1
|
Gottesfeld JM. Milestones in transcription and chromatin published in the Journal of Biological Chemistry. J Biol Chem 2019; 294:1652-1660. [PMID: 30710013 DOI: 10.1074/jbc.tm118.004162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During Herbert Tabor's tenure as Editor-in-Chief from 1971 to 2010, JBC has published many seminal papers in the fields of chromatin structure, epigenetics, and regulation of transcription in eukaryotes. As of this writing, more than 21,000 studies on gene transcription at the molecular level have been published in JBC since 1971. This brief review will attempt to highlight some of these ground-breaking discoveries and show how early studies published in JBC have influenced current research. Papers published in the Journal have reported the initial discovery of multiple forms of RNA polymerase in eukaryotes, identification and purification of essential components of the transcription machinery, and identification and mechanistic characterization of various transcriptional activators and repressors and include studies on chromatin structure and post-translational modifications of the histone proteins. The large body of literature published in the Journal has inspired current research on how chromatin organization and epigenetics impact regulation of gene expression.
Collapse
Affiliation(s)
- Joel M Gottesfeld
- Departments of Molecular Medicine and Chemistry, The Scripps Research Institute, La Jolla, California 92037.
| |
Collapse
|
2
|
Shaposhnikov AV, Lebedeva LA, Chernioglo ES, Kachaev ZM, Abdrakhmanov A, Shidlovskii YV. Preparation and analysis of nuclear protein extract from Drosophila melanogaster embryos for studying transcription factors. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162016060108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Dumay-Odelot H, Durrieu-Gaillard S, El Ayoubi L, Parrot C, Teichmann M. Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription. Transcription 2015; 5:e27526. [PMID: 25764111 DOI: 10.4161/trns.27526] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human RNA polymerase III transcribes small untranslated RNAs that contribute to the regulation of essential cellular processes, including transcription, RNA processing and translation. Analysis of this transcription system by in vitro transcription techniques has largely contributed to the discovery of its transcription factors and to the understanding of the regulation of human RNA polymerase III transcription. Here we review some of the key steps that led to the identification of transcription factors and to the definition of minimal promoter sequences for human RNA polymerase III transcription.
Collapse
Affiliation(s)
- Hélène Dumay-Odelot
- a INSERM U869; University of Bordeaux; Institut Européen de Chimie et Biologie (IECB); 33607 Pessac, France
| | | | | | | | | |
Collapse
|
4
|
Vachon VK, Conn GL. Adenovirus VA RNA: An essential pro-viral non-coding RNA. Virus Res 2015; 212:39-52. [PMID: 26116898 DOI: 10.1016/j.virusres.2015.06.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/25/2022]
Abstract
Adenovirus (AdV) 'virus-associated' RNAs (VA RNAs) are exceptionally abundant (up to 10(8)copies/cell), heterogeneous, non-coding RNA transcripts (∼ 150-200 nucleotides). The predominant species, VA RNAI, is best recognized for its essential function in relieving the cellular anti-viral blockade of protein synthesis through inhibition of the double-stranded RNA-activated protein kinase (PKR). More recent evidence has revealed that VA RNAs also interfere with several other host cell processes, in part by virtue of the high level to which they accumulate. Following transcription by cellular RNA polymerase III, VA RNAs saturate the nuclear export protein Exportin 5 (Exp5) and the cellular endoribonculease Dicer, interfering with pre-micro (mi)RNA export and miRNA biogenesis, respectively. Dicer-processed VA RNA fragments are incorporated into the RNA-induced silencing complex (RISC) as 'mivaRNAs', where they may specifically target cellular genes. VA RNAI also interacts with other innate immune proteins, including OAS1. While intact VA RNAI has the paradoxical effect of activating OAS1, a non-natural VA RNAI construct lacking the entire Terminal Stem has been reported to be a pseudoinhibitor of OAS1. Here, we show that a VA RNAI construct corresponding to an authentic product of Dicer processing similarly fails to activate OAS1 but also retains only a modest level of inhibitory activity against PKR in contrast to the non-natural deletion construct. These findings underscore the complexity of the arms race between virus and host, and highlight the need for further exploration of the impact of VA RNAI interactions with host defenses on the outcome of AdV infection beyond that of well-established PKR inhibition. Additional contributions of VA RNAI heterogeneity resulting from variations in transcription initiation and termination to each of these functions remain open questions that are discussed here.
Collapse
Affiliation(s)
- Virginia K Vachon
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; Microbiology and Molecular Genetics (MMG) Program, Graduate Division of Biological and Biomedical Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
5
|
Hwang YW, Yoo NK, Yang HM, Choi SY. RNA polymerase III control elements are required for trans-activation by the murine retroviral long terminal repeat sequences. Biochem Biophys Res Commun 2015; 456:110-5. [PMID: 25446107 DOI: 10.1016/j.bbrc.2014.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/14/2014] [Indexed: 11/25/2022]
Abstract
RNA leukemia viruses induce T-cell lymphoblastic lymphomas or myeloid leukemias. Infection of cells with Moloney murine leukemia virus (M-MuLV) up-regulates the expression of a number of cellular genes, including those involved in T-lymphocyte activation. Previously, we demonstrated that this up-regulation occurs via the trans-activation activity of the M-MuLV long terminal repeat (LTR) sequences which produce an LTR-encoded transcript. Sequence analysis of the LTR revealed a potential transcription unit for RNA polymerase III (Pol III) within the U3 region that is actively occupied by Pol II factors. Here, we provide the direct evidence of involvement of Pol III in the trans-activation process and demonstrate the precise localization of the intragenic control elements for accurate and active Pol III transcription. Deletions of a copy of the directed repeats and further immediate upstream sequences significantly abrogated the generation of LTR-encoded transcript and abolished the trans-activational activity, whereas the deletion of a copy of directed repeats alone proportionally reduced the transcript size, but still retained moderately high trans-activational activity. In electrophoretic mobility shift assay, the fraction containing a multiple transcription factor TFIIIC complex strongly bound to the LTR-U3 probe containing the essential control elements. The specificity of the DNA-TFIIIC interaction was confirmed by conducting competition assays with DNA fragments containing a genuine Pol III-transcribed gene, VA1, and by vaccinia virus infection which stimulates the expression of Pol III factors. However, a deletion mutant lacking an essential control element bound to the TFIIIC complex poorly, consequently resulting in weak Pol III transcription as assessed by an IRES-GFP reporter system. This correlation strongly supports the possibility that the generation of LTR-encoded transcript is directed by Pol III. Therefore, this finding suggests the involvement of Pol III transcription in the retrovirus-induced activation of cellular genes, potentially contributing to leukemogenesis.
