1
|
Teoh SQ, Yap MKK. Naja sumatrana venom cytotoxin, sumaCTX exhibits concentration-dependent cytotoxicity via caspase-activated mitochondrial-mediated apoptosis without transitioning to necrosis. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1799408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shun Qi Teoh
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Michelle Khai Khun Yap
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
- Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
2
|
Attarde SS, Pandit SV. Anticancer potential of nanogold conjugated toxin GNP-NN-32 from Naja naja venom. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190047. [PMID: 32180805 PMCID: PMC7059613 DOI: 10.1590/1678-9199-jvatitd-2019-0047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: Cancer is the second most common fatal disease in the world, behind cardiovascular disorders in the first place. It accounts for around 0.3 million deaths per year in India due to the lack of proper diagnostic facilities, prevention and treatment. Current therapeutic methods do not provide adequate protection and affect normal cells along with cancerous ones. Thus, there is a need for some alternative therapeutic strategy, preferably from natural products, which have been traditionally used for treatment of various diseases in the country. Methods: In this study, we have conjugated purified NN-32 toxin from Naja naja venom with gold nanoparticles and its anticancer potential was evaluated against human breast cancer cell lines. UV-Vis spectroscopy, dynamic light scattering, transmission electron microscopy, atomic force microscopy and zeta potential analysis were the techniques used for characterization of GNP-NN-32. Results: GNP-NN-32 showed dose- and time-dependent cytotoxicity against breast cancer cell lines (MCF-7 and MDA-MB-231). NN-32 and GNP-NN-32 induced apoptosis in both breast cancer cell lines. The results of CFSE cell proliferation study revealed that NN-32 and GNP-NN-32 arrested cell division in both MCF-7 and MDA-MB-231 cell lines resulting in inhibition of proliferation of these cancer cells. Conclusion: GNP-NN-32 showed an anticancer potential against human breast cancer cell lines. Analysis of detailed chemical characterization along with its cytotoxic property might help to perceive a new dimension of the anti-cancer potential of GNP-NN-32 that will enhance its biomedical function in near future.
Collapse
Affiliation(s)
- Saurabh S Attarde
- Evolutionary Venomics Laboratory, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Sangeeta V Pandit
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
3
|
Arsov Z, González-Ramírez EJ, Goñi FM, Tristram-Nagle S, Nagle JF. Phase behavior of palmitoyl and egg sphingomyelin. Chem Phys Lipids 2018; 213:102-110. [PMID: 29689259 DOI: 10.1016/j.chemphyslip.2018.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/02/2018] [Accepted: 03/06/2018] [Indexed: 01/28/2023]
Abstract
Despite the biological significance of sphingomyelins (SMs), there is far less structural information available for SMs compared to glycerophospholipids. Considerable confusion exists in the literature regarding even the phase behavior of SM bilayers. This work studies both palmitoyl (PSM) and egg sphingomyelin (ESM) in the temperature regime from 3 °C to 55 °C using X-ray diffraction and X-ray diffuse scattering on hydrated, oriented thick bilayer stacks. We observe clear evidence for a ripple phase for ESM in a large temperature range from 3 °C to the main phase transition temperature (TM) of ∼38 °C. This unusual stability of the ripple phase was not observed for PSM, which was in a gel phase at 3 °C, with a gel-to-ripple transition at ∼24 °C and a ripple-to-fluid transition at ∼41 °C. We also report structural results for all phases. In the gel phase at 3 °C, PSM has chains tilted by ∼30° with an area/lipid ∼45 Å2 as determined by wide angle X-ray scattering. The ripple phases for both PSM and ESM have temperature dependent ripple wavelengths that are ∼145 Å near 30 °C. In the fluid phase, our electron density profiles combined with volume measurements allow calculation of area/lipid to be ∼64 Å2 for both PSM and ESM, which is larger than that from most of the previous molecular dynamics simulations and experimental studies. Our study demonstrates that oriented lipid films are particularly well-suited to characterize ripple phases since the scattering pattern is much better resolved than in unoriented samples.
Collapse
Affiliation(s)
- Zoran Arsov
- Department of Condensed Matter Physics, Laboratory of Biophysics, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Emilio J González-Ramírez
- Instituto Biofísika (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain
| | - Felix M Goñi
- Instituto Biofísika (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain
| | | | - John F Nagle
- Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States.
| |
Collapse
|
4
|
Suzuki-Matsubara M, Athauda SBP, Suzuki Y, Matsubara K, Moriyama A. Comparison of the primary structures, cytotoxicities, and affinities to phospholipids of five kinds of cytotoxins from the venom of Indian cobra, Naja naja. Comp Biochem Physiol C Toxicol Pharmacol 2016; 179:158-64. [PMID: 26456928 DOI: 10.1016/j.cbpc.2015.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 11/23/2022]
Abstract
The molecular mechanism underlying the hemolytic and cytolytic processes of cobra cytotoxins (CTXs) is not yet fully elucidated. To examine this, we analyzed the amino acid sequences, hemolytic and cytotoxic activities, and affinities to phospholipids of the five major CTXs purified from the venom of Indian cobra, Naja naja. CTX2, CTX7, and CTX8 belonged to S-type, and CTX9 and CTX10 to P-type. Comparisons of CTX7 with CTX8 and CTX9 with CTX10 revealed similar primary structures and hemolytic and cytolytic activities. CTX2, whose primary structure was rather different from the others, showed several times weaker hemolytic and cytolytic biological activities than the others. The comparison of CTX2 with CTX7 suggested the importance of Lys30 in loop II for the strong hemolytic and cytolytic activities of S-type CTXs. Cloning of 12 CTX cDNAs from the Naja naja venom cDNA library revealed that 18 out of 23 substitutions found in CTX cDNAs were nonsynonymous. This clearly indicated the accelerated evolution of CTX genes. Multiple sequence alignment of 51 kinds of CTX cDNAs and calculations of nonsynonymous and synonymous substitutions indicated that the codons coding the three loops' regions, which may interact with the hydrophobic tails of phospholipids, have undergone an accelerated evolution. In contrast, the codons coding for amino acid residues considered to participate in the recognition and binding of the hydrophilic head groups of phospholipids, eight Cys residues, and those likely stabilizing β core structure, were all conserved.
Collapse
Affiliation(s)
- Mieko Suzuki-Matsubara
- Graduate School of Natural Sciences, Nagoya City University, Mizuho, Nagoya 467-8501, Japan.
