1
|
O’Leary BR, Kalen AL, Pope AN, Goswami PC, Cullen JJ. Hydrogen Peroxide Mediates Pharmacological Ascorbate Induced Radio-Sensitization of Pancreatic Cancer Cells by Enhancing G2-accumulation and Reducing Cyclin B1 Protein Levels. Radiat Res 2023; 200:444-455. [PMID: 37758045 PMCID: PMC10699322 DOI: 10.1667/rade-22-00182.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 08/24/2023] [Indexed: 10/03/2023]
Abstract
Pharmacological ascorbate (P-AscH-, high dose, intravenous vitamin C) preferentially sensitizes human pancreas ductal adenocarcinoma (PDAC) cells to radiation-induced toxicity compared to non-tumorigenic epithelial cells. Radiation-induced G2-checkpoint activation contributes to the resistance of cancer cells to DNA damage induced toxicity. We hypothesized that P-AscH- induced radio-sensitization of PDAC cells is mediated by perturbations in the radiation induced activation of the G2-checkpoint pathway. Both non-tumorigenic pancreatic ductal epithelial and PDAC cells display decreased clonogenic survival and increased doubling times after radiation treatment. In contrast, the addition of P-AscH- to radiation increases clonogenic survival and decreases the doubling time of non-tumorigenic epithelial cells but decreasing clonogenic survival and increasing the doubling time of PDAC cells. Results from the mitotic index and propidium iodide assays showed that while the P-AscH- treatments did not affect radiation-induced G2-checkpoint activation, it enhanced G2-accumulation. The addition of catalase reverses the increases in G2-accumulation, indicating a peroxide-mediated mechanism. In addition, P-AscH- treatment of PDAC cells suppresses radiation-induced accumulation of cyclin B1 protein levels. Both translational and post-translational pathways appear to regulate cyclin B1 protein levels after the combination treatment of PDAC cells with P-AscH- and radiation. The protein changes seen are reversed by the addition of catalase suggesting that hydrogen peroxide mediates P-AscH- induced radiation sensitization of PDAC cells by enhancing G2-accumulation and reducing cyclin B1 protein levels.
Collapse
Affiliation(s)
- Brianne R. O’Leary
- Departments of Surgery and Free Radical and Radiation Biology Division, The University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Amanda L. Kalen
- Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Amanda N. Pope
- Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Prabhat C. Goswami
- Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Joseph J. Cullen
- Departments of Surgery and Free Radical and Radiation Biology Division, The University of Iowa Carver College of Medicine, Iowa City, Iowa
- Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
2
|
Lu Q, Huang H, Wang X, Luo L, Xia H, Zhang L, Xu J, Huang Y, Luo X, Luo J. Echinatin inhibits the growth and metastasis of human osteosarcoma cells through Wnt/β-catenin and p38 signaling pathways. Pharmacol Res 2023; 191:106760. [PMID: 37023991 DOI: 10.1016/j.phrs.2023.106760] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Osteosarcoma (OS) is a highly aggressive malignant bone tumor that mainly occurs in adolescents. At present, chemotherapy is the most commonly used method in clinical practice to treat OS. However, due to drug resistance, toxicity and long-term side effects, chemotherapy can't always provide sufficient benefits for OS patients, especially those with metastasis and recurrence. Natural products have long been an excellent source of anti-tumor drug development. In the current study, we evaluated the anti-OS activity of Echinatin (Ecn), a natural active component from the roots and rhizomes of licorice, and explored the possible mechanism. We found that Ecn inhibited the proliferation of human OS cells and blocked cell cycle at S phase. In addition, Ecn suppressed the migration and invasion, while induced the apoptosis of human OS cells. However, Ecn had less cytotoxicity against normal cells. Moreover, Ecn inhibited the xenograft tumor growth of OS cells in vivo. Mechanistically, Ecn inactivated Wnt/β-catenin signaling pathway while activated p38 signaling pathway. β-catenin over-expression and the p38 inhibitor SB203580 both attenuated the inhibitory effect of Ecn on OS cells. Notably, we demonstrated that Ecn exhibited synergistic inhibitory effect with cisplatin (DDP) on OS cells in vitro and in vivo. Therefore, our results suggest that Ecn may exert anti-OS effects at least partly through regulating Wnt/β-catenin and p38 signaling pathways. Most meaningfully, the results obtained suggest a potential strategy to improve the DDP-induced tumor-killing effect on OS cells by combining with Ecn.
Collapse
Affiliation(s)
- Qiuping Lu
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 40016, China
| | - Huakun Huang
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 40016, China
| | - Xiaoxuan Wang
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 40016, China
| | - Lijuan Luo
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 40016, China
| | - Haichao Xia
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 40016, China
| | - Lulu Zhang
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 40016, China
| | - Jingtao Xu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40016, China
| | - Yanran Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40016, China
| | - Xiaoji Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40016, China
| | - Jinyong Luo
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 40016, China.
| |
Collapse
|
3
|
Song Y, Park SY, Wu Z, Liu KH, Seo YH. Hybrid inhibitors of DNA and HDACs remarkably enhance cytotoxicity in leukaemia cells. J Enzyme Inhib Med Chem 2021; 35:1069-1079. [PMID: 32314611 PMCID: PMC7191901 DOI: 10.1080/14756366.2020.1754812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chlorambucil is a nitrogen mustard-based DNA alkylating drug, which is widely used as a front-line treatment of chronic lymphocytic leukaemia (CLL). Despite its widespread application and success for the initial treatment of leukaemia, a majority of patients eventually develop acquired resistance to chlorambucil. In this regard, we have designed and synthesised a novel hybrid molecule, chloram-HDi that simultaneously impairs DNA and HDAC enzymes. Chloram-HDi efficiently inhibits the proliferation of HL-60 and U937 leukaemia cells with GI50 values of 1.24 µM and 1.75 µM, whereas chlorambucil exhibits GI50 values of 21.1 µM and 37.7 µM against HL-60 and U937 leukaemia cells, respectively. The mechanism behind its remarkably enhanced cytotoxicity is that chloram-HDi not only causes a significant DNA damage of leukaemia cells but also downregulates DNA repair protein, Rad52, resulting in the escalation of its DNA-damaging effect. Furthermore, chloram-HDi inhibits HDAC enzymes to induce the acetylation of α-tubulin and histone H3.
Collapse
Affiliation(s)
- Yoojin Song
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Sun You Park
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Zhexue Wu
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Young Ho Seo
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| |
Collapse
|
4
|
Design, synthesis, and validation of novel nitrogen-based chalcone analogs against triple negative breast cancer. Eur J Med Chem 2019; 187:111954. [PMID: 31838326 DOI: 10.1016/j.ejmech.2019.111954] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/24/2022]
Abstract
Great strides have been made in triple negative breast cancer (TNBC) treatment, which represents 20% of total predicted annual US breast cancer (BC) cases. Despite the development of several therapeutics, TNBC patients have poor overall survival rate, compared to other BC patients, justifying the urgent need to discover new entities for use to control TNBC. Chalcones are important natural products with diverse bioactivities including anticancer effects. This study aimed to design, synthesize and validate novel chalcone leads as potential therapies for TNBC. Fourteen novel chalcone analogs were designed and synthesized comprising alicyclic amines (pyrrolidine, morpholine and piperidine) or nitrogen mustard (Bis-(2-chloroethyl) amine) substituents. Among them, compound 14((E)-3-(4-(Bis(2-chloroethyl) amino) phenyl)-1-(3-methoxyphenyl) prop-2-en-1-one) was identified as the most effective against TNBC and other BC phenotypes, with anti-proliferative IC50 values ranging between 3.94 and 9.22 μM against the TNBC cell lines MDA-MB-231 and MDA-MB-468, as well as against the estrogen positive MCF-7 cell line. Chalcone 14 effectively suppressed the colony formation capacity of MDA-MB-231, MDA-MB-468, and MCF-7 cell lines at 5 and 10 μM treatment concentrations. Furthermore, compound 14 has significantly inhibited cell invasion and migration of MDA-MB-231 and MCF-7 BC cell lines. Additionally, compound 14 had significantly promoted apoptosis by upregulating BAX and downregulating Bcl-2 proteins. Compound 14 induced significant cell cycle arrest of TNBC cells at the G2/M phase. It also induced a reversal of Epithelial Mesenchymal Transition (EMT) by upregulating the epithelial markers E-cadherin and Pan-cadherin and downregulating FAK. Furthermore, it had dramatically diminished new vessel formation (vasculogenesis) in chick chorioallantoic membrane (CAM) model by 60.20 ± 8.47%. Chalcone 14 inhibited 46.41 ± 0.71% of the TNBC MAD-MB-231 cells growth in a nude mouse orthotopic xenograft model in comparison with vehicle control treated animals. Collectively, this study results propose chalcone 14 as a promising lead molecule for the control of TNBC as well as other breast cancer phenotypes.
Collapse
|
5
|
Fluorescent cyclic phosphoramide mustards and their cytotoxicity against cancer and cancer stem cells. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.05.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Thymoquinone-loaded nanostructured lipid carrier exhibited cytotoxicity towards breast cancer cell lines (MDA-MB-231 and MCF-7) and cervical cancer cell lines (HeLa and SiHa). BIOMED RESEARCH INTERNATIONAL 2015; 2015:263131. [PMID: 25632388 PMCID: PMC4303008 DOI: 10.1155/2015/263131] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 11/24/2014] [Accepted: 11/27/2014] [Indexed: 12/22/2022]
Abstract
Thymoquinone (TQ) has been shown to exhibit antitumor properties. Thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) was developed to improve the bioavailability and cytotoxicity of TQ. This study was conducted to determine the cytotoxic effects of TQ-NLC on breast cancer (MDA-MB-231 and MCF-7) and cervical cancer cell lines (HeLa and SiHa). TQ-NLC was prepared by applying the hot high pressure homogenization technique. The mean particle size of TQ-NLC was 35.66 ± 0.1235 nm with a narrow polydispersity index (PDI) lower than 0.25. The zeta potential of TQ-NLC was greater than −30 mV. Polysorbate 80 helps to increase the stability of TQ-NLC. Differential scanning calorimetry showed that TQ-NLC has a melting point of 56.73°C, which is lower than that of the bulk material. The encapsulation efficiency of TQ in TQ-NLC was 97.63 ± 0.1798% as determined by HPLC analysis. TQ-NLC exhibited antiproliferative activity towards all the cell lines in a dose-dependent manner which was most cytotoxic towards MDA-MB-231 cells. Cell shrinkage was noted following treatment of MDA-MB-231 cells with TQ-NLC with an increase of apoptotic cell population (P < 0.05). TQ-NLC also induced cell cycle arrest. TQ-NLC was most cytotoxic towards MDA-MB-231 cells. It induced apoptosis and cell cycle arrest in the cells.
