1
|
Liu X, Ji JX, Pang AN, Li L, Nie P, Zhang LQ, Zeng KW, Chen SN. Molecular cloning and functional analyses of C-C motif chemokine ligand 3 (CCL3) in mandarin fish Siniperca chuatsi. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109614. [PMID: 38710342 DOI: 10.1016/j.fsi.2024.109614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Chemokines are critical molecules involved in immune reaction and immune system homeostasis, and some chemokines play a role in antiviral immunity. It is not known if the C-C motif chemokine ligand 3 (CCL3), a member of the CC chemokine family, possesses antiviral properties in fish. In this study, a ccl3 was cloned from the mandarin fish (Siniperca chuatsi), and it has an open reading frame (ORF) of 276 base pairs, which are predicted to encode a 91-amino acid peptide. Mandarin fish CCL3 revealed conserved sequence features with four cysteine residues and closely relationships with the CCL3s from other vertebrates based on the sequence alignment and phylogenetic analysis. The transcripts of ccl3 were notably enriched in immune-related organs, such as spleen and gills in healthy mandarin fish, and the ccl3 was induced in the isolated mandarin fish brain (MFB) cells following infection with infectious spleen and kidney necrosis virus (ISKNV). Moreover, in MFB cells, overexpression of CCL3 induced immune factors, such as IL1β, TNFα, MX, IRF1 and IFNh, and exhibited antiviral activity against ISKNV. This study sheds light on the immune role of CCL3 in immune response of mandarin fish, and its antiviral defense mechanism is of interest for further investigation.
Collapse
Affiliation(s)
- Xiao Liu
- Wuhan Fisheries Science Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei Province, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Jia Xiang Ji
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - An Ning Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Li Qiang Zhang
- Wuhan Fisheries Science Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei Province, 430070, China
| | - Ke Wei Zeng
- Wuhan Fisheries Science Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei Province, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China.
| |
Collapse
|
2
|
Papadopoulou D, Mavrikaki V, Charalampous F, Tzaferis C, Samiotaki M, Papavasileiou KD, Afantitis A, Karagianni N, Denis MC, Sanchez J, Lane JR, Faidon Brotzakis Z, Skretas G, Georgiadis D, Matralis AN, Kollias G. Discovery of the First-in-Class Inhibitors of Hypoxia Up-Regulated Protein 1 (HYOU1) Suppressing Pathogenic Fibroblast Activation. Angew Chem Int Ed Engl 2024; 63:e202319157. [PMID: 38339863 DOI: 10.1002/anie.202319157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
Fibroblasts are key regulators of inflammation, fibrosis, and cancer. Targeting their activation in these complex diseases has emerged as a novel strategy to restore tissue homeostasis. Here, we present a multidisciplinary lead discovery approach to identify and optimize small molecule inhibitors of pathogenic fibroblast activation. The study encompasses medicinal chemistry, molecular phenotyping assays, chemoproteomics, bulk RNA-sequencing analysis, target validation experiments, and chemical absorption, distribution, metabolism, excretion and toxicity (ADMET)/pharmacokinetic (PK)/in vivo evaluation. The parallel synthesis employed for the production of the new benzamide derivatives enabled us to a) pinpoint key structural elements of the scaffold that provide potent fibroblast-deactivating effects in cells, b) discriminate atoms or groups that favor or disfavor a desirable ADMET profile, and c) identify metabolic "hot spots". Furthermore, we report the discovery of the first-in-class inhibitor leads for hypoxia up-regulated protein 1 (HYOU1), a member of the heat shock protein 70 (HSP70) family often associated with cellular stress responses, particularly under hypoxic conditions. Targeting HYOU1 may therefore represent a potentially novel strategy to modulate fibroblast activation and treat chronic inflammatory and fibrotic disorders.
