1
|
Hoste ACR, Smeralda W, Cugnet A, Brostaux Y, Deleu M, Garigliany M, Jacques P. The structure of lipopeptides impacts their antiviral activity and mode of action against SARS-CoV-2 in vitro. Appl Environ Microbiol 2024:e0103624. [PMID: 39445780 DOI: 10.1128/aem.01036-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/28/2024] [Indexed: 10/25/2024] Open
Abstract
Microbial lipopeptides are synthesized by nonribosomal peptide synthetases and are composed of a hydrophobic fatty acid chain and a hydrophilic peptide moiety. These structurally diverse amphiphilic molecules can interact with biological membranes and possess various biological activities, including antiviral properties. This study aimed to evaluate the cytotoxicity and antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of 15 diverse lipopeptides to understand their structure-activity relationships. Non-ionic lipopeptides were generally more cytotoxic than charged ones, with cationic lipopeptides being less cytotoxic than anionic and non-ionic variants. At 100 µg/mL, six lipopeptides reduced SARS-CoV-2 RNA to undetectable levels in infected Vero E6 cells, while six others achieved a 2.5- to 4.1-log reduction, and three had no significant effect. Surfactin, white line-inducing principle (WLIP), fengycin, and caspofungin emerged as the most promising anti-SARS-CoV-2 agents. Detailed analysis revealed that these four lipopeptides affected various stages of the viral life cycle involving the viral envelope. Surfactin and WLIP significantly reduced viral RNA levels in replication assays, comparable to neutralizing serum. Surfactin uniquely inhibited viral budding, while fengycin impacted viral binding after pre-infection treatment of the cells. Caspofungin demonstrated a lower antiviral effect compared to the others. Key structural traits of lipopeptides influencing their cytotoxic and antiviral activities were identified. Lipopeptides with a high number of amino acids, especially charged (preferentially anionic) amino acids, showed potent anti-SARS-CoV-2 activity. This research paves the way for designing new lipopeptides with low cytotoxicity and high antiviral efficacy, potentially leading to effective treatments. IMPORTANCE This study advances our understanding of how lipopeptides, which are molecules mostly produced by bacteria, with both fat and protein components, can be used to fight viruses like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). By analyzing 15 different lipopeptides, researchers identified key structural features that make some of these molecules particularly effective at reducing viral levels while being less harmful to cells. Specifically, lipopeptides with certain charged amino acids were found to have the strongest antiviral effects. This research lays the groundwork for developing new antiviral treatments that are both potent against viruses and safe for human cells, offering hope for better therapeutic options in the future.
Collapse
Affiliation(s)
- Alexis C R Hoste
- MiPI, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Veterinary Pathology, FARAH Research Centre, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Willy Smeralda
- LBMI, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Aurélien Cugnet
- MiPI, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Yves Brostaux
- Applied Statistics, Computer Science and Modelling laboratory, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Magali Deleu
- LBMI, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Mutien Garigliany
- Veterinary Pathology, FARAH Research Centre, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Philippe Jacques
- MiPI, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
2
|
Na TU, Sander V, Davidson AJ, Lin R, Hermant YO, Hardie Boys MT, Pletzer D, Campbell G, Ferguson SA, Cook GM, Allison JR, Brimble MA, Northrop BH, Cameron AJ. Allenamides as a Powerful Tool to Incorporate Diversity: Thia-Michael Lipidation of Semisynthetic Peptides and Access to β-Keto Amides. Angew Chem Int Ed Engl 2024; 63:e202407764. [PMID: 38932510 DOI: 10.1002/anie.202407764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Lipopeptides are an important class of biomolecules for drug development. Compared with conventional acylation, a chemoselective lipidation strategy offers a more efficient strategy for late-stage structural derivatisation of a peptide scaffold. It provides access to chemically diverse compounds possessing intriguing and non-native moieties. Utilising an allenamide, we report the first semisynthesis of antimicrobial lipopeptides leveraging a highly efficient thia-Michael addition of chemically diverse lipophilic thiols. Using chemoenzymatically prepared polymyxin B nonapeptide (PMBN) as a model scaffold, an optimised allenamide-mediated thia-Michael addition effected rapid and near quantitative lipidation, affording vinyl sulfide-linked lipopeptide derivatives. Harnessing the utility of this new methodology, 22 lipophilic thiols of unprecedented chemical diversity were introduced to the PMBN framework. These included alkyl thiols, substituted aromatic thiols, heterocyclic thiols and those bearing additional functional groups (e.g., amines), ultimately yielding analogues with potent Gram-negative antimicrobial activity and substantially attenuated nephrotoxicity. Furthermore, we report facile routes to transform the allenamide into a β-keto amide on unprotected peptides, offering a powerful "jack-of-all-trades" synthetic intermediate to enable further peptide modification.
Collapse
Affiliation(s)
- Tae-Ung Na
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Veronika Sander
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Molecular Medicine and Pathology, The University of Auckland, 85 Park Road, Auckland, 1023, New Zealand
| | - Alan J Davidson
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Molecular Medicine and Pathology, The University of Auckland, 85 Park Road, Auckland, 1023, New Zealand
| | - Rolland Lin
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Yann O Hermant
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Madeleine T Hardie Boys
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Daniel Pletzer
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Georgia Campbell
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Scott A Ferguson
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Gregory M Cook
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Jane R Allison
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Brian H Northrop
- Department of Chemistry, Wesleyan University, 52 Lawn Ave., Middletown, CT 06459, U.S.A
| | - Alan J Cameron
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| |
Collapse
|
3
|
Li Y, Chen S. Structure modification of an antibiotic: by engineering the fusaricidin bio-synthetase A in Paenibacillus polymyxa. Front Microbiol 2023; 14:1239958. [PMID: 37822742 PMCID: PMC10562733 DOI: 10.3389/fmicb.2023.1239958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
Fusaricidin, a lipopeptide antibiotic, is specifically produced by Paenibacillus polymyxa strains, which could strongly inhibit Fusarium species fungi. Fusaricidin bio-synthetase A (FusA) is composed of six modules and is essential for synthesizing the peptide moiety of fusaricidin. In this study, we confirmed the FusA of Paenibacillus polymyxa strain WLY78 involved in producing Fusaricidin LI-F07a. We constructed six engineered strains by deletion of each module within FusA from the genome of strain WLY78. One of the engineered strains is able to produce a novel compound that exhibits better antifungal activity than that of fusaricidin LI-F07a. This new compound, known as fusaricidin [ΔAla6] LI-F07a, has a molecular weight of 858. Our findings reveal that it exhibits a remarkable 1-fold increase in antifungal activity compared to previous fusaricidin, and the fermentation yield reaches ~55 mg/L. This research holds promising implications for plant protection against infections caused by Fusarium and Botrytis pathogen infection.
Collapse
Affiliation(s)
- Yunlong Li
- Chengdu NewSun Crop Science Co. Ltd., Chengdu, China
| | - Sanfeng Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Kang HJ, Lee SH, Kim HS, Jung YW, Park HD. Rapid and sensitive detection of gram-negative bacteria using surface-immobilized polymyxin B. PLoS One 2023; 18:e0290579. [PMID: 37639398 PMCID: PMC10461818 DOI: 10.1371/journal.pone.0290579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
Although detection of gram-negative bacteria (GNB) in body fluids is important for clinical purpose, traditional gram staining and other recently developed methods have inherent limitations in terms of accuracy, sensitivity, and convenience. To overcome the weakness, this study proposed a method detecting GNB based on specific binding of polymyxin B (PMB) to lipopolysaccharides (LPS) of GNB. Fluorescent microscopy demonstrated that surface immobilized PMB using a silane coupling agent was possible to detect fluorescent signal produced by a single Escherichia coli (a model GNB) cell. Furthermore, the signal was selective enough to differentiate between GNB and gram-positive bacteria. The proposed method could detect three cells per ml within one hour, indicating the method was very sensitive and the sensing was rapid. These results suggest that highly multifold PMB binding on each GNB cell occurred, as millions of LPS are present on cell wall of a GNB cell. Importantly, the principle used in this study was realized in a microfluidic chip for a sample containing E. coli cells suspended in porcine plasma, demonstrating its potential application to practical uses. In conclusion, the proposed method was accurate, sensitive, and convenient for detecting GNB, and could be applied clinically.
Collapse
Affiliation(s)
- Hyun-Jin Kang
- School of Civil, Environmental and Architectural Engineering, Korea University, Seongbuk-Gu, Seoul, South Korea
| | - Sang-Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seongbuk-Gu, Seoul, South Korea
| | - Han-Shin Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, Seongbuk-Gu, Seoul, South Korea
| | - Yong Woo Jung
- Department of Pharmacy, Korea University, Sejong, South Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seongbuk-Gu, Seoul, South Korea
| |
Collapse
|
5
|
Li Y, Zhang H, Li Y, Chen S. Fusaricidin Biosynthesis Is Controlled via a KinB-Spo0A-AbrB Signal Pathway in Paenibacillus polymyxa WLY78. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1378-1389. [PMID: 34890249 DOI: 10.1094/mpmi-05-21-0117-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fusaricidins produced by Paenibacillus polymyxa are important lipopeptide antibiotics against fungi. The fusGFEDCBA (fusaricidin biosynthesis) operon is responsible for synthesis of fusaricidins. However, the regulation mechanisms of fusaricidin biosynthesis remain to be fully clarified. In this study, we revealed that fusaricidin production is controlled by a complex regulatory network including KinB-Spo0A-AbrB. Evidence suggested that the regulator AbrB represses the transcription of the fus gene cluster by direct binding to the fus promoter, in which the sequences (5'-AATTTTAAAATAAATTTTGTGATTT-3') located from -136 to -112 bp relative to the transcription start site is required for this repression. Spo0A binds to the abrB promoter that contains the Spo0A-binding sequences (5'-TGTCGAA-3', 0A box) and in turn prevents the further transcription of abrB. The decreasing concentration of AbrB allows for the derepression of the fus promoter repressed by AbrB. The genome of P. polymyxa WLY78 contains two orthologs (named Kin1508 and Kin4833) of Bacillus subtilis KinB, but only Kin4833 activates sporulation and fusaricidin production, indicating that this kinase may be involved in phosphorylating Spo0A to initiate sporulation and regulate the abrB transcription. Our results reveal that Kin4833 (KinB), Spo0A, and AbrB are involved in regulation of fusaricidin production and a signaling mechanism that links fusaricidin production and sporulation.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yunlong Li
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Haowei Zhang
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongbin Li
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sanfeng Chen
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Sasidharan S, Pottail L. Biogenic reduction of gold salt, graphene oxide using Americana periplaneta salivary exudates and their anti-bacterial and anti-cancer activity. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01833-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Yuan Y, Xu QM, Yu SC, Sun HZ, Cheng JS, Yuan YJ. Control of the polymyxin analog ratio by domain swapping in the nonribosomal peptide synthetase of Paenibacillus polymyxa. J Ind Microbiol Biotechnol 2020; 47:551-562. [PMID: 32495197 DOI: 10.1007/s10295-020-02275-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/15/2020] [Indexed: 11/26/2022]
Abstract
Polymyxins are used as the last-line therapy against multidrug-resistant bacteria. However, their further clinical development needs to solve problems related to the presence of heterogeneous analogs, but there is still no platform or methods that can regulate the biosynthesis of polymyxin analogs. In this study, we present an approach to swap domains in the polymyxin gene cluster to regulate the production of different analogs. Following adenylation domain swapping, the proportion of polymyxin B1 increased from 41.36 to 52.90%, while that of B1-1 decreased from 18.25 to 3.09%. The ratio of polymyxin B1 and B3 following starter condensation domain swapping changed from 41.36 and 16.99 to 55.03 and 6.39%, respectively. The two domain-swapping strains produced 62.96% of polymyxin B1, 6.70% of B3 and 3.32% of B1-1. This study also revealed the presence of overflow fluxes between acetoin, 2,3-butanediol and polymyxin. To our best knowledge, this is the first report of engineering the polymyxin synthetase gene cluster in situ to regulate the relative proportions of polymyxin analogs. This research paves a way for regulating lipopeptide analogs and will facilitate the development of novel lipopeptide derivatives.
Collapse
Affiliation(s)
- Ye Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Qiu-Man Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin, 300387, People's Republic of China.
| | - Si-Cen Yu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Hui-Zhong Sun
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China.
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| |
Collapse
|
8
|
DelMauro MA, Kalberer DC, Rodgers IR. Infection prophylaxis in periorbital Mohs surgery and reconstruction: a review and update to recommendations. Surv Ophthalmol 2020; 65:323-347. [DOI: 10.1016/j.survophthal.2019.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 01/04/2023]
|
9
|
Li Y, Chen S. Fusaricidin Produced by Paenibacillus polymyxa WLY78 Induces Systemic Resistance against Fusarium Wilt of Cucumber. Int J Mol Sci 2019; 20:E5240. [PMID: 31652608 PMCID: PMC6829208 DOI: 10.3390/ijms20205240] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 11/29/2022] Open
Abstract
Cucumber is an important vegetable crop in China. Fusarium wilt is a soil-borne disease that can significantly reduce cucumber yields. Paenibacillus polymyxa WLY78 can strongly inhibit Fusarium oxysporum f. sp. Cucumerium, which causes Fusarium wilt disease. In this study, we screened the genome of WLY78 and found eight potential antibiotic biosynthesis gene clusters. Mutation analysis showed that among the eight clusters, the fusaricidin synthesis (fus) gene cluster is involved in inhibiting the Fusarium genus, Verticillium albo-atrum, Monilia persoon, Alternaria mali, Botrytis cinereal, and Aspergillus niger. Further mutation analysis revealed that with the exception of fusTE, the seven genes fusG, fusF, fusE, fusD, fusC, fusB, and fusA within the fus cluster were all involved in inhibiting fungi. This is the first time that demonstrated that fusTE was not essential. We first report the inhibitory mode of fusaricidin to inhibit spore germination and disrupt hyphal membranes. A biocontrol assay demonstrated that fusaricidin played a major role in controlling Fusarium wilt disease. Additionally, qRT-PCR demonstrated that fusaricidin could induce systemic resistance via salicylic acid (SA) signal against Fusarium wilt of cucumber. WLY78 is the first reported strain to both produce fusaricidin and fix nitrogen. Therefore, our results demonstrate that WLY78 will have great potential as a biocontrol agent in agriculture.
Collapse
Affiliation(s)
- Yunlong Li
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing 100094, China.
| | - Sanfeng Chen
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing 100094, China.
| |
Collapse
|
10
|
Efiana NA, Dizdarević A, Huck CW, Bernkop-Schnürch A. Improved Intestinal Mucus Permeation of Vancomycin via Incorporation Into Nanocarrier Containing Papain-Palmitate. J Pharm Sci 2019; 108:3329-3339. [PMID: 31136766 DOI: 10.1016/j.xphs.2019.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 01/23/2023]
Abstract
The aim of this study was to improve intestinal mucus permeation of a peptide antibiotic via incorporation into papain-palmitate-modified self-emulsifying drug delivery systems (SEDDS) as nanocarrier. Vancomycin as a peptide antibiotic was lipidized by hydrophobic ion pair formation using sodium bis-2-ethylhexyl-sulphosuccinate before incorporation in SEDDS comprising Capmul MCM, propylenglycol, and Kolliphor EL (2:1:2). As mucolytic agent, 0.5% papain-palmitate was introduced in SEDDS formulation containing the vancomycin-sodium bis-2-ethylhexyl-sulphosuccinate ion pair. The formulation was evaluated regarding droplet size, zeta potential, and cytotoxicity using Caco-2 cells previous to intestinal mucus permeation studies using Transwell diffusion and rotating tube method. The hydrophobic ion pair product yielded from surfactant to drug ratio of 3:1 provided a 25-fold increase in lipophilicity, drug payload in SEDDS of 5%, and log DSEDDS/release medium of 2.2. The formulation exhibited a droplet size and zeta potential of 221.5 ± 14.8 nm and -4.2 ± 0.8 mV, respectively. Cytotoxicity study showed that SEDDS formulations were not toxic. Introducing 0.5% papain-palmitate increased the mucus permeability of SEDDS 2.8-fold and 3.3-fold in Transwell diffusion and rotating tube studies, respectively. According to these results, papain decorated SEDDS might be a potential strategy to improve the mucus permeating properties of peptide antibiotics.
Collapse
Affiliation(s)
- Nuri Ari Efiana
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens University Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria; Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Ahmad Dahlan, Jl. Prof. Dr. Soepomo, S.H., Janturan, Warungboto, Umbulharjo, Yogyakarta 55164, Indonesia
| | - Aida Dizdarević
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens University Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Christian W Huck
- Institute for Analytical Chemistry and Radiochemistry, University Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens University Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria.
| |
Collapse
|
11
|
Galea CA, Han M, Zhu Y, Roberts K, Wang J, Thompson PE, L J, Velkov T. Characterization of the Polymyxin D Synthetase Biosynthetic Cluster and Product Profile of Paenibacillus polymyxa ATCC 10401. JOURNAL OF NATURAL PRODUCTS 2017; 80:1264-1274. [PMID: 28463513 DOI: 10.1021/acs.jnatprod.6b00807] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The increasing prevalence of polymyxin-resistant bacteria has stimulated the search for improved polymyxin lipopeptides. Here we describe the sequence and product profile for polymyxin D nonribosomal peptide synthetase from Paenibacillus polymyxa ATCC 10401. The polymyxin D synthase gene cluster comprised five genes that encoded ABC transporters (pmxC and pmxD) and enzymes responsible for the biosynthesis of polymyxin D (pmxA, pmxB, and pmxE). Unlike polymyxins B and E, polymyxin D contains d-Ser at position 3 as opposed to l-α,γ-diaminobutyric acid and has an l-Thr at position 7 rather than l-Leu. Module 3 of pmxE harbored an auxiliary epimerization domain that catalyzes the conversion of l-Ser to the d-form. Structural modeling suggested that the adenylation domains of module 3 in PmxE and modules 6 and 7 in PmxA could bind amino acids with larger side chains than their preferred substrate. Feeding individual amino acids into the culture media not only affected production of polymyxins D1 and D2 but also led to the incorporation of different amino acids at positions 3, 6, and 7 of polymyxin D. Interestingly, the unnatural polymyxin analogues did not show antibiotic activity against a panel of Gram-negative clinical isolates, while the natural polymyxins D1 and D2 exhibited excellent in vitro antibacterial activity and were efficacious against Klebsiella pneumoniae and Acinetobacter baumannii in a mouse blood infection model. The results demonstrate the excellent antibacterial activity of these unusual d-Ser3 polymxyins and underscore the possibility of incorporating alternate amino acids at positions 3, 6, and 7 of polymyxin D via manipulation of the polymyxin nonribosomal biosynthetic machinery.
Collapse
Affiliation(s)
| | - Meiling Han
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University , Clayton, Victoria 3800, Australia
| | - Yan Zhu
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University , Clayton, Victoria 3800, Australia
| | | | - Jiping Wang
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University , Clayton, Victoria 3800, Australia
| | | | - Jian L
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University , Clayton, Victoria 3800, Australia
| | | |
Collapse
|
12
|
Agrawal S, Adholeya A, Deshmukh SK. The Pharmacological Potential of Non-ribosomal Peptides from Marine Sponge and Tunicates. Front Pharmacol 2016; 7:333. [PMID: 27826240 PMCID: PMC5078478 DOI: 10.3389/fphar.2016.00333] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
Marine biodiversity is recognized by a wide and unique array of fascinating structures. The complex associations of marine microorganisms, especially with sponges, bryozoans, and tunicates, make it extremely difficult to define the biosynthetic source of marine natural products or to deduce their ecological significance. Marine sponges and tunicates are important source of novel compounds for drug discovery and development. Majority of these compounds are nitrogen containing and belong to non-ribosomal peptide (NRPs) or mixed polyketide-NRP natural products. Several of these peptides are currently under trial for developing new drugs against various disease areas, including inflammatory, cancer, neurodegenerative disorders, and infectious disease. This review features pharmacologically active NRPs from marine sponge and tunicates based on their biological activities.
Collapse
Affiliation(s)
| | | | - Sunil K. Deshmukh
- TERI–Deakin Nano Biotechnology Centre, The Energy and Resources InstituteNew Delhi, India
| |
Collapse
|
13
|
Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum. Nat Microbiol 2016; 1:16167. [PMID: 27669453 DOI: 10.1038/nmicrobiol.2016.167] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/10/2016] [Indexed: 12/31/2022]
Abstract
The ancient African crop, finger millet, has broad resistance to pathogens including the toxigenic fungus Fusarium graminearum. Here, we report the discovery of a novel plant defence mechanism resulting from an unusual symbiosis between finger millet and a root-inhabiting bacterial endophyte, M6 (Enterobacter sp.). Seed-coated M6 swarms towards root-invading Fusarium and is associated with the growth of root hairs, which then bend parallel to the root axis, subsequently forming biofilm-mediated microcolonies, resulting in a remarkable, multilayer root-hair endophyte stack (RHESt). The RHESt results in a physical barrier that prevents entry and/or traps F. graminearum, which is then killed. M6 thus creates its own specialized killing microhabitat. Tn5-mutagenesis shows that M6 killing requires c-di-GMP-dependent signalling, diverse fungicides and resistance to a Fusarium-derived antibiotic. Further molecular evidence suggests long-term host-endophyte-pathogen co-evolution. The end result of this remarkable symbiosis is reduced deoxynivalenol mycotoxin, potentially benefiting millions of subsistence farmers and livestock. Further results suggest that the anti-Fusarium activity of M6 may be transferable to maize and wheat. RHESt demonstrates the value of exploring ancient, orphan crop microbiomes.
Collapse
|
14
|
Charretier Y, Schrenzel J. Mass spectrometry methods for predicting antibiotic resistance. Proteomics Clin Appl 2016; 10:964-981. [PMID: 27312049 DOI: 10.1002/prca.201600041] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/09/2016] [Accepted: 06/13/2016] [Indexed: 11/10/2022]
Abstract
Developing elaborate techniques for clinical applications can be a complicated process. Whole-cell MALDI-TOF MS revolutionized reliable microorganism identification in clinical microbiology laboratories and is now replacing phenotypic microbial identification. This technique is a generic, accurate, rapid, and cost-effective growth-based method. Antibiotic resistance keeps emerging in environmental and clinical microorganisms, leading to clinical therapeutic challenges, especially for Gram-negative bacteria. Antimicrobial susceptibility testing is used to reliably predict antimicrobial success in treating infection, but it is inherently limited by the need to isolate and grow cultures, delaying the application of appropriate therapies. Antibiotic resistance prediction by growth-independent methods is expected to reduce the turnaround time. Recently, the potential of next-generation sequencing and microarrays in predicting microbial resistance has been demonstrated, and this review evaluates the potential of MS in this field. First, technological advances are described, and the possibility of predicting antibiotic resistance by MS is then illustrated for three prototypical human pathogens: Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Clearly, MS methods can identify antimicrobial resistance mediated by horizontal gene transfers or by mutations that affect the quantity of a gene product, whereas antimicrobial resistance mediated by target mutations remains difficult to detect.
Collapse
Affiliation(s)
- Yannick Charretier
- Genomic Research Laboratory, Division of Infectious Diseases, Geneva University Hospitals.
| | - Jacques Schrenzel
- Genomic Research Laboratory, Division of Infectious Diseases, Geneva University Hospitals
| |
Collapse
|
15
|
Aw YK, Ong KS, Lee LH, Cheow YL, Yule CM, Lee SM. Newly Isolated Paenibacillus tyrfis sp. nov., from Malaysian Tropical Peat Swamp Soil with Broad Spectrum Antimicrobial Activity. Front Microbiol 2016; 7:219. [PMID: 26973605 PMCID: PMC4771734 DOI: 10.3389/fmicb.2016.00219] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/10/2016] [Indexed: 12/21/2022] Open
Abstract
Emergence of antimicrobial resistance coupled with the slowdown in discovery of new antimicrobial compounds points to serious consequences for human health. Therefore, scientists are looking for new antimicrobial compounds from unique and understudied ecosystems such as tropical peat swamp forests. Over the course of isolating antimicrobial producing bacteria from North Selangor tropical peat swamp forest, Malaysia, a Gram variable, rod shaped, endospore forming, facultative anaerobic novel strain MSt1T that exerts potent and broad spectrum antimicrobial activity was isolated. Phylogenetic analysis using 16S rRNA gene sequences showed that strain MSt1T belonged to the genus Paenibacillus with the highest similarity to Paenibacillus elgii SD17T (99.5%). Whole genome comparison between strain MSt1T with its closely related species using average nucleotide identity (ANI) revealed that similarity between strain MSt1T with P. elgii B69 (93.45%) and Paenibacillus ehimensis A2 (90.42%) was below the recommended threshold of 95%. Further analysis using in silico pairwise DDH also showed that similarity between strain MSt1T with P. elgii B69 (55.4%) and P. ehimensis A2 (43.7%) was below the recommended threshold of 70%. Strain MSt1T contained meso-diaminopilemic acid in the cell wall and MK-7 as the major menaquinone. The major fatty acids of strain MSt1T were anteiso-C15:0 (48.2%) and C16:0 (29.0%) whereas the polar lipid profile consisted of phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, one unknown lipid, two unknown glycolipids, and one unknown phospholipid. Total DNA G+C content of strain MSt1T was 51.5 mol%. The extract from strain MSt1T exerted strong antimicrobial activity against Escherichia coli ATCC 25922 (MIC = 1.5 μg/mL), MRSA ATCC 700699 (MIC = 25 μg/mL) and Candida albicans IMR (MIC = 12.5 μg/mL). Partially purified active fraction exerted a strong effect against E. coli ATCC 25922 resulting in cell rupture when viewed with SEM. Based on distinctive taxonomic differences between strain MSt1T when compared to its closely related type species, we propose that strain MSt1T represents a novel species within the genus of Paenibacillus, for which the name Paenibacillus tyrfis sp. nov. (= DSM 100708T = MCCC 1K01247T) is proposed.
Collapse
Affiliation(s)
- Yoong-Kit Aw
- Tropical Biology Multidisciplinary Platform, School of Science, Monash University MalaysiaBandar Sunway, Malaysia; School of Science, Monash University MalaysiaBandar Sunway, Malaysia
| | - Kuan-Shion Ong
- Tropical Biology Multidisciplinary Platform, School of Science, Monash University MalaysiaBandar Sunway, Malaysia; School of Science, Monash University MalaysiaBandar Sunway, Malaysia
| | - Learn-Han Lee
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Yuen-Lin Cheow
- School of Science, Monash University Malaysia Bandar Sunway, Malaysia
| | - Catherine M Yule
- Tropical Biology Multidisciplinary Platform, School of Science, Monash University MalaysiaBandar Sunway, Malaysia; School of Science, Monash University MalaysiaBandar Sunway, Malaysia
| | - Sui-Mae Lee
- Tropical Biology Multidisciplinary Platform, School of Science, Monash University MalaysiaBandar Sunway, Malaysia; School of Science, Monash University MalaysiaBandar Sunway, Malaysia
| |
Collapse
|
16
|
Mousa WK, Shearer CR, Limay-Rios V, Zhou T, Raizada MN. Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation. FRONTIERS IN PLANT SCIENCE 2015; 6:805. [PMID: 26500660 PMCID: PMC4593954 DOI: 10.3389/fpls.2015.00805] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
Wild maize (teosinte) has been reported to be less susceptible to pests than their modern maize (corn) relatives. Endophytes, defined as microbes that inhabit plants without causing disease, are known for their ability to antagonize plant pests and pathogens. We hypothesized that the wild relatives of modern maize may host endophytes that combat pathogens. Fusarium graminearum is the fungus that causes Gibberella Ear Rot (GER) in modern maize and produces the mycotoxin, deoxynivalenol (DON). In this study, 215 bacterial endophytes, previously isolated from diverse maize genotypes including wild teosintes, traditional landraces and modern varieties, were tested for their ability to antagonize F. graminearum in vitro. Candidate endophytes were then tested for their ability to suppress GER in modern maize in independent greenhouse trials. The results revealed that three candidate endophytes derived from wild teosintes were most potent in suppressing F. graminearum in vitro and GER in a modern maize hybrid. These wild teosinte endophytes could suppress a broad spectrum of fungal pathogens of modern crops in vitro. The teosinte endophytes also suppressed DON mycotoxin during storage to below acceptable safety threshold levels. A fourth, less robust anti-fungal strain was isolated from a modern maize hybrid. Three of the anti-fungal endophytes were predicted to be Paenibacillus polymyxa, along with one strain of Citrobacter. Microscopy studies suggested a fungicidal mode of action by all four strains. Molecular and biochemical studies showed that the P. polymyxa strains produced the previously characterized anti-Fusarium compound, fusaricidin. Our results suggest that the wild relatives of modern crops may serve as a valuable reservoir for endophytes in the ongoing fight against serious threats to modern agriculture. We discuss the possible impact of crop evolution and domestication on endophytes in the context of plant defense.
Collapse
Affiliation(s)
- Walaa K. Mousa
- Department of Plant Agriculture, University of GuelphGuelph, ON, Canada
- Department of Pharmacognosy, Mansoura UniversityMansoura, Egypt
| | | | - Victor Limay-Rios
- Department of Plant Agriculture, University of GuelphRidgetown, ON, Canada
| | - Ting Zhou
- Guelph Food Research Centre, Agriculture and Agri-Food CanadaGuelph, ON, Canada
| | - Manish N. Raizada
- Department of Plant Agriculture, University of GuelphGuelph, ON, Canada
| |
Collapse
|
17
|
Promoter analysis and transcription regulation of fus gene cluster responsible for fusaricidin synthesis of Paenibacillus polymyxa SQR-21. Appl Microbiol Biotechnol 2013; 97:9479-89. [PMID: 24072159 DOI: 10.1007/s00253-013-5157-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 06/25/2013] [Accepted: 07/27/2013] [Indexed: 10/26/2022]
Abstract
Fusaricidins produced by Paenibacillus polymyxa are lipopeptide antibiotics with outstanding antifungal activity. In this study, the whole gene cluster responsible for fusaricidin biosynthesis (fusA) was isolated and identified from the cDNA library of one biocontrol agent P. polymyxa SQR-21 (SQR-21). MALDI-TOF MS analysis confirmed that SQR-21 could produce four kinds of fusaricidins: A, B, C, and D. A central promoter that drove the transcription of fusGFEDCBA was revealed by mapping of the fus promoter region by 5' deletions. The disruption of fusA in SQR-21 led to the abolishment of fusaricidin production and antifungal activity. The direct interaction between a potential regulator, AbrB, and the promoter region of fus gene cluster was confirmed by electrophoretic mobility shift assays. One abrB disruption mutant showed significantly higher antifungal activity compared with the wild type. These results revealed a pathway for the transcriptional regulation of the fus gene cluster in P. polymyxa.
Collapse
|
18
|
Balakrishnan A, Marathe SA, Joglekar M, Chakravortty D. Bactericidal/permeability increasing protein: a multifaceted protein with functions beyond LPS neutralization. Innate Immun 2012; 19:339-47. [PMID: 23160386 DOI: 10.1177/1753425912465098] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bactericidal permeability increasing protein (BPI), a 55-60 kDa protein, first reported in 1975, has gone a long way as a protein with multifunctional roles. Its classical role in neutralizing endotoxin (LPS) raised high hopes among septic shock patients. Today, BPI is not just a LPS-neutralizing protein, but a protein with diverse functions. These functions can be as varied as inhibition of endothelial cell growth and inhibition of dendritic cell maturation, or as an anti-angiogenic, chemoattractant or opsonization agent. Though the literature available is extremely limited, it is fascinating to look into how BPI is gaining major importance as a signalling molecule. In this review, we briefly summarize the recent research focused on the multiple roles of BPI and its use as a therapeutic.
Collapse
Affiliation(s)
- Arjun Balakrishnan
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research and Biosafety Laboratories, Indian Institute of Science, India
| | | | | | | |
Collapse
|
19
|
Kawasaki K. Complexity of lipopolysaccharide modifications in Salmonella enterica: Its effects on endotoxin activity, membrane permeability, and resistance to antimicrobial peptides. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.01.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Battacin (Octapeptin B5), a new cyclic lipopeptide antibiotic from Paenibacillus tianmuensis active against multidrug-resistant Gram-negative bacteria. Antimicrob Agents Chemother 2011; 56:1458-65. [PMID: 22183171 DOI: 10.1128/aac.05580-11] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hospital-acquired infections caused by drug-resistant bacteria are a significant challenge to patient safety. Numerous clinical isolates resistant to almost all commercially available antibiotics have emerged. Thus, novel antimicrobial agents, specifically those for multidrug-resistant Gram-negative bacteria, are urgently needed. In the current study, we report the isolation, structure elucidation, and preliminary biological characterization of a new cationic lipopeptide antibiotic, battacin or octapeptin B5, produced from a Paenibacillus tianmuensis soil isolate. Battacin kills bacteria in vitro and has potent activity against Gram-negative bacteria, including multidrug-resistant and extremely drug-resistant clinical isolates. Hospital strains of Escherichia coli and Pseudomonas aeruginosa are the pathogens most sensitive to battacin, with MICs of 2 to 4 μg/ml. The ability of battacin to disrupt the outer membrane of Gram-negative bacteria is comparable to that of polymyxin B, the last-line therapy for infections caused by antibiotic-resistant Gram-negative bacteria. However, the capacity of battacin to permeate bacterial plasma membranes is less extensive than that of polymyxin B. The bactericidal kinetics of battacin correlate with the depolarization of the cell membrane, suggesting that battacin kills bacteria by disrupting the cytoplasmic membrane. Other studies indicate that battacin is less acutely toxic than polymyxin B and has potent in vivo biological activity against E. coli. Based on the findings of the current study, battacin may be considered a potential therapeutic agent for the treatment of infections caused by antibiotic-resistant Gram-negative bacteria.
Collapse
|
21
|
Schadich E, Cole A. Inhibition of frog antimicrobial peptides by extracellular products of the bacterial pathogenAeromonas hydrophila. Lett Appl Microbiol 2009; 49:384-7. [DOI: 10.1111/j.1472-765x.2009.02677.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system. Antimicrob Agents Chemother 2009; 53:3628-34. [PMID: 19528270 DOI: 10.1128/aac.00284-09] [Citation(s) in RCA: 352] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mechanism of colistin resistance (Col(r)) in Acinetobacter baumannii was studied by selecting in vitro Col(r) derivatives of the multidrug-resistant A. baumannii isolate AB0057 and the drug-susceptible strain ATCC 17978, using escalating concentrations of colistin in liquid culture. DNA sequencing identified mutations in genes encoding the two-component system proteins PmrA and/or PmrB in each strain and in a Col(r) clinical isolate. A colistin-susceptible revertant of one Col(r) mutant strain, obtained following serial passage in the absence of colistin selection, carried a partial deletion of pmrB. Growth of AB0057 and ATCC 17978 at pH 5.5 increased the colistin MIC and conferred protection from killing by colistin in a 1-hour survival assay. Growth in ferric chloride [Fe(III)] conferred a small protective effect. Expression of pmrA was increased in Col(r) mutants, but not at a low pH, suggesting that additional regulatory factors remain to be discovered.
Collapse
|
23
|
Galardy RE, Bockman RS, Sogn JA, Gibbons WA, Printz MP, Craig LC. Subtilopeptidase a cleavage in the cyclic region of the peptide antibiotic polymyxin B1. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 2009; 5:455-61. [PMID: 4361114 DOI: 10.1111/j.1399-3011.1973.tb02351.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Mitrophanov AY, Jewett MW, Hadley TJ, Groisman EA. Evolution and dynamics of regulatory architectures controlling polymyxin B resistance in enteric bacteria. PLoS Genet 2008; 4:e1000233. [PMID: 18949034 PMCID: PMC2565834 DOI: 10.1371/journal.pgen.1000233] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 09/18/2008] [Indexed: 01/13/2023] Open
Abstract
Complex genetic networks consist of structural modules that determine the levels and timing of a cellular response. While the functional properties of the regulatory architectures that make up these modules have been extensively studied, the evolutionary history of regulatory architectures has remained largely unexplored. Here, we investigate the transition between direct and indirect regulatory pathways governing inducible resistance to the antibiotic polymyxin B in enteric bacteria. We identify a novel regulatory architecture—designated feedforward connector loop—that relies on a regulatory protein that connects signal transduction systems post-translationally, allowing one system to respond to a signal activating another system. The feedforward connector loop is characterized by rapid activation, slow deactivation, and elevated mRNA expression levels in comparison with the direct regulation circuit. Our results suggest that, both functionally and evolutionarily, the feedforward connector loop is the transitional stage between direct transcriptional control and indirect regulation. A regulatory protein can activate the expression of a target gene either directly, i.e., by binding to the gene's promoter, or indirectly, i.e., by altering the expression of regulators, which, in turn, bind to the target gene's promoter and induce or inhibit its transcription. Indirect regulatory circuits can contain multiple components and functional elements, such as feedforward and feedback loops. The complex structure of indirect regulation raises the question of its evolutionary origins. Here, we study the dynamic and evolutionary properties of regulatory architectures that involve members of the recently emerged class of bacterial proteins termed connectors. Such proteins post-translationally modulate the activity of two-component systems and phosphorelays, which constitute the prevalent form of bacterial signal transduction. We describe a novel connector-mediated regulatory circuit that combines the structural and functional properties of direct and indirect regulation. Our results indicate that this architecture is the evolutionary link between direct and connector-dependent regulatory designs.
Collapse
Affiliation(s)
- Alexander Y. Mitrophanov
- Howard Hughes Medical Institute, Washington University, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri, United States of America
| | - Mollie W. Jewett
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri, United States of America
| | - Tricia J. Hadley
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri, United States of America
| | - Eduardo A. Groisman
- Howard Hughes Medical Institute, Washington University, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
25
|
Choi SK, Park SY, Kim R, Lee CH, Kim JF, Park SH. Identification and functional analysis of the fusaricidin biosynthetic gene of Paenibacillus polymyxa E681. Biochem Biophys Res Commun 2007; 365:89-95. [PMID: 17980146 DOI: 10.1016/j.bbrc.2007.10.147] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 10/24/2007] [Indexed: 11/18/2022]
Abstract
Fusaricidin, a peptide antibiotic consisting of six amino acids, has been identified as a potential antifungal agent from Paenibacillus polymyxa. Here, we report the complete sequence of the fusaricidin synthetase gene (fusA) identified from the genome sequence of a rhizobacterium, P. polymyxa E681. The gene encodes a polypeptide consisting of six modules in a single open-reading frame. Interestingly, module six of FusA does not contain an epimerization domain, which suggests that the sixth amino acids of the fusaricidin analogs produced by P. polymyxa E681 may exist as an l-form, although all reported fusaricidins contain d-form alanines in their sixth amino acid residues. Alternatively, the sixth adenylation domain of the FusA may directly recognize the d-form alanine. The inactivation of fusA led to the complete loss of antifungal activity against Fusarium oxysporum. LC/MS analysis confirmed the incapability of fusaricidin production in the fusA mutant strain, thus demonstrating that fusA is involved in fusaricidin biosynthesis. Our findings suggested that FusA can produce more than one kind of fusaricidin, as various forms of fusaricidins were identified from P. polymyxa E681.
Collapse
Affiliation(s)
- Soo-Keun Choi
- Systems Microbiology Research Center, KRIBB, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Acid pH often triggers changes in gene expression. However, little is known about the identity of the gene products that sense fluctuations in extracytoplasmic pH. The Gram-negative pathogen Salmonella enterica serovar Typhimurium experiences a number of acidic environments both inside and outside animal hosts. Growth in mild acid (pH 5.8) promotes transcription of genes activated by the response regulator PmrA, but the signalling pathway(s) that mediates this response has thus far remained unexplored. Here we report that this activation requires both PmrA's cognate sensor kinase PmrB, which had been previously shown to respond to Fe3+ and Al3+, and PmrA's post-translational activator PmrD. Substitution of a conserved histidine or of either one of four conserved glutamic acid residues in the periplasmic domain of PmrB severely decreased or abolished the mild acid-promoted transcription of PmrA-activated genes. The PmrA/PmrB system controls lipopolysaccharide modifications mediating resistance to the antibiotic polymyxin B. Wild-type Salmonella grown at pH 5.8 were > 100 000-fold more resistant to polymyxin B than organisms grown at pH 7.7. Our results suggest that protonation of the PmrB periplasmic histidine and/or of the glutamic acid residues activate the PmrA protein, and that mild acid promotes cellular changes resulting in polymyxin B resistance.
Collapse
Affiliation(s)
- J Christian Perez
- Program in Molecular Genetics, Howard Hughes Medical Institute, Washington University School of MedicineCampus Box 8230, 660 S. Euclid Ave., St Louis, MO 63110, USA
| | - Eduardo A Groisman
- Department of Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of MedicineCampus Box 8230, 660 S. Euclid Ave., St Louis, MO 63110, USA
- *for correspondence. E-mail ; Tel. (+1) 314 362 3692; Fax (+1) 314 747 8228
| |
Collapse
|
27
|
Kawasaki K, China K, Nishijima M. Release of the lipopolysaccharide deacylase PagL from latency compensates for a lack of lipopolysaccharide aminoarabinose modification-dependent resistance to the antimicrobial peptide polymyxin B in Salmonella enterica. J Bacteriol 2007; 189:4911-9. [PMID: 17483225 PMCID: PMC1913436 DOI: 10.1128/jb.00451-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Salmonella enterica modifies its lipopolysaccharide (LPS), including the lipid A portion, to adapt to its environments. The lipid A 3-O-deacylase PagL exhibits latency; deacylation of lipid A is not usually observed in vivo despite the expression of PagL, which is under the control of a two-component regulatory system, PhoP-PhoQ. In contrast, PagL is released from latency in pmrA and pmrE mutants, both of which are deficient in aminoarabinose-modified lipid A, although the biological significance of this is not clear. The attachment of aminoarabinose to lipid A decreases the net anionic charge at the membrane's surface and reduces electrostatic repulsion between neighboring LPS molecules, leading to increases in bacterial resistance to cationic antimicrobial peptides, including polymyxin B. Here we examined the effects of the release of PagL from latency on resistance to polymyxin B. The pmrA pagL and pmrE pagL double mutants were more susceptible to polymyxin B than were the parental pmrA and pmrE mutants, respectively. Furthermore, introduction of the PagL expression plasmid into the pmrA pagL double mutant increased the resistance to polymyxin B. In addition, PagL-dependent deacylation of lipid A was observed in a mutant in which lipid A could not be modified with phosphoethanolamine, which partly contributes to the PmrA-dependent resistance to polymyxin B. These results, taken together, suggest that the release of PagL from latency compensates for the loss of resistance to polymyxin B that is due to a lack of other modifications to LPS.
Collapse
Affiliation(s)
- Kiyoshi Kawasaki
- Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kodo, Kyotanabe, Kyoto 610-0395, Japan.
| | | | | |
Collapse
|
28
|
McSweeney C, Blackall L, Collins E, Conlan L, Webb R, Denman S, Krause D. Enrichment, isolation and characterisation of ruminal bacteria that degrade non-protein amino acids from the tropical legume Acacia angustissima. Anim Feed Sci Technol 2005. [DOI: 10.1016/j.anifeedsci.2005.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Lee H, Hsu FF, Turk J, Groisman EA. The PmrA-regulated pmrC gene mediates phosphoethanolamine modification of lipid A and polymyxin resistance in Salmonella enterica. J Bacteriol 2004; 186:4124-33. [PMID: 15205413 PMCID: PMC421605 DOI: 10.1128/jb.186.13.4124-4133.2004] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The PmrA/PmrB regulatory system of Salmonella enterica controls the modification of lipid A with aminoarabinose and phosphoethanolamine. The aminoarabinose modification is required for resistance to the antibiotic polymyxin B, as mutations of the PmrA-activated pbg operon or ugd gene result in strains that lack aminoarabinose in their lipid A molecules and are more susceptible to polymyxin B. Additional PmrA-regulated genes appear to participate in polymyxin B resistance, as pbgP and ugd mutants are not as sensitive to polymyxin B as a pmrA mutant. Moreover, the role that the phosphoethanolamine modification of lipid A plays in the resistance to polymyxin B has remained unknown. Here we address both of these questions by establishing that the PmrA-activated pmrC gene encodes an inner membrane protein that is required for the incorporation of phosphoethanolamine into lipid A and for polymyxin B resistance. The PmrC protein consists of an N-terminal region with five transmembrane domains followed by a large periplasmic region harboring the putative enzymatic domain. A pbgP pmrC double mutant resembled a pmrA mutant both in its lipid A profile and in its susceptibility to polymyxin B, indicating that the PmrA-dependent modification of lipid A with aminoarabinose and phosphoethanolamine is responsible for PmrA-regulated polymyxin B resistance.
Collapse
Affiliation(s)
- Hyunwoo Lee
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
30
|
Beatty PH, Jensen SE. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can J Microbiol 2002; 48:159-69. [PMID: 11958569 DOI: 10.1139/w02-002] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A bacterial isolate capable of inhibiting the growth of Leptosphaeria maculans (Desmaz.) Ces. & De Not., the causative agent of blackleg disease of canola (Brassica napus L. and Brassica rapa L.), was identified as a potential biological control agent. This environmental isolate was determined to be Paenibacillus polymyxa based on its (i) biochemical and growth characteristics and (ii) 16S rRNA sequence similarity, and was given the strain designation PKB1. Antifungal peptides were produced by P. polymyxa PKB1 around the onset of sporulation, with optimal production on potato dextrose broth. The antifungal peptides were extracted from P. polymyxa PKB1 cells and (or) spores using methanol and were purified using size exclusion and reverse-phase chromatography. Characterization of the antifungal peptides was done using amino acid compositional analysis, Edman degradation sequencing from partially hydrolyzed material, and a variety of mass spectrometric methods. The purified antifungal material was found to be a mixture of related peptides of molecular masses 883, 897, 948, and 961 Da, with the most likely structure of the 897 Da component determined to be a cyclic depsipeptide with an unusual 15-guanidino-3-hydroxypentadecanoic acid moiety bound to a free amino group. These compounds are therefore members of the fusaricidin group of cyclic depsipeptides.
Collapse
Affiliation(s)
- Perrin H Beatty
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
31
|
Ikai H, Yamamoto S. Identification and analysis of a gene encoding L-2,4-diaminobutyrate:2-ketoglutarate 4-aminotransferase involved in the 1,3-diaminopropane production pathway in Acinetobacter baumannii. J Bacteriol 1997; 179:5118-25. [PMID: 9260954 PMCID: PMC179370 DOI: 10.1128/jb.179.16.5118-5125.1997] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The ca. 2.2-kbp region upstream of the ddc gene encoding L-2,4-diaminobutyrate decarboxylase in Acinetobacter baumannii was sequenced and found to contain another open reading frame of 1,338 nucleotides encoding a protein with a deduced molecular mass of 47,423 Da. Analysis of the homologies observed from the deduced amino acid sequence indicated that the gene product is an enzyme belonging to subgroup II of the aminotransferases. This was first verified when examination of the crude extracts from Escherichia coli transformants led to detection of a novel aminotransferase activity catalyzing the following reversible reactions: L-2,4-diaminobutyric acid + 2-ketoglutaric acid<-->L-glutamic acid + L-aspartic beta-semialdehyde. Further confirmation was obtained when the gene was overexpressed in E. coli and the corresponding protein was purified to homogeneity. It catalyzed the same reactions and its N-terminal amino acid sequence was consistent with that deduced from the nucleotide sequence. Therefore, the gene and its product were named dat and L-2,4-diaminobutyrate:2-ketoglutarate 4-aminotransferase (DABA AT), respectively. Feeding experiments of A. baumannii with L-[U-14C]aspartic acid resulted in the incorporation of the label into 1,3-diaminopropane. Apparent homologs of dat and DABA AT were detected in other Acinetobacter species by PCR amplification and Western blotting. These results indicate that the dat gene (as well as the ddc gene) participates in the synthesis of 1,3-diaminopropane, the only diamine found in this genus. However, the biological role, if one exists, of 1,3-diaminopropane synthesis is unknown.
Collapse
Affiliation(s)
- H Ikai
- Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | |
Collapse
|
32
|
Handelsman J, Raffel S, Mester EH, Wunderlich L, Grau CR. Biological Control of Damping-Off of Alfalfa Seedlings with
Bacillus cereus
UW85. Appl Environ Microbiol 1990; 56:713-8. [PMID: 16348145 PMCID: PMC183411 DOI: 10.1128/aem.56.3.713-718.1990] [Citation(s) in RCA: 151] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We explored the potential of biological control of alfalfa (
Medicago sativa
L.) seedling damping-off caused by
Phytophthora megasperma
f. sp.
medicaginis
by screening root-associated bacteria for disease suppression activity in a laboratory bioassay. A total of 700 bacterial strains were isolated from the roots of field-grown alfalfa plants by using Trypticase soy agar. A simple, rapid assay was developed to screen the bacteria for the ability to reduce the mortality of Iroquois alfalfa seedlings that were inoculated with
P. megasperma
f. sp.
medicaginis
zoospores. Two-day-old seedlings were planted in culture tubes containing moist vermiculite, and each tube was inoculated with a different bacterial culture. Sufficient
P. megasperma
f. sp.
medicaginis
zoospores were added to each tube to result in 100% mortality of control seedlings. Of the 700 bacterial isolates tested, only 1, which was identified as
Bacillus cereus
and designated UW85, reduced seedling mortality to 0% in the initial screen and in two secondary screens. Both fully sporulated cultures containing predominantly released spores and sterile filtrates of these cultures of UW85 were effective in protecting seedlings from damping-off; filtrates of cultures containing predominantly vegetative cells or endospores inside the parent cell had low biocontrol activity. Cultures grown in two semidefined media had significantly greater biocontrol activities than cultures grown in the complex tryptic soy medium. In a small-scale trial in a field infested with
P. megasperma
f. sp.
medicaginis
, coating seeds with UW85 significantly increased the emergence of alfalfa. The results suggest that UW85 may have potential as a biocontrol agent for alfalfa damping-off, thus providing an alternative to current disease control strategies.
Collapse
Affiliation(s)
- J Handelsman
- Department of Plant Pathology, 1630 Linden Drive, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | | | | | | | | |
Collapse
|
33
|
Chen L, Tai PC. Effects of antibiotics and other inhibitors on ATP-dependent protein translocation into membrane vesicles. J Bacteriol 1987; 169:2373-9. [PMID: 2438267 PMCID: PMC212066 DOI: 10.1128/jb.169.6.2373-2379.1987] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The effects of several membrane antibiotics and other agents on ATP-dependent protein translocation were examined in membrane vesicles under conditions where no significant proton motive force was present. The membrane perturbants ethanol and procaine abolished ATP-dependent protein translocation. Phenethyl alcohol at low concentrations abolished translocation, whereas at high concentrations it allowed precursors to be translocated but inhibited their processing. Translocation of precursors promoted by phenethyl alcohol was temperature dependent and occurred without an added energy source but was enhanced by ATP. However, such precursors could not be further processed to mature forms upon removal of the alcohol. The membrane-active antibiotics polymyxin B and gramicidin S were strong inhibitors of translocation, whereas gramicidin D, cerulenin, and mycobacillin had no effect even at higher concentrations, indicating some specificity in interference with protein translocation. Duramycin, an antibiotic previously shown to affect protein-lipid interaction, severely impaired protein translocation. These results showed that membrane structures play important roles, either directly or indirectly, in protein translocation. Chelating agents 1,10-phenanthroline and EDTA, but not EGTA [ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid], also abolished protein translocation.
Collapse
|
34
|
Balakrishnan R, Kaur S, Goel AK, Padmavathi S, Jayaraman K. Biosynthesis of polymyxin by Bacillus polymyxa. II. On the nature and interaction of the multienzyme complex with the end product polymyxin. Arch Biochem Biophys 1980; 200:45-54. [PMID: 6244792 DOI: 10.1016/0003-9861(80)90328-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
Vasantha N, Balakrishnan R, Kaur S, Jayaraman K. Biosynthesis of polymyxin by Bacillus polymyxa. I. The status of the biosynthetic multienzyme complex during active antibiotic synthesis and sporulation. Arch Biochem Biophys 1980; 200:40-4. [PMID: 6244791 DOI: 10.1016/0003-9861(80)90327-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
|
37
|
|
38
|
Jayaraman K, Kannan R. The role of polypeptide antibiotics on the bacterial differentiation. Biochem Biophys Res Commun 1972; 48:1235-9. [PMID: 4341054 DOI: 10.1016/0006-291x(72)90843-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
39
|
|
40
|
|
41
|
Woo PW, Dion HW, Bartz QR. Butirosins A and B, aminoglycoside antibiotics. I. Structural units. Tetrahedron Lett 1971. [DOI: 10.1016/s0040-4039(01)96933-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Biswas C, Gray E, Paulus H. Multivalent Feedback Inhibition of Aspartokinase in Bacillus polymyxa. J Biol Chem 1970. [DOI: 10.1016/s0021-9258(18)62793-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
43
|
Ito M, Aida K, Uemura T. Biosynthesis of colistin by Bacillus colistinus Koyama. BIOCHIMICA ET BIOPHYSICA ACTA 1970; 213:244-7. [PMID: 4321273 DOI: 10.1016/0005-2787(70)90030-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
44
|
Monreal J, Paules H. Nonparticipation of transfer RNA in the biosynthesis of polymyxin B. BIOCHIMICA ET BIOPHYSICA ACTA 1970; 199:280-2. [PMID: 4312965 DOI: 10.1016/0005-2787(70)90717-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
45
|
Jayaraman K, Monteal J, Paulus H. L-Alpha,gamma-diaminobutyrate-activating enzyme from Bacillus polymyxa. Properties and distribution. BIOCHIMICA ET BIOPHYSICA ACTA 1969; 185:447-57. [PMID: 4309180 DOI: 10.1016/0005-2744(69)90437-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
46
|
|
47
|
Baillie RD, Holms WH. Loss of viability and respiration of Bacillus subtillis grown in peptone medium supplemented with glucose. BIOCHIMICA ET BIOPHYSICA ACTA 1968; 170:442-5. [PMID: 4974257 DOI: 10.1016/0304-4165(68)90030-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
48
|
|
49
|
Yoshida T, Mauger A, Weissbach H, Katz E. Effect of structural and stereochemical methylproline isomers on actinomycin biosynthesis. J Bacteriol 1968; 95:952-8. [PMID: 4171116 PMCID: PMC252115 DOI: 10.1128/jb.95.3.952-958.1968] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The inhibitory effect of methylprolines on actinomycin biosynthesis by Streptomyces antibioticus was studied; the order of effectiveness was 3- >4- >5-methyl-dl-proline. Cis-3-methyl-dl-proline was 14 times more active than the trans isomer. It was also found that 4- and, possibly, 5-methylproline were incorporated into the actinomycin molecule. When 4-methylproline was present, three new actinomycins, representing 50 to 60% of the antibiotic mixture, were synthesized. Growth of the organism may be stimulated at concentrations (0.1 to 1.0 mug per ml) of 3-methylproline that inhibit antibiotic formation, thus providing additional evidence for a different mechanism of actinomycin synthesis from that of protein synthesis. Azetidine-2-carboxylic acid, piperdine-2-carboxylic acid, and hydroxyproline (but not sarcosine) reversed the inhibition due to 3-methylproline.
Collapse
|
50
|
|