1
|
Terra WR, Dias RO, Oliveira PL, Ferreira C, Venancio TM. Transcriptomic analyses uncover emerging roles of mucins, lysosome/secretory addressing and detoxification pathways in insect midguts. CURRENT OPINION IN INSECT SCIENCE 2018; 29:34-40. [PMID: 30551823 DOI: 10.1016/j.cois.2018.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 06/09/2023]
Abstract
The study of insect midgut features has been made possible by the recent availability of transcriptome datasets. These data uncovered the preferential expression of mucus-forming mucins at midgut regions that require protection (e.g. the acidic middle midgut of Musca domestica) or at sites of enzyme immobilization, particularly around the peritrophic membrane of Spodoptera frugiperda. Coleoptera lysosomal peptidases are directed to midgut lumen when over-expressed and targeted to lysosomes by a mechanism other than the mannose 6-phosphate-dependent pathway. We show that this second trend is likely conserved across Annelida, Mollusca, Nematoda, and Arthropoda. Furthermore, midgut transcriptomes of distantly related species reveal a general overexpression of xenobiotic detoxification pathways. In addition to attenuating toxicity of plant-derived compounds and insecticides, we also discuss a role for these detoxification pathways in regulating host-microbiota interactions by metabolizing bacterial secondary metabolites.
Collapse
Affiliation(s)
- Walter R Terra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil.
| | - Renata O Dias
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clélia Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| |
Collapse
|
2
|
van Meel E, Lee WS, Liu L, Qian Y, Doray B, Kornfeld S. Multiple Domains of GlcNAc-1-phosphotransferase Mediate Recognition of Lysosomal Enzymes. J Biol Chem 2016; 291:8295-307. [PMID: 26833567 PMCID: PMC4825028 DOI: 10.1074/jbc.m116.714568] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/28/2016] [Indexed: 12/24/2022] Open
Abstract
The Golgi enzyme UDP-GlcNAc:lysosomal enzymeN-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase), an α2β2γ2hexamer, mediates the initial step in the addition of the mannose 6-phosphate targeting signal on newly synthesized lysosomal enzymes. This tag serves to direct the lysosomal enzymes to lysosomes. A key property of GlcNAc-1-phosphotransferase is its unique ability to distinguish the 60 or so lysosomal enzymes from the numerous non-lysosomal glycoproteins with identical Asn-linked glycans. In this study, we demonstrate that the two Notch repeat modules and the DNA methyltransferase-associated protein interaction domain of the α subunit are key components of this recognition process. Importantly, different combinations of these domains are involved in binding to individual lysosomal enzymes. This study also identifies the γ-binding site on the α subunit and demonstrates that in the majority of instances the mannose 6-phosphate receptor homology domain of the γ subunit is required for optimal phosphorylation. These findings serve to explain how GlcNAc-1-phosphotransferase recognizes a large number of proteins that lack a common structural motif.
Collapse
Affiliation(s)
- Eline van Meel
- From the Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Wang-Sik Lee
- From the Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Lin Liu
- From the Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Yi Qian
- From the Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Balraj Doray
- From the Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Stuart Kornfeld
- From the Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
3
|
Qian Y, Lee I, Lee WS, Qian M, Kudo M, Canfield WM, Lobel P, Kornfeld S. Functions of the alpha, beta, and gamma subunits of UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase. J Biol Chem 2010; 285:3360-70. [PMID: 19955174 PMCID: PMC2823453 DOI: 10.1074/jbc.m109.068650] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 11/30/2009] [Indexed: 11/06/2022] Open
Abstract
UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase is an alpha(2)beta(2)gamma(2) hexamer that mediates the first step in the synthesis of the mannose 6-phosphate recognition marker on lysosomal acid hydrolases. Using a multifaceted approach, including analysis of acid hydrolase phosphorylation in mice and fibroblasts lacking the gamma subunit along with kinetic studies of recombinant alpha(2)beta(2)gamma(2) and alpha(2)beta(2) forms of the transferase, we have explored the function of the alpha/beta and gamma subunits. The findings demonstrate that the alpha/beta subunits recognize the protein determinant of acid hydrolases in addition to mediating the catalytic function of the transferase. In mouse brain, the alpha/beta subunits phosphorylate about one-third of the acid hydrolases at close to wild-type levels but require the gamma subunit for optimal phosphorylation of the rest of the acid hydrolases. In addition to enhancing the activity of the alpha/beta subunits toward a subset of the acid hydrolases, the gamma subunit facilitates the addition of the second GlcNAc-P to high mannose oligosaccharides of these substrates. We postulate that the mannose 6-phosphate receptor homology domain of the gamma subunit binds and presents the high mannose glycans of the acceptor to the alpha/beta catalytic site in a favorable manner.