Collapse
|
7
|
PARK SHINHYUNG, KIM JEONGHWAN, NAM SOOWAN, KIM BYUNGWOO, KIM GIYOUNG, KIM WUNJAE, CHOI YUNGHYUN. Selenium improves stem cell potency by stimulating the proliferation and active migration of 3T3-L1 preadipocytes. Int J Oncol 2013; 44:336-42. [DOI: 10.3892/ijo.2013.2182] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/23/2013] [Indexed: 11/05/2022] Open
|
8
|
Mourtada R, Fonseca SB, Wisnovsky SP, Pereira MP, Wang X, Hurren R, Parfitt J, Larsen L, Smith RAJ, Murphy MP, Schimmer AD, Kelley SO. Re-directing an alkylating agent to mitochondria alters drug target and cell death mechanism. PLoS One 2013; 8:e60253. [PMID: 23585833 PMCID: PMC3621862 DOI: 10.1371/journal.pone.0060253] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/24/2013] [Indexed: 01/27/2023] Open
Abstract
We have successfully delivered a reactive alkylating agent, chlorambucil (Cbl), to the mitochondria of mammalian cells. Here, we characterize the mechanism of cell death for mitochondria-targeted chlorambucil (mt-Cbl) in vitro and assess its efficacy in a xenograft mouse model of leukemia. Using a ρ° cell model, we show that mt-Cbl toxicity is not dependent on mitochondrial DNA damage. We also illustrate that re-targeting Cbl to mitochondria results in a shift in the cell death mechanism from apoptosis to necrosis, and that this behavior is a general feature of mitochondria-targeted Cbl. Despite the change in cell death mechanisms, we show that mt-Cbl is still effective in vivo and has an improved pharmacokinetic profile compared to the parent drug. These findings illustrate that mitochondrial rerouting changes the site of action of Cbl and also alters the cell death mechanism drastically without compromising in vivo efficacy. Thus, mitochondrial delivery allows the exploitation of Cbl as a promiscuous mitochondrial protein inhibitor with promising therapeutic potential.
Collapse
Affiliation(s)
- Rida Mourtada
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Sonali B. Fonseca
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Simon P. Wisnovsky
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mark P. Pereira
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Xiaoming Wang
- Princess Margaret Hospital, Ontario Cancer Institute, Campbell Family Cancer Research Institute, Toronto, Ontario, Canada
| | - Rose Hurren
- Princess Margaret Hospital, Ontario Cancer Institute, Campbell Family Cancer Research Institute, Toronto, Ontario, Canada
| | - Jeremy Parfitt
- Department of Pathology, University of Western Ontario, London, Ontario, Canada
| | - Lesley Larsen
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | | | - Michael P. Murphy
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/Medical Research Council Building, Cambridge, United Kingdom
| | - Aaron D. Schimmer
- Princess Margaret Hospital, Ontario Cancer Institute, Campbell Family Cancer Research Institute, Toronto, Ontario, Canada
| | - Shana O. Kelley
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
9
|
Synthesis of pyrazolo[1,5-a]pyrimidine linked aminobenzothiazole conjugates as potential anticancer agents. Bioorg Med Chem Lett 2013; 23:3208-15. [PMID: 23623491 DOI: 10.1016/j.bmcl.2013.03.129] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/14/2013] [Accepted: 03/30/2013] [Indexed: 12/29/2022]
Abstract
A series of pyrazolo[1,5-a]pyrimidine linked 2-aminobenzothizole conjugates (6a-t) were synthesized and evaluated for their anticancer activity against five human cancer cell lines. Among them two compounds 6p and 6m showed significant anticancer activity with IC50 values ranging from 2.01 to 7.07 and 1.94-3.46 μM, respectively. Moreover, cell cycle arrest in G2/M and reduction in Cdk1 expression level were observed upon treatment of these compounds and they also induced caspase-3 dependent apoptosis. This was further confirmed by staining as well as DNA fragmentation analysis.
Collapse
|
10
|
Steroids from Commiphora mukul display antiproliferative effect against human prostate cancer PC3 cells via induction of apoptosis. Bioorg Med Chem Lett 2012; 22:4801-6. [PMID: 22687747 DOI: 10.1016/j.bmcl.2012.05.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/29/2012] [Accepted: 05/14/2012] [Indexed: 01/16/2023]
Abstract
Two new stigmastane-type steroids, stigmasta-5,22E-diene-3β,11α-diol (1) and stigmasta-5,22E-diene-3β,7α,11α-triol (2), together with eight known compounds, were isolated from the resinous exudates of Commiphora mukul. Their structures were established by extensive analysis of their HR-MS, 1D- and 2D-NMR (COSY, HMQC, HMBC and NOESY) spectra. The isolates were evaluated for their antiproliferative activities against four human cancer cell lines. Compound 2 demonstrated inhibitory effects with IC(50) values of 5.21, 9.04, 10.94 and 16.56 μM, respectively, against K562, MCF-7, PC3 and DU145 human cancer cell lines. Further study showed that 2 was able to enforce the PC3 cell cycle arrest in the G2/M phase, and induce the apoptosis of PC3 cells by activation of Bax, caspases 3 and 9, and by inhibition of Bcl-2. It was also found that 1 inhibited proliferation of PC3 cells via G0/G1 phase arrest of the cell cycle.
Collapse
|
11
|
Cucurbitacin E Induces G(2)/M Phase Arrest through STAT3/p53/p21 Signaling and Provokes Apoptosis via Fas/CD95 and Mitochondria-Dependent Pathways in Human Bladder Cancer T24 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:952762. [PMID: 22272214 PMCID: PMC3261502 DOI: 10.1155/2012/952762] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 09/25/2011] [Accepted: 10/02/2011] [Indexed: 11/28/2022]
Abstract
Cucurbitacin E, a tetracyclic triterpenes compound extracted from cucurbitaceous plants, has been shown to exhibit anticancer and anti-inflammatory activities. The purpose of this study was to elucidate whether cucurbitacin E promotes cell cycle arrest and induces apoptosis in T24 cells and further to explore the underlying molecular mechanisms. The effects of cucurbitacin E on T24 cell's growth and accompanied morphological changes were examined by MTT assay and a phase-contrast microscope. DNA content, mitochondrial membrane potential (ΔΨm) and annexin V/PI staining were determined by flow cytometry. The protein levels were measured by Western blotting. Our results demonstrated that cucurbitacin E-induced G2/M arrest was associated with a marked increase in the levels of p53, p21 and a decrease in phospho-signal transducer and activator of transcription 3 (STAT3), cyclin-dependent kinase 1 (CDK1) and cyclin B. Cucurbitacin E-triggered apoptosis was accompanied with up-regulation of Fas/CD95, truncated BID (t-BID) and a loss of ΔΨm, resulting in the releases of cytochrome c, apoptotic protease activating factor 1 (Apaf-1) and apoptosis-inducing factor (AIF), and sequential activation of caspase-8, caspase-9, and caspase-3. Our findings provided the first evidence that STAT3/p53/p21 signaling, Fas/CD95 and mitochondria-dependent pathways play critical roles in cucurbitacin E-induced G2/M phase arrest and apoptosis of T24 cells.
Collapse
|
12
|
Kumbhare RM, Vijay Kumar K, Janaki Ramaiah M, Dadmal T, Pushpavalli S, Mukhopadhyay D, Divya B, Anjana Devi T, Kosurkar U, Pal-Bhadra M. Synthesis and biological evaluation of novel Mannich bases of 2-arylimidazo[2,1-b]benzothiazoles as potential anti-cancer agents. Eur J Med Chem 2011; 46:4258-66. [DOI: 10.1016/j.ejmech.2011.06.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/16/2011] [Accepted: 06/23/2011] [Indexed: 01/25/2023]
|
13
|
Ohno R, Kadota Y, Fujii S, Sekine M, Umeda M, Kuchitsu K. Cryptogein-induced cell cycle arrest at G2 phase is associated with inhibition of cyclin-dependent kinases, suppression of expression of cell cycle-related genes and protein degradation in synchronized tobacco BY-2 cells. PLANT & CELL PHYSIOLOGY 2011; 52:922-32. [PMID: 21565910 DOI: 10.1093/pcp/pcr042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Induction of defense responses by pathogens or elicitors is often accompanied by growth inhibition in planta, but its molecular mechanisms are poorly understood. In this report, we characterized the molecular events that occur during cryptogein-induced cell cycle arrest at G(2) phase in synchronously cultured tobacco Bright Yellow-2 (BY-2) cells. Concomitant with the proteinaceous elicitor-induced G(2) arrest, we observed inhibition of the histone H1 kinase activity of cyclin-dependent kinases (CDKs), which correlated with a decrease in mRNA and protein levels of CDKB1. In contrast, the amount of CDKA was almost unaffected by cryptogein even at M phase. Cryptogein rapidly inhibited the expression not only of positive, e.g. A- and B-type cyclins and NtCAK, but also of negative cell cycle regulators such as WEE1, suggesting that cryptogein affects multiple targets to inactivate CDKA to induce G(2) arrest by mechanisms distinct from known checkpoint regulation. Moreover, we show that CDKB1 and cyclin proteins are also rapidly degraded by cryptogein and that the proteasome-dependent protein degradation has a crucial role in the control of cryptogein-induced hypersensitive cell death.
Collapse
Affiliation(s)
- Ryoko Ohno
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Synthesis and biological evaluation of estradiol linked pyrrolo[2,1-c][1,4]benzodiazepine (PBD) conjugates as potential anticancer agents. Bioorg Med Chem 2011; 19:2565-81. [DOI: 10.1016/j.bmc.2011.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 03/07/2011] [Indexed: 01/08/2023]
|
15
|
Kamal A, Bharathi EV, Reddy JS, Ramaiah MJ, Dastagiri D, Reddy MK, Viswanath A, Reddy TL, Shaik TB, Pushpavalli S, Bhadra MP. Synthesis and biological evaluation of 3,5-diaryl isoxazoline/isoxazole linked 2,3-dihydroquinazolinone hybrids as anticancer agents. Eur J Med Chem 2011; 46:691-703. [DOI: 10.1016/j.ejmech.2010.12.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/29/2010] [Accepted: 12/04/2010] [Indexed: 10/18/2022]
|
16
|
Mann DJ. Aziridinium Ion Ring Formation from Nitrogen Mustards: Mechanistic Insights from Ab Initio Dynamics. J Phys Chem A 2010; 114:4486-93. [DOI: 10.1021/jp9079553] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Lin KL, Su JC, Chien CM, Tseng CH, Chen YL, Chang LS, Lin SR. Naphtho[1,2-b]furan-4,5-dione induces apoptosis and S-phase arrest of MDA-MB-231 cells through JNK and ERK signaling activation. Toxicol In Vitro 2010; 24:61-70. [DOI: 10.1016/j.tiv.2009.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 08/10/2009] [Accepted: 09/04/2009] [Indexed: 11/25/2022]
|
18
|
2'-epi-2'-O-Acetylthevetin B extracted from seeds of Cerbera manghas L. induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Chem Biol Interact 2010; 183:142-53. [PMID: 19874809 DOI: 10.1016/j.cbi.2009.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 10/12/2009] [Accepted: 10/16/2009] [Indexed: 11/24/2022]
Abstract
2'-epi-2'-O-Acetylthevetin B (GHSC-74) is a cardiac glycoside isolated from the seeds of Cerbera manghas L. We have demonstrated that GHSC-74 reduced the viability of HepG2 cells in a time- and dose-dependent manner. The present study was designed to explore cellular mechanisms whereby GHSC-74 led to cell cycle arrest and apoptosis in HepG2 cells. Cell cycle flow cytometry demonstrated that HepG2 cells treated with GHSC-74 (4microM) resulted in S and G2 phase arrest in a time-dependent manner, as confirmed by mitotic index analysis. G2 phase arrest was accompanied with down-regulation of CDC2 and Cyclin B1 protein. Furthermore, GHSC-74-induced apoptotic killing, as demonstrated by DNA fragmentation, DAPI staining, and flow cytometric detection of sub-G1 DNA content in HepG2 cells. GHSC-74 treatment resulted in a significant increase in reactive oxygen species, activation of caspase-9, dissipation of mitochondrial membrane potential, and translocation of apoptosis-inducing factor (AIF) from the mitochondrion to the nucleus in HepG2 cells. Nevertheless, after GHSC-74 exposure, no significant Fas and FasL up-regulation was observed in HepG2 cells by flow cytometry. In addition, treatment with antioxidant N-acetyl-l-cysteine (NAC) and broad-spectrum caspase inhibitor z-VAD-fmk partially prevented apoptosis but did not abrogate GHSC-74-induced nuclear translocation of AIF. In conclusion, we have demonstrated that GHSC-74 inhibited growth of HepG2 cells by inducing S and G2 phase arrest of the cell cycle and by triggering apoptosis via mitochondrial disruption including both caspase-dependent and -independent pathways, and ROS generation.
Collapse
|
19
|
Novel indoloquinoline derivative, IQDMA, induces G2/M phase arrest and apoptosis in A549 cells through JNK/p38 MAPK signaling activation. Life Sci 2009; 85:505-16. [DOI: 10.1016/j.lfs.2009.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/27/2009] [Accepted: 08/05/2009] [Indexed: 11/19/2022]
|
20
|
Bolton DL, Barnitz RA, Sakai K, Lenardo MJ. 14-3-3 theta binding to cell cycle regulatory factors is enhanced by HIV-1 Vpr. Biol Direct 2008; 3:17. [PMID: 18445273 PMCID: PMC2390528 DOI: 10.1186/1745-6150-3-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 04/29/2008] [Indexed: 11/30/2022] Open
Abstract
Background Despite continuing advances in our understanding of AIDS pathogenesis, the mechanism of CD4+ T cell depletion in HIV-1-infected individuals remains unclear. The HIV-1 Vpr accessory protein causes cell death, likely through a mechanism related to its ability to arrest cells in the G2,M phase. Recent evidence implicated the scaffold protein, 14-3-3, in Vpr cell cycle blockade. Results We found that in human T cells, 14-3-3 plays an active role in mediating Vpr-induced cell cycle arrest and reveal a dramatic increase in the amount of Cdk1, Cdc25C, and CyclinB1 bound to 14-3-3 θ during Vprv-induced G2,M arrest. By contrast, a cell-cycle-arrest-dead Vpr mutant failed to augment 14-3-3 θ association with Cdk1 and CyclinB1. Moreover, G2,M arrest caused by HIV-1 infection strongly correlated with a disruption in 14-3-3 θ binding to centrosomal proteins, Plk1 and centrin. Finally, Vpr caused elevated levels of CyclinB1, Plk1, and Cdk1 in a complex with the nuclear transport and spindle assembly protein, importin β. Conclusion Thus, our data reveal a new facet of Vpr-induced cell cycle arrest involving previously unrecognized abnormal rearrangements of multiprotein assemblies containing key cell cycle regulatory proteins. Reviewers This article was reviewed by David Kaplan, Nathaniel R. Landau and Yan Zhou.
Collapse
Affiliation(s)
- Diane L Bolton
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
21
|
Jackman J, O'Connor PM. Methods for synchronizing cells at specific stages of the cell cycle. ACTA ACUST UNITED AC 2008; Chapter 8:Unit 8.3. [PMID: 18228388 DOI: 10.1002/0471143030.cb0803s00] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Exponentially growing cells are asynchronous with respect to the cell cycle stage. Detection of cell cycle-related events is improved by enriching the culture for cells at the stage during which the particular event occurs. Methods for synchronizing cells are provided here, including those based on morphological features of the cell (mitotic shake-off), cellular metabolism (thymidine inhibition, isoleucine depravation), and chemical inhibitors of cell progression in G1 (lovastatin), S (aphidicolin, mimosine), and G2/M (nocodazole). Applications of these methods and the advantages and disadvantages of each are described.
Collapse
Affiliation(s)
- J Jackman
- U.S.A.M.R.I.I.D., Fort Dietrick, Maryland, USA
| | | |
Collapse
|
22
|
Villegas J, Burzio V, Villota C, Landerer E, Martinez R, Santander M, Martinez R, Pinto R, Vera MI, Boccardo E, Villa LL, Burzio LO. Expression of a novel non-coding mitochondrial RNA in human proliferating cells. Nucleic Acids Res 2007; 35:7336-47. [PMID: 17962305 PMCID: PMC2175360 DOI: 10.1093/nar/gkm863] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Previously, we reported the presence in mouse cells of a mitochondrial RNA which contains an inverted repeat (IR) of 121 nucleotides (nt) covalently linked to the 5′ end of the mitochondrial 16S RNA (16S mtrRNA). Here, we report the structure of an equivalent transcript of 2374 nt which is over-expressed in human proliferating cells but not in resting cells. The transcript contains a hairpin structure comprising an IR of 815 nt linked to the 5′ end of the 16S mtrRNA and forming a long double-stranded structure or stem and a loop of 40 nt. The stem is resistant to RNase A and can be detected and isolated after digestion with the enzyme. This novel transcript is a non-coding RNA (ncRNA) and several evidences suggest that the transcript is synthesized in mitochondria. The expression of this transcript can be induced in resting lymphocytes stimulated with phytohaemagglutinin (PHA). Moreover, aphidicolin treatment of DU145 cells reversibly blocks proliferation and expression of the transcript. If the drug is removed, the cells re-assume proliferation and over-express the ncmtRNA. These results suggest that the expression of the ncmtRNA correlates with the replicative state of the cell and it may play a role in cell proliferation.
Collapse
|
23
|
Yang SH, Chien CM, Lu CM, Chen YL, Chang LS, Lin SR. Involvement of c-Jun N-terminal kinase in G2/M arrest and FasL-mediated apoptosis induced by a novel indoloquinoline derivative, IQDMA, in K562 cells. Leuk Res 2007; 31:1413-20. [PMID: 17397922 DOI: 10.1016/j.leukres.2007.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 01/23/2007] [Accepted: 02/23/2007] [Indexed: 11/20/2022]
Abstract
N'-(11H-Indolo[3,2-c]quinolin-6-yl)-N,N-dimethylethane-1,2-diamine (IQDMA), an indoloquinoline derivative, synthesized in our laboratory, has been demonstrated to be an effective anti-tumor agent in human leukemia cells. Treatment of K562 cells with IQDMA resulted in G2/M phase cell cycle arrest, presumably involving the concomitant up-regulation of p21 and apoptosis through up-regulation of FasL and sequential activation of caspase-8 and caspase-3. In contrast to the lack of appreciable effect on the phosphorylation of ERK and p38 MAPK, activation of JNK was noted when K562 cells were exposed to IQDMA. Moreover, IQDMA-mediated G2/M phase arrest and apoptosis were reversed after treatment with the JNK-specific inhibitors, SP600125 and JNK inhibitor 1. Further investigation showed that SP600125 reduced the activation of FasL, caspase-3, caspase-8, and led to a marked decline of p21. Taken together, our data show that JNK plays an important role in IQDMA-mediated G2/M arrest and apoptosis of K562 cancer cells.
Collapse
Affiliation(s)
- Sheng-Huei Yang
- Faculty of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
24
|
Rabi T, Wang L, Banerjee S. Novel triterpenoid 25-hydroxy-3-oxoolean-12-en-28-oic acid induces growth arrest and apoptosis in breast cancer cells. Breast Cancer Res Treat 2007; 101:27-36. [PMID: 17028990 DOI: 10.1007/s10549-006-9275-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
25-Hydroxy-3-oxoolean-12-en-28-oic acid (Amooranin-AMR) is a triterpene acid isolated from the stem bark of a tropical tree (Amoora rohituka) grown wild in India. A herbal preparation used for the treatment of cancer by the Ayurvedic system of medicine contains the stem bark of Amoora rohituka as one of the ingredients. In this paper, we show that AMR displays a strong inhibitory effect on survival of human breast carcinoma MDA-468, breast adenocarcinoma MCF-7 cells compared to breast epithelial MCF-10A control cells. A 50% decrease in cells (IC50) ranged from 1.8 to 14.6 microM and cell growth was suppressed by arresting cell cycle at G2 + M phase. AMR effectively induces apoptosis and triggered a series of effects associated with apoptosis including cleavage of caspase-8, -9, -3, Bid and ER stress in MDA-468 cells and caspase- 8, -9, -6 and Bid in MCF-7 cells, release of cytochrome c from the mitochondria, cleavage of poly (ADP-ribose) polymerase (PARP) and DNA fragmentation with a concomitant upregulation of p53, Bax and down-regulation of Bcl-2 in MDA-468 cells, but Bax unchanged in MCF-7 cells. The use of caspase blocking peptides and acridine orange staining confirmed the involvement of primarily caspase-9 and -3 in MDA-468 cells with mutated p53 and primarily caspase-8, -9 and -6 in MCF-7 cells expressing wt p53. We also observed in MCF-7/p53siRNA cells AMR treatment caused reduced expression of Bcl-2 without affecting levels of Bax similar to MCF-7 cells treated with AMR and proteolytic activation of Bax in MDA-468 cells. These results suggest that AMR induces apoptosis in human breast carcinoma cells via caspase activation pathway and likely it is a p53-independent apoptosis.
Collapse
Affiliation(s)
- Thangaiyan Rabi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
25
|
Yang SH, Chien CM, Chang LS, Lin SR. Involvement of c-jun N-terminal kinase in G2/M arrest and caspase-mediated apoptosis induced by cardiotoxin III (Naja naja atra) in K562 leukemia cells. Toxicon 2007; 49:966-74. [PMID: 17368702 DOI: 10.1016/j.toxicon.2007.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 01/12/2007] [Accepted: 01/15/2007] [Indexed: 11/21/2022]
Abstract
Cardiotoxin III (CTX III), a basic polypeptide with 60 amino acid residues isolated from Naja naja atra venom, may have a potentiality as a structural template for rational drug design in killing cancer cells. Treatment of K562 cells with 0.3 microM of CTX III resulted in G2/M phase cell cycle arrest that was associated with a marked decline in protein levels of G2/M regulatory proteins including cyclin A, cyclin B1, Cdk2 and Cdc25C. In contrast to no effect on the phosphorylation of ERK, p38 MAPK and Akt, an activation of JNK was noted when K562 cells were exposed to CTX III. CTX III-mediated G2/M phase arrest and apoptosis were reduced by treatment with the JNK-specific inhibitor SP600125, but not by ERK and p38MAPK inhibitors. Further investigation showed that the specific JNK inhibitor, SP600125, reduced the activation of caspase-3, caspase-9, and reversed the decline in the expression of cyclin B1. Taken together, our data show for the first time that JNK, but not ERK, p38MAPK or Akt signaling, plays an important role in CTX III-mediated G2/M arrest and apoptosis in K562 cancer cells.
Collapse
Affiliation(s)
- Sheng-Huei Yang
- Faculty of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan, ROC
| | | | | | | |
Collapse
|
26
|
Schmitt E, Beauchemin M, Bertrand R. Nuclear colocalization and interaction between bcl-xL and cdk1(cdc2) during G2/M cell-cycle checkpoint. Oncogene 2007; 26:5851-65. [PMID: 17369848 DOI: 10.1038/sj.onc.1210396] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In response to cancer chemotherapeutic drugs, cells rapidly trigger the apoptotic program or undergo growth arrest and senescence at specific phases of the cell cycle. Mitochondrial bcl-xL plays a central role in preventing alteration of mitochondrial dysfunction, cytochrome c release, caspase activation, DNA fragmentation and apoptosis. However, its pleitropic function depends on its subcellular localization. Here, we show that in addition to its mitochondrial effect that delays apoptosis, bcl-xL colocalizes and binds to cdk1(cdc2) during G(2)/M cell-cycle checkpoint and its overexpression stabilizes a G(2)/M-arrest senescence program in surviving cells after DNA damage. Bcl-xL potently inhibits cdk1(cdc2) kinase activity, which is reversible by a synthetic peptide between the 41st amino acid and 60th amino acid surrounding of the Thr47 and Ser62 phosphorylation sites, and Asn52 deamidation site, within the flexible loop domain of bcl-xL. A mutant deleted of this region does not alter the antiapoptotic function of bcl-xL, but impedes its effect on cdk1(cdc2) activity and on the G(2)/M-arrest senescence program after DNA damage. The nuclear interaction of bcl-xL and cdk1(cdc2) suggests that bcl-xL is coupled to the stabilization of a cell-cycle checkpoint induced by DNA damage, and this effect is genetically distinct from its function on apoptosis.
Collapse
Affiliation(s)
- E Schmitt
- Centre de recherche, Centre hospitalier de l'Université of Montréal-Hôpital Notre-Dame and Institut du Cancer de Montréal, 1560 Sherbrooke Street East, Montréal, Quebec, Canada
| | | | | |
Collapse
|
27
|
Lu YJ, Yang SH, Chien CM, Lin YH, Hu XW, Wu ZZ, Wu MJ, Lin SR. Induction of G2/M phase arrest and apoptosis by a novel enediyne derivative, THDB, in chronic myeloid leukemia (HL-60) cells. Toxicol In Vitro 2007; 21:90-8. [PMID: 17064874 DOI: 10.1016/j.tiv.2006.09.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 08/01/2006] [Accepted: 09/11/2006] [Indexed: 11/16/2022]
Abstract
(Z)-2-(6-(Thieanisyl-2-yl)hexa-3-en-1,5-diynyl)benzenamine (THDB), an enediyne compound, was identified in our laboratory as a novel antineoplastic agent with broad spectrum of antitumor activities against many human cancer cells. THDB was found to inhibit the growth of HL-60 cells in a time-and dose-dependent manner. Cell cycle analysis showed G2/M phase arrest in HL-60 cells following 48 h exposure to THDB. Analysis of the cell cycle regulatory proteins demonstrated that THDB did not change the steady-state levels of cyclin B1, cyclin E, Cdk1 and Cdc25C, but decreased the protein levels of Cdk2 and cyclin A. THDB also caused a marked increase in apoptosis, as characterized by DNA fragmentation (DNA ladder and sub G1 formation), and poly (ADP-ribose) polymerase (PARP) cleavage, which was associated with activation of caspase-3, caspase-8 and caspase-9. Moreover, the THDB-induced apoptosis was significantly attenuated in the presence of specific inhibitors of caspase-3, -8 and -9. These molecular alterations provide an insight into THDB-caused growth inhibition, G2/M arrest and apoptotic death of HL-60 cells.
Collapse
Affiliation(s)
- Yu-Jhang Lu
- Faculty of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Yang SH, Tsai CH, Lu MC, Yang YN, Chien CM, Lin SF, Lin SR. Effects of cardiotoxin III on expression of genes and proteins related to G2/M arrest and apoptosis in K562 cells. Mol Cell Biochem 2006; 300:185-90. [PMID: 17149543 DOI: 10.1007/s11010-006-9382-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 11/07/2006] [Indexed: 10/23/2022]
Abstract
Cardiotoxin III (CTX III) is a basic polypeptide of 60-amino acid residues isolated from Naja naja atra venom, exerts its anti-proliferative activity in human leukemia K562 cells. In the present study, the expression of mRNAs and proteins related to cell cycle and apoptosis in human leukemia K562 cells induced by CTX III was investigated by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. Flow cytometric analysis revealed that CTX III resulted in G2/M phase arrest in the cell cycle progression, which was associated with a marked decrease in the mRNA and protein expressions of cyclin A, cyclin B1, and Cdk 2, with no detectable changes in the levels of Cdk 1, cyclin D1, and cyclin E. Moreover, the increase in apoptosis was associated with the Bax gene and protein levels significantly increased as treatment durations of CTX III increased, while the Bcl-2 mRNA and protein levels exhibited no changes. We also observed that caspase-9 and caspase-3 genes remained unchanged up to 12 h with 2 microg/ml CTX III. These molecular alterations provide an insight into CTX III-caused growth inhibition, G2/M arrest, and apoptotic death of K562 cells.