Collapse
Affiliation(s)
- Yong-Woo Hwang
- Department of Life Sciences, Korea University, Seoul 136-701, Republic of Korea
| | - Na Kyung Yoo
- Department of Life Sciences, Korea University, Seoul 136-701, Republic of Korea
| | - Heung Mo Yang
- Department of Life Sciences, Korea University, Seoul 136-701, Republic of Korea
| | - Sang-Yun Choi
- Department of Life Sciences, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
6
|
Abmayr SM, Yao T, Parmely T, Workman JL. Preparation of nuclear and cytoplasmic extracts from mammalian cells. ACTA ACUST UNITED AC 2012; Chapter 12:Unit12.3. [PMID: 22294172 DOI: 10.1002/0471141755.ph1203s35] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Extracts prepared from the isolated nuclei of cultured cells have been instrumental in dissecting the mechanisms by which transcription and mRNA processing occur. These extracts are able to recapitulate accurate transcription initiation and splicing in vitro, which has been useful in direct functional studies. They also serve as the starting material for purification of proteins that can then be reassembled in functional studies or examined in more detail biochemically. This unit describes the preparation of nuclear extracts from cultured cells and optimized production of transcriptionally active extracts from HeLa cells. Additional protocols describe optimization of the method to increase the yield of specific proteins, adaptation of the method for downstream applications such as affinity purification, and preparation of the cytoplasmic (S-100) fraction.
Collapse
Affiliation(s)
- Susan M Abmayr
- The Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | | | | | | |
Collapse
|
7
|
Koval AP, Veniaminova NA, Kramerov DA. Additional box B of RNA polymerase III promoter in SINE B1 can be functional. Gene 2011; 487:113-7. [PMID: 21855615 DOI: 10.1016/j.gene.2011.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/20/2011] [Accepted: 08/03/2011] [Indexed: 11/16/2022]
Abstract
Many genes of small RNAs and short interspersed elements (SINEs) are transcribed by RNA polymerase III due to an internal promoter that is composed of two boxes (A and B) spaced by 30-45bp. Rodent SINE B1 originated from 7SL RNA, and a 29-bp tandem duplication took place in B1 at an early stage of its evolution. As a result of this duplication, an additional box B (named B') located at a distance of 79-82bp from box A arose in SINE B1. Here we have shown that despite the unusually large distance between boxes A and B', they can form an active promoter. In chinchillas, guinea pigs, and other rodents belonging to clade Ctenohystrica, structure of the B' box was well preserved and closely resembles the canonical B box. One may suggest therefore, that box B' can functionally replace box B in those copies of B1 where the latter has lost activity due to mutations.
Collapse
Affiliation(s)
- Anastasia P Koval
- Laboratory of Eukaryotic Genome Evolution, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
8
|
Kober I, Seifart KH. Influence of chromatin-structure on accessibility and transcriptional regulation of the duck histone H5-gene. J Anim Breed Genet 2011. [DOI: 10.1111/j.1439-0388.1996.tb00613.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Gogolevskaya IK, Kramerov DA. 4.5SI RNA genes and the role of their 5'-flanking sequences in the gene transcription. Gene 2009; 451:32-7. [PMID: 19922774 DOI: 10.1016/j.gene.2009.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 11/06/2009] [Accepted: 11/09/2009] [Indexed: 11/13/2022]
Abstract
4.5S(I) RNA is a small nuclear RNA synthesized by RNA polymerase III and detected in rodents of only four families. Hundreds of copies of this RNA retropseudogenes are interspersed throughout the mouse (Mus musculus) and rat (Rattus norvegicus) genomes. We found a single locus containing 4.5S(I) RNA genes in the genomes of these rodents. The locus harbors three genes and occupies 80 kb on M. musculus chromosome 6 and 44 kb on R. norvegicus chromosome 4. Two long duplications seem to have taken place during evolution of this locus. Two mouse 4.5S(I) RNA genes were used for a study of the role of 5'-flanking sequences in transcription in vitro and ex vivo. We found that removal of these DNA sequences resulted in a dramatic reduction of transcription though an internal promoter for RNA polymerase III was preserved in 4.5S(I) RNA genes. Thus, 5'-flanking sequences (from -1 to -90) containing conserved regions are important for 4.5S(I) RNA gene expression.
Collapse
Affiliation(s)
- Irina K Gogolevskaya
- Laboratory of Eukaryotic Genome Evolution, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| | | |
Collapse
|
10
|
Koval AP, Kramerov DA. 5'-flanking sequences can dramatically influence 4.5SH RNA gene transcription by RNA-polymerase III. Gene 2009; 446:75-80. [PMID: 19619622 DOI: 10.1016/j.gene.2009.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/17/2009] [Accepted: 07/06/2009] [Indexed: 11/26/2022]
Abstract
4.5SH RNA is a 94 nt small nuclear RNA with an unknown function. Hundreds of its genes are present in the genomes of rodents of six families including Muridae. 4.5SH RNA genes contain an internal RNA-polymerase III promoter consisting of A and B boxes. Here we studied the influence of 5'-flanking sequences on the transcription of a mouse 4.5SH RNA gene. We found that replacement of the upstream sequence can dramatically change the 4.5SH RNA gene transcription efficiency. Various DNA fragments inserted immediately upstream from 4.5SH RNA gene completely inhibited its in vitro transcription, whereas others promoted it. The shortening of the native mouse 5'-flanking sequence of 4.5SH RNA gene to 42 bp resulted in the activation of an additional illegal transcription start site in upstream region. Transcription of the 4.5SH RNA gene with various upstream sequences in transfected HeLa cells revealed the differences between the tests performed in vivo and in vitro: in whole cells, only the construct with 5'-flanking native sequence could be transcribed. Apparently, at least some regions of the native 5'-flanking sequence of 4.5SH RNA genes have been selected during evolution for high transcription activity.