Collapse
Affiliation(s)
- Dimitra Papadopoulou
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
| | - Vasiliki Mavrikaki
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, 16672, Athens, Greece
- Department of Chemistry, Laboratory of Organic Chemistry, National and Kapodistrian University of Athens, 15784, Athens, Greece
| | - Filippos Charalampous
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
| | - Christos Tzaferis
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
| | - Konstantinos D Papavasileiou
- Department of ChemoInformatics, Novamechanics Ltd., 1070, Nicosia, Cyprus
- Department of Chemoinformatics, Novamechanics MIKE, 18545, Piraeus, Greece
- Division of Data Driven Innovation, Entelos Institute, 6059, Larnaca, Cyprus
| | - Antreas Afantitis
- Department of ChemoInformatics, Novamechanics Ltd., 1070, Nicosia, Cyprus
- Department of Chemoinformatics, Novamechanics MIKE, 18545, Piraeus, Greece
- Division of Data Driven Innovation, Entelos Institute, 6059, Larnaca, Cyprus
| | | | | | - Julie Sanchez
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, NG7 2UH, Nottingham, U.K
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, NG2 7AG, Midlands, U.K
| | - J Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, NG7 2UH, Nottingham, U.K
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, NG2 7AG, Midlands, U.K
| | - Zacharias Faidon Brotzakis
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
| | - Georgios Skretas
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece
| | - Dimitris Georgiadis
- Department of Chemistry, Laboratory of Organic Chemistry, National and Kapodistrian University of Athens, 15784, Athens, Greece
| | - Alexios N Matralis
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
| | - George Kollias
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
- Research Institute of New Biotechnologies and Precision Medicine, National and Kapodistrian University of Athens, 11527, Athens, Greece
| |
Collapse
|
3
|
Kotschenreuther K, Yan S, Kofler DM. Migration and homeostasis of regulatory T cells in rheumatoid arthritis. Front Immunol 2022; 13:947636. [PMID: 36016949 PMCID: PMC9398455 DOI: 10.3389/fimmu.2022.947636] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/20/2022] [Indexed: 12/17/2022] Open
Abstract
Regulatory T (Treg) cells are garnering increased attention in research related to autoimmune diseases, including rheumatoid arthritis (RA). They play an essential role in the maintenance of immune homeostasis by restricting effector T cell activity. Reduced functions and frequencies of Treg cells contribute to the pathogenesis of RA, a common autoimmune disease which leads to systemic inflammation and erosive joint destruction. Treg cells from patients with RA are characterized by impaired functions and by an altered phenotype. They show increased plasticity towards Th17 cells and a reduced suppressive capacity. Besides the suppressive function of Treg cells, their effectiveness is determined by their ability to migrate into inflamed tissues. In the past years, new mechanisms involved in Treg cell migration have been identified. One example of such a mechanism is the phosphorylation of vasodilator-stimulated phosphoprotein (VASP). Efficient migration of Treg cells requires the presence of VASP. IL-6, a cytokine which is abundantly present in the peripheral blood and in the synovial tissue of RA patients, induces posttranslational modifications of VASP. Recently, it has been shown in mice with collagen-induced arthritis (CIA) that this IL-6 mediated posttranslational modification leads to reduced Treg cell trafficking. Another protein which facilitates Treg cell migration is G-protein-signaling modulator 2 (GPSM2). It modulates G-protein coupled receptor functioning, thereby altering the cellular activity initiated by cell surface receptors in response to extracellular signals. The almost complete lack of GPSM2 in Treg cells from RA patients contributes to their reduced ability to migrate towards inflammatory sites. In this review article, we highlight the newly identified mechanisms of Treg cell migration and review the current knowledge about impaired Treg cell homeostasis in RA.
Collapse
Affiliation(s)
- Konstantin Kotschenreuther
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Shuaifeng Yan
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David M. Kofler
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- *Correspondence: David M. Kofler,
| |
Collapse
|
4
|
Supriya R, Gao Y, Gu Y, Baker JS. Role of Exercise Intensity on Th1/Th2 Immune Modulations During the COVID-19 Pandemic. Front Immunol 2021; 12:761382. [PMID: 35003073 PMCID: PMC8727446 DOI: 10.3389/fimmu.2021.761382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
The COVID-19 pandemic has led to several pioneering scientific discoveries resulting in no effective solutions with the exception of vaccination. Moderate exercise is a significant non-pharmacological strategy, to reduce the infection-related burden of COVID-19, especially in patients who are obese, elderly, and with additional comorbidities. The imbalance of T helper type 1 (Th1) or T helper type 2 (Th2) cells has been well documented among populations who have suffered as a result of the COVID-19 pandemic, and who are at maximum risk of infection and mortality. Moderate and low intensity exercise can benefit persons at risk from the disease and survivors by favorable modulation in Th1/Th2 ratios. Moreover, in COVID-19 patients, mild to moderate intensity aerobic exercise also increases immune system function but high intensity aerobic exercise may have adverse effects on immune responses. In addition, sustained hypoxia in COVID-19 patients has been reported to cause organ failure and cell death. Hypoxic conditions have also been highlighted to be triggered in COVID-19-susceptible individuals and COVID-19 survivors. This suggests that hypoxia inducible factor (HIF 1α) might be an important focus for researchers investigating effective strategies to minimize the effects of the pandemic. Intermittent hypoxic preconditioning (IHP) is a method of exposing subjects to short bouts of moderate hypoxia interspersed with brief periods of normal oxygen concentrations (recovery). This methodology inhibits the production of pro-inflammatory factors, activates HIF-1α to activate target genes, and subsequently leads to a higher production of red blood cells and hemoglobin. This increases angiogenesis and increases oxygen transport capacity. These factors can help alleviate virus induced cardiopulmonary hemodynamic disorders and endothelial dysfunction. Therefore, during the COVID-19 pandemic we propose that populations should engage in low to moderate exercise individually designed, prescribed and specific, that utilizes IHP including pranayama (yoga), swimming and high-altitude hiking exercise. This would be beneficial in affecting HIF-1α to combat the disease and its severity. Therefore, the promotion of certain exercises should be considered by all sections of the population. However, exercise recommendations and prescription for COVID-19 patients should be structured to match individual levels of capability and adaptability.