Collapse
Affiliation(s)
- Sheng-Huei Yang
- Faculty of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan 807, ROC
| | | | | | | | | | | | | |
Collapse
|
29
|
Hu XW, Chien CM, Yang SH, Lin YH, Lu CM, Chen YL, Lin SR. A novel indoloquinoline derivative, IQDMA, induces S-phase arrest and apoptosis in promyelocytic leukemia HL-60 cells. Cell Biol Toxicol 2006; 22:417-27. [PMID: 16906476 DOI: 10.1007/s10565-006-0098-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 06/19/2006] [Indexed: 10/24/2022]
Abstract
N'-(11H-indolo[3,2-c]quinolin-6-yl)-N,N-dimethylethane-1,2-diamine (IQDMA), an indoloquinoline compound, was identified in our laboratory as a novel antineoplastic agent with a broad spectrum of antitumor activity against many human cancer cells. Cell cycle analysis showed S-phase arrest and induction of apoptosis in HL-60 cells following 24 h exposure to IQDMA. Analysis of the cell cycle regulatory proteins demonstrated that IQDMA did not change the steady-state levels of cyclin B1, cyclin D3, and p21, but decreased the protein levels of Cdk1, Cdk2, and cyclin A. IQDMA also caused a marked increase in apoptosis, which was accompanied by increased levels of Bax, activated caspase-3, -8, and -9, and cleaved PARP. These molecular alterations provide an insight into IQDMA-caused growth inhibition, S-phase arrest, and apoptotic death of HL-60 cells.
Collapse
Affiliation(s)
- Xiu-Wei Hu
- Faculty of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan, 807, ROC
| | | | | | | | | | | | | |
Collapse
|
30
|
Ashra H, Rao KVK. Elevated phosphorylation of Chk1 and decreased phosphorylation of Chk2 are associated with abrogation of G2/M checkpoint control during transformation of Syrian hamster embryo (SHE) cells by Malachite green. Cancer Lett 2006; 237:188-98. [PMID: 16085357 DOI: 10.1016/j.canlet.2005.05.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 05/26/2005] [Accepted: 05/30/2005] [Indexed: 10/25/2022]
Abstract
Malachite green (MG), consisting of green crystals with a metallic lustre, is highly soluble in water, cytotoxic to various mammalian cells and also acts as a liver tumor promoter. In view of its industrial importance and possible exposure to human beings, MG poses a potential environmental health hazard. We have earlier reported the malignant transformation of Syrian hamster embryo (SHE) cells in primary culture by MG. In this study, we have studied the ability of MG to cause DNA damage, cell cycle arrest in mimosine synchronised and the possible roles of Chk1, Chk2, Cdc2, Cdc25C, 14-3-3 and Cyclin B1 in control and MG transformed SHE cells in order to understand the differential mechanisms associated with G2/M checkpoint control. Exposure of MG to control and transformed cells causes DNA damage. Flow cytometric analysis of mimosine synchronised cells when exposed to MG showed an increase of G2/M phase in control cells whereas no such accumulation of cells at the G2/M phase was observed in response to MG in transformed cells. Western blots of phosphoactive forms of Chk1 and Chk2 cells showed opposing levels. Control cells treated with MG showed a decrease in Chk1 and increase in Chk2, whereas the transformed cells treated with MG showed an increase in Chk1 and decrease in Chk2. Also a decrease in Cdc25C, 14-3-3 and Cyclin B1 was observed in MG treated transformed cells, whereas MG treated control cells showed elevated levels. Stabilization of the proteins seems to be the possible mechanism. The present study indicates elevated phosphorylation of Chk1 and decreased phosphorylation of Chk2 and decreased levels of Cyclin B1 are the critical changes associated with abrogation of G2/M checkpoint control during transformation of SHE cells by MG.
Collapse
Affiliation(s)
- Hima Ashra
- Chemical Carcinogenesis Group, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410208, India
| | | |
Collapse
|
31
|
Wu ZZ, Chien CM, Yang SH, Lin YH, Hu XW, Lu YJ, Wu MJ, Lin SR. Induction of G2/M phase arrest and apoptosis by a novel enediyne derivative, THDA, in chronic myeloid leukemia (K562) cells. Mol Cell Biochem 2006; 292:99-105. [PMID: 16733797 DOI: 10.1007/s11010-006-9222-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 05/01/2006] [Indexed: 11/28/2022]
Abstract
We studied the effect of 2-(6-(2-thieanisyl)-3(Z)-hexen-1,5-diynyl)aniline(THDA), a newly developed anti-cancer agent, on cell proliferation, cell cycle progression, and induction of apoptosis in K562 cells. THDA was found to inhibit the growth of K562 cells in a time-and dose-dependent manner. Cell cycle analysis showed G2/M phase arrest and apoptosis in K562 cells following 24 h exposure to THDA. During the G2/M arrest, cyclin-dependent kinase inhibitors (CDKIs), p21 and p27 were increased in a time-dependent manner. Analysis of the cell cycle regulatory proteins demonstrated that THDA did not change the steady-state levels of cyclin B1, cyclin D3 and Cdc25C, but decreased the protein levels of Cdk1, Cdk2 and cyclin A. THDA also caused a marked increase in apoptosis, which was associated with activation of caspase-3 and proteolytic cleavage of poly (ADP-ribose) polymerase. These molecular alterations provide an insight into THDA-caused growth inhibition, G2/M arrest and apoptotic death of K562 cells.
Collapse
Affiliation(s)
- Zchong-Zcho Wu
- Faculty of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lu MC, Yang SH, Hwang SL, Lu YJ, Lin YH, Wang SR, Wu YC, Lin SR. Induction of G2/M phase arrest by squamocin in chronic myeloid leukemia (K562) cells. Life Sci 2006; 78:2378-83. [PMID: 16310807 DOI: 10.1016/j.lfs.2005.09.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 09/24/2005] [Indexed: 11/20/2022]
Abstract
Squamocin is one of the annonaceous acetogenins and has been reported to have anticancer activity. Squamocin was found to inhibit the growth of K562 cells in a time- and dose-dependent manner. Cell cycle analysis showed G2/M phase arrest in K562 cells following 24 h exposure to squamocin. During the G2/M arrest, cyclin-dependent kinase inhibitors (CDKIs), p21 and p27 were increased in a dose-dependent manner. Analysis of the cell cycle regulatory proteins demonstrated that squamocin did not change the steady-state levels of Cdk2, Cdk4, cyclin A, cyclin B1, cyclin D3 and cyclin E, but decreased the protein levels of Cdk1 and Cdc25C. These results suggest that squamocin inhibits the proliferation of K562 cells via G2/M arrest in association with the induction of p21, p27 and the reduction of Cdk1 and Cdc25C kinase activities.
Collapse
Affiliation(s)
- Mei-Chin Lu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Lin YH, Yang SH, Chien CM, Hu XW, Huang YH, Lu CM, Chen YL, Lin SR. Induction of G2/M phase arrest and apoptosis by a novel indoloquinoline derivative, IQDMA, in K562 cells. Drug Dev Res 2006. [DOI: 10.1002/ddr.20113] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Aguilar-Mahecha A, Hales BF, Robaire B. Effects of Acute and Chronic Cyclophosphamide Treatment on Meiotic Progression and the Induction of DNA Double-Strand Breaks in Rat Spermatocytes1. Biol Reprod 2005; 72:1297-304. [PMID: 15673603 DOI: 10.1095/biolreprod.104.038620] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Male rats treated with cyclophosphamide, an alkylating agent commonly used clinically in both acute and chronic regimens, present with damaged male germ cells and abnormal progeny outcome. The extent and type of damage induced by cyclophosphamide largely depend on the germ cell type exposed to the drug and its ability to respond to insult. In the present study, the response of pachytene spermatocytes to damage was evaluated by assessing their ability to undergo meiotic G2/MI transition following exposure to acute or chronic cyclophosphamide. Male rats were given an acute high dose (70 mg/kg, once) or chronic low doses (6 mg/kg, daily for 5-6 wk) of cyclophosphamide. Pachytene spermatocytes were isolated, cultured, and induced to undergo G2/MI transition with okadaic acid. To determine the effect of DNA damage on meiotic progression, induction of DNA double-strand breaks was detected after each treatment regimen by the formation of foci of phosphorylated histone H2AX. The transition from G2 to MI was impaired after acute cyclophosphamide treatment; this impairment in the progression of pachytene spermatocytes was correlated with extensive DNA double-strand breaks. In contrast, despite the presence of significant levels of DNA damage, meiotic progression was not impaired in spermatocytes after chronic cyclophosphamide exposure. We suggest that the cell cycle impairment induced after acute cyclophosphamide treatment could be mediated by a G2/M checkpoint activated in response to DNA damage. The absence of impairment after chronic treatment raises concern about the functionality of defense mechanisms in male germ cells after repeated exposure to low doses of genotoxic agents.
Collapse
|
35
|
Abstract
Little is known about the posttranslational control of the cyclin-dependent protein kinase (CDK) inhibitor p21. We describe here a transient phosphorylation of p21 in the G2/M phase. G2/M-phosphorylated p21 is short-lived relative to hypophosphorylated p21. p21 becomes nuclear during S phase, prior to its phosphorylation by CDK2. S126-phosphorylated cyclin B1 binds to T57-phosphorylated p21. Cdc2 kinase activation is delayed in p21-deficient cells due to delayed association between Cdc2 and cyclin B1. Cyclin B1-Cdc2 kinase activity and G2/M progression in p21-/- cells are restored after reexpression of wild-type but not T57A mutant p21. The cyclin B1 S126A mutant exhibits reduced Cdc2 binding and has low kinase activity. Phosphorylated p21 binds to cyclin B1 when Cdc2 is phosphorylated on Y15 and associates poorly with the complex. Dephosphorylation on Y15 and phosphorylation on T161 promotes Cdc2 binding to the p21-cyclin B1 complex, which becomes activated as a kinase. Thus, hyperphosphorylated p21 activates the Cdc2 kinase in the G2/M transition.