Collapse
Affiliation(s)
- Yi Qian
- From the Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Intaek Lee
- From the Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Wang-Sik Lee
- From the Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Meiqian Qian
- the Center for Advanced Biotechnology and Medicine and Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08851, and
| | - Mariko Kudo
- Genzyme Corporation, Oklahoma City, Oklahoma 73104
| | | | - Peter Lobel
- the Center for Advanced Biotechnology and Medicine and Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08851, and
| | - Stuart Kornfeld
- From the Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
4
|
Abstract
A literature survey was performed of human cathepsin D gene, cathepsin D biosynthesis, posttranslatory modifications, transport within the cell, substrate specificity and catalytic effect. Methods used to determine the activity and level of this proteinase as well as its role in the biochemistry and pathobiochemistry of cells, tissues and organs were considered.
Collapse
|
5
|
Steet R, Lee WS, Kornfeld S. Identification of the Minimal Lysosomal Enzyme Recognition Domain in Cathepsin D. J Biol Chem 2005; 280:33318-23. [PMID: 16081416 DOI: 10.1074/jbc.m505994200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Specific recognition of lysosomal hydrolases by UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase, the initial enzyme in the biosynthesis of mannose 6-phosphate residues, is governed by a common protein determinant. Previously, we generated a lysosomal enzyme recognition domain in the secretory protein glycopepsinogen by substituting in two regions (lysine 203 and amino acids 265-293 of the beta loop) from cathepsin D, a highly related lysosomal protease. Here we show that substitution of just two lysines (Lys-203 and Lys-267) stimulates mannose phosphorylation 116-fold. Substitution of additional residues in the beta loop, particularly lysines, increased phosphorylation 4-fold further, approaching the level obtained with intact cathepsin D. All the phosphorylation occurred at the carboxyl lobe glycan, indicating that additional elements are required for phosphorylation of the amino lobe glycan. These data support the proposal that as few as two lysines in the correct orientation to each other and to the glycan can serve as the minimal elements of the lysosomal enzyme recognition domain. However, our findings show that the spacing between lysines is flexible and other residues contribute to the recognition marker.
Collapse
Affiliation(s)
- Richard Steet
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | | |
Collapse
|
6
|
Abstract
For many years apoptosis research has focused on caspases and their putative role as sole executioners of programmed cell death. Accumulating information now suggests that lysosomal cathepsins are also pivotally involved in this process, especially in pathological conditions. In particular, the role of lysosomes and lysosomal enzymes in initiation and execution of the apoptotic program has become clear in several models, to the point that the existence of a 'lysosomal pathway of apoptosis' is now generally accepted. This pathway of apoptosis can be activated by death receptors, lipid mediators, and photodamage. Lysosomal proteases can be released from the lysosomes into the cytosol, where they contribute to the apoptotic cascade upstream of mitochondria. This review focuses on the players and the molecular mechanisms involved in the lysosomal pathway of apoptosis as well as on the importance of this pathway in development and pathology.
Collapse
|
7
|
Yaghootfam A, Schestag F, Dierks T, Gieselmann V. Recognition of arylsulfatase A and B by the UDP-N-acetylglucosamine:lysosomal enzyme N-acetylglucosamine-phosphotransferase. J Biol Chem 2003; 278:32653-61. [PMID: 12783870 DOI: 10.1074/jbc.m304865200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The critical step for sorting of lysosomal enzymes is the recognition by a Golgi-located phosphotransferase. The topogenic structure common to all lysosomal enzymes essential for this recognition is still not well defined, except that lysine residues seem to play a critical role. Here we have substituted surface-located lysine residues of lysosomal arylsulfatases A and B. In lysosomal arylsulfatase A only substitution of lysine residue 457 caused a reduction of phosphorylation to 33% and increased secretion of the mutant enzyme. In contrast to critical lysines in various other lysosomal enzymes, lysine 457 is not located in an unstructured loop region but in a helix. It is not strictly conserved among six homologous lysosomal sulfatases. Based on three-dimensional structure comparison, lysines 497 and 507 in arylsulfatase B are in a similar position as lysine 457 of arylsulfatase A. Also, the position of oligosaccharide side chains phosphorylated in arylsulfatase A is similar in arylsulfatase B. Despite the high degree of structural homology between these two sulfatases substitution of lysines 497 and 507 in arylsulfatase B has no effect on the sorting and phosphorylation of this sulfatase. Thus, highly homologous lysosomal arylsulfatases A and B did not develop a single conserved phosphotransferase recognition signal, demonstrating the high variability of this signal even in evolutionary closely related enzymes.