| | - Senarath B P Athauda
- Department of Biochemistry, Faculty of Medicine, Peradeniya University, Peradeniya, Sri Lanka
| | - Yoshiyuki Suzuki
- Graduate School of Natural Sciences, Nagoya City University, Mizuho, Nagoya 467-8501, Japan
| | - Kazumi Matsubara
- Graduate School of Natural Sciences, Nagoya City University, Mizuho, Nagoya 467-8501, Japan
| | - Akihiko Moriyama
- Graduate School of Natural Sciences, Nagoya City University, Mizuho, Nagoya 467-8501, Japan
| |
Collapse
|
5
|
Nguyen TTN, Folch B, Létourneau M, Truong NH, Doucet N, Fournier A, Chatenet D. Design of a truncated cardiotoxin-I analogue with potent insulinotropic activity. J Med Chem 2014; 57:2623-33. [PMID: 24552570 DOI: 10.1021/jm401904q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Insulin secretion by pancreatic β-cells in response to glucose or other secretagogues is tightly coupled to membrane potential. Various studies have highlighted the prospect of enhancing insulin secretion in a glucose-dependent manner by blocking voltage-gated potassium channels (K(v)) and calcium-activated potassium channels (K(Ca)). Such strategy is expected to present a lower risk for hypoglycemic events compared to KATP channel blockers. Our group recently reported the discovery of a new insulinotropic agent, cardiotoxin-I (CTX-I), from the Naja kaouthia snake venom. In the present study, we report the design and synthesis of [Lys(52)]CTX-I(41-60) via structure-guided modification, a truncated, equipotent analogue of CTX-I, and demonstrate, using various pharmacological inhibitors, that this derivative probably exerts its action through Kv channels. This new analogue could represent a useful pharmacological tool to study β-cell physiology or even open a new therapeutic avenue for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Thi Tuyet Nhung Nguyen
- INRS-Institut Armand-Frappier , Université du Québec , 531 Boulevard des Prairies Ville de Laval, Québec H7 V 1B7, Québec Canada
| | | | | | | | | | | | | |
Collapse
|
6
|
Chiou SH, Wu SH. Structural Characterization of Venom Toxins by Physical Methods and the Perspectives on Structure-Function Correlation of Proteins. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.199700051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Kao PH, Chen YJ, Yang SY, Lin SR, Hu WP, Chang LS. Fusogenicity of Naja naja atra cardiotoxin-like basic protein on sphingomyelin vesicles containing oxidized phosphatidylcholine and cholesterol. J Biochem 2013; 153:523-33. [PMID: 23426438 DOI: 10.1093/jb/mvt013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study investigated the effect of oxidized phosphatidylcholine (oxPC) and cholesterol (Chol) on Naja naja atra cardiotoxin-like basic protein (CLBP)-induced fusion and leakage in sphingomyelin (SM) vesicles. Compared with those on PC/SM/Chol vesicles, CLBP showed a lower activity to induce membrane permeability but a higher fusogenicity on oxPC/SM/Chol vesicles. A reduction in inner-leaflet fusion elucidated that CLBP fusogenicity was not in parallel to its membrane-leakage activity on oxPC/SM/Chol vesicles. The lipid domain formed by Chol and SM supported CLBP fusogenicity on oxPC/SM/Chol vesicles, while oxPC altered the interacted mode of CLBP with oxPC/SM/Chol vesicles as evidenced by Fourier transform infrared spectra analyses and colorimetric phospholipid/polydiacetylene membrane assay. Although CLBP showed similar binding affinity with PC/SM/Chol and oxPC/SM/Chol vesicles, the binding capability of CLBP with PC/SM/Chol and oxPC/SM/Chol vesicles was affected differently by NaCl. This emphasized that CLBP adopted different membrane interaction modes upon binding with PC/SM/Chol and oxPC/SM/Chol vesicles. CLBP induced fusion in vesicles containing oxPC bearing the aldehyde group, and aldehyde scavenger methoxyamine abrogated the CLBP ability to induce oxPC/SM/Chol fusion. Taken together, our data indicate that Chol and oxPC bearing aldehyde group alter the CLBP membrane-binding mode, leading to fusogenicity promotion while reducing the membrane-damaging activity of CLBP.
Collapse
Affiliation(s)
- Pei-Hsiu Kao
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | | | | | | | | | | |
Collapse
|
8
|
Improved method for the isolation, characterization and examination of neuromuscular and toxic properties of selected polypeptide fractions from the crude venom of the Taiwan cobra Naja naja atra. Toxicon 2012; 60:623-31. [DOI: 10.1016/j.toxicon.2012.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/15/2012] [Accepted: 05/23/2012] [Indexed: 11/24/2022]
|
9
|
Abstract
Venoms and toxins are of significant interest due to their ability to cause a wide range of pathophysiological conditions that can potentially result in death. Despite their wide distribution among plants and animals, the biochemical pathways associated with these pathogenic agents remain largely unexplored. Impoverished and underdeveloped regions appear especially susceptible to increased incidence and severity due to poor socioeconomic conditions and lack of appropriate medical treatment infrastructure. To facilitate better management and treatment of envenomation victims, it is essential that the biochemical mechanisms of their action be elucidated. This review aims to characterize downstream envenomation mechanisms by addressing the major neuro-, cardio-, and hemotoxins as well as ion-channel toxins. Because of their use in folk and traditional medicine, the biochemistry behind venom therapy and possible implications on conventional medicine will also be addressed.
Collapse
|
10
|
Wu PL, Chiu CR, Huang WN, Wu WG. The role of sulfatide lipid domains in the membrane pore-forming activity of cobra cardiotoxin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1378-85. [PMID: 22387431 DOI: 10.1016/j.bbamem.2012.02.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 01/20/2012] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
Abstract
Cobra CTX A3, the major cardiotoxin (CTX) from Naja atra, is a cytotoxic, basic β-sheet polypeptide that is known to induce a transient membrane leakage of cardiomyocytes through a sulfatide-dependent CTX membrane pore formation and internalization mechanism. The molecular specificity of CTX A3-sulfatide interaction at atomic levels has also been shown by both nuclear magnetic resonance (NMR) and X-ray diffraction techniques to reveal a role of CTX-induced sulfatide conformational changes for CTX A3 binding and dimer formation. In this study, we investigate the role of sulfatide lipid domains in CTX pore formation by various biophysical methods, including fluorescence imaging and atomic force microscopy, and suggest an important role of liquid-disordered (ld) and solid-ordered (so) phase boundary in lipid domains to facilitate the process. Fluorescence spectroscopic studies on the kinetics of membrane leakage and CTX oligomerization further reveal that, although most CTXs can oligomerize on membranes, only a small fraction of CTXs oligomerizations form leakage pores. We therefore suggest that CTX binding at the boundary between the so and so/ld phase coexistence sulfatide lipid domains could form effective pores to significantly enhance the CTX-induced membrane leakage of sulfatide-containing phosphatidylcholine vesicles. The model is consistent with our earlier observations that CTX may penetrate and lyse the bilayers into small aggregates at a lipid/protein molar ratio of about 20 in the ripple P(β)' phase of phosphatidylcholine bilayers and suggest a novel mechanism for the synergistic action of cobra secretary phospholipase A2 and CTXs.
Collapse
Affiliation(s)
- Po-Long Wu
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | |
Collapse
|
11
|
Abstract
PURPOSE We evaluated the comparative effects of intraprostatic injection of cobra cardiotoxin D and botulinum toxin type A on prostate structure in the rat model. MATERIALS AND METHODS A total of 18 Sprague-Dawley® rats weighing 500 to 600 gm received a single 0.1 ml injection of saline (6), botulinum toxin type A (6) or the cardiotoxin D (6) component of cobra (Naja naja atra) toxin in the right and left ventral lobes of the prostate. At 14 days the rats were sacrificed. The prostate glands were harvested, weighed and processed for immunohistochemical and morphological studies. RESULTS Prostate glands injected with cardiotoxin D showed significantly decreased weight compared to that of prostates injected with botulinum toxin type A and the saline control. Prostatic atrophy in the glandular component with flattening of the epithelial lining was seen histologically in rats that received botulinum toxin and cardiotoxin D. Each group injected with cardiotoxin D and botulinum toxin showed a significant increase in the number of apoptotic cells compared with controls while only the botulinum toxin group showed a significant increase in the number of proliferating cells. Only rats injected with botulinum toxin had body weight loss. CONCLUSIONS Our study shows that intraprostatic injection of cobra cardiotoxin D induces prostatic atrophy and leads to a decrease in prostatic weight greater than that of intraprostatic injection of botulinum toxin type A. No systemic effects, such as decreased body weight, were noted after cardiotoxin D injection. Further studies are warranted but the statistically significant decrease in the number of proliferating cells implies a prolonged effect of cardiotoxin D.