Collapse
Affiliation(s)
- Rashmi Supriya
- Faculty of Sports Science, Ningbo University, Zhejiang, China
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- *Correspondence: Rashmi Supriya,
| | - Yang Gao
- Faculty of Sports Science, Ningbo University, Zhejiang, China
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Zhejiang, China
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Julien S. Baker
- Faculty of Sports Science, Ningbo University, Zhejiang, China
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
5
|
Basu P, Hornung RS, Averitt DL, Maier C. Euphorbia bicolor ( Euphorbiaceae) Latex Extract Reduces Inflammatory Cytokines and Oxidative Stress in a Rat Model of Orofacial Pain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8594375. [PMID: 31612077 PMCID: PMC6757321 DOI: 10.1155/2019/8594375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/10/2019] [Indexed: 12/26/2022]
Abstract
Recent studies have reported that the transient receptor potential V1 ion channel (TRPV1), a pain generator on sensory neurons, is activated and potentiated by NADPH oxidase-generated reactive oxygen species (ROS). ROS are increased by advanced oxidation protein products (AOPPs), which activate NADPH oxidase by upregulating Nox4 expression. Our previous studies reported that Euphorbia bicolor (Euphorbiaceae) latex extract induced peripheral analgesia, partly via TRPV1, in hindpaw-inflamed male and female rats. The present study reports that E. bicolor latex extract also can evoke analgesia via reduction of oxidative stress biomarkers and proinflammatory cytokines/chemokines in a rat model of orofacial pain. Male and female rats were injected with complete Freund's adjuvant (CFA) into the left vibrissal pad to induce orofacial inflammation, and mechanical allodynia was measured by the von Frey method. Twenty-four hours later, rats received one injection of E. bicolor latex extract or vehicle into the inflamed vibrissal pad. Mechanical sensitivity was reassessed at 1, 6, 24, and/or 72 hours. Trigeminal ganglia and trunk blood were collected at each time point. In the trigeminal ganglia, ROS were quantified using 2',7'-dichlorodihydrofluorescein diacetate dye, Nox4 protein was quantified by Western blots, and cytokines/chemokines were quantified using a cytokine array. AOPPs were quantified in trunk blood using a spectrophotometric assay. E. bicolor latex extract significantly reduced orofacial mechanical allodynia in male and female rats at 24 and 72 hours, respectively. ROS, Nox4, and proinflammatory cytokines/chemokines were significantly reduced in the trigeminal ganglia, and plasma AOPP was significantly reduced in the trunk blood of extract-treated compared to vehicle-treated rats. In vitro assays indicate that E. bicolor latex extract possessed antioxidant activities by scavenging free radicals. Together our data indicate that the phytochemicals in E. bicolor latex may serve as novel therapeutics for treating oxidative stress-induced pain conditions.