Collapse
Affiliation(s)
- Anastasia P Koval
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
11
|
Boonanuntanasarn S, Panyim S, Yoshizaki G. Characterization and organization of the U6 snRNA gene in zebrafish and usage of their promoters to express short hairpin RNA. Mar Genomics 2008; 1:115-21. [PMID: 21798162 DOI: 10.1016/j.margen.2008.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 10/23/2008] [Indexed: 10/21/2022]
Abstract
We have characterized three U6 snRNA genes in zebrafish and randomly designated them as U6-1, U6-2, and U6-3. The U6-1 gene is closely related to the mammal U6 snRNA genes and that the U6-2 and U6-3 genes are more closely related to the Drosophila and Xenopus U6 snRNA genes. The upstream regulatory sequences were located based on their conserved position relative to the transcription start site. Furthermore, we speculate that the "CCAAT box" functions as the distal sequence element in the zebrafish U6 snRNA genes. Genomic BLASTn analysis revealed that at least 555 copies of the U6-1 gene are dispersed throughout the zebrafish genome, whereas the U6-2 and U6-3 genes are each present as a single copy. Three U6 snRNA genes are functionally expressed in various tissues. All three putative promoters were able to transcribe short hairpin RNA (shRNA) in zebrafish cell extracts. Our findings demonstrate that these putative promoters have the potential to be used for vector-based RNA interference (RNAi) in zebrafish. Another U6 snRNA was found from the genomic BLASTn search and designated as U6-4, demonstrating that there are four different types of zebrafish U6 snRNA genes.
Collapse
Affiliation(s)
- Surintorn Boonanuntanasarn
- School of Animal Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima, 30000 Thailand
| | | | | |
Collapse
|
12
|
Choudhuri S. Some Major Landmarks in the Path from Nuclein to Human Genome. Toxicol Mech Methods 2008; 16:137-59. [DOI: 10.1080/15376520600558606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Abmayr SM, Yao T, Parmely T, Workman JL. Preparation of nuclear and cytoplasmic extracts from mammalian cells. ACTA ACUST UNITED AC 2008; Chapter 12:Unit 12.1. [PMID: 18265374 DOI: 10.1002/0471142727.mb1201s75] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Extracts prepared from the isolated nuclei of cultured cells have been instrumental in dissecting the mechanisms by which transcription and mRNA processing occur. These extracts are able to recapitulate accurate transcription initiation and splicing in vitro, which has been useful in direct functional studies. They also serve as the starting material for purification of proteins that can then be reassembled in functional studies or examined in more detail biochemically. This unit describes the preparation of nuclear extracts from cultured cells and optimized production of transcriptionally active extracts from HeLa cells. Additional protocols describe optimization of the method to increase the yield of specific proteins, adaptation of the method for downstream applications such as affinity purification, and preparation of the cytoplasmic (S-100) fraction.
Collapse
Affiliation(s)
- Susan M Abmayr
- The Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | | | | | | |
Collapse
|
14
|
Høiby T, Zhou H, Mitsiou DJ, Stunnenberg HG. A facelift for the general transcription factor TFIIA. ACTA ACUST UNITED AC 2007; 1769:429-36. [PMID: 17560669 DOI: 10.1016/j.bbaexp.2007.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 04/20/2007] [Accepted: 04/24/2007] [Indexed: 10/23/2022]
Abstract
TFIIA was classified as a general transcription factor when it was first identified. Since then it has been debated to what extent it can actually be regarded as "general". The most notable feature of TFIIA is the proteolytical cleavage of the TFIIAalphabeta into a TFIIAalpha and TFIIAbeta moiety which has long remained a mystery. Recent studies have showed that TFIIA is cleaved by Taspase1 which was initially identified as the protease for the proto-oncogene MLL. Cleavage of TFIIA does not appear to serve as a step required for its activation as the uncleaved TFIIA in the Taspase1 knock-outs adequately support bulk transcription. Instead, cleavage of TFIIA seems to affect its turn-over and may be a part of an intricate degradation mechanism that allows fine-tuning of cellular levels of TFIIA. Cleavage might also be responsible for switching transcription program as the uncleaved and cleaved TFIIA might have distinct promoter specificity during development and differentiation. This review will focus on functional characteristics of TFIIA and discuss novel insights in the role of this elusive transcription factor.
Collapse
Affiliation(s)
- Torill Høiby
- NCMLS, Department of Molecular Biology, 191, Radboud University of Nijmegen, PO Box 91001, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
15
|
Weser S, Gruber C, Hafner HM, Teichmann M, Roeder RG, Seifart KH, Meissner W. Transcription Factor (TF)-like Nuclear Regulator, the 250-kDa Form of Homo sapiens TFIIIB″, Is an Essential Component of Human TFIIIC1 Activity. J Biol Chem 2004; 279:27022-9. [PMID: 15096501 DOI: 10.1074/jbc.m312790200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The general human RNA polymerase III transcription factor (TF) IIIC1 has hitherto been ill defined with respect to the polypeptides required for reconstitution of its activity. Here we identify Homo sapiens TFIIIB" (HsBdp1) as an essential component of hTFIIIC1 and hTFIIIC1-like activities. Several forms of HsBdp1 are described. The 250-kDa form of HsBdp1, also designated the "transcription factor-like nuclear regulator," strictly co-eluted with TFIIIC1 activity over multiple chromatographic purification steps as revealed by Western blot with anti-HsBdp1 antibodies and by MALDI-TOF analysis. In addition, TFIIIC1 activity could be depleted from partially purified fractions with anti-HsBdp1 antibodies but not with control antibodies. Moreover, highly purified recombinant HsBdp1 could replace TFIIIC1 activity in reconstituted transcription of the VAI gene in vitro. Furthermore, smaller proteins of approximately 90-150 kDa that were recognized by anti-HsBdp1 antibodies co-eluted with TFIIIC1-like activity. Finally, cytoplasmic extracts from differentiated mouse F9 fibroblast cells that lacked TFIIIC1 activity could be made competent for transcription of the VA1 gene by the addition of TFIIIC1, TFIIIC1-like, or recombinant HsBdp1. These results suggest that HsBdp1 proteins represent essential components of TFIIIC1 and TFIIIC1-like activities.
Collapse
Affiliation(s)
- Stephan Weser
- Institut für Molekularbiologie und Tumorforschung, Philipps Universität Marburg, Lahnstrasse 3, D-35037 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Abmayr SM, Workman JL. Transcription factors prominently in Lasker Award to Roeder. Cell 2003; 115:243-6. [PMID: 14636549 DOI: 10.1016/s0092-8674(03)00846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Susan M Abmayr
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | |
Collapse
|
17
|
Roeder RG. The eukaryotic transcriptional machinery: complexities and mechanisms unforeseen. Nat Med 2003; 9:1239-44. [PMID: 14520363 DOI: 10.1038/nm938] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Ave., New York, New York 10021, USA.
| |
Collapse
|
18
|
Trippe R, Richly H, Benecke BJ. Biochemical characterization of a U6 small nuclear RNA-specific terminal uridylyltransferase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:971-80. [PMID: 12603330 DOI: 10.1046/j.1432-1033.2003.03466.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The HeLa cell terminal uridylyltransferase (TUTase) that specifically modifies the 3'-end of mammalian U6 small nuclear RNA (snRNA) was characterized with respect to ionic dependence and substrate requirements. Optimal enzyme activity was obtained at moderate ionic strength (60 mm KCl) and depended on the presence of 5 mm MgCl2. In vitro synthesized U6 snRNA without a 3'-terminal UMP residue was not accepted as substrate. In contrast, U6 snRNA molecules containing one, two or three 3'-terminal UMP residues were filled up efficiently, generating the 3'-terminal structure with four UMP residues observed in newly transcribed cellular U6 snRNA. In this reaction, the addition of more than one UMP nucleotide depended on higher UTP concentrations. The analysis of internally mutated U6 snRNA revealed that the fill-in reaction by the U6-TUTase was not controlled by opposite-strand nucleotides, excluding an RNA-dependent RNA polymerase mechanism. Furthermore, electrophoretic mobility-shift analyses showed that the U6-TUTase was able to form stable complexes with the U6 snRNA in vitro. On the basis of these findings, a protocol was developed for affinity purification of the enzyme. In agreement with indirect labeling results, PAGE of a largely purified enzyme revealed an apparent molecular mass of 115 kDa for the U6-TUTase.
Collapse
Affiliation(s)
- Ralf Trippe
- Department of Biochemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | | | | |
Collapse
|
19
|
Meissner W, Thomae R, Seifart KH. The activity of transcription factor IIIC1 is impaired during differentiation of F9 cells. J Biol Chem 2002; 277:7148-56. [PMID: 11741993 DOI: 10.1074/jbc.m108721200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Differentiation in vitro of mouse F9 embryonal carcinoma (EC) cells to the parietal endoderm (PE) mimics processes of development of the early mouse embryo. This differentiation is accompanied by a dramatic down-regulation of all genes transcribed by RNA polymerase III (pol III). Complementation of extracts from cells, differentiated for various time periods with purified pol III transcription factors show for the first time that TFIIIC1 can substantially restore this impaired transcription, particularly in the early stages of differentiation. At later stages (day 7) the TBP (TATA-binding protein )-TAF complex, TFIIIBbeta, may also become limiting, which can contribute to but cannot account for the reduced transcription of type 2 promoters in PE cells. Because TFIIIBbeta is not required for the expression of type 3 promoters, other components must necessarily be involved, and our results show that U6 transcription can significantly be reactivated by TFIIIC1. By employing a variant type 3 promoter construct, which essentially requires a mutant form of TBP (TBP-DR2), we show that TBP is not limiting in PE extracts. The partial purification of pol III transcription factors from PE and EC cells revealed that TFIIIC2 activity could be purified from both cell types, whereas TFIIIC1 activity was dramatically reduced in extracts from PE cells.
Collapse
Affiliation(s)
- Wolfgang Meissner
- Institut für Molekularbiologie und Tumorforschung, Philipps Universität Marburg, Lahnstrasse 3, D-35037 Marburg, Germany.
| | | | | |
Collapse
|
20
|
Scherr M, LeBon J, Castanotto D, Cunliffe HE, Meltzer PS, Ganser A, Riggs AD, Rossi JJ. Detection of antisense and ribozyme accessible sites on native mRNAs: application to NCOA3 mRNA. Mol Ther 2001; 4:454-60. [PMID: 11708882 DOI: 10.1006/mthe.2001.0481] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The efficacies of antisense oligonucleotides and ribozymes are greatly dependent on the accessibility of their mRNA targets. Target site accessibility is affected by both RNA structure and the proteins associated along the length of the RNA. To mimic the native state of mRNA for site identification, we have previously used endogenous mRNAs in cellular extracts as targets for defined sequence oligodeoxynucleotides (ODNs) designed to identify both antisense pairing and potential ribozyme cleavage sites. The rationale for this approach is that the specific pairing of an ODN with a mRNA forms a DNA:RNA hybrid that is cleaved by the endogenous RNaseH in the cell extract. To extend the usefulness of this basic approach, we report here the use of semi-random ODN libraries to identify hammerhead ribozyme cleavage sites. Thus, the most accessible sites for antisense and ribozyme base pairing are selected by this approach. A novel feature of the approach described here is the use of terminal transferase-dependent PCR (TDPCR) after reverse transcription to estimate the cleavage efficiency and to precisely determine the RNaseH and ribozyme cleavage sites on mRNAs in cell extracts following treatment with ODN or ribozyme libraries. As a model system, we have targeted the NCOA3 (also known as AIB-1) mRNA in cell extracts. The NCOA3 mRNA encodes a nuclear receptor co-activator that is amplified and over-expressed in a high proportion of breast and ovarian cancers. A highly accessible site on this mRNA was identified, and a ribozyme targeted to this site was demonstrated to effectively downregulate NCOA3 function in cells.
Collapse
Affiliation(s)
- M Scherr
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010-3011, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abmayr SM, Workman JL. Preparation of Nuclear and Cytoplasmic Extracts from Mammalian Cells. ACTA ACUST UNITED AC 2001. [DOI: 10.1002/0471142727.mb1201s24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Castanotto D, Scherr M, Rossi JJ. Intracellular expression and function of antisense catalytic RNAs. Methods Enzymol 2000; 313:401-20. [PMID: 10595369 DOI: 10.1016/s0076-6879(00)13025-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- D Castanotto
- Department of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | |
Collapse
|
23
|
Lowe D, Henning D, Reddy R. An RNA polymerase III transcription unit located in the upstream control regions of the human proliferating-cell nucleolar protein p120 gene is transcribed in vitro and in vivo. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:112-22. [PMID: 10542056 DOI: 10.1046/j.1432-1327.1999.00827.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An RNA polymerase III (Pol III) transcription unit containing homology to highly repeated Alu sequences was identified in the upstream flanking sequences of the gene for the human proliferating-cell nucleolar antigen p120. When transcribed in vitro, this Pol III unit produced three RNA transcripts, designated by nucleotide length as T150, T385 and T635; RNA transcript T635 was the most abundant accounting for over 90%. The transcription initiates at nucleotide -729 of the human p120 promoter and proceeds in the opposite orientation to the p120 gene transcription. Northern blot analysis and cDNA cloning followed by sequencing showed the presence of the T635 RNA in HeLa cells, indicating that this Pol III transcription unit is functional and transcribed in vivo. Disruption of this Pol III transcription unit by deletion of the Box A residues (-733 to -744) resulted in a sixfold reduction of the p120 gene transcription. A possible role for this Pol III transcription unit in p120 gene transcription is discussed.
Collapse
Affiliation(s)
- D Lowe
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, USA
| | | | | |
Collapse
|
24
|
Kober I, Teichmann M, Seifart KH. hTFIIIB-beta stably binds to pol II promoters and recruits RNA polymerase III in a hTFIIIC1 dependent way. J Mol Biol 1998; 284:7-20. [PMID: 9811538 DOI: 10.1006/jmbi.1998.2165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It has been shown that under specific conditions, transcription of protein coding genes can be efficiently initiated by RNA polymerase (pol) III in vitro. We examined the formation and composition of such pol III transcription complexes on the duck histone H5 and alphaA-globin promoters and found that the essential step for the formation of pol III transcription complexes on these pol II promoters was the stable binding of transcription factor (TF) IIIB-beta. For this process, the intact TFIIIB-beta complex, consisting of TBP and associated factors (TAFs) was needed and the prior association of pol III assembly factors was not necessary. We demonstrate for the first time that hTFIIIB-beta alone is able to bind to pol II promoter DNA. This resulted in a very stable complex which was resistant to high concentrations of heparin. Although immunodepletion revealed that TBP is essentially required for complex formation, other components of hTFIIIB-beta must also be involved, since TBP itself is unable to form heparin-resistant complexes and does not mediate pol III commitment per se. pol III is recruited to these pol II promoters in a strictly TFIIIC1 dependent way. After binding of TFIIIB-beta, the addition of TFIIIC1 and pol III were sufficient to yield productive pol III transcription complexes, which utilized the correct pol II initiation site. From these findings, we postulate that TFIIIC1 is involved in the recruitment of pol III and may thus form a bridge between TFIIIB-beta and the enzyme. This finding provides the first evidence for functional contacts between TFIIIC1 and pol III, which could be of general importance for the assembly of pol III transcription complexes.
Collapse
Affiliation(s)
- I Kober
- Institut für Molekularbiologie und Tumorforschung, Lahnstrasse 3, Marburg, D-35033, Germany
| | | | | |
Collapse
|
25
|
Scherr M, Rossi JJ. Rapid determination and quantitation of the accessibility to native RNAs by antisense oligodeoxynucleotides in murine cell extracts. Nucleic Acids Res 1998; 26:5079-85. [PMID: 9801303 PMCID: PMC147980 DOI: 10.1093/nar/26.22.5079] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A major concern for antisense experiments is the prediction of effective oligonucleotide binding sites. We have developed a system to carry out oligodeoxyribonucleotide-RNA and ribozyme-RNA binding experiments in cell extracts to create a protein environment known to directly influence the structure of the mRNA. In these experiments the native, endogenous mRNA is probed using oligodeoxyribonucleotides (ODNs) to identify RNase H-accessible sites. The resulting RNase H-mediated cleavages in the cell extracts were quantified using RT-PCR with fluorescein and rhodaminetagged primers to generate fluorescent products that are analyzed and quantified on an automated DNA sequencer. As a model substrate for testing this system, we have targeted the murine DNA methyltransferase (MTase) mRNA. An ODN binding site in native MTase mRNA was identified that was cleaved by endogenous RNase H with an efficiency of 85% in the extracts. The ODN that was most effective in the cell extracts was also found to provide the best activity in vivo , resulting in a 75-85% reduction of the MTase mRNA. These data support the use of cell extracts and native transcripts to identify antisense and perhaps ribozyme target sites.
Collapse
Affiliation(s)
- M Scherr
- Department of Molecular Biology, Beckman Research Institute of the City of Hope, 1450 East Duarte Road, Duarte, CA 91010-3011, USA
| | | |
Collapse
|
26
|
Sinha KM, Gu J, Chen Y, Reddy R. Adenylation of small RNAs in human cells. Development of a cell-free system for accurate adenylation on the 3'-end of human signal recognition particle RNA. J Biol Chem 1998; 273:6853-9. [PMID: 9506988 DOI: 10.1074/jbc.273.12.6853] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 3'-end sequences of several human small RNAs were determined, and the results show that a fraction of human cytoplasmic 7SL, ribosomal 5S, and nuclear U2, U6, and 7SK small RNAs contain a post-transcriptionally added adenylic acid residue on their 3'-ends. Incubation of HeLa cell extract in vitro in the presence of [alpha-32P]ATP resulted in labeling of several small RNAs including ribosomal 5S and cytoplasmic 7SL as well as U2 and U6 small nuclear RNAs. Analysis of 7SL RNA labeled in this in vitro adenylation system showed that a single adenylic acid residue is added to the 3'-end. These results show that the adenylation observed in the in vitro system reflects the post-transcriptional adenylation occurring in vivo.
Collapse
Affiliation(s)
- K M Sinha
- Baylor College of Medicine, Department of Pharmacology, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
27
|
Hannan RD, Hempel WM, Cavanaugh A, Arino T, Dimitrov SI, Moss T, Rothblum L. Affinity purification of mammalian RNA polymerase I. Identification of an associated kinase. J Biol Chem 1998; 273:1257-67. [PMID: 9422795 DOI: 10.1074/jbc.273.2.1257] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Overlapping cDNA clones encoding the two largest subunits of rat RNA polymerase I, designated A194 and A127, were isolated from a Reuber hepatoma cDNA library. Analyses of the deduced amino acid sequences revealed that A194 and A127 are the homologues of yeast A190 and A135 and have homology to the beta' and beta subunits of Escherichia coli RNA polymerase I. Antibodies raised against the recombinant A194 and A127 proteins recognized single proteins of approximately 190 and 120 kDa on Western blots of total cellular proteins of mammalian origin. N1S1 cell lines expressing recombinant His-tagged A194 and FLAG-tagged A127 proteins were isolated. These proteins were incorporated into functional RNA polymerase I complexes, and active enzyme, containing FLAG-tagged A127, could be immunopurified to approximately 80% homogeneity in a single chromatographic step over an anti-FLAG affinity column. Immunoprecipitation of A194 from 32P metabolically labeled cells with anti-A194 antiserum demonstrated that this subunit is a phosphoprotein. Incubation of the FLAG affinity-purified RNA polymerase I complex with [gamma-32P]ATP resulted in autophosphorylation of the A194 subunit of RPI, indicating the presence of associated kinase(s). One of these kinases was demonstrated to be CK2, a serine/threonine protein kinase implicated in the regulation of cell growth and proliferation.
Collapse
Affiliation(s)
- R D Hannan
- Henry Hood Research Program, Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822-2618, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Moorefield B, Roeder R. Purification and characterization of human transcription factor IIIA. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31901-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Janz L, Hug M, Clayton C. Factors that bind to RNA polymerase I promoter sequences of Trypanosoma brucei. Mol Biochem Parasitol 1994; 65:99-108. [PMID: 7935633 DOI: 10.1016/0166-6851(94)90119-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The procyclic acidic repetitive protein (procyclin) and variant surface glycoprotein genes of Trypanosoma brucei are transcribed by a polymerase sharing many features with RNA polymerase I. Mutational analyses on the PARP and ribosomal RNA promoters have shown that sequences important for promoter activity are concentrated 20-60 bp upstream of the transcription initiation site. The results of gel mobility shift assays using synthetic oligonucleotides spanning of these regions indicated the presence in trypanosomal extracts of factors capable of binding each promoter in a highly specific fashion. There was no evidence that the PARP, VSG and rRNA promoter fragments bound the same factor.
Collapse
MESH Headings
- Animals
- Base Sequence
- DNA, Kinetoplast/genetics
- DNA, Kinetoplast/metabolism
- DNA, Protozoan/genetics
- DNA, Protozoan/metabolism
- Genes, Protozoan
- Membrane Glycoproteins
- Molecular Sequence Data
- Mutagenesis
- Promoter Regions, Genetic
- Protein Binding
- Protozoan Proteins
- RNA Polymerase I/genetics
- RNA, Protozoan/genetics
- RNA, Ribosomal/genetics
- Repetitive Sequences, Nucleic Acid
- Trypanosoma brucei brucei/enzymology
- Trypanosoma brucei brucei/genetics
- Trypanosoma brucei brucei/metabolism
- Variant Surface Glycoproteins, Trypanosoma/genetics
Collapse
Affiliation(s)
- L Janz
- Zentrum für Molekulare Biologie, Heidelberg, Germany
| | | | | |
Collapse
|
30
|
Shimba S, Reddy R. Purification of human U6 small nuclear RNA capping enzyme. Evidence for a common capping enzyme for gamma-monomethyl-capped small RNAs. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)99890-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Liu MH, Yuan Y, Reddy R. Human RNaseP RNA and nucleolar 7-2 RNA share conserved 'To' antigen-binding domains. Mol Cell Biochem 1994; 130:75-82. [PMID: 7514716 DOI: 10.1007/bf01084270] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
RNase P in both prokaryotes and eukaryotes is a ribonucleoprotein that cleaves tRNA precursors to generate the 5' termini of the mature tRNAs. Many patients with autoimmune diseases produce antibodies against a 40 kDa protein (designated To or Th antigen) which is an integral component of eukaryotic RNaseP as well as nucleolar 7-2 RNP which is identical to the mitochondrial RNA processing (MRP) RNP. Interestingly, the To antigen found in human cells and the C5 protein, the only protein component of E. coli RNaseP, are antigenically related. In this study, we show that a 56 nucleotide-long sequence, corresponding to nucleotides 20-75 near the 5' end of human RNaseP RNA, is sufficient to bind the To antigen. We previously showed that the human To antigen binds to a short distinct structural domain near the 5' end of human 7-2/MRP RNA. There is no obvious primary sequence homology between the To antigen binding sites in RNaseP RNA and 7-2/MRP RNA; however, these sequences are capable of assuming a similar secondary structure which corresponds to the recently proposed 'cage' structure for RNaseP RNAs and 7-2/MRP RNA (Forster and Altman (1989) Cell 62: 407-409). These data are supportive of the idea that these two RNAs may have evolved from a common progenitor molecule.
Collapse
Affiliation(s)
- M H Liu
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030
| | | | | |
Collapse
|
32
|
Bourn D, Carr T, Livingstone D, McLaren A, Goddard JP. An intron-containing tRNAArg gene within a large cluster of human tRNA genes. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1994; 5:83-92. [PMID: 7703509 DOI: 10.3109/10425179409039709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The insert within lambda Ht363, a recombinant selected from a bank of human genomic DNA cloned in lambda Ch4A, is described. Southern blot hybridization with a mixed tRNA[32P]pCp probe revealed the presence of four tRNA genes, which were shown to represent further copies of genes previously identified as a solitary tRNAGly gene and as a three gene cluster on two different recombinants. In vitro transcription of a fragment containing the three gene cluster revealed the presence of a further pol III gene, which was shown to be that for a tRNAArgTCT. This gene contains a 15 bp intron, the presence of which presumably prevented its detection on Southern blots by tRNA hybridisation. The gene is present in the previously reported cluster and occurs in higher copy number (> 7) in other arrangements in the genome. Most of the copies of the gene have related intron sequences.
Collapse
Affiliation(s)
- D Bourn
- Department of Biochemistry, University of Glasgow, Scotland, U.K
| | | | | | | | | |
Collapse
|
33
|
Kang ME, Dahmus ME. RNA polymerases IIA and IIO have distinct roles during transcription from the TATA-less murine dihydrofolate reductase promoter. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74568-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
Shastry BS. Studies on class III gene transcription. Mol Cell Biochem 1993; 121:135-41. [PMID: 8316230 DOI: 10.1007/bf00925972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In an attempt to understand the functional role of individual transcription factors, we have carried out S1 nuclease analyses of in vitro synthesized RNA using partially purified HeLa cell factors and truncated 5S and tDNA. The results indicate that faithful initiation of 5S gene transcription depends on the presence of IIIA, IIIB and IIIC in addition to RNA polymerase III. On the other hand, tDNA transcription initiation requires IIIB and IIIC and RNA polymerase III. In addition, we found that either 'A' block promoter or 'B' block alone can not serve as a template for the initiation of tDNA transcription. When an ultraviolet irradiated 5S DNA was used as a template, transcription is minimally affected at a lower dose suggesting that small differences in the helical structure may not have much effect on the transcription machinery. These results along with an in vitro attempt to reproduce Xenopus 5S RNA gene regulation are presented.
Collapse
Affiliation(s)
- B S Shastry
- Eye Research Institute, Oakland University, Rochester, Michigan 48309-4401
| |
Collapse
|
35
|
Partial purification and characterization of two distinct protein kinases that differentially phosphorylate the carboxyl-terminal domain of RNA polymerase subunit IIa. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54117-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
36
|
Lobo SM, Tanaka M, Sullivan ML, Hernandez N. A TBP complex essential for transcription from TATA-less but not TATA-containing RNA polymerase III promoters is part of the TFIIIB fraction. Cell 1992; 71:1029-40. [PMID: 1458534 DOI: 10.1016/0092-8674(92)90397-u] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The TATA box-binding protein TBP directs transcription by all three eukaryotic RNA polymerases. In mammalian cells, TBP is found in at least three different complexes: SL1, D-TFIID, and B-TFIID. While SL1 and D-TFIID are involved in RNA polymerase I and II transcription, respectively, no unique function has been assigned to the B-TFIID complex. Here we show that the TFIIIB fraction required for RNA polymerase III transcription contains two separable components, one of which is a TBP-containing complex that may correspond to B-TFIID. For transcription of TATA-less RNA polymerase III genes such as the VAI, 5S, and 7SL genes, this complex cannot be replaced by either TBP alone or the D-TFIID complex. In contrast, TBP alone is active for basal transcription from the TATA-containing U6 promoter. This indicates different requirements for recruiting TBP to TATA-less and TATA-containing RNA polymerase III promoters.
Collapse
Affiliation(s)
- S M Lobo
- Cold Spring Harbor Laboratory, New York 11724
| | | | | | | |
Collapse
|
37
|
Kaçar Y, Thomann HU, Gross HJ. The first human genes for tRNA(ArgICG), tRNA(GlyUCC), and tRNA(ThrIGU) and more tRNA(Val) pseudogenes: expression and pre-tRNA maturation in HeLa cell-free extracts. DNA Cell Biol 1992; 11:781-90. [PMID: 1457046 DOI: 10.1089/dna.1992.11.781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A functional tRNA(Val) gene, which codes for the major tRNA(ValIAC) isoacceptor species, and three new tRNA(Val) pseudogenes have been isolated from human genomic DNA. Two tRNA(Val) pseudogenes and a tRNA(Val) variant gene were found to be associated with tRNA genes encoding tRNA(ArgICG), tRNA(GlyUCC), and tRNA(ThrIGU), respectively, on distinct DNA fragments. All tRNA genes, including the pseudogenes, are actively transcribed in HeLa nuclear extract. Pre-tRNAs of tRNA(Val), tRNA(Arg), tRNA(Thr), and tRNA(Gly) genes are correctly processed to mature-sized tRNAs, whereas the three tRNA(Val) pseudogenes yield stable pre-tRNAs in vitro. These findings reveal that, together with the three known pseudogenes, half of the members of the human tRNA(Val) gene family are pseudogenes, all of which are active in homologous nuclear extracts in vitro and presumably also in vivo.
Collapse
Affiliation(s)
- Y Kaçar
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Würzburg, Germany
| | | | | |
Collapse
|
38
|
Kunkel G, Danzeiser D. Formation of a template committed complex on the promoter of a gene for the U6 small nuclear RNA from the human requires multiple sequence elements, including the distal region. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49705-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
39
|
Shimba S, Buckley B, Reddy R, Kiss T, Filipowicz W. Cap structure of U3 small nucleolar RNA in animal and plant cells is different. gamma-Monomethyl phosphate cap structure in plant RNA. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42281-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Yamazaki H, Nomoto S, Mishima Y, Kominami R. A 35-kDa protein binding to a cytosine-rich strand of hypervariable minisatellite DNA. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49840-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
41
|
Heat sensitivity and Sp1 activation of complex formation at the Syrian hamster carbamoyl-phosphate synthase (glutamine-hydrolyzing)/aspartate carbamoyltransferase/dihydroorotase promoter in vitro. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48506-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Kleinert H, Assert R, Benecke B. A single base pair deletion from the inactive octamer-like motif of the 7S K distal sequence element brings full functionality in vivo. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Shastry BS, Greenstein D. The assembly of functional preinitiation complexes and transcription of 5S RNA-encoding genes containing point mutations. Gene 1991; 107:269-78. [PMID: 1748297 DOI: 10.1016/0378-1119(91)90327-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The transcription of several Syrian hamster 5S RNA-encoding genes (5S genes) containing single and multiple point mutations in and around the intragenic control region has been analyzed in a HeLa cell-free system. Although most genes with point mutations displayed normal levels of transcription, several exhibited a three- to fivefold reduction in transcription. These mutations interfere with the interaction between the 5S genes and the soluble factors. The above studies help to establish the importance of specific nucleotides within the 5S gene for productive interactions of individual transcription factors in vitro.
Collapse
Affiliation(s)
- B S Shastry
- Eye Research Institute of Oakland University, Rochester, MI 48309
| | | |
Collapse
|
44
|
Yuan Y, Reddy R. 5' flanking sequences of human MRP/7-2 RNA gene are required and sufficient for the transcription by RNA polymerase III. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1089:33-9. [PMID: 1709054 DOI: 10.1016/0167-4781(91)90081-v] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human mitochondrial RNA processing (MRP) RNA is a 270 nucleotide-long small RNA found as ribonucleoprotein particles. In this study, we isolated four human genomic clones with homology to human MRP RNA. Two of these clones contained one copy each of the real gene coding for human MRP RNA; the other two clones represented a processed psuedogene. The Southern blot with the genomic DNA showed that the haploid human genome contains one copy of real gene and a few pseudogenes for MRP/7-2 RNA. The human MRP RNA is synthesized by RNA polymerase III and the 5' flanking sequences -84 to 1 of MRP RNA gene, containing TATA and PSE-like elements, are required and sufficient for transcription in vitro.
Collapse
Affiliation(s)
- Y Yuan
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | | |
Collapse
|
45
|
Gupta S, Busch R, Singh R, Reddy R. Characterization of U6 small nuclear RNA cap-specific antibodies. Identification of gamma-monomethyl-GTP cap structure in 7SK and several other human small RNAs. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)30635-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Laybourn PJ, Dahmus ME. Phosphorylation of RNA polymerase IIA occurs subsequent to interaction with the promoter and before the initiation of transcription. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38281-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
47
|
Gupta S, Singh R, Reddy R. Capping of U6 small nuclear RNA in vitro can be uncoupled from transcription. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38876-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
48
|
Bartholomew B, Meares CF, Dahmus ME. Photoaffinity labeling of RNA polymerase III transcription complexes by nascent RNA. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39655-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
Bredow S, Kleinert H, Benecke BJ. Sequence and factor requirements for faithful in vitro transcription of human 7SL DNA. Gene 1990; 86:217-25. [PMID: 2323574 DOI: 10.1016/0378-1119(90)90282-v] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have analysed the transcription of a functional human 7SL gene by RNA polymerase III (RNAPIII) in S100 extracts in vitro. Accurate and efficient synthesis of 7S L RNA depends on the presence of (i) an upstream sequence and (ii) an internal promoter element located within the first 22 bp of the gene. These findings were substantiated by DNase I footprinting. Mutations of the internal promoter identified the doublet CG [nucleotide (nt) +15/+16] outside the A-box homologue (nt +5 to +14) as being essential for both proper promoter function in the in vitro transcription assay and competition in the template-exclusion assay. Fractionation of S100 extracts identified two fractions required in addition to RNAPIII for faithful transcription of the gene. Each of these two fractions gave rise to one of two footprints observed in DNase I protection experiments, indicating that at least two DNA-binding factors are involved.
Collapse
Affiliation(s)
- S Bredow
- Department of Biochemistry, Ruhr University, Bochum, F.R.G
| | | | | |
Collapse
|
50
|
Kleinschmidt AM, Pederson T, Tani T, Ohshima Y. An intron-containing Schizosaccharomyces pombe U6 RNA gene can be transcribed by human RNA polymerase III. J Mol Biol 1990; 211:7-9. [PMID: 2299673 DOI: 10.1016/0022-2836(90)90005-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A Schizosaccharomyces pombe U6 small nuclear RNA gene containing an intron has been described. We find that the S. pombe U6 gene is transcribed in a human (HeLa) cell S100 extract with an alpha-amanitin sensitivity characteristic of RNA polymerase III. The S. pombe U6 gene is also transcribed after transfection into human cells. The transcription of vertebrate U6 RNA genes by RNA polymerase III does not require intragenic control elements. The intron of the S. pombe U6 gene disrupts a "box A"-like intragenic sequence that is typically an RNA polymerase III transcription control element. This, together with the transcription of the S. pombe U6 gene by human RNA polymerase III, suggests that it is recognized by human U6 gene-specific transcription machinery.
Collapse
Affiliation(s)
- A M Kleinschmidt
- Cell Biology Group, Worcester Foundation for Experimental Biology, Shrewsbury, MA 01545
| | | | | | | |
Collapse
|