Collapse
|
12
|
Down-regulation of the JAK2/PI3K-mediated signaling activation is involved in Taiwan cobra cardiotoxin III-induced apoptosis of human breast MDA-MB-231 cancer cells. Toxicon 2010; 55:1263-73. [DOI: 10.1016/j.toxicon.2010.01.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 01/25/2010] [Accepted: 01/27/2010] [Indexed: 12/17/2022]
|
13
|
Mannock DA, Lewis RN, McMullen TP, McElhaney RN. The effect of variations in phospholipid and sterol structure on the nature of lipid–sterol interactions in lipid bilayer model membranes. Chem Phys Lipids 2010; 163:403-48. [DOI: 10.1016/j.chemphyslip.2010.03.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 03/13/2010] [Accepted: 03/27/2010] [Indexed: 01/30/2023]
|
14
|
Chien CM, Lin KL, Su JC, Chang LS, Lin SR. Inactivation of epidermal growth factor receptor and downstream pathways in oral squamous cell carcinoma Ca9-22 cells by cardiotoxin III from Naja naja atra. JOURNAL OF NATURAL PRODUCTS 2009; 72:1735-1740. [PMID: 19754129 DOI: 10.1021/np900010g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cardiotoxin III (1), a basic polypeptide with 60 amino acid residues isolated from Naja naja atra venom, has potential therapeutic activity in cancer. Treatment with 1 reduced phosphorylation of EGFR and Akt, as well as ERK in Ca9-22 cells. Moreover, 1-treatment inhibited constitutive activation of STAT3 and STAT5 in a time-dependent manner. Up-regulation of Bax and down-regulation of anti-apoptotic proteins including Bcl-2, Bcl-X(L), and myeloid cell leukemia-1(Mcl-1) were also found in cells treated with 1. In addition, 1-treatment disrupted mitochondrial membrane potential (DeltaPsim) and resulted in release of mitochondrial cytochrome c and activation of both caspases-9 and -3. AG1478, a specific pharmacological inhibitor of EGFR activation, mimics the cytotoxic effects of 1. Taken together, these results showed that 1 causes significant induction of apoptosis in Ca9-22 cells via abolition of the EGFR-mediated survival pathway of these cells. Thus, cardiotoxin III appears to be a potential therapeutic agent for killing oral squamous carcinoma Ca9-22 cells.
Collapse
Affiliation(s)
- Ching-Ming Chien
- Faculty of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Yu C, Bhaskaran R, Yang CC. Structures in Solution of Toxins from Taiwan Cobra Venom,Naja naja atra, Derived from NMR Spectra. ACTA ACUST UNITED AC 2008. [DOI: 10.3109/15569549409089966] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Chien CM, Yang SH, Chang LS, Lin SR. Involvement of both endoplasmic reticulum- and mitochondria-dependent pathways in cardiotoxin III-induced apoptosis in HL-60 cells. Clin Exp Pharmacol Physiol 2008; 35:1059-64. [PMID: 18505440 DOI: 10.1111/j.1440-1681.2008.04968.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cardiotoxin (CTX) III, a basic polypeptide with 60 amino acid residues isolated from Naja naja atra venom, has been reported to have anticancer activity. In the present study, we investigated the mechanisms underlying the anticancer activity of CTX III in human leukaemia (HL-60 cells). Cardiotoxin III activated the endoplasmic reticulum (ER) pathway of apoptosis in HL-60 cells, as indicated by increased levels of calcium and glucose-related protein 78 (Grp78), and triggered the subsequent activation of micro-calpain and caspase 12. In addition, CTX III initiated the mitochondrial apoptotic pathway in HL-60 cells, as evidenced by an increased Bax/Bcl-2 ratio, the release of cytochrome c and activation of caspase 9. In the presence of 50 micromol/L Z-ATAD-FMK (a caspase 12 inhibitor) and 100 micromol/L Z-LEHD-FMK (a caspase 9 inhibitor), the CTX III-mediated activation of caspase 9 and caspase 3 was significantly reduced. There was no significant effect of the caspase 12 inhibitor Z-ATAD-FMK on mitochondrial cytochrome c release. Cardiotoxin III-mediated activation of caspase 12 was not abrogated in the presence of the caspase 9 inhibitor Z-LEHD-FMK, indicating that caspase 12 activation was not downstream of caspase 9. These results indicate that CTX III induces cell apoptosis via both ER stress and a mitochondrial death pathway.
Collapse
Affiliation(s)
- Ching-Ming Chien
- Faculty of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
18
|
Yang S, Chien C, Chang L, Lin S. Cardiotoxin III‐induced apoptosis is mediated by Ca2+‐dependent caspase‐12 activation in K562 cells. J Biochem Mol Toxicol 2008; 22:209-18. [DOI: 10.1002/jbt.20231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Tjong SC, Wu PL, Wang CM, Huang WN, Ho NL, Wu WG. Role of Glycosphingolipid Conformational Change in Membrane Pore Forming Activity of Cobra Cardiotoxin. Biochemistry 2007; 46:12111-23. [DOI: 10.1021/bi700871x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Siu-Cin Tjong
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, National Synchrotron Radiation Research Center, and Yuan Pei University, Hsinchu, Taiwan
| | - Po-Long Wu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, National Synchrotron Radiation Research Center, and Yuan Pei University, Hsinchu, Taiwan
| | - Chang-Mao Wang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, National Synchrotron Radiation Research Center, and Yuan Pei University, Hsinchu, Taiwan
| | - Wei-Ning Huang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, National Synchrotron Radiation Research Center, and Yuan Pei University, Hsinchu, Taiwan
| | - Nan-Lu Ho
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, National Synchrotron Radiation Research Center, and Yuan Pei University, Hsinchu, Taiwan
| | - Wen-guey Wu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, National Synchrotron Radiation Research Center, and Yuan Pei University, Hsinchu, Taiwan
| |
Collapse
|
20
|
Tjong SC, Chen TS, Huang WN, Wu WG. Structures of heparin-derived tetrasaccharide bound to cobra cardiotoxins: heparin binding at a single protein site with diverse side chain interactions. Biochemistry 2007; 46:9941-52. [PMID: 17685633 DOI: 10.1021/bi700995v] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cobra cardiotoxins (CTXs) are three-fingered polypeptides with positively charged domains that have been shown to bind to anionic ligands of snake venom citrate, glycosaminoglycans, sulfoglycosphingolipid, and nucleotide triphosphate with various biochemical effects including toxin dimerization, cell surface retention, membrane pore formation, cell internalization and blocking of enzymatic activities of kinase and ATPase. The reported anionic binding sites, however, are found to be different among different CTX homologues for potentially different CTX activities. Herein, by NMR studies of the binding of inorganic phosphate, dATP (stable form of ATP), and heparin-derived tetrasaccharide to Naja atra CTX A1, a novel CTX molecule exhibiting in vivo necrotic activity on skeletal muscle, we demonstrate that diverse ligands binding to CTXs could also occur at a single protein site with flexible side chain interactions. The flexibility of such an interaction is also illustrated by the available heparin-CTX A3 complex structures with different heparin chain lengths binding at the same site. Our results provide a likely structural explanation on how the interaction between heparan sufate and proteins depends more on the overall charge cluster organization rather than on their fine structures. We also suggest that the ligand binding site of CTX homologues can be fine-tuned by nonconserved residues near the binding pocket because of their flexible side chain interaction and dimerization ability, even for the rigid CTX molecules tightened by four disulfide bonds.
Collapse
Affiliation(s)
- Siu-Cin Tjong
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsin Chu 30043, Taiwan
| | | | | | | |
Collapse
|
21
|
Yang SH, Chien CM, Chang LS, Lin SR. Involvement of c-jun N-terminal kinase in G2/M arrest and caspase-mediated apoptosis induced by cardiotoxin III (Naja naja atra) in K562 leukemia cells. Toxicon 2007; 49:966-74. [PMID: 17368702 DOI: 10.1016/j.toxicon.2007.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 01/12/2007] [Accepted: 01/15/2007] [Indexed: 11/21/2022]
Abstract
Cardiotoxin III (CTX III), a basic polypeptide with 60 amino acid residues isolated from Naja naja atra venom, may have a potentiality as a structural template for rational drug design in killing cancer cells. Treatment of K562 cells with 0.3 microM of CTX III resulted in G2/M phase cell cycle arrest that was associated with a marked decline in protein levels of G2/M regulatory proteins including cyclin A, cyclin B1, Cdk2 and Cdc25C. In contrast to no effect on the phosphorylation of ERK, p38 MAPK and Akt, an activation of JNK was noted when K562 cells were exposed to CTX III. CTX III-mediated G2/M phase arrest and apoptosis were reduced by treatment with the JNK-specific inhibitor SP600125, but not by ERK and p38MAPK inhibitors. Further investigation showed that the specific JNK inhibitor, SP600125, reduced the activation of caspase-3, caspase-9, and reversed the decline in the expression of cyclin B1. Taken together, our data show for the first time that JNK, but not ERK, p38MAPK or Akt signaling, plays an important role in CTX III-mediated G2/M arrest and apoptosis in K562 cancer cells.