Collapse
Affiliation(s)
- Afshin Yaghootfam
- Institute of Physiological Chemistry, Rheinische-Friedrich-Wilhelms Universität, Nussallee 11, 53115 Bonn, Germany
| | | | | | | |
Collapse
|
8
|
Mark BL, Mahuran DJ, Cherney MM, Zhao D, Knapp S, James MNG. Crystal structure of human beta-hexosaminidase B: understanding the molecular basis of Sandhoff and Tay-Sachs disease. J Mol Biol 2003; 327:1093-109. [PMID: 12662933 PMCID: PMC2910754 DOI: 10.1016/s0022-2836(03)00216-x] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In humans, two major beta-hexosaminidase isoenzymes exist: Hex A and Hex B. Hex A is a heterodimer of subunits alpha and beta (60% identity), whereas Hex B is a homodimer of beta-subunits. Interest in human beta-hexosaminidase stems from its association with Tay-Sachs and Sandhoff disease; these are prototypical lysosomal storage disorders resulting from the abnormal accumulation of G(M2)-ganglioside (G(M2)). Hex A degrades G(M2) by removing a terminal N-acetyl-D-galactosamine (beta-GalNAc) residue, and this activity requires the G(M2)-activator, a protein which solubilizes the ganglioside for presentation to Hex A. We present here the crystal structure of human Hex B, alone (2.4A) and in complex with the mechanistic inhibitors GalNAc-isofagomine (2.2A) or NAG-thiazoline (2.5A). From these, and the known X-ray structure of the G(M2)-activator, we have modeled Hex A in complex with the activator and ganglioside. Together, our crystallographic and modeling data demonstrate how alpha and beta-subunits dimerize to form either Hex A or Hex B, how these isoenzymes hydrolyze diverse substrates, and how many documented point mutations cause Sandhoff disease (beta-subunit mutations) and Tay-Sachs disease (alpha-subunit mutations).
Collapse
Affiliation(s)
- Brian L. Mark
- Canadian Institutes of Heath Research Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alt.,Canada T6G 2H7
| | - Don J. Mahuran
- The Research Institute, The Hospital for Sick Children, 555 University Ave, Toronto Ont., Canada M5G1X8
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ont., Canada M5G1L6
| | - Maia M. Cherney
- Canadian Institutes of Heath Research Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alt.,Canada T6G 2H7
| | - Dalian Zhao
- Department of Chemistry, Rutgers University, New Brunswick, NJ 08903, USA
| | - Spencer Knapp
- Department of Chemistry, Rutgers University, New Brunswick, NJ 08903, USA
| | - Michael N. G. James
- Canadian Institutes of Heath Research Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alt.,Canada T6G 2H7
- Corresponding author:
| |
Collapse
|
9
|
Roberg K. Relocalization of cathepsin D and cytochrome c early in apoptosis revealed by immunoelectron microscopy. J Transl Med 2001; 81:149-58. [PMID: 11232636 DOI: 10.1038/labinvest.3780222] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cathepsin D was translocated from lysosomal structures to the cytosol in primary cultures of neonatal rat cardiomyocytes exposed to oxidative stress, and these cells underwent apoptotic death during subsequent incubation. Temporal aspects of cathepsin D relocalization, cytochrome c release, and decrease in mitochondrial transmembrane potential (delta psi(m)) were studied in myocytes exposed to the redox-cycling xenobiotic naphthazarin (5,8-dihydroxy-1,4-naphthoquinone). Immunofluorescence labeling revealed that cathepsin D was translocated to the cytosol after 30 minutes of naphthazarin treatment, and cytochrome c was released from mitochondria to the cytosol after 2 hours. Western blotting and immunoelectron microscopy indicated a minor release of cytochrome c after only 30 minutes and 1 hour, respectively. Thereafter, a decrease in delta psi(m) was detected using the delta psi(m)sensitive dye JC-1 and confocal microscopy, and ultrastructural analysis indicated apoptotic morphology. Pretreatment of the cultures with the cathepsin D inhibitor pepstatin A prevented release of cytochrome c from mitochondria and maintained the delta psi(m). Moreover, ultrastructural examination showed no apoptotic morphology. These findings suggest that lysosomal destabilization (detected as the release of cathepsin D) and release of cytochrome c from mitochondria take place early in apoptosis. Also, the former event probably occurs before the latter during apoptosis induced by oxidative stress because pretreatment with pepstatin A prevented release of cytochrome c and loss of delta psi(m) in cardiomyocytes exposed to naphthazarin.