Collapse
Affiliation(s)
- Paramita Basu
- Department of Biology, Texas Woman's University, Denton, 76204 TX, USA
| | | | - Dayna L. Averitt
- Department of Biology, Texas Woman's University, Denton, 76204 TX, USA
| | - Camelia Maier
- Department of Biology, Texas Woman's University, Denton, 76204 TX, USA
| |
Collapse
|
6
|
Zhang P, Chen Y, Zhu H, Yan L, Sun C, Pei S, Lodhi AF, Ren H, Gao Y, Manzoor R, Li B, Deng Y, Ma H. The Effect of Gamma-Ray-Induced Central Nervous System Injury on Peripheral Immune Response: An In Vitro and In Vivo Study. Radiat Res 2019; 192:440-450. [PMID: 31393823 DOI: 10.1667/rr15378.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiotherapy to treat brain tumors can potentially harm the central nervous system (CNS). The radiation stimulates a series of immune responses in both the CNS as well as peripheral immune system. To date, studies have mostly focused on the changes occurring in the immune response within the CNS. In this study, we investigated the effect of γ-ray-induced CNS injury on the peripheral immune response using a cell co-culture model and a whole-brain irradiation (WBI) rat model. Nerve cells (SH-SY5Y and U87 MG cells) were γ-ray irradiated, then culture media of the irradiated cells (conditioned media) was used to culture immune cells (THP-1 cells or Jurkat cells). Analyses were performed based on the response of immune cells in conditioned media. Sprague-Dawley rats received WBI at different doses, and were fed for one week to one month postirradiation. Spleen and peripheral blood were then isolated and analyzed. We observed that the number of monocytes in peripheral blood, and the level of NK cells and NKT cells in spleen increased after CNS injury. However, the level of T cells in spleen did not change and the level of B cells in the spleen decreased after γ-ray-induced CNS injury. These findings indicate that CNS injury caused by ionizing radiation induces a series of changes in the peripheral immune system.
Collapse
Affiliation(s)
- Peng Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yu Chen
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Huiyang Zhu
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Liben Yan
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Chunli Sun
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Sizhu Pei
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Adil Farooq Lodhi
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.,Department of Microbiology, Faculty of Health Sciences, Hazara University, Mansehra, Pakistan
| | - Hao Ren
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yanan Gao
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Robina Manzoor
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Bo Li
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hong Ma
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
7
|
Woo SJ, Noh HS, Lee NY, Cheon YH, Yi SM, Jeon HM, Bae EJ, Lee SI, Park BH. Myeloid sirtuin 6 deficiency accelerates experimental rheumatoid arthritis by enhancing macrophage activation and infiltration into synovium. EBioMedicine 2018; 38:228-237. [PMID: 30429089 PMCID: PMC6306347 DOI: 10.1016/j.ebiom.2018.11.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/23/2018] [Accepted: 11/02/2018] [Indexed: 11/28/2022] Open
Abstract
Background We recently reported that myeloid sirtuin 6 (Sirt6) is a critical determinant of phenotypic switching and the migratory responses of macrophages. Given the prominent role of macrophages in the pathogenesis of rheumatoid arthritis (RA), we tested whether myeloid Sirt6 deficiency affects the development and exacerbation of RA. Methods Arthritis was induced in wild type and myeloid Sirt6 knockout (mS6KO) mice using collagen-induced and K/BxN serum transfer models. Sirt6 expression (or activity) and inflammatory activities were compared in peripheral blood mononuclear cells (PBMCs) and monocytes/macrophages obtained from patients with RA or osteoarthritis. Findings Based on clinical score, ankle thickness, pathology, and radiology, arthritis was more severe in mS6KO mice relative to wild type, with a greater accumulation of macrophages in the synovium. Consistent with these findings, myeloid Sirt6 deficiency increased the migration potential of macrophages toward synoviocyte-derived chemoattractants. Mechanistically, Sirt6 deficiency in macrophages caused an inflammation with increases in acetylation and protein stability of forkhead box protein O1. Conversely, ectopic overexpression of Sirt6 in knockout cells reduced the inflammatory responses. Lastly, PBMCs and monocytes/macrophages from RA patients exhibited lower expression of Sirt6 than those from patients with osteoarthritis, and their Sirt6 activity was inversely correlated with disease severity. Interpretation Our data identify a role of myeloid Sirt6 in clinical and experimental RA and suggest that myeloid Sirt6 may be an intriguing therapeutic target. Fund Medical Research Center Program and Basic Science Research Program through the National Research Foundation of Korea. Myeloid Sirt6 deficiency aggravates the joint destruction by increasing recruitment of macrophages into arthritic joints. Myeloid Sirt6 deacetylates FoxO1 to promote proteasomal degradation. Overexpression of Sirt6 greatly attenuates inflammatory activity of human macrophages. Sirt6 expression and activity decrease in blood monocytes and joint macrophages from RA patients.