Collapse
Affiliation(s)
- Sheng-Huei Yang
- Faculty of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan, ROC
| | | | | | | |
Collapse
|
22
|
Yang SH, Tsai CH, Lu MC, Yang YN, Chien CM, Lin SF, Lin SR. Effects of cardiotoxin III on expression of genes and proteins related to G2/M arrest and apoptosis in K562 cells. Mol Cell Biochem 2006; 300:185-90. [PMID: 17149543 DOI: 10.1007/s11010-006-9382-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 11/07/2006] [Indexed: 10/23/2022]
Abstract
Cardiotoxin III (CTX III) is a basic polypeptide of 60-amino acid residues isolated from Naja naja atra venom, exerts its anti-proliferative activity in human leukemia K562 cells. In the present study, the expression of mRNAs and proteins related to cell cycle and apoptosis in human leukemia K562 cells induced by CTX III was investigated by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. Flow cytometric analysis revealed that CTX III resulted in G2/M phase arrest in the cell cycle progression, which was associated with a marked decrease in the mRNA and protein expressions of cyclin A, cyclin B1, and Cdk 2, with no detectable changes in the levels of Cdk 1, cyclin D1, and cyclin E. Moreover, the increase in apoptosis was associated with the Bax gene and protein levels significantly increased as treatment durations of CTX III increased, while the Bcl-2 mRNA and protein levels exhibited no changes. We also observed that caspase-9 and caspase-3 genes remained unchanged up to 12 h with 2 microg/ml CTX III. These molecular alterations provide an insight into CTX III-caused growth inhibition, G2/M arrest, and apoptotic death of K562 cells.
Collapse
Affiliation(s)
- Sheng-Huei Yang
- Faculty of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan 807, ROC
| | | | | | | | | | | | | |
Collapse
|
23
|
Chang LS, Chen KC, Lin SR, Huang HB. Purification and characterization of Ophiophagus hannah cytotoxin-like proteins. Toxicon 2006; 48:429-36. [PMID: 16899267 DOI: 10.1016/j.toxicon.2006.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 06/23/2006] [Indexed: 11/24/2022]
Abstract
Three cytotoxin-like proteins from the venom of Ophiophagus hannah were isolated by a combination of ion exchange chromatography and reverse phase HPLC. Amino acid sequence analysis revealed that these proteins all consisted of 63 amino acids and shared approximate 50% and 56% sequence identity with Naja naja atra cardiotoxins and cardiotoxin-like basic proteins (CLBPs), respectively. CD spectra revealed that their secondary structure was dominated with beta-sheet as those noted with cardiotoxins and CLBPs. O. hannah cytotoxin-like protein exhibited a cell-lytic activity on SK-N-SH cells, but its activity was more weak than that noted for N. naja atra cardiotoxin 3. Alternatively, apoptotic cell death was induced by the addition of N. naja atra CLBP. Based on the sequence information with the toxin molecules, the functional residues and regions related to the differential activity with O. hannah cytotoxin-like protein, cardiotoxin and CLBP are discussed.
Collapse
Affiliation(s)
- Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen Unversity-Kaohsiung Medical University Joint Center, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC.
| | | | | | | |
Collapse
|
24
|
Yang SH, Chien CM, Lu MC, Lu YJ, Wu ZZ, Lin SR. Cardiotoxin III induces apoptosis in K562 cells through a mitochondrial-mediated pathway. Clin Exp Pharmacol Physiol 2006; 32:515-20. [PMID: 16026508 DOI: 10.1111/j.1440-1681.2005.04223.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Cardiotoxin (CTX) III is a basic polypeptide with 60 amino acid residues isolated from Naja naja atra venom. This is the first report on the mechanism of the anticancer effect of CTX III on human leukaemia K562 cells. 2. Cardiotoxin III was found to inhibit the growth of K562 cells in a time- and dose-dependent manner, with an IC(50) value of 1.7 mug/mL, and displayed several features of apoptosis, including apoptotic body formation, an increase in the sub-G(1) population, DNA fragmentation and poly (ADP-ribose) polymerase (PARP) cleavage. 3. Investigation of the mechanism of CTX III-induced apoptosis revealed that treatment of K562 cells with CTX III resulted in the loss of mitochondrial membrane potential, cytochrome c release from mitochondria into the cytosol and activation of caspase-9 and caspase-3 and the subsequent cleavage of the caspase-3 substrate PARP; however, CTX III did not generate reactive oxygen species (ROS). 4. Taken together, the results indicate that CTX III induces apoptosis in K562 cells through an ROS-independent mitochondrial dysfunction pathway.
Collapse
Affiliation(s)
- Sheng-Huei Yang
- Faculty of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan ROC
| | | | | | | | | | | |
Collapse
|
25
|
Tsai CH, Yang SH, Chien CM, Lu MC, Lo CS, Lin YH, Hu XW, Lin SR. Mechanisms of cardiotoxin lll-induced apoptosis in human colorectal cancer colo205 cells. Clin Exp Pharmacol Physiol 2006; 33:177-82. [PMID: 16487259 DOI: 10.1111/j.1440-1681.2006.04334.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cardiotoxin III (CTX III) is a basic polypeptide with 60 amino acid residues isolated from Naja naja atra venom. This is the first report on the mechanism of the anticancer effect of CTX III in human colorectal cancer Colo205 cells. 2. Cardiotoxin III-induced Colo205 cell apoptosis was confirmed by DNA fragmentation (DNA ladder and sub-G1 formation) with an IC(50) of 4 mg/mL at 48 h. 3. Further mechanistic analysis demonstrate that CTX III induced the loss of mitochondrial membrane potential (Dym), cytochrome c release from mitochondria into the cytosol and activation of capase-9, caspase 3, as well as markedly enhancing the expression of Bax, but not Bcl-2, protein in the cells. Moreover, the CTX III-induced apoptosis was significantly blocked by the broad-spectrum caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. 4. However, CTX III did not generate the formation of reactive oxygen species and anti-oxidants, including N-acetylcysteine, and catalase could not block CTX III-induced apoptosis in the Colo205 cells. 5. Taken together, these results suggest that CTX III may induce apoptosis through a mitochondrial- and caspase-dependent mechanism and alteration of Bax/Bcl-2 ratio in human colorectal Colo205 cancer cells.
Collapse
Affiliation(s)
- Chia-Houng Tsai
- Faculty of Medicinal and Applied Chemistry, Graduate Institute of Natural Products and Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Wu PL, Lee SC, Chuang CC, Mori S, Akakura N, Wu WG, Takada Y. Non-cytotoxic cobra cardiotoxin A5 binds to alpha(v)beta3 integrin and inhibits bone resorption. Identification of cardiotoxins as non-RGD integrin-binding proteins of the Ly-6 family. J Biol Chem 2006; 281:7937-45. [PMID: 16407244 DOI: 10.1074/jbc.m513035200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Severe tissue necrosis with a retarded wound healing process is a major symptom of a cobra snakebite. Cardiotoxins (CTXs) are major components of cobra venoms that belong to the Ly-6 protein family and are implicated in tissue damage. The interaction of the major CTX from Taiwan cobra, i.e. CTX A3, with sulfatides in the cell membrane has recently been shown to induce pore formation and cell internalization and to be responsible for cytotoxicity in cardiomyocytes (Wang, C.-H., Liu, J.-H., Lee, S.-C., Hsiao, C.-D., and Wu, W.-g. (2006) J. Biol. Chem. 281, 656-667). We show here that one of the non-cytotoxic CTXs, i.e. CTX A5 or cardiotoxin-like basic polypeptide, from Taiwan cobra specifically bound to alpha(v)beta3 integrin and inhibited bone resorption activity. We found that both membrane-bound and recombinant soluble alpha(v)beta3 integrins bound specifically to CTX A5 in a dose-dependent manner. Surface plasmon resonance analysis showed that human soluble alpha(v)beta3 bound to CTX A5 with an apparent affinity of approximately 0.3 microM. Calf pulmonary artery endothelial cells, which constitutively express alpha(v)beta3, showed a CTX A5 binding profile similar to that of membrane-bound and soluble alpha(v)beta3 integrins, suggesting that endothelial cells are a potential target for CTX action. We tested whether CTX A5 inhibits osteoclast differentiation and bone resorption, a process known to be involved in alpha(v)beta3 binding and inhibited by RGD-containing peptides. We demonstrate that CTX A5 inhibited both activities at a micromolar range by binding to murine alpha(v)beta3 integrin in osteoclasts and that CTX A5 co-localized with beta3 integrin. Finally, after comparing the integrin binding affinity among CTX homologs, we propose that the amino acid residues near the two loops of CTX A5 are involved in integrin binding. These results identify CTX A5 as a non-RGD integrin-binding protein with therapeutic potential as an integrin antagonist.