Collapse
Affiliation(s)
- Bipin C Dash
- Laboratory of Molecular Oncology and Cell Cycle Regulation, University of Pennsylvania, 415 Curie Blvd., CRB 437A, Philadelphia, PA 19104, USA
| | | |
Collapse
|
36
|
Liu J, Hu WX, He LF, Ye M, Li Y. Effects of lycorine on HL-60 cells via arresting cell cycle and inducing apoptosis. FEBS Lett 2004; 578:245-50. [PMID: 15589827 DOI: 10.1016/j.febslet.2004.10.095] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 10/26/2004] [Accepted: 10/28/2004] [Indexed: 10/26/2022]
Abstract
As a natural anti-cancer alkaloid extracted from Amaryllidaceae, lycorine shows various biological effects on tumor cells. The survival rate of HL-60 cells exposed to lycorine was decreased in a dose-dependent manner with 1 microM as the 50% inhibitory concentration (IC50), cell growth was slowed down by arresting cell cycle at G2/M phase, and cell regeneration potential was inhibited. HL-60 cells exhibited typical apoptotic morphological changes, apoptotic DNA "ladder" pattern, and sub-G1 peak in cell phase distribution, showing apoptosis of HL-60 cells. To further understand the apoptotic molecular mechanism of lycorine on HL-60 cells, caspase activity was tested by colorimetric assay, and the expression of Bcl-2 and Bax proteins was examined by Western blotting. The increase of caspase-8, -9, -3 activities demonstrated that caspase was a key mediator of apoptotic pathways induced by lycorine. Under-expression of Bcl-2 and increase of Bax:Bcl-2 ratio showed that Bcl-2 family proteins were involved in apoptosis. Our finding suggests that lycorine can suppress leukemia growth and reduce cell survival via arresting cell cycle and inducing apoptosis of tumor cells.
Collapse
Affiliation(s)
- Jing Liu
- Molecular Biology Research Center, Xiangya Medical College, Central South University, Changsha, Hunan 410078, PR China
| | | | | | | | | |
Collapse
|
37
|
Abstract
PURPOSE We surveyed fundamental concepts of the cell cycle to help the average urologist better understand the molecular basis for specific aspects of urological disease. MATERIALS AND METHODS Important publications that have shaped our current understanding of the cell cycle were selected for review. Definitions of key terms are provided in a glossary. RESULTS Cell proliferation, survival and programmed cell death (apoptosis) are the net result of a complex interaction of molecular signals that regulate DNA and protein synthesis. Many of the abnormal patterns of cell behavior that contribute to the pathology of malignant urological disease arise from disruptions in the molecular controls that normally regulate the cell cycle. Benign urological conditions, including cystic diseases and hypertrophy, also reflect abnormal growth that results from the disruption of cell cycle controls. CONCLUSIONS This review is designed for the clinician and for the nonspecialist who is interested in the science of the cell cycle and its regulation as it broadly pertains to urological disease. Recent advances in the understanding of cell cycle regulation are presented with clinical correlations illustrating how these processes are involved in coordinating cell growth and cell death at the molecular level.
Collapse
Affiliation(s)
- William C DeWolf
- Division of Urology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
38
|
Miyoshi N, Uchida K, Osawa T, Nakamura Y. A Link between Benzyl Isothiocyanate-Induced Cell Cycle Arrest and Apoptosis: Involvement of Mitogen-Activated Protein Kinases in the Bcl-2 Phosphorylation. Cancer Res 2004; 64:2134-42. [PMID: 15026354 DOI: 10.1158/0008-5472.can-03-2296] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, we clarified the molecular mechanism underlying the relationship between benzyl isothiocyanate (BITC)-induced cell cycle arrest and apoptosis and the involvement of mitogen-activated protein kinases (MAPKs). The exposure of Jurkat human T-cell leukemia cells to BITC resulted in the inhibition of the G(2)-M progression that coincided with the apoptosis induction. The experiment using the phase-specific synchronized cells demonstrated that the G(2)-M phase-arrested cells are more sensitive to undergoing apoptotic stimulation by BITC than the cells in other phases. We also confirmed that BITC activated c-Jun N-terminal kinase (JNK) and p38 MAPK, but not extracellular signal-regulated kinase, at the concentration required for apoptosis induction. An experiment using a JNK-specific inhibitor SP600125 or a p38 MAPK inhibitor SB202190 indicated that BITC-induced apoptosis might be regulated by the activation of these two kinases. Conversely, BITC is likely to confine the Jurkat cells in the G(2)-M phase mainly through the p38 MAPK pathway because only the p38 MAPK inhibitor significantly attenuated the accumulation of inactive phosphorylated Cdc2 protein and the G(2)-M-arrested cell numbers. We reported here for the first time that the antiapoptotic Bcl-2 protein was phosphorylated by the BITC treatment without significant alteration of the Bcl-2 total protein amount. This was abrogated by a JNK specific inhibitor SP600125 at the concentration required for specific inhibition of the c-Jun phosphorylation. Moreover, the spontaneous phosphorylation of antiapoptotic Bcl-2 in the G(2)-M synchronized cells was enhanced synergistically by the BITC treatment. Involvement of the MAPK activation in the Bcl-2 phosphorylation and apoptosis induction also was observed in HL-60 and HeLa cells. Thus, we identified the phosphorylated Bcl-2 as a key molecule linking the p38 MAPK-dependent cell cycle arrest with the JNK activation by BITC.
Collapse
Affiliation(s)
- Noriyuki Miyoshi
- Laboratory of Food and Biodynamics, Nagoya University Graduate School of Bioagricultural Sciences, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
39
|
Kamikubo Y, Takaori-Kondo A, Uchiyama T, Hori T. Inhibition of cell growth by conditional expression of kpm, a human homologue of Drosophila warts/lats tumor suppressor. J Biol Chem 2003; 278:17609-14. [PMID: 12624101 DOI: 10.1074/jbc.m211974200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
kpm is a human serine/threonine kinase that is homologous to Drosophila tumor suppressor warts/lats and its mammalian homologue LATS1. In order to define the biological function of kpm, we generated stable transfectants of wild-type kpm (kpm-wt), a kinase-dead mutant of kpm (kpm-kd), and luciferase in HeLa Tet-Off cells under the tetracycline-responsive promoter. Western blot analysis showed that high levels of expression of kpm-wt as well as kpm-kd with an apparent mass of 150 kDa were induced after the removal of doxycycline. Induction of kpm-wt expression resulted in a marked decline in viable cell number measured by both trypan blue dye exclusion and MTT assay, whereas that of kpm-kd or luciferase had no effect. We then analyzed the cell cycle progression and apoptosis upon induction of kpm expression. 2-3 days after removal of doxycycline, cells underwent G(2)/M arrest, demonstrated by flow cytometric analysis of propidium iodide incorporation and MPM-2 reactivity. In vitro kinase assay showed that induction of kpm-wt led to down-regulation of kinase activity of the Cdc2-cyclin B complex, which was accompanied by an increase in the hyperphosphorylated form of Cdc2 and a change of phosphorylation status of Cdc25C. Furthermore, both DAPI staining and TUNEL assay showed that the proportion of apoptotic cells increased as kpm expression was induced. Taken together, these results indicate that kpm negatively regulates cell growth by inducing G(2)/M arrest and apoptotic cell death through its kinase activity.
Collapse
Affiliation(s)
- Yasuhiko Kamikubo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
40
|
Lim HK, Kang HK, Yoo ES, Kim BJ, Kim YW, Cho M, Lee JH, Lee YS, Chung MH, Hyun JW. Oxysterols induce apoptosis and accumulation of cell cycle at G(2)/M phase in the human monocytic THP-1 cell line. Life Sci 2003; 72:1389-99. [PMID: 12527036 DOI: 10.1016/s0024-3205(02)02377-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cytotoxic activity of oxysterols, 7 beta-hydroxycholesterol (7 beta-OHC) and 25-hydroxycholesterol (25-OHC), has been evaluated using various leukemia cell lines. Among the tested cell lines, both oxysterols showed the highest cytotoxicity to THP-1, human monocytic leukemia cell line. These oxysterols induced apoptosis through down-regulation of Bcl-2 expression and activation of caspases. Also, the oxysterols showed the accumulation at G(2)/M phase of cell cycle through down-regulation of cyclin B1 expression. Taken together, these results indicated that both 7 beta-OHC and 25-OHC inhibited the proliferation of THP-1 cells through apoptosis and cell cycle accumulation at G(2)/M phase.
Collapse
Affiliation(s)
- Hee-Kyoung Lim
- Department of Biochemistry, College of Medicine Cheju National University, 1 Ara 1-dong, Jeju, Jeju-do, 690-756, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
DeSimone JN, Bengtsson U, Wang X, Lao XY, Redpath JL, Stanbridge EJ. Complexity of the mechanisms of initiation and maintenance of DNA damage-induced G2-phase arrest and subsequent G1-phase arrest: TP53-dependent and TP53-independent roles. Radiat Res 2003; 159:72-85. [PMID: 12492370 DOI: 10.1667/0033-7587(2003)159[0072:cotmoi]2.0.co;2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Through a detailed study of cell cycle progression, protein expression, and kinase activity in gamma-irradiated synchronized cultures of human skin fibroblasts, distinct mechanisms of initiation and maintenance of G2-phase and subsequent G1-phase arrests have been elucidated. Normal and E6-expressing fibroblasts were used to examine the role of TP53 in these processes. While G2 arrest is correlated with decreased cyclin B1/CDC2 kinase activity, the mechanisms associated with initiation and maintenance of the arrest are quite different. Initiation of the transient arrest is TP53-independent and is due to inhibitory phosphorylation of CDC2 at Tyr15. Maintenance of the G2 arrest is dependent on TP53 and is due to decreased levels of cyclin B1 mRNA and a corresponding decline in cyclin B1 protein level. After transiently arresting in G2 phase, normal cells chronically arrest in the subsequent G1 phase while E6-expressing cells continue to cycle. The initiation of this TP53-dependent G1-phase arrest occurs despite the presence of substantial levels of cyclin D1/CDK4 and cyclin E/CDK2 kinase activities, hyperphosphoryated RB, and active E2F1. CDKN1A (also known as p21(WAF1/CIP1)) levels remain elevated during this period. Furthermore, CDKN1A-dependent inhibition of PCNA activity does not appear to be the mechanism for this early G1 arrest. Thus the inhibition of entry of irradiated cells into S phase does not appear to be related to DNA-bound PCNA complexed to CDKN1A. The mechanism of chronic G1 arrest involves the down-regulation of specific proteins with a resultant loss of cyclin E/CDK2 kinase activity.
Collapse
Affiliation(s)
- John N DeSimone
- Departments of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, California 92697, USA
| | | | | | | | | | | |
Collapse
|
42
|
Santana C, Ortega E, García-Carrancá A. Oncogenic H-ras induces cyclin B1 expression in a p53-independent manner. Mutat Res 2002; 508:49-58. [PMID: 12379461 DOI: 10.1016/s0027-5107(02)00172-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The role of p53 in controlling the G2 checkpoint, in part by repressing cyclin B1 transcription, has been well established. However, accumulating evidence indicate that p53-independent pathways may also play an important role. Ras proteins have been shown to regulate G1/S, but also G2/M transitions. Since cyclin B1/cdc2 complex is the key regulator controlling the G2/M checkpoint, we were interested in addressing if the H-ras oncogene could regulate cyclin B1 expression in a p53-independent manner. We observed an induction of cyclin B1 promoter activity in the presence of H-ras oncogene in SW480 cells, which contain null p53 alleles. In addition, HeLa cells known to express the HPV18 E6 oncogene that inactivates p53, exhibited increased levels of cyclin B1 mRNA and protein when transfected with the H-ras oncogene. Higher expression of cyclin B1 correlated with higher levels of cyclin B1/cdc2 complex and kinase activity that interestingly, showed no inhibition at G2/M after DNA damage. These data suggest that H-ras participates in pathways that regulate cyclin B1 expression and therefore controls the G2/M checkpoint in a p53-independent manner.
Collapse
Affiliation(s)
- Carla Santana
- Department of Molecular Biology and Biotechnology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | | |
Collapse
|
43
|
Yarden RI, Pardo-Reoyo S, Sgagias M, Cowan KH, Brody LC. BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat Genet 2002; 30:285-9. [PMID: 11836499 DOI: 10.1038/ng837] [Citation(s) in RCA: 361] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The breast cancer tumor-suppressor gene, BRCA1, encodes a protein with a BRCT domain-a motif that is found in many proteins that are implicated in DNA damage response and in genome stability. Phosphorylation of BRCA1 by the DNA damage-response proteins ATM, ATR and hCds1/Chk2 changes in response to DNA damage and at replication-block checkpoints. Although cells that lack BRCA1 have an abnormal response to DNA damage, the exact role of BRCA1 in this process has remained unclear. Here we show that BRCA1 is essential for activating the Chk1 kinase that regulates DNA damage-induced G2/M arrest. Thus, BRCA1 controls the expression, phosphorylation and cellular localization of Cdc25C and Cdc2/cyclin B kinase-proteins that are crucial for the G2/M transition. We show that BRCA1 regulates the expression of both Wee1 kinase, an inhibitor of Cdc2/cyclin B kinase, and the 14-3-3 family of proteins that sequesters phosphorylated Cdc25C and Cdc2/cyclin B kinase in the cytoplasm. We conclude that BRCA1 regulates key effectors that control the G2/M checkpoint and is therefore involved in regulating the onset of mitosis.
Collapse
Affiliation(s)
- Ronit I Yarden
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
44
|
Binder A, Bohm L. Influence of irradiation and pentoxifylline on histone H3 phosphorylation in human tumour cell lines. Cell Prolif 2002; 35:37-47. [PMID: 11856177 PMCID: PMC6495926 DOI: 10.1046/j.1365-2184.2002.00224.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphorylation of histone H3 at Ser-10 correlates with chromatin condensation and this amino terminal modification is now recognized as a specific marker of mitosis. We have monitored the appearance of cells showing histone H3 phosphorylation in four human tumour cell lines to identify cell cycle progression after irradiation. In the human melanoma cell lines Be11 and MeWo and in the squamous cell carcinoma lines 4197 and 4451 a dose of 7 Gy of Co-gamma irradiation increases the number of cells binding anti-histone H3-P antibody 1-8-fold in a p53-independent manner. In the p53 mutant cell lines MeWo and 4451 H3-P phosphorylated cells can be detected as early as 30 min and show a maximum 1 h post-irradiation. In the cell lines Be11, 4197 and 4451 the early wave of H3 phosphorylated cells is followed by a second wave, which reaches a maximum 4.5-7 h post-irradiation and then declines. These events are attributed to damage-induced cell cycle blocks in the G1 and G2 phase of the cell cycle. Addition of the dose modifying drug pentoxifylline before irradiation increases the appearance of cells showing early and the late H3 phosphorylation. When pentoxifylline is added 12-24 h post-irradiation when the cell cycle blocks have reached their maximum the appearance of cells with phosphorylated H3 increases 3-5-fold in the p53 mutant cell lines MeWo and 4451. These observations are consistent with the function of the drug as a G2 block abrogator. The large H3 phosphorylation signal in p53 mutant cells is consistent with early entry of a cohort of G2 cells into mitosis. The smaller H3-P signal in p53 wild type cells correlates with the lower proportion of stable G2 populations in G1 blocked cells. These results indicate that pentoxifylline influences the appearance of histone H3 phosphorylated cells in a manner strongly dependent on the number of cells in G2 phase. This suggests that addition of pentoxifylline indeed abrogates the G2 block and thereby facilitates early entry into mitosis.
Collapse
Affiliation(s)
- A Binder
- Department of Radiation Oncology, University of Stellenbosch, Faculty of Health Sciences and Tygerberg Hospital, Tygerberg, South Africa
| | | |
Collapse
|
45
|
Piao W, Yoo J, Lee DK, Hwang HJ, Kim JH. Induction of G(2)/M phase arrest and apoptosis by a new synthetic anti-cancer agent, DW2282, in promyelocytic leukemia (HL-60) cells. Biochem Pharmacol 2001; 62:1439-47. [PMID: 11728380 DOI: 10.1016/s0006-2952(01)00796-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We studied the effect of DW2282-,[(S)-(+)-4-phenyl-1-[N-(4-aminobenzoyl)-indoline-5-sulfonyl-4,5-dihydro-2-imidazolone].hydrochloride], a newly developed anti-cancer agent, on cell proliferation, cell cycle progression, and induction of apoptosis in human promyelocytic leukemia (HL-60) cells. DW2282, a diarylsulfonylurea compound, was cytotoxic to HL-60 cells, with an IC(50) of 1.0 microg/mL. Treatment with DW2282 fragmented DNA in a concentration- and time-dependent manner, suggesting that these cells underwent apoptosis. Flow cytometric analysis further confirmed that DW2282-treated HL-60 cells were hypodiploid, in terms of DNA content, and were arrested at the G(2)/M phase. The cell cycle arrest was reversible upon the removal of DW2282. HL-60 cells also underwent distinct morphological changes in response to DW2282 treatment, including the appearance of elongated cells with conical tails and other apoptotic characteristics. G(2)/M phase cell cycle arrest was accompanied by a decrease in the levels of cdc2, a protein that plays a critical role for progression through the G(2)/M phase. Treatment of HL-60 cells with DW2282 was also associated with decreased levels of the anti-apoptotic protein Bcl-2, activation of caspase-3, and proteolytic cleavage of poly(ADP-ribose) polymerase. Taken together, these results demonstrate that DW2282 dramatically suppressed HL-60 cell growth by inducing apoptosis after G(2)/M phase arrest. These findings are consistent with the possibility that G(2)/M phase arrest was mediated by the down-regulation of cdc2 levels in HL-60 cells. The data also suggest that DW2282 triggered apoptosis by decreasing Bcl-2 levels and activating caspase-3 protease. These results provide important new information towards understanding the mechanisms by which DW2282 and other diarylsulfonylureas mediate their therapeutic effects.
Collapse
Affiliation(s)
- W Piao
- Department of Biochemistry, College of Dentistry, Kyung Hee University, 130-701, Seoul, South Korea
| | | | | | | | | |
Collapse
|
46
|
Elder RT, Yu M, Chen M, Zhu X, Yanagida M, Zhao Y. HIV-1 Vpr induces cell cycle G2 arrest in fission yeast (Schizosaccharomyces pombe) through a pathway involving regulatory and catalytic subunits of PP2A and acting on both Wee1 and Cdc25. Virology 2001; 287:359-70. [PMID: 11531413 DOI: 10.1006/viro.2001.1007] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Viral protein R (Vpr) of human immunodeficiency virus type 1 induces G2 arrest in cells from distantly related eukaryotes including human and fission yeast through inhibitory phosphorylation of tyrosine 15 (Tyr15) on Cdc2. Since the DNA damage and DNA replication checkpoints also induce G2 arrest through phosphorylation of Tyr15, it seemed possible that Vpr induces G2 arrest through the checkpoint pathways. However, Vpr does not use either the early or the late checkpoint genes that are required for G2 arrest in response to DNA damage or inhibition of DNA synthesis indicating that Vpr induces G2 arrest by an alternative pathway. It was found that protein phosphatase 2A (PP2A) plays an important role in the induction of G2 arrest by Vpr since mutations in genes coding for a regulatory or catalytic subunit of PP2A reduce Vpr-induced G2 arrest. Vpr was also found to upregulate PP2A, supporting a model in which Vpr activates the PP2A holoenzyme to induce G2 arrest. PP2A is known to interact genetically in fission yeast with the Wee1 kinase and Cdc25 phosphatase that act on Tyr15 of Cdc2. Both Wee1 and Cdc25 play a role in Vpr-induced G2 arrest since a wee1 deletion reduces Vpr-induced G2 arrest and a direct in vivo assay shows that Vpr inhibits Cdc25. Additional support for both Wee1 and Cdc25 playing a role in Vpr-induced G2 arrest comes from a genetic screen, which identified genes whose overexpression affects Vpr-induced G2 arrest. For this genetic screen, a strain was constructed in which cell killing by Vpr was nearly eliminated while the effect of Vpr on the cell cycle was clearly indicated by an increase in cell length. Overexpression of the wos2 gene, an inhibitor of Wee1, suppresses Vpr-induced G2 arrest while overexpression of rad25, an inhibitor of Cdc25, enhances Vpr-induced G2 arrest. These two genes may be part of the uncharacterized pathway for Vpr-induced G2 arrest in which Vpr upregulates PP2A to activate Wee1 and inhibit Cdc25.
Collapse
Affiliation(s)
- R T Elder
- Children's Memorial Institute for Education and Research, Children's Memorial Hospital, Chicago, Illinois 60614, USA
| | | | | | | | | | | |
Collapse
|
47
|
Gaynor EM, Chen IS. Analysis of apoptosis induced by HIV-1 Vpr and examination of the possible role of the hHR23A protein. Exp Cell Res 2001; 267:243-57. [PMID: 11426943 DOI: 10.1006/excr.2001.5247] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The HIV-1 Vpr protein induces apoptosis of cells, the mechanism of which is unknown. To clarify how this function may be related to other Vpr functions, we simultaneously assessed the effects of multiple point mutations upon various Vpr properties. Our data suggest that induction of arrest by Vpr may be unnecessary for induction of apoptosis. This is exemplified by a C-terminal mutant, R80A, that does not arrest cells, yet induces low but significant levels of apoptosis. We also show that mutation of Vpr at both of its nuclear localization sequences (within its alpha-helices and the overlapping leucine zipper-like domain) does not affect induction of either apoptosis or cell cycle arrest. This indicates that neither sequence is essential for these two functions of Vpr. It further suggests that multimerization of Vpr, which maps to residues 60 and 67 within the leucine-rich region, is unnecessary for initiation of apoptosis and arrest. We previously found that the Vpr-binding protein, hHR23A, can partially alleviate induction of arrest. We now show that overexpression of hHR23A itself causes apoptosis of cells. Mutation of its C-terminal UBA( 2 ) domain that is responsible for binding Vpr disrupts the apoptotic effect. This suggests that Vpr may induce apoptosis through a pathway involving hHR23A.
Collapse
Affiliation(s)
- E M Gaynor
- UCLA AIDS Institute, University of California at Los Angeles School of Medicine, Los Angeles, California 90095-1678, USA
| | | |
Collapse
|
48
|
Kao GD, McKenna WG, Yen TJ. Detection of repair activity during the DNA damage-induced G2 delay in human cancer cells. Oncogene 2001; 20:3486-96. [PMID: 11429695 DOI: 10.1038/sj.onc.1204445] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2000] [Revised: 03/02/2001] [Accepted: 03/07/2001] [Indexed: 11/08/2022]
Abstract
All eukaryotic cells manifest cell cycle delay after exposure to DNA damaging agents. It has been proposed that such cell cycle checkpoints may allow DNA repair but direct evidence of such activity during the radiation-induced G2 delay has been lacking. We report here that cells arrested in G2 by radiation (2-3 Gy) and etoposide incorporate bromodeoxyuridine (BrdU) at discrete foci in the nucleus. We detected G2 cells with CENP-F, a nuclear protein maximally expressed in G2. Caffeine and okadaic acid, both established radiosensitizers, inhibit the incorporation of BrdU in G2 cells. Radioresistant HT29 and OVCAR cells demonstrate BrdU foci formation more frequently during the G2 delay when compared to the more radiosensitive A2780 cell line. The repair foci formed during G2 may be followed through mitosis and observed in daughter cells in G1. Taken together, these observations are consistent with the detection of DNA repair activity during the radiation-induced G2 delay after relatively low doses of radiation.
Collapse
Affiliation(s)
- G D Kao
- Hospital of the University of Pennsylvania, Department of Radiation Oncology, 2 Donner, 3400 Spruce Street, Philadelphia, Pennsylvania, PA 19104, USA
| | | | | |
Collapse
|
49
|
Ostvold AC, Norum JH, Mathiesen S, Wanvik B, Sefland I, Grundt K. Molecular cloning of a mammalian nuclear phosphoprotein NUCKS, which serves as a substrate for Cdk1 in vivo. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2430-40. [PMID: 11298763 DOI: 10.1046/j.1432-1327.2001.02120.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have isolated and characterized a cDNA encoding a mammalian nuclear phosphoprotein NUCKS, previously designated P1. Molecular analyses of several overlapping and full-length cDNAs from HeLa cells and rat brain revealed a protein with an apparent molecular mass of 27 kDa in both species. The deduced amino-acid sequences are highly conserved between human and rodents, but show no homology with primary structures in protein databases or with translated sequences of cDNAs in cDNA databanks. Although the protein has some features in common with the high mobility group proteins HMGI/Y, attempts to find a putative protein family by database query using both sequence alignment methods and amino-acid composition have failed. Northern blot analyses revealed that human and rat tissues contain three NUCKS transcripts varying in size from 1.5 to 6.5 kb. All human and rat tissues express the gene, but the level of transcripts varies among different tissues. Circular dichroism analysis and secondary structure predictions based on the amino-acid sequence indicate a low level of alpha helical content and substantial amounts of beta turn structures. The protein is phosphorylated in all phases of the cell cycle and exhibits mitosis-specific phosphorylation of threonine residues. Phosphopeptide mapping and back-phosphorylation experiments employing NUCKS from HeLa interphase and metaphase cells show that the protein is phosphorylated by Cdk1 during mitosis of the cell cycle.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Brain/metabolism
- CDC2 Protein Kinase/metabolism
- Carrier Proteins/metabolism
- Cell Cycle
- Cell Nucleus/metabolism
- Chromatography, High Pressure Liquid
- Circular Dichroism
- Cloning, Molecular
- DNA, Complementary/metabolism
- DNA-Binding Proteins/metabolism
- Databases, Factual
- Gene Library
- HMGB1 Protein
- HeLa Cells
- High Mobility Group Proteins/metabolism
- Humans
- Mice
- Mitosis
- Molecular Sequence Data
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Peptide Mapping
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Phosphorylation
- Precipitin Tests
- Protein Structure, Secondary
- Rats
- Sequence Homology, Amino Acid
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Tissue Distribution
Collapse
Affiliation(s)
- A C Ostvold
- Department of Medical Biochemistry, University of Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
50
|
Elias AD, Richardson P, Avigan D, Ibrahim J, Joyce R, Demetri G, Levine J, Warren D, Arthur T, Reich E, Wheele C, Frei E, Ayash L. A short course of induction chemotherapy followed by two cycles of high-dose chemotherapy with stem cell rescue for chemotherapy naive metastatic breast cancer. Bone Marrow Transplant 2001; 27:269-78. [PMID: 11277174 DOI: 10.1038/sj.bmt.1702780] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A single cycle of high-dose chemotherapy with stem cell support (HDC) in women with responsive metastatic breast cancer (BC) consistently achieves over 50% complete and near complete response (CR/nCR). This significant cytoreduction results in a median event-free survival (EFS) of 8 months, and approximately 20% 3-year and 16% 5-year EFS in selected patients. To improve long-term outcomes, new strategies to treat minimal residual tumor burden are needed. Increased total dose delivered can be achieved with two cycles of HDC. Critical design issues include shortening induction chemotherapy to avoid development of drug resistance and the use of different agents for each HDC cycle. We have determined the maximum tolerated dose (MTD) for paclitaxel combined with high-dose melphalan in the context of a double transplant and explored the impact of a short induction phase. Between June 1994 and August 1996, we enrolled 32 women with metastatic BC on to this phase I double transplant trial. Induction consisted of doxorubicin 30 mg/m2/day days 1-3 given for 2 cycles every 14 days with G-CSF 5 microg/kg s.c. days 4-12. Stem cell collection was performed by leukapheresis in each cycle when the WBC recovered to above 1000/microl. Patients with stable disease or better response to induction were eligible to proceed with HDC. HDC regimen I (TxM) included paclitaxel with dose escalation from 0 to 300 mg/m2 given on day 1 and melphalan 180 mg/m2 in two divided doses given on day 3. HDC regimen II was CTCb (cyclophosphamide 6 g/m2, thiotepa 500 mg/m2, and carboplatin 800 mg/m2 total doses) delivered by 96-h continuous infusion. At the first dose level of 150 mg/m2 paclitaxel by 3 h infusion, four of five patients developed dose-limiting toxicity consisting of diffuse skin erythema and capillary leak syndrome. Only two of these five completed the second transplant. Subsequently, paclitaxel was delivered by 24-h continuous infusion together with 96 h of dexamethasone and histamine receptor blockade. This particular toxicity was not observed again. No toxic deaths occurred and dose-limiting toxicity was not encountered. Three patients were removed from study prior to transplant: one for insurance refusal and two for disease progression. All others completed both cycles of transplant. Complete and near complete response (CR/nCR) after completion of therapy was achieved in 23 (72%) of 32 patients. The median EFS is 26 months. The median overall survival has not yet been reached. At a median follow-up of 58 months, EFS and overall survival are 41% and 53%, respectively. This double transplant approach is feasible, safe, and tolerable. Treatment duration is only 14 weeks and eliminates lengthy induction chemotherapy. The observed event-free and overall survivals are promising and are better than expected following a single transplant. Whilst selection biases may in part contribute to this effect, a much larger phase II double transplant trial is warranted in preparation for a potential randomized comparison of standard therapy vs single vs double transplant.
Collapse
Affiliation(s)
- A D Elias
- Harvard Medical School, and Dana-Farber Cancer Institute and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|