Collapse
Affiliation(s)
- Seong Ji Woo
- Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Hae Sook Noh
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Gyeongnam 52828, Republic of Korea
| | - Na Young Lee
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Yun-Hong Cheon
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Gyeongnam 52828, Republic of Korea
| | - Sang Mi Yi
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Gyeongnam 52828, Republic of Korea
| | - Hyun Min Jeon
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Gyeongnam 52828, Republic of Korea
| | - Eun Ju Bae
- College of Pharmacy, Woosuk University, Wanju, Jeonbuk 55338, Republic of Korea
| | - Sang-Il Lee
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Gyeongnam 52828, Republic of Korea.
| | - Byung-Hyun Park
- Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea.
| |
Collapse
|
8
|
Lechner J, Noumbissi S, von Baehr V. Titanium implants and silent inflammation in jawbone-a critical interplay of dissolved titanium particles and cytokines TNF-α and RANTES/CCL5 on overall health? EPMA J 2018; 9:331-343. [PMID: 30174768 PMCID: PMC6107454 DOI: 10.1007/s13167-018-0138-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND INTRODUCTION It is a well-known fact that titanium particles deriving from dental titanium implants (DTI) dissolve into the surrounding bone. Although titanium (TI) is regarded as a compatible implant material, increasing concern is coming up that the dissolved titanium particles induce inflammatory reactions around the implant. Specifically, the inflammatory cytokine tumor necrosis factor-alpha (TNF-α) is expressed in the adjacent bone. The transition from TNF-α-induced local inflammation following insertion of DTI surgery to a chronic stage of "silent inflammation" could be a neglected cause of unexplained medical conditions. MATERIAL AND METHODS The signaling pathways involved in the induction of cytokine release were analyzed by multiplex analysis. We examined samples of jawbone (JB) for seven cytokines in two groups: specimens from 14 patients were analyzed in areas of DTI for particle-mediated release of cytokines. Each of the adjacent to DTI tissue samples showed clinically fatty degenerated and osteonecrotic medullary changes in the JB (FDOJ). Specimens from 19 patients were of healthy JB. In five cases, we measured the concentration of dissolved Ti particles by spectrometry. RESULTS All DTI-FDOJ samples showed RANTES/CCL5 (R/C) as the only extremely overexpressed cytokine. DTI-FDOJ cohort showed a 30-fold mean overexpression of R/C as compared with a control cohort of 19 healthy JB samples. Concentration of dissolved Ti particles in DTI-FDOJ was 30-fold higher than an estimated maximum of 1.000 μg/kg. DISCUSSION As R/C is discussed in the literature as a possible contributor to inflammatory diseases, the here-presented research examines the question of whether common DTI may provoke the development of chronic inflammation in the jawbone in an impaired state of healing. Such changes in areas of the JB may lead to hyperactivated signaling pathways of TNF-α induced R/C overexpression, and result in unrecognized sources of silent inflammation. This may contribute to disease patterns like rheumatic arthritis, multiple sclerosis, and other systemic-inflammatory diseases, which is widely discussed in scientific papers. CONCLUSION From a systemic perspective, we recommend that more attention be paid to the cytokine cross-talk that is provoked by dissolved Ti particles from DTI in medicine and dentistry. This may contribute to further development of personalized strategies in preventive medicine.