Collapse
Affiliation(s)
- Po-Long Wu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30043, Taiwan
| | | | | | | | | | | | | |
Collapse
|
27
|
Wang CH, Liu JH, Lee SC, Hsiao CD, Wu WG. Glycosphingolipid-facilitated membrane insertion and internalization of cobra cardiotoxin. The sulfatide.cardiotoxin complex structure in a membrane-like environment suggests a lipid-dependent cell-penetrating mechanism for membrane binding polypeptides. J Biol Chem 2005; 281:656-67. [PMID: 16263708 DOI: 10.1074/jbc.m507880200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cobra cardiotoxins, a family of basic polypeptides having lipid- and heparin-binding capacities similar to the cell-penetrating peptides, induce severe tissue necrosis and systolic heart arrest in snakebite victims. Whereas cardiotoxins are specifically retained on the cell surface via heparan sulfate-mediated processes, their lipid binding ability appears to be responsible, at least in part, for cardiotoxin-induced membrane leakage and cell death. Although the exact role of lipids involved in toxin-mediated cytotoxicity remains largely unknown, monoclonal anti-sulfatide antibody O4 has recently been shown to inhibit the action of CTX A3, the major cardiotoxin from Taiwan cobra venom, on cardiomyocytes by preventing cardiotoxin-induced membrane leakage and CTX A3 internalization into mitochondria. Here, we show that anti-sulfatide acts by blocking the binding of CTX A3 to the sulfatides in the plasma membrane to prevent sulfatide-dependent CTX A3 membrane pore formation and internalization. We also describe the crystal structure of a CTX A3-sulfatide complex in a membrane-like environment at 2.3 angstroms resolution. The unexpected orientation of the sulfatide fatty chains in the structure allows prediction of the mode of toxin insertion into the plasma membrane. CTX A3 recognizes both the headgroup and the ceramide interfacial region of sulfatide to induce a lipid conformational change that may play a key role in CTX A3 oligomerization and cellular internalization. This proposed lipid-mediated toxin translocation mechanism may also shed light on the cellular uptake mechanism of the amphiphilic cell-penetrating peptides known to involve multiple internalization pathways.
Collapse
Affiliation(s)
- Chia-Hui Wang
- Department of Life Sciences and Institute of Bioinformatics and Structural Biology, National Tsinghua University, Hsinchu, Taiwan 30013, Republic of China
| | | | | | | | | |
Collapse
|
28
|
Dubovskii P, Lesovoy D, Dubinnyi M, Konshina A, Utkin Y, Efremov R, Arseniev A. Interaction of three-finger toxins with phospholipid membranes: comparison of S- and P-type cytotoxins. Biochem J 2005; 387:807-15. [PMID: 15584897 PMCID: PMC1135012 DOI: 10.1042/bj20041814] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 12/06/2004] [Accepted: 12/07/2004] [Indexed: 11/17/2022]
Abstract
The CTs (cytotoxins) I and II are positively charged three-finger folded proteins from venom of Naja oxiana (the Central Asian cobra). They belong to S- and P-type respectively based on Ser-28 and Pro-30 residues within a putative phospholipid bilayer binding site. Previously, we investigated the interaction of CTII with multilamellar liposomes of dipalmitoylphosphatidylglycerol by wide-line (31)P-NMR spectroscopy. To compare interactions of these proteins with phospholipids, we investigated the interaction of CTI with the multilamellar liposomes of dipalmitoylphosphatidylglycerol analogously. The effect of CTI on the chemical shielding anisotropy and deformation of the liposomes in the magnetic field was determined at different temperatures and lipid/protein ratios. It was found that both the proteins do not affect lipid organization in the gel state. In the liquid crystalline state of the bilayer they disturb lipid packing. To get insight into the interactions of the toxins with membranes, Monte Carlo simulations of CTI and CTII in the presence of the bilayer membrane were performed. It was found that both the toxins penetrate into the bilayer with the tips of all the three loops. However, the free-energy gain on membrane insertion of CTI is smaller (by approximately 7 kcal/mol; 1 kcal identical with 4.184 kJ) when compared with CTII, because of the lower hydrophobicity of the membrane-binding site of CTI. These results clearly demonstrate that the P-type cytotoxins interact with membranes stronger than those of the S-type, although the mode of the membrane insertion is similar for both the types.
Collapse
Affiliation(s)
- Peter V. Dubovskii
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., V-437, Moscow 117997, Russia
| | - Dmitry M. Lesovoy
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., V-437, Moscow 117997, Russia
| | - Maxim A. Dubinnyi
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., V-437, Moscow 117997, Russia
| | - Anastasiya G. Konshina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., V-437, Moscow 117997, Russia
| | - Yuri N. Utkin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., V-437, Moscow 117997, Russia
| | - Roman G. Efremov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., V-437, Moscow 117997, Russia
| | - Alexander S. Arseniev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., V-437, Moscow 117997, Russia
| |
Collapse
|
29
|
Yang SH, Lu MC, Chien CM, Tsai CH, Lu YJ, Hour TC, Lin SR. Induction of apoptosis in human leukemia K562 cells by cardiotoxin III. Life Sci 2005; 76:2513-22. [PMID: 15763081 DOI: 10.1016/j.lfs.2005.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 01/03/2005] [Indexed: 11/21/2022]
Abstract
Cardiotoxin III (CTX III), a basic polypeptide with 60 amino acid residues isolated from Naja naja atra venom, has been reported to have anticancer activity. CTX III was found to inhibit the growth of K562 cells in a time-and dose-dependent manner with IC50 value of 1.7 microg/ml, and it displayed several features of apoptosis including apoptotic body formation, increase of sub G1 population, DNA fragmentation and poly (ADP-ribose) polymerase (PARP) cleavage. Investigation of the mechanism of CTXIII--induced apoptosis revealed that the treatment of K562 cells with CTX III resulted in the activation of caspase-9, caspase-3 and subsequent cleavage of its substrate PARP and that CTXIII was also associated with an early release of cytochrome c from the mitochondria. These results suggest that CTX III may induce apoptosis through a mitochondria- and caspase-dependent mechanism.
Collapse
Affiliation(s)
- Sheng-Huei Yang
- Faculty of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan 807, ROC
| | | | | | | | | | | | | |
Collapse
|
30
|
Wu WG. Cobra cardiotoxin and phospholipase A2 as GAG-binding toxins: on the path from structure to cardiotoxicity and inflammation. Trends Cardiovasc Med 2005; 8:270-8. [PMID: 14987563 DOI: 10.1016/s1050-1738(98)00019-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glycosaminoglycans (GAGs) represent the sulfated carbohydrate moieties of proteoglycans which occur abundantly in tissues of the cardiovascular system. Many proteins bind specifically to GAGs and perform an important role in inflammation, cell proliferation, and blood coagulation processes. Recently, in vitro GAG-binding studies of cardiotoxins (CTXs) and basic phospholipase A(2) (PLA(2)) from cobra venom established the toxins as two new families of GAG-binding proteins. In particular, discontinuous basic residues in beta-sheet CTXs may form a cationic cradle suitable for heparin binding, as in the case of fibronectin module III-13. The binding specificity of beta-sheet proteins to different GAGs can be further enhanced by involving other cationic clusters near the flexible loop of the molecule. Since the three-dimensional structures of many CTXs and PLA(2) are available, these two toxins may serve as models for the elucidation of the molecular recognition of GAG-binding proteins and also as polypeptide templates for further improvement of the binding specificity suitable for future biomedical application. Research along the line of GAG-guided toxicity of cobra venom components may help us to understand the functional role of GAGs and the action mechanism of cobra venom components in the cardiovascular system.
Collapse
Affiliation(s)
- W G Wu
- Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan 30043
| |
Collapse
|
31
|
Chien CM, Yang SH, Lu MC, Chang LS, Lin SR. Cardiotoxin III induces apoptosis in T24 cells via reactive oxygen species-independent mitochondrial death pathway. Drug Dev Res 2005. [DOI: 10.1002/ddr.10415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Lin YL, Lin SR, Wu TT, Chang LS. Evidence showing an intermolecular interaction between KChIP proteins and Taiwan cobra cardiotoxins. Biochem Biophys Res Commun 2004; 319:720-4. [PMID: 15184042 DOI: 10.1016/j.bbrc.2004.05.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Indexed: 10/26/2022]
Abstract
Direct protein-protein interaction between Taiwan cobra cardiotoxin3 (CTX3) and potassium channel-interacting proteins (KChIPs) was investigated in the present study. It was found that KChIPs bound with CTX3, in which KChIP and CTX3 formed a 1:1 complex as evidenced by the results of chemical cross-linking. Pull-down assay revealed that the intact EF-hands 3 and 4 of KChIP1 were critical for CTX3-binding. Likewise, removal of EF-hands 3 and 4 distorted the ability of KChIP1 to bind with Kv4.2 N-terminal fragment (KvN) as well as fluorescent probe 8-anilinonaphthalene-1-sulfonate (ANS). In contrast to the interaction between KChIP1 and KvN, the binding of CTX3 to KChIP1 showed a Ca(2+)-independent manner. Fluorescence measurement revealed that CTX3 affected the binding of ANS to Ca(2+)-bound KChIP1, but not Ca(2+)-free KChIP1. Alternatively, KChIP1 simultaneously bound with KvN and CTX3, and the interaction between KChIP1 and KvN was enhanced by CTX3. In terms of the fact that KChIPs regulate the electrophysiological properties of Kv K(+) channel, the potentiality of CTX for this biomedical application could be considered.
Collapse
Affiliation(s)
- Ya-Ling Lin
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC
| | | | | | | |
Collapse
|
33
|
Huang WN, Sue SC, Wang DS, Wu PL, Wu WG. Peripheral binding mode and penetration depth of cobra cardiotoxin on phospholipid membranes as studied by a combined FTIR and computer simulation approach. Biochemistry 2003; 42:7457-66. [PMID: 12809502 DOI: 10.1021/bi0344477] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cobra cardiotoxin, a cytotoxic beta-sheet basic polypeptide, is known to cause membrane leakage in many cells including human erythrocytes. Herein, we demonstrate that the major cobra cardiotoxin from Naja atra, CTX A3, can cause leakage of vesicle contents in phosphatidylglycerol (PG) and phosphatidylserine containing, but not in pure phosphatidylcholine (PC), membrane bilayers. By the combined polarized attenuated total reflection infrared spectroscopy and computer simulation studies, CTX A3 is shown to peripherally bind to both zwitterionic and anionic monolayers in a similar edgewise manner with a tilted angle of approximately 48 +/- 20 degrees between the beta-sheet plane of the CTX molecule and the normal of the membrane surface. The average surface area expansion induced by CTX A3 binding to the PG monolayer, however, is two times larger than that of the PC monolayer as determined by the Langmuir minitrough method. Interaction energy considerations of CTX A3 on neutral and negatively charged membrane surfaces suggests that the electrostatic interaction between anionic lipid and cationic CTXs plays a role in modulating the penetration depth of CTX molecules on the initial peripheral binding mode and reveals a pathway leading to the formation of an inserted mode in negatively charged membrane bilayers.
Collapse
Affiliation(s)
- Wei-Ning Huang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30043, Taiwan
| | | | | | | | | |
Collapse
|
34
|
Forouhar F, Huang WN, Liu JH, Chien KY, Wu WG, Hsiao CD. Structural basis of membrane-induced cardiotoxin A3 oligomerization. J Biol Chem 2003; 278:21980-8. [PMID: 12660250 DOI: 10.1074/jbc.m208650200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cobra cardiotoxins (CTXs) have previously been shown to induce membrane fusion of vesicles formed by phospholipids such as cardiolipin or sphingomyelin. CTX can also form a pore in membrane bilayers containing a anionic lipid such as phosphatidylserine or phosphatidylglycerol. Herein, we show that the interaction of CTX with negatively charged lipids causes CTX dimerization, an important intermediate for the eventual oligomerization of CTX during the CTX-induced fusion and pore formation process. The structural basis of the lipid-induced oligomerization of CTX A3, a major CTX from Naja atra, is then illustrated by the crystal structure of CTX A3 in complex with SDS; SDS likely mimics anionic lipids of the membrane under micelle conditions at 1.9-A resolution. The crystal packing reveals distinct SDS-free and SDS-rich regions; in the latter two types of interconnecting CTX A3 dimers, D1 and D2, and several SDS molecules can be identified to stabilize D1 and D2 by simultaneously interacting with residues at each dimer interface. When the three CTXSDS complexes in the asymmetric unit are overlaid, the orientation of CTX A3 monomers relative to the SDS molecules in the crystal is strikingly similar to that of the toxin with respect to model membranes as determined by NMR and Fourier transform infrared methods. These results not only illustrate how lipid-induced CTX dimer formation may be transformed into oligomers either as inverted micelles of fusion intermediates or as membrane pore of anionic lipid bilayers but also underscore a potential role for SDS in x-ray diffraction study of protein-membrane interactions in the future.
Collapse
Affiliation(s)
- Farhad Forouhar
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115
| | | | | | | | | | | |
Collapse
|
35
|
Dubovskii PV, Lesovoy DM, Dubinnyi MA, Utkin YN, Arseniev AS. Interaction of the P-type cardiotoxin with phospholipid membranes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2038-46. [PMID: 12709064 DOI: 10.1046/j.1432-1033.2003.03580.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cardiotoxin (cytotoxin II, or CTII) isolated from cobra snake (Naja oxiana) venom is a 60-residue basic membrane-active protein featuring three-finger beta sheet fold. To assess possible modes of CTII/membrane interaction 31P- and 1H-NMR spectroscopy was used to study binding of the toxin and its effect onto multilamellar vesicles (MLV) composed of either zwitterionic or anionic phospholipid, dipalmitoylglycerophosphocholine (Pam2Gro-PCho) or dipalmitoylglycerophosphoglycerol (Pam2Gro-PGro), respectively. The analysis of 1H-NMR linewidths of the toxin and 31P-NMR spectral lineshapes of the phospholipid as a function of temperature, lipid-to-protein ratios, and pH values showed that at least three distinct modes of CTII interaction with membranes exist: (a) nonpenetrating mode; in the gel state of the negatively charged MLV the toxin is bound to the surface electrostatically; the binding to Pam2Gro-PCho membranes was not observed; (b) penetrating mode; hydrophobic interactions develop due to penetration of the toxin into Pam2Gro-PGro membranes in the liquid-crystalline state; it is presumed that in this mode CTII is located at the membrane/water interface deepening the side-chains of hydrophobic residues at the tips of the loops 1-3 down to the boundary between the glycerol and acyl regions of the bilayer; (c) the penetrating mode gives way to isotropic phase, stoichiometrically well-defined CTII/phospholipid complexes at CTII/lipid ratio exceeding a threshold value which was found to depend at physiological pH values upon ionization of the imidazole ring of His31. Biological implications of the observed modes of the toxin-membrane interactions are discussed.
Collapse
Affiliation(s)
- Peter V Dubovskii
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | | | | | | | | |
Collapse
|
36
|
Mannock DA, McIntosh TJ, Jiang X, Covey DF, McElhaney RN. Effects of natural and enantiomeric cholesterol on the thermotropic phase behavior and structure of egg sphingomyelin bilayer membranes. Biophys J 2003; 84:1038-46. [PMID: 12547785 PMCID: PMC1302681 DOI: 10.1016/s0006-3495(03)74920-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phospholipids, sphingolipids, and sterols are the major lipid components of the plasma membranes of eukaryotic cells. Because these three lipid classes occur naturally as enantiomerically pure compounds, enantiospecific lipid-lipid and lipid-sterol interactions could in principle occur in the lipid bilayers of eukaryotic plasma membranes. Although previous biophysical studies of phospholipid and phospholipid-sterol model membrane systems have consistently failed to observe such enantiomerically selective interactions, a recent monolayer study of the interactions of natural and enantiomeric cholesterol with egg sphingomyelin has apparently revealed the existence of enantiospecific sterol-sphingolipid interactions. To determine whether enantiospecific sterol-sphingolipid interactions also occur in more biologically relevant lipid-bilayer systems, differential scanning calorimetric, x-ray diffraction, and neutral buoyant-density measurements were utilized to study the effects of natural and enantiomeric cholesterol on the thermotropic phase behavior and structure of egg sphingomyelin bilayers. The calorimetry experiments show that the natural and enantiomeric cholesterol have essentially identical effects on the temperature, enthalpy, and cooperativity of the gel/liquid-crystalline phase transition of egg sphingomyelin bilayers within the limits of experimental error. As well, the x-ray diffraction and neutral buoyancy experiments indicate that bilayers formed from mixtures of natural or enantiomeric cholesterol and egg sphingomyelin have, within experimental uncertainty, the same structure and mass density. We thus conclude that significant enantioselective cholesterol-sphingolipid interactions do not occur in this lipid-bilayer model membrane system.
Collapse
Affiliation(s)
- David A Mannock
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7 Canada
| | | | | | | | | |
Collapse
|
37
|
Dubovskii PV, Dementieva DV, Bocharov EV, Utkin YN, Arseniev AS. Membrane binding motif of the P-type cardiotoxin. J Mol Biol 2001; 305:137-49. [PMID: 11114253 DOI: 10.1006/jmbi.2000.4283] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carditoxins (CTXs) from cobra snake venoms, the basic 60-62 residue all-beta sheet polypeptides, are known to bind to and impair the function of cell membranes. To assess the membrane induced conformation and orientation of CTXs, the interaction of the P-type cardiotoxin II from Naja oxiana snake venom (CTII) with perdeuterated dodecylphosphocholine (DPC) was studied using ( 1 )H-NMR spectroscopy and diffusion measurements. Under conditions where the toxin formed a well-defined complex with DPC, the spatial structure of CTII with respect to the presence of tightly bound water molecules in loop II, was calculated using the torsion angle dynamics program DYANA. The structure was found to be similar, except for subtle changes in the tips of all three loops, to the previously described "major" form of CTII in aqueous solution illustrated by the "trans" configuration of the Val7-Pro8 peptide bond. No "minor" form with the "cis" configuration of the above bond was found in the micelle-bound state. The broadening of the CTII backbone proton signals by 5, 16-doxylstearate relaxation probes, together with modeling based on the spatial structure of CTII, indicated a periphery mode of binding of the toxin molecule to the micelle and revealed its micelle interacting domain. The latter includes a hydrophobic region of CTII within the extremities of loops I and III (residues 5-11, 46-50), the basement of loop II (residues 24-29,31-37) and the belt of polar residues encircling these loops (lysines 4,5,12,23,50, serines 11,46, histidine 31, arginine 36). It is suggested that this structural motif and the mode of binding can be realized during interaction of CTXs with lipid and biological membranes.
Collapse
Affiliation(s)
- P V Dubovskii
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., V-437, Moscow, Russia
| | | | | | | | | |
Collapse
|
38
|
Lo CC, Hsu JH, Sheu YC, Chiang CM, Wu WG, Fann W, Tsao PH. Effect of D57N mutation on membrane activity and molecular unfolding of cobra cardiotoxin. Biophys J 1998; 75:2382-8. [PMID: 9788933 PMCID: PMC1299912 DOI: 10.1016/s0006-3495(98)77682-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cobra cardiotoxins (CTXs) are able to adopt a three-fingered beta-strand structure with continuous hydrophobic patch that is capable of interacting with zwitterionic phospholipid bilayer. In addition to the four disulfide bonds that form the rigid core of CTXs, Asp57 near the C-terminus interacts electrostatically with Lys2 near the N-terminus (Chiang et al. 1996. Biochemistry. 35:9177-9186). We indicate herein, using circular dichroism and the time-resolved polarized tryptophan fluorescence measurement, that Asp57 to Asn57 (D57N) mutation perturbs the structure of CTX molecules at neutral pH. The structural stability of the D57N mutant was found to be lower, as evidenced by the reduced effective concentration of the 2,2,2-trifluoethanol (TFE)-induced beta-sheet to alpha-helix transition. Interestingly, the single mutation also allows a greater degree of molecular unfolding, because the rotational correlation time of the TFE-induced unfolding intermediate is larger for the D57N mutant. It is suggested that the electrostatic interaction between N- and C-termini also contributes to the formation of the functionally important continuous hydrophobic stretch on the distant end of CTX molecules, because both the binding to anilinonaphthalene fluorescent probe and the interaction with phospholipid bilayer were also reduced for D57N mutant. The result emphasizes the importance of the hydrophobic amino acid residues near the tip of loop 3 as a continuous part of the three-fingered beta-strand CTX molecule and indicates how a distant electrostatic interaction might be involved. It is also implicated that electrostatic interaction plays a role in expanding the radius of gyration of the folding/unfolding intermediate of proteins.
Collapse
Affiliation(s)
- C C Lo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
39
|
Kumar TK, Jayaraman G, Lee CS, Arunkumar AI, Sivaraman T, Samuel D, Yu C. Snake venom cardiotoxins-structure, dynamics, function and folding. J Biomol Struct Dyn 1997; 15:431-63. [PMID: 9439993 DOI: 10.1080/07391102.1997.10508957] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Snake cardiotoxins are highly basic (pI > 10) small molecular weight (approximately 6.5 kDa), all beta-sheet proteins. They exhibit a broad spectrum of interesting biological activities. The secondary structural elements in these toxins include antiparallel double and triple stranded beta-sheets. The three dimensional structures of these toxins reveal an unique asymmetric distribution of the hydrophobic and hydrophilic amino acids. The 3D structures of closely related snake venom toxins such as neurotoxins and cardiotoxin-like basic proteins (CLBP) fail to show similar pattern(s) in the distribution of polar and nonpolar residues. Recently, many novel biological activities have been reported for cardiotoxins. However, to-date, there is no clear structure-function correlation(s) available for snake venom cardiotoxins. The aim of this comprehensive review is to summarize and critically evaluate the progress in research on the structure, dynamics, function and folding aspects of snake venom cardiotoxins.
Collapse
Affiliation(s)
- T K Kumar
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | | | |
Collapse
|
40
|
Sivaraman T, Kumar TK, Yang PW, Yu C. Cardiotoxin-like basic protein (CLBP) from Naja naja atra is not a cardiotoxin. Toxicon 1997; 35:1367-71. [PMID: 9403962 DOI: 10.1016/s0041-0101(96)00205-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
41
|
Wu CY, Chen WC, Ho CL, Chen ST, Wang KT. The role of the N-terminal leucine residue in snake venom cardiotoxin II (Naja naja atra). Biochem Biophys Res Commun 1997; 233:713-6. [PMID: 9168920 DOI: 10.1006/bbrc.1997.6503] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The N-terminal leucine residue of snake venom cardiotoxin II (CTX II) (Naja naja atra) was systematically replaced with D-leucine (CTXII-L1-D-L), glycine (CTXII-L1G) or deleted [CTXII-(2-60)] to study the role of leucine residue in CTX II molecule. CTX II, CTXL1-D-L, CTXL1G and CTX(2-60) were produced by chemical synthesis method and purified by high performance liquid chromatography. Owing to folding problem in CTXII-(2-60), only CTX II, CTXII-L1-D-L and CTXII-L1G were produced in a pure form and characterized by amino acid analysis, mass spectrometry and peptide mapping. In the structural aspect, changing the Leu-1 by D-Leu or Gly causes a drastic alteration in the whole CTX II structure as detected by circular dichroism, 1-anilino-naphthalene-8-sulfonate (ANS) fluorescence assay. In the functional aspect, both CTXII-L1-D-L and CTXII-L1G are still retained substantial biological activity of CTX II. Therefore, the results indicate that both the chirality and the side-chain of the N-terminal leucine residue of CTX II are important elements in maintaining the whole CTX II structure. In addition, this study is the first report in elucidating the reason why the first N-terminal residue of most CTXs (90.3%) is leucine residue.
Collapse
Affiliation(s)
- C Y Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
42
|
Vyas AA, Pan JJ, Patel HV, Vyas KA, Chiang CM, Sheu YC, Hwang JK, Wu WG. Analysis of binding of cobra cardiotoxins to heparin reveals a new beta-sheet heparin-binding structural motif. J Biol Chem 1997; 272:9661-70. [PMID: 9092495 DOI: 10.1074/jbc.272.15.9661] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Heparin and heparan sulfate have recently been shown to bind to snake cardiotoxin (CTX) and to potentiate its penetration into phospholipid monolayer under physiological ionic conditions. Herein we analyze the heparin-binding domain of CTX using 10 CTXs from Taiwan and African cobra venom. We also performed computer modeling to obtain more information of the binding at molecular level. The results provide a molecular model for interaction of CTX-heparin complex where the cationic belt of the conserved residues on the concave surface of three finger beta-sheet polypeptides initiates ionic interaction with heparin-like molecules followed by specific binding of Lys residues near the tip of loop 2 of CTX. The dissociation constants of CTXs differ by as much as 4 orders of magnitude, ranging from approximately 140 microM for toxin gamma to approximately 20 nM for CTX M3, depending on the presence of Lys residues near the tip of loop 2. High affinity heparin binding becomes possible due to the presence of Arg-28, Lys-33, or the so-called consensus heparin binding sequence of XKKXXXKRX near the tip of the loop. The well defined three-finger loop structure of CTX provides an interesting template for the design of high affinity heparin-binding polypeptides with beta-sheet structure. The finding that several cobra CTXs and phospholipase A2 bind to heparin with different affinity may provide information on the synergistic action of the two venom proteins.
Collapse
Affiliation(s)
- A A Vyas
- Department of Life Sciences, National Tsing Hua University, Hsinchu 30043, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Patel HV, Vyas AA, Vyas KA, Liu YS, Chiang CM, Chi LM, Wu WG. Heparin and heparan sulfate bind to snake cardiotoxin. Sulfated oligosaccharides as a potential target for cardiotoxin action. J Biol Chem 1997; 272:1484-92. [PMID: 8999818 DOI: 10.1074/jbc.272.3.1484] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cardiotoxins (CTXs) from cobra venom show cytotoxicity toward several cell types. They cause systolic heart arrest and severe tissue necrosis. Their interaction with phospholipids is established but by itself fails to explain the specificity of these toxins; other component(s) of membrane must, therefore, intervene to direct them toward their target. We herein show, for the first time, that sulfated glycosaminoglycans, heparin, heparan sulfate (HS), chondroitin sulfate (CS), and dermatan sulfate (DS), interact with CTX A3, a major component of Taiwan cobra venom, by use of affinity chromatography, circular dichroism, absorbance, and fluorescence intensity and anisotropy measurements. The relative strength of binding, determined by the NaCl concentration required to dissociate the CTX-glycosaminoglycan complex, varied as follows: heparin > DS > CS > HS. In physiological buffer (8 mM Na2HPO4, 2.7 mM KCl, 1.8 mM KH2PO4, 138 mM NaCl, pH 7.4), however, only heparin and HS bound to CTX, with respective dissociation constants of 1.4 and 16 microM, while CS and DS failed to exhibit well defined binding behavior, as indicated by fluorescence measurements. We estimate that CTX makes 3-4 ionic contacts with heparin based on a salt-dependent binding study and that approximately 40% of binding free energy is derived from purely electrostatic interactions under physiological conditions. Sulfated pentasaccharide may be sufficient to bind to CTX. We also found that heparin accentuates the penetration of CTX into phospholipid membranes as analyzed by Langmuir monolayer measurement. In view of these results we propose that heparin-like moieties of the cell surface may modulate the action of CTX.
Collapse
Affiliation(s)
- H V Patel
- Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan 30043, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Chang LS, Lin J, Wu PF. cDNA sequence analysis and expression of cardiotoxin V and a new cardiotoxin VII from Naja naja atra (Taiwan cobra). BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1295:1-4. [PMID: 8679666 DOI: 10.1016/0167-4838(96)00047-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The cDNAs encoding cardiotoxin V and a new cardiotoxin VII were constructed from the cellular RNA isolated from the venom glands of Naja naja atra by reverse transcription-polymerase chain reaction. Although 95% nucleotide sequence homology was observed with the two cardiotoxins, there were nine amino-acid substitutions between cardiotoxin V and cardiotoxin VII. The cardiotoxins were subcloned into the expression vector pET 20b(+) and transformed into BL21(DE3) E. coli strain. The expressed protein was isolated from the inclusion bodies of E. coli, and purified by reverse-phase high-performance liquid chromatography. The purified recombinant cardiotoxin showed immunoreactivity with anti-cardiotoxin III antibodies as revealed by immunoblot analysis.
Collapse
Affiliation(s)
- L S Chang
- Department of Biochemistry, Kaohsiung Medical College, Taiwan, ROC.
| | | | | |
Collapse
|
45
|
Kumar TK, Lee CS, Yu C. A case study of cardiotoxin III from the Taiwan cobra (Naja naja atra). Solution structure and other physical properties. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 391:115-29. [PMID: 8726052 DOI: 10.1007/978-1-4613-0361-9_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- T K Kumar
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan Republic of China
| | | | | |
Collapse
|
46
|
Shen Z, Cho W. Membrane leakage induced by synergetic action of Lys-49 and Asp-49 Agkistrodon piscivorus piscivorus phospholipases A2: Implications in their pharmacological activities. Int J Biochem Cell Biol 1995. [DOI: 10.1016/1357-2725(95)00072-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Dauplais M, Neumann JM, Pinkasfeld S, Menez A, Roumestand C. An NMR Study of the Interaction of Cardiotoxin gamma from Naja nigricollis with Perdeuterated Dodecylphosphocholine Micelles. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.0213i.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Koynova R, Caffrey M. Phases and phase transitions of the sphingolipids. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1255:213-36. [PMID: 7734437 DOI: 10.1016/0005-2760(94)00202-a] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
LIPIDAT is a computerized database providing access to the wealth of information scattered throughout the literature concerning synthetic and biologically derived polar lipid polymorphic and mesomorphic phase behavior. Herein, we present a review of the LIPIDAT data subset referring to sphingolipids together with an analysis of these data. It includes data collected over a 40-year period and consists of 867 records obtained from 112 articles in 25 different journals. An analysis of these data has allowed us to identify trends in hydrated sphingolipid phase behavior reflecting differences in fatty acyl chain length, saturation and hydroxylation, head group type, and sphingoid base identity. Information on the mesomorphism of biologically-derived and dry sphingolipids is also presented. This review includes 161 references.
Collapse
Affiliation(s)
- R Koynova
- Department of Chemistry, Ohio State University, Columbus, 43210-1173, USA
| | | |
Collapse
|
49
|
Chi LM, Vyas AA, Rule GS, Wu WG. Expression of glutathione S-transferase-cardiotoxin fusion protein in Escherichia coli. Toxicon 1994; 32:1679-83. [PMID: 7725337 DOI: 10.1016/0041-0101(94)90328-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report here the construction of cardiotoxin V gene, from cobra snake venom (Naja naja atra), by chemically synthesized oligonucleotides and its expression as a glutathione S-transferase-cardiotoxin fusion protein in the inclusion bodies of Escherichia coli. The expression of cardiotoxin fusion protein in protein with a yield of about 35 mg/liter culture was confirmed by highly specific anti-peptide antibodies generated against the unique amino acid residues located at the tip of loop II of cardiotoxin V. Since the fusion protein can be easily treated by CNBr to free the toxin moiety, as revealed by immunoblotting of the cleaved protein, the results provide an avenue for future structural and functional studies of cardiotoxin molecules.
Collapse
Affiliation(s)
- L M Chi
- Institute of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | | | | | | |
Collapse
|
50
|
Bhaskaran R, Huang C, Tsai Y, Jayaraman G, Chang D, Yu C. Cardiotoxin II from Taiwan cobra venom, Naja naja atra. Structure in solution and comparison among homologous cardiotoxins. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31544-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|