Collapse
Affiliation(s)
- K Roberg
- Division of Pathology II, Faculty of Health Sciences, Linköping University, Sweden.
| |
Collapse
|
10
|
Metzler DE, Metzler CM, Sauke DJ. Some Pathways of Carbohydrate Metabolism. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
|
12
|
Roberg K, Johansson U, Ollinger K. Lysosomal release of cathepsin D precedes relocation of cytochrome c and loss of mitochondrial transmembrane potential during apoptosis induced by oxidative stress. Free Radic Biol Med 1999; 27:1228-37. [PMID: 10641715 DOI: 10.1016/s0891-5849(99)00146-x] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Apoptosis was induced in human foreskin fibroblasts by the redox-cycling quinone naphthazarin (5,8-dihydroxy-1,4-naphthoquinone). Most of the cells displayed ultrastructure typical of apoptosis after 8 h of exposure to naphthazarin. Apoptosis was inhibited in fibroblasts pretreated with the cathepsin D inhibitor pepstatin A. Immunofluorescence analysis of the intracellular distribution of cathepsin D revealed a distinct granular pattern in control cells, whereas cells treated with naphthazarin for 30 min exhibited more diffuse staining that corresponded to release of the enzyme from lysosomes to the cytosol. After 2 h, release of cytochrome c from mitochondria to the cytosol was indicated by immunofluorescence. The membrane-potential-sensitive probe JC-1 and flow cytometry did not detect a permanent decrease in mitochondrial transmembrane potential (delta psi(m)) until after 5 h of naphthazarin treatment. Our findings show that, during naphthazarin-induced apoptosis, lysosomal destabilization (measured as release of cathepsin D) precedes release of cytochrome c, loss of delta psi(m), and morphologic alterations. Moreover, apoptosis could be inhibited by pretreatment with pepstatin A.
Collapse
Affiliation(s)
- K Roberg
- Division of Pathology II, Faculty of Health Sciences, Linköping University, Sweden.
| | | | | |
Collapse
|
13
|
Lingeman RG, Joy DS, Sherman MA, Kane SE. Effect of carbohydrate position on lysosomal transport of procathepsin L. Mol Biol Cell 1998; 9:1135-47. [PMID: 9571245 PMCID: PMC25336 DOI: 10.1091/mbc.9.5.1135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To study the role of carbohydrate in lysosomal protein transport, we engineered two novel glycosylation signals (Asn-X-Ser/Thr) into the cDNA of human procathepsin L, a lysosomal acid protease. We constructed six mutant cDNAs encoding glycosylation signals at mutant sites Asn-138, Asn-175, or both sites together, in the presence or absence of the wild-type Asn-204 site. We stably transfected wild-type and mutant cDNAs into NIH3T3 mouse fibroblasts and then used species-specific antibodies to determine the glycosylation status, phosphorylation, localization, and transport kinetics of recombinant human procathepsin L containing one, two, or three glycosylation sites. Both novel glycosylation sites were capable of being glycosylated, although Asn-175 was utilized only 30-50% of the time. Like the wild-type glycosylation at Asn-204, carbohydrates at Asn-138 and Asn-175 were completely sensitive to endoglycosidase H, and they were phosphorylated. Mutant proteins containing two carbohydrates were capable of being delivered to lysosomes, but there was not a consistent relationship between the efficiency of lysosomal delivery and carbohydrate content of the protein. Pulse-chase labeling revealed a unique biosynthetic pattern for proteins carrying the Asn-175 glycosylation sequence. Whereas wild-type procathepsin L and mutants bearing carbohydrate at Asn-138 appeared in lysosomes by about 60 min, proteins with carbohydrate at Asn-175 were processed to a lysosome-like polypeptide within 15 min. Temperature shift, brefeldin A, and NH4Cl experiments suggested that the rapid processing did not occur in the endoplasmic reticulum and that Asn-175 mutants could interact with the mannose 6-phosphate receptor. Taken together, our results are consistent with the interpretation that Asn-175 carbohydrate confers rapid transport to lysosomes. We may have identified a recognition domain in procathepsin L that is important for its interactions with the cellular transport machinery.
Collapse
Affiliation(s)
- R G Lingeman
- Department of Cell and Tumor Biology, City of Hope National Medical Center, Duarte, California, 91010, USA
| | | | | | | |
Collapse
|
14
|
Brunetti CR, Dingwell KS, Wale C, Graham FL, Johnson DC. Herpes simplex virus gD and virions accumulate in endosomes by mannose 6-phosphate-dependent and -independent mechanisms. J Virol 1998; 72:3330-9. [PMID: 9525660 PMCID: PMC109812 DOI: 10.1128/jvi.72.4.3330-3339.1998] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Herpes simplex virus (HSV) glycoprotein D (gD) is modified with mannose 6-phosphate (M6P) and binds to M6P receptors (MPRs). MPRs are involved in the well-characterized pathway by which lysosomal enzymes are directed to lysosomes via a network of endosomal membranes. Based on the impaired ability of HSV to form plaques under conditions in which glycoproteins could not interact with MPRs, we proposed that MPRs may function during HSV egress or cell-to-cell spread (C. R. Brunetti, R. L. Burke, B. Hoflack, T. Ludwig, K. S. Dingwell, and D. C. Johnson, J. Virol. 69:3517-3528, 1995). To further analyze M6P modification and intracellular trafficking of gD in the absence of other HSV proteins, adenovirus (Ad) vectors were used to express soluble and membrane-anchored forms of gD. Both membrane-bound and soluble gD were modified with M6P residues and were localized to endosomes that contained the 275-kDa MPR or the transferrin receptor. Similar results were observed in HSV-infected cells. Cell fractionation experiments showed that gD was not present in lysosomes. However, a mutant form of gD and another HSV glycoprotein, gI, that were not modified with M6P were also found in endosomes in HSV-infected cells. Moreover, a substantial fraction of the HSV nucleocapsid protein VP6 was found in endosomes, consistent with accumulation of virions in an endosomal compartment. Therefore, it appears that HSV glycoproteins and virions are directed to endosomes, by M6P-dependent as well as by M6P-independent mechanisms, either as part of the virus egress pathway or by endocytosis from the cell surface.
Collapse
Affiliation(s)
- C R Brunetti
- McMaster Cancer Research Group, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
15
|
Zeng Y, Bannon G, Thomas VH, Rice K, Drake R, Elbein A. Purification and specificity of beta1,2-xylosyltransferase, an enzyme that contributes to the allergenicity of some plant proteins. J Biol Chem 1997; 272:31340-7. [PMID: 9395463 DOI: 10.1074/jbc.272.50.31340] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The enzyme that transfers D-xylose from UDP-xylose to the beta-linked mannose of plant N-linked oligosaccharides was purified about 51,000-fold to apparent homogeneity from soybean microsomes. On SDS gels, two proteins of 56 and 59 kDa were detected and both were labeled to the same extent by the photoaffinity label, 5-N3-UDP-[32P]xylose. Labeling of both proteins was inhibited by cold UDP-xylose, but not by UDP-glucose. The amount of 5-N3-UDP-[32P]xylose that bound to the two protein bands was greatly increased in the presence of oligosaccharide acceptors. The best acceptor for xylose transfer and for stimulation of UDP-xylose binding was GlcNAc2Man3GlcNAc2-T, but GlcNAc1Man3GlcNAc2, with the GlcNAc on the 3-branch, was also a good acceptor and a good stimulator. A number of other N-linked oligosaccharides were poor acceptors, especially those with galactose units at the nonreducing termini. Many of the properties of this enzyme have been described, and the product of the reaction of UDP-xylose and GlcNAc2Man3(GlcNAc)2 was characterized as GlcNAcbeta1, 2Manalpha1, 6(GlcNAcbeta1,2Manalpha1,3)(Xylbeta1,2)Manbeta1, 4GlcNA c2-T by chemical and NMR methods.
Collapse
Affiliation(s)
- Y Zeng
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | |
Collapse
|
16
|
Nishikawa A, Gregory W, Frenz J, Cacia J, Kornfeld S. The phosphorylation of bovine DNase I Asn-linked oligosaccharides is dependent on specific lysine and arginine residues. J Biol Chem 1997; 272:19408-12. [PMID: 9235940 DOI: 10.1074/jbc.272.31.19408] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The secretory glycoprotein DNase I acquires mannose 6-phosphate moieties on its Asn-linked oligosaccharides, indicating that it is a substrate for UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (phosphotransferase) (Cacia, J., Quan, C., and Frenz, J. (1995) Glycobiology 4, 99). Phosphotransferase recognizes a conformation-dependent protein determinant that is present in lysosomal hydrolases, but absent in most secretory glycoproteins. To identify the amino acid residues of DNase I that are required for interaction with phosphotransferase, wild-type and mutant forms of bovine DNase I were expressed in COS-1 cells and the extent of oligosaccharide phosphorylation determined. Phosphorylation of DNase I oligosaccharides decreased from 12.6% to 2.3% when Lys-50, Lys-124, and Arg-27 were mutated to alanines, indicating that these residues are required for the basal level of phosphorylation. Mutation of lysines at other positions did not impair phosphorylation, demonstrating the selectivity of this process. When Arg-27 was replaced with a lysine, phosphorylation increased to 54%, showing that phosphotransferase prefers lysine residues to arginines. Mutation of Asn-74 to a lysine also increased phosphorylation to 50.3%, and the double mutant (R27K/N74K) was phosphorylated 79%, equivalent to the values obtained with lysosomal hydrolases. Interestingly, Lys-27 and Lys-74 caused selective phosphorylation of the neighboring Asn-linked oligosaccharide. Finally, mutation of Lys-117 to an alanine stimulated phosphorylation, demonstrating that some residues may be negative regulators of this process. We conclude that selected lysine and arginine residues on the surface of DNase I constitute the major elements of the phosphotransferase recognition domain present on this secretory glycoprotein.
Collapse
Affiliation(s)
- A Nishikawa
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
17
|
Chapman RL, Kane SE, Erickson AH. Abnormal glycosylation of procathepsin L due to N-terminal point mutations correlates with failure to sort to lysosomes. J Biol Chem 1997; 272:8808-16. [PMID: 9079717 DOI: 10.1074/jbc.272.13.8808] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A single point mutation in the lysosomal proenzyme receptor-inhibiting sequence near the N terminus of mouse procathepsin L can result in glycosylation of a normally cryptic site near its C terminus. When alanine replaced His36, Arg38, or Tyr40, the nascent chain of the mutant protein cotranslationally acquired a high mannose oligosaccharide chain at Asn268. In contrast, when alanine replaced Ser34, Arg37, or Leu39, this second carbohydrate chain was not added. This alternating pattern of abnormal glycosylation suggested that propeptide residues 36-40 normally assume an extended conformation having the side chains of residues 36, 38, and 40 facing in the same direction. When tyrosine conservatively replaced His36 or lysine replaced Arg38, Asn268 was not glycosylated. But the procathepsin L mutant having phenylalanine in place of Tyr40 was glycosylated at Asn268, which indicates that the hydrogen bond between the hydroxyl group of Tyr40 and the carboxylate group of Asp82 is necessary for normal folding of the nascent proenzyme chain. Mutation of the adjacent alpha2p (ERININ) helix of the propeptide or addition of a C-terminal epitope tag sequence to procathepsin L also induced misfolding of the proenzyme, as indicated by addition of the second oligosaccharide chain. In contrast, the propeptide mutation KAKK99-102AAAA had no effect on carbohydrate modification even though it reduced the positive charge of the proenzyme. Misfolded mutant mouse procathepsin L was not efficiently targeted to lysosomes on expression in human HeLa cells, even though it acquired phosphate on mannose residues. The majority of the mutant protein was secreted after undergoing modification with complex sugars. Similarly, epitope-tagged mouse procathepsin L was not targeted to lysosomes in homologous mouse cells but was efficiently secreted. Since production of mature endogenous protease was not reduced in cells expressing the tagged protein, the tagged protein did not compete with endogenous procathepsin L for targeting to lysosomes.
Collapse
Affiliation(s)
- R L Chapman
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
18
|
|
19
|
Beyer BM, Dunn BM. Self-activation of recombinant human lysosomal procathepsin D at a newly engineered cleavage junction, "short" pseudocathepsin D. J Biol Chem 1996; 271:15590-6. [PMID: 8663051 DOI: 10.1074/jbc.271.26.15590] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To obtain a recombinant model of human cathepsin D with kinetic properties that are identical with native human liver enzyme, we have addressed the significant differences in structure and catalytic function between naturally occurring enzyme and bacterially derived pseudocathepsin D. Human procathepsin D was expressed in a baculovirus system to obtain correctly folded, glycosylated enzyme that upon acidification completely converts to the active intermediate, pseudocathepsin D. The oligosaccharide moieties of this recombinant enzyme contributed to about 5% of the apparent molecular mass of the enzyme, and the carbohydrate composition was quite similar to the native material. However, specificity constants (kcat/Km) of this glycosylated pseudoform for several synthetic chromogenic substrates were considerably less (33%-50%) than those for the native enzyme and were virtually identical with those observed with nonglycosylated pseudocathepsin D. A cleavable junction suitable for self-processing at the normal maturation point of human cathepsin D was engineered into procathepsin D according to known specificity requirements of this enzyme, and the construct was expressed using baculovirus. Following experiments that demonstrated that the new proenzyme failed to process to the expected point, the new cleavage junction was moved 6 residues toward the amino terminus of procathepsin D and expressed in Escherichia coli. After refolding, the protein containing the newly engineered junction self-processed, generating a shortened mutant form of pseudocathepsin D that is 6 residues longer at the amino terminus than the native material. The kinetic properties of this newly engineered pseudoform proved to be identical with those of the native enzyme, thus establishing an improved recombinant model for this important aspartic proteinase.
Collapse
Affiliation(s)
- B M Beyer
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610-0245, USA
| | | |
Collapse
|
20
|
Pohlmann R, Boeker MW, von Figura K. The two mannose 6-phosphate receptors transport distinct complements of lysosomal proteins. J Biol Chem 1995; 270:27311-8. [PMID: 7592993 DOI: 10.1074/jbc.270.45.27311] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mammalian cells express two different mannose 6-phosphate receptors (MPR 46 and MPR 300), which both mediate targeting of Man-6-P-containing lysosomal proteins to lysosomes. To assess the contribution of either and both MPRs to the transport of lysosomal proteins, fibroblasts were established from mouse embryos that were homozygous for disrupted alleles of either MPR 46 or MPR 300 or both MPRs. Fibroblasts missing both MPRs secreted most of the newly synthesized lysosomal proteins and were unable to maintain the catabolic function of lysosomes. The intracellular levels of lysosomal proteins decreased to < 20%, and undigested material accumulated in the lysosomal compartment. Fibroblasts lacking either MPR exhibited only a partial missorting and maintained, in general, half-normal to normal levels of lysosomal proteins. The same species of lysosomal proteins were found in secretions of double MPR-deficient fibroblasts as in secretions of single MPR-deficient fibroblasts, but at different ratios. This clearly indicates that neither MPR has an exclusive affinity for one or several lysosomal proteins. Furthermore, neither MPR can substitute in vivo for the loss of the other. It is proposed that the heterogeneity of the Man-6-P recognition marker within a lysosomal protein and among different lysosomal proteins has necessitated the evolution of two MPRs with complementary binding properties to ensure an efficient targeting of lysosomal proteins.