Collapse
Affiliation(s)
- Johann Lechner
- Clinic for Integrative Dentistry, Grünwalder Str. 10A, Munich, Germany
| | - Sammy Noumbissi
- Miles of Smiles Implant Dentistry, 801 Wayne Ave no. G200, Silver Spring, USA
| | - Volker von Baehr
- Institute for Medical Diagnostics in MVZ GbR, Nicolaistr. 22, 12247 Berlin, Germany
| |
Collapse
|
9
|
Alvarez-Diaz S, Dillon CP, Lalaoui N, Tanzer MC, Rodriguez DA, Lin A, Lebois M, Hakem R, Josefsson EC, O'Reilly LA, Silke J, Alexander WS, Green DR, Strasser A. The Pseudokinase MLKL and the Kinase RIPK3 Have Distinct Roles in Autoimmune Disease Caused by Loss of Death-Receptor-Induced Apoptosis. Immunity 2016; 45:513-526. [PMID: 27523270 DOI: 10.1016/j.immuni.2016.07.016] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 05/23/2016] [Accepted: 06/06/2016] [Indexed: 12/12/2022]
Abstract
The kinases RIPK1 and RIPK3 and the pseudo-kinase MLKL have been identified as key regulators of the necroptotic cell death pathway, although a role for MLKL within the whole animal has not yet been established. Here, we have shown that MLKL deficiency rescued the embryonic lethality caused by loss of Caspase-8 or FADD. Casp8(-/-)Mlkl(-/-) and Fadd(-/-)Mlkl(-/-) mice were viable and fertile but rapidly developed severe lymphadenopathy, systemic autoimmune disease, and thrombocytopenia. These morbidities occurred more rapidly and with increased severity in Casp8(-/-)Mlkl(-/-) and Fadd(-/-)Mlkl(-/-) mice compared to Casp8(-/-)Ripk3(-/-) or Fadd(-/-)Ripk3(-/-) mice, respectively. These results demonstrate that MLKL is an essential effector of aberrant necroptosis in embryos caused by loss of Caspase-8 or FADD. Furthermore, they suggest that RIPK3 and/or MLKL may exert functions independently of necroptosis. It appears that non-necroptotic functions of RIPK3 contribute to the lymphadenopathy, autoimmunity, and excess cytokine production that occur when FADD or Caspase-8-mediated apoptosis is abrogated.
Collapse
Affiliation(s)
- Silvia Alvarez-Diaz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Christopher P Dillon
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Najoua Lalaoui
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Maria C Tanzer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Diego A Rodriguez
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ann Lin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Marion Lebois
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Razq Hakem
- Ontario Cancer Institute, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Emma C Josefsson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Lorraine A O'Reilly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Warren S Alexander
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia.
| |
Collapse
|
10
|
Vandermeulen E, Verleden SE, Ruttens D, Moelants E, Mortier A, Somers J, Bellon H, Piloni D, Dupont LJ, Van Raemdonck DE, Proost P, Schols D, Vos R, Verleden GM, Vanaudenaerde BM. BAL neutrophilia in azithromycin-treated lung transplant recipients: Clinical significance. Transpl Immunol 2015; 33:37-44. [DOI: 10.1016/j.trim.2015.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 11/25/2022]
|
11
|
Lechner J, von Baehr V. Peripheral Neuropathic Facial/Trigeminal Pain and RANTES/CCL5 in Jawbone Cavitation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:582520. [PMID: 26170877 PMCID: PMC4481083 DOI: 10.1155/2015/582520] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 04/01/2015] [Indexed: 01/05/2023]
Abstract
Introduction. In this study, we elucidate the possible causative role of chronic subclinical inflammation in jawbone of patients with atypical facial pain (AFP) and trigeminal neuralgia (TRN) in the local overexpression of the chemokine regulated on activation and normal T-cell expressed and secreted (RANTES/C-C motif ligand 5 CCL5). Neurons contain opioid receptors that transmit antipain reactions in the peripheral and central nervous system. Proinflammatory chemokines like RANTES/CCL5 desensitize μ-opioid receptors in the periphery sensory neurons and it has been suggested that RANTES modifies the nociceptive reaction. Materials and Methods. In 15 patients with AFP/TRN, we examined fatty degenerated jawbone (FDOJ) samples for the expression of seven cytokines by multiplex analysis and compared these results with healthy jawbones. Results. Each of these medullary jawbone samples exhibited RANTES as the only highly overexpressed cytokine. The FDOJ cohort with AFP/TRN showed a mean 30-fold overexpression of RANTES compared to healthy jawbones. Conclusions. To the best of our knowledge, no other research has identified RANTES overexpression in silent inflamed jawbones as a possible cause for AFP/TRN. Thus, we hypothesize that the surgical clearing of FDOJ might diminish RANTES signaling pathways in neurons and contribute to resolving chronic neurological pain in AFP/TRN patients.
Collapse
Affiliation(s)
- Johann Lechner
- Clinic for Integrative Dentistry, Gruenwalder Strasse 10A, 81547 Munich, Germany
| | - Volker von Baehr
- Medical Diagnostics-MVZ GbR, Nicolaistrasse 22, 12247 Berlin, Germany
| |
Collapse
|
12
|
Lechner J, von Baehr V. Chemokine RANTES/CCL5 as an unknown link between wound healