Tong L. Crystal structures of substrate complexes of malic enzyme and insights into the catalytic mechanism. Structure 2003; 11:1141-50. [PMID: 12962632 DOI: 10.1016/s0969-2126(03)00168-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Malic enzymes catalyze the oxidative decarboxylation of L-malate to pyruvate and CO(2) with the reduction of the NAD(P)(+) cofactor in the presence of divalent cations. We report the crystal structures at up to 2.1 A resolution of human mitochondrial NAD(P)(+)-dependent malic enzyme in different pentary complexes with the natural substrate malate or pyruvate, the dinucleotide cofactor NAD(+) or NADH, the divalent cation Mn(2+), and the allosteric activator fumarate. Malate is bound deep in the active site, providing two ligands for the cation, and its C4 carboxylate group is out of plane with the C1-C2-C3 atoms, facilitating decarboxylation. The divalent cation is positioned optimally to catalyze the entire reaction. Lys183 is the general base for the oxidation step, extracting the proton from the C2 hydroxyl of malate. Tyr112-Lys183 functions as the general acid-base pair to catalyze the tautomerization of the enolpyruvate product from decarboxylation to pyruvate.
Collapse
Affiliation(s)
- Xiao Tao
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
41
|
Yang Z, Lanks CW, Tong L. Molecular mechanism for the regulation of human mitochondrial NAD(P)+-dependent malic enzyme by ATP and fumarate. Structure 2002; 10:951-60. [PMID: 12121650 DOI: 10.1016/s0969-2126(02)00788-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The regulation of human mitochondrial NAD(P)+-dependent malic enzyme (m-NAD-ME) by ATP and fumarate may be crucial for the metabolism of glutamine for energy production in rapidly proliferating tissues and tumors. Here we report the crystal structure at 2.2 A resolution of m-NAD-ME in complex with ATP, Mn2+, tartronate, and fumarate. Our structural, kinetic, and mutagenesis studies reveal unexpectedly that ATP is an active-site inhibitor of the enzyme, despite the presence of an exo binding site. The structure also reveals the allosteric binding site for fumarate in the dimer interface. Mutations in this binding site abolished the activating effects of fumarate. Comparison to the structure in the absence of fumarate indicates a possible molecular mechanism for the allosteric function of this compound.
Collapse
Affiliation(s)
- Zhiru Yang
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
42
|
Coleman DE, Rao GSJ, Goldsmith EJ, Cook PF, Harris BG. Crystal structure of the malic enzyme from Ascaris suum complexed with nicotinamide adenine dinucleotide at 2.3 A resolution. Biochemistry 2002; 41:6928-38. [PMID: 12033925 DOI: 10.1021/bi0255120] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure of the Ascaris suum mitochondrial NAD-malic enzyme in binary complex with NAD has been solved to a resolution of 2.3 A by X-ray crystallography. The structure resembles that of the human mitochondrial enzyme determined in complex with NAD [Xu, Y., Bhargava, G., Wu, H., Loeber, G., and Tong, L. (1999) Structure 7, 877-889]. The enzyme is a tetramer comprised of subunits possessing four domains organized in an "open" structure typical of the NAD-bound form. The subunit organization, as in the human enzyme, is a dimer of dimers. The Ascaris enzyme contains 30 additional residues at its amino terminus relative to the human enzyme. These residues significantly increase the interactions that promote tetramer formation and give rise to different subunit-subunit interactions. Unlike the mammalian enzyme, the Ascaris malic enzyme is not regulated by ATP, and no ATP binding site is observed in this structure. Although the active sites of the two enzymes are similar, residues interacting with NAD differ between the two. The structure is discussed in terms of the mechanism and particularly with respect to previously obtained kinetic and site-directed mutagenesis experiments.
Collapse
Affiliation(s)
- David E Coleman
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | | | | | | | | |
Collapse
|
43
|
Yang Z, Zhang H, Hung HC, Kuo CC, Tsai LC, Yuan HS, Chou WY, Chang GG, Tong L. Structural studies of the pigeon cytosolic NADP(+)-dependent malic enzyme. Protein Sci 2002; 11:332-41. [PMID: 11790843 PMCID: PMC2373443 DOI: 10.1110/ps.38002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Malic enzymes are widely distributed in nature, and have important biological functions. They catalyze the oxidative decarboxylation of malate to produce pyruvate and CO(2) in the presence of divalent cations (Mg(2+), Mn(2+)). Most malic enzymes have a clear selectivity for the dinucleotide cofactor, being able to use either NAD(+) or NADP(+), but not both. Structural studies of the human mitochondrial NAD(+)-dependent malic enzyme established that malic enzymes belong to a new class of oxidative decarboxylases. Here we report the crystal structure of the pigeon cytosolic NADP(+)-dependent malic enzyme, in a closed form, in a quaternary complex with NADP(+), Mn(2+), and oxalate. This represents the first structural information on an NADP(+)-dependent malic enzyme. Despite the sequence conservation, there are large differences in several regions of the pigeon enzyme structure compared to the human enzyme. One region of such differences is at the binding site for the 2'-phosphate group of the NADP(+) cofactor, which helps define the cofactor selectivity of the enzymes. Specifically, the structural information suggests Lys362 may have an important role in the NADP(+) selectivity of the pigeon enzyme, confirming our earlier kinetic observations on the K362A mutant. Our structural studies also revealed differences in the organization of the tetramer between the pigeon and the human enzymes, although the pigeon enzyme still obeys 222 symmetry.
Collapse
Affiliation(s)
- Zhiru Yang
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Butta N, González-Manchón C, Arias-Salgado EG, Ayuso MS, Parrilla R. Cloning and functional characterization of the 5′ flanking region of the human mitochondrial malic enzyme gene. ACTA ACUST UNITED AC 2001; 268:3017-27. [PMID: 11358520 DOI: 10.1046/j.1432-1327.2001.02194.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This work reports the molecular cloning and functional characterization of the 5' flanking region of the human mitochondrial malic enzyme (mME) gene. The proximal promoter region has features of housekeeping genes like high G + C-content and absence of TATA or CCAAT boxes. Deletion analysis of the 5' region of the mME showed that maximal transcriptional activity is located within the -205/+86 region. Footprinting analysis showed two protected regions, one comprising potential overlapped AP-1, CREB, and AP-4 sites and a second one encompassing AP-2 and several Sp1 ci-acting elements. Mutation of putative AP-1/AP-4/CREB sites reduced basal promoter activity to less than 50%. Supershift assays demonstrated the specific binding of Sp1 and AP-2 proteins. Moreover, experiments in Drosophila SL2 cells lacking endogenous Sp1 demonstrated that the Sp1 site(s) is essential to maintain a normal basal rate of transcription of this gene. A low-level expression of AP-2 enhanced the activity of a mME promoter construct in HepG2 cells and this effect was prevented by disruption of the putative AP-2 element. In contrast, higher levels of expression of AP-2 induced a DNA-independent inhibitory response. A biphasic regulation of endogenous mME gene is also shown in HepG2 cells transfected with an AP-2 expression plasmid, suggesting that availability of AP-2 protein may control this gene under physiological conditions. A recombinant lambda genomic clone containing a mME pseudogene was also isolated. The high degree of sequence conservation seems to indicate a recent emergency of this human pseudogene.
Collapse
Affiliation(s)
- N Butta
- Department of Pathophysiology and Human Molecular Genetics, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | | | | | | | | |
Collapse
|
45
|
Rishavy MA, Yang Z, Tong L, Cleland WW. Determination of the mechanism of human malic enzyme with natural and alternate dinucleotides by isotope effects. Arch Biochem Biophys 2001; 396:43-8. [PMID: 11716460 DOI: 10.1006/abbi.2001.2598] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human malic enzyme was studied by steady state kinetics, deuterium isotope effects, and 13C isotope effects with both the physiological dinucleotide cofactor and several alternate cofactors. The log V vs pH profile with NAD revealed two pK(a) values too close to be separately determined, but with an average value of 7.33. The log V/K vs pH profile with NAD revealed two pK(a) values at 7.4 and 5.6. Deuterium and 13C isotope effects indicate that the mechanism of human malic enzyme is stepwise with both NAD and epsilonNAD, but that hyperconjugation in the transition state for hydride transfer is detectable only with the former. With thioNAD and APAD, the isotope effects do not clearly indicate whether the mechanism is stepwise or concerted. The intrinsic 13C isotope effect for decarboxylation was calculated to be 1.0485 by measurement of the partition ratio of oxaloacetate in the presence of NADH and human malic enzyme (decarboxylation to pyruvate/reduction to malate = 2.33). The isotope effect and partitioning data suggest that the energy barrier for decarboxylation of oxaloacetate is not as high relative to the barrier for reduction of oxaloacetate as with the chicken liver enzyme.
Collapse
Affiliation(s)
- M A Rishavy
- The Institute for Enzyme Research, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | | | | | |
Collapse
|
46
|
|
47
|
Yanaihara N, Kohno T, Takakura S, Takei K, Otsuka A, Sunaga N, Takahashi M, Yamazaki M, Tashiro H, Fukuzumi Y, Fujimori Y, Hagiwara K, Tanaka T, Yokota J. Physical and transcriptional map of a 311-kb segment of chromosome 18q21, a candidate lung tumor suppressor locus. Genomics 2001; 72:169-79. [PMID: 11401430 DOI: 10.1006/geno.2000.6454] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here, we report the complete genomic sequence and the characterization of the 311-kb region of 18q21, a candidate tumor suppressor locus containing a region of homozygous deletion in a lung cancer cell line, Ma29. This region contained two known genes, SMAD4 and ME2 (mitochondrial malate oxydoreductase), and two novel genes, D29 (deleted in Ma29 HGMW-approved symbol ELAC1), encoding an evolutionarily conserved protein, and B29 (beside the Ma29 deletion HGMW-approved symbol C18orf3), with no significant homology to any known genes. The deleted DNA segment in Ma29, which was estimated to be 195 kb in size, included all the coding exons of ME2 and D29, but not the coding exons of SMAD4 and B29. The deleted region also included exon 0, a 5'-noncoding exon, of SMAD4, and the expression of SMAD4 was greatly reduced in Ma29 cells. Mutations of SMAD4 and D29 were detected in 1 of 45 lung cancer cell lines examined, while those of ME2 and B29 were not detected, indicating that these four genes are not major targets for 18q21 deletions. The physical and transcriptional map constructed in this study will provide basic information for the identification of a tumor suppressor gene(s) at 18q21 involved in lung carcinogenesis.
Collapse
Affiliation(s)
- N Yanaihara
- Biology Division, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo, 104-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Metzler DE, Metzler CM, Sauke DJ. The Organization of Metabolism. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50020-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Metzler DE, Metzler CM, Sauke DJ. Enzymatic Addition, Elimination, Condensation, and Isomerization. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Liu D, Karsten WE, Cook PF. Lysine 199 is the general acid in the NAD-malic enzyme reaction. Biochemistry 2000; 39:11955-60. [PMID: 11009609 DOI: 10.1021/bi000790p] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Site-directed mutagenesis was used to change K199 in the Ascaris suum NAD-malic enzyme to A and R and Y126 to F. The K199A mutant enzyme gives a 10(5)-fold decrease in V and a 10(6)-fold decrease in V/K(malate) compared to the WT enzyme. In addition, the ratio for partitioning of the oxalacetate intermediate toward pyruvate and malate changes from a value of 0.4 for the WT enzyme to 1.6 for K199A, and repeating the experiment with A-side NADD gives isotope effects of 3 and 1 for the WT and K199A mutant enzymes, respectively. The K199R mutant enzyme gives only a factor of 10 decrease in V, and the pK for the general acid in this mutant enzyme has increased from 9 for the WT enzyme to >10 for the K199R mutant enzyme. Tritium exchange from solvent into pyruvate is catalyzed by the WT enzyme, but not by the K199A mutant enzyme. The Y126F mutant enzyme gives a 10(3)-fold decrease in V. The oxalacetate partition ratio and isotope effect on oxalacetate reduction for the Y126F mutant enzyme are identical, within error, to those measured for the WT enzyme. Thus, Y126 is important to the overall reaction, but its role at present is unclear. Data are consistent with K199 functioning as the general acid that protonates C3 of enolpyruvate to generate the pyruvate product in the malic enzyme reaction.
Collapse
Affiliation(s)
- D Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, Oklahoma 73019, USA
| | | | | |
Collapse
|