Collapse
Affiliation(s)
- R Pohlmann
- Georg-August-Universität, Abteilung Biochemie II, Göttingen, Federal Republic of Germany
| | | | | |
Collapse
|
21
|
Cuozzo JW, Tao K, Wu QL, Young W, Sahagian GG. Lysine-based structure in the proregion of procathepsin L is the recognition site for mannose phosphorylation. J Biol Chem 1995; 270:15611-9. [PMID: 7797559 DOI: 10.1074/jbc.270.26.15611] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The recognition of lysosomal enzymes by UDP-GlcNAc: lysosomal-enzyme GlcNAc-1-phosphotransferase (phosphotransferase) is mediated by a protein structure on lysosomal enzymes. It has been previously demonstrated that lysine residues are required for phosphorylation of procathepsin L and are a common feature of the site on many lysosomal proteins. In this work, the procathepsin L recognition structure was further defined by identification of the region of the protein containing the structure and the critical lysine residues involved. Removal of the cathepsin L propeptide by low pH-induced autocatalytic processing abolished phosphorylation. The addition of either the purified propeptide or a glutathione S-transferase-propeptide fusion protein to the processed protein restored phosphorylation. Mutagenesis of individual lysine residues demonstrated that two propeptide lysine residues (Lys-54 and Lys-99) were required for efficient phosphorylation of procathepsin L. By comparison of the phosphorylation rates of procathepsin L, lysine-modified procathepsin L, and the procathepsin L oligosaccharide, lysine residues were shown to account for most, if not all, of the protein-dependent interaction. On this basis, it is concluded that the proregion lysine residues are the major elements of the procathepsin L recognition site. In addition, lysine residues in cathepsin D were shown to be as important for phosphorylation as those in procathepsin L, supporting a general model of the recognition site as a specific three-dimensional arrangement of lysine residues exposed on the surface of lysosomal proteins.
Collapse
Affiliation(s)
- J W Cuozzo
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
22
|
Schorey JS, Fortenberry SC, Chirgwin JM. Lysine residues in the C-terminal lobe and lysosomal targeting of procathepsin D. J Cell Sci 1995; 108 ( Pt 5):2007-15. [PMID: 7657721 DOI: 10.1242/jcs.108.5.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major pathway to the lysosome for soluble hydrolases involves the 6-phosphorylation of mannose residues. The initial step in this reaction is catalyzed by a phosphotransferase which recognizes lysosomal precursors. We constructed mutants of human procathepsin D whose targeting to the lysosome could be assayed directly in intact cells. Eight lysine residues were individually converted to glutamic acid on the surface of the carboxyl terminal lobe of the protein. Mutants with as many as four Lys to Glu mutations were normally targeted to the lysosome and processed to the mature form of the enzyme in transfected cells. We conclude that the C-terminal lobe of procathepsin D may not carry a determinant essential for lysosomal targeting in intact fibroblasts.
Collapse
Affiliation(s)
- J S Schorey
- Research Service, Audie L. Murphy Memorial Veterans Administration Hospital, San Antonio, Texas, USA
| | | | | |
Collapse
|
23
|
Fortenberry SC, Schorey JS, Chirgwin JM. Role of glycosylation in the expression of human procathepsin D. J Cell Sci 1995; 108 ( Pt 5):2001-6. [PMID: 7657720 DOI: 10.1242/jcs.108.5.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human procathepsin D carries two N-linked glycosylation sites at asparagine residues 70 and 199, widely separated on the surface of the folded protein. We created monoglycosylated procathepsin D molecules by site-directed mutagenesis in vitro of the individual glycosylation sites. With only two exceptions, all 12 mutants of this type were expressed efficiently in mammalian cells. The expressed proteins were stable, targeted to the lysosome, and partially secreted into the medium. When both glycosylation sites were eliminated, however, the expressed proteins (9 different mutants) were stable but most were not secreted and targeted poorly to the lysosome. Mammalian fibroblasts appear to sort nascent procathepsin D efficiently only if it is N-glycosylated. Procathepsin D monoglycosylated at N70 is readily distinguished from the endogenous protein in transfected human cells and thus provides an excellent substrate for studying lysosomal targeting in an homologous system.
Collapse
Affiliation(s)
- S C Fortenberry
- Research Service, Audie L. Murphy Memorial Veterans Administration Hospital, San Antonio, Texas, USA
| | | | | |
Collapse
|
24
|
Dustin ML, Baranski TJ, Sampath D, Kornfeld S. A novel mutagenesis strategy identifies distantly spaced amino acid sequences that are required for the phosphorylation of both the oligosaccharides of procathepsin D by N-acetylglucosamine 1-phosphotransferase. J Biol Chem 1995; 270:170-9. [PMID: 7814370 DOI: 10.1074/jbc.270.1.170] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A novel combinatorial mutagenesis strategy (shuffle mutagenesis) was developed to identify sequences in the propiece and amino lobe of cathepsin D which direct oligosaccharide phosphorylation by UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine 1-phosphotransferase. Propiece restriction fragments and oligonucleotide cassettes corresponding to 13 regions of the cathepsin D and glycopepsinogen amino lobes were randomly shuffled together to generate a large library of chimeric molecules. The library was inserted into an expression vector encoding the carboxyl lobe of cathepsin D with a carboxyl-terminal myc epitope and a CD8 transmembrane extension. Transfected COS1 cells expressing the membrane-anchored forms of the cathepsin D/glycopepsinogen chimeras at the cell surface were selected with solid phase mannose 6-phosphate receptor or an antibody to the myc epitope. Plasmids were rescued in Escherichia coli and sequenced by hybridization to the original oligonucleotide cassettes. Two regions of the cathepsin D amino lobe (segments 7 and 12) were found to contribute to proper folding, surface expression, and selective phosphorylation of the carboxyl lobe oligosaccharide. Two different cathepsin D regions (the propiece and segment 5) cooperated with a previously identified recognition element in the carboxyl lobe to allow efficient phosphorylation of both the amino and carboxyl lobe oligosaccharides. Three general models for extending the catalytic reach of N-acetylglucosamine 1-phosphotransferase to widely spaced oligosaccharides are presented.
Collapse
Affiliation(s)
- M L Dustin
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | |
Collapse
|
25
|
|
26
|
|
27
|
Brunetti C, Burke R, Kornfeld S, Gregory W, Masiarz F, Dingwell K, Johnson D. Herpes simplex virus glycoprotein D acquires mannose 6-phosphate residues and binds to mannose 6-phosphate receptors. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32521-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
28
|
Ward C, Singh R, Slade C, Fensom AH, Fahmy A, Semrin A, Sjövall A, Talat A, Hasilik A, Klein I. A mild form of mucolipidosis type III in four Baluch siblings. Clin Genet 1993; 44:313-9. [PMID: 8131303 DOI: 10.1111/j.1399-0004.1993.tb03907.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Four Baluch siblings with mucolipidosis type III (pseudo-Hurler polydystrophy) are described. The patients had features commonly found in mucolipidosis III, including claw hands, joint stiffness, aortic valve involvement and radiological dysostosis multiplex. However, intelligence was normal, there were no eye abnormalities on slit-lamp examination and skin elasticity was normal. Many lysosomal enzymes were elevated in serum and diminished in cultured fibroblasts, although the findings for beta-galactosidase were atypical. Assays for the two enzymes involved in formation of the phosphomannose recognition marker revealed normal activity of the phosphotransferase with alpha-methylmannoside as an acceptor, and normal activity of the phosphodiester glycosidase. Metabolic labelling of fibroblasts with 32P followed by immunoprecipitation of cathepsin D, electrophoresis and fluorography showed that this enzyme was not labelled in the patients' cells, although some label was detected in the secreted precursor polypeptide. The data are consistent with the assumption that activity of the phosphotransferase is low towards lysosomal enzymes as substrates, and that the patients belong to complementation group C.
Collapse
Affiliation(s)
- C Ward
- Paediatric Research Unit, UMDS, Guy's Hospital, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The majority of candidate recombinant therapeutics are glycoproteins. Four aspects of glycobiology are requisite if the full potential of such reagents is to be realised: an understanding of glycan biosynthesis and its regulation, rapid and sensitive oligosaccharide analytical techniques, determination of structure-function relationships in protein-linked carbohydrate; and manufacturing systems where product glycosylation is manipulable and consistent. The past year has seen significant progress in all of these areas, exemplified by the approval of glycosylation-engineered glucocerebrosidase for clinical use in replacement therapy of Gaucher's disease.
Collapse
Affiliation(s)
- C E Warren
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
30
|
Synthesis of phosphorylated oligosaccharides in lysozyme is enhanced by fusion to cathepsin D. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36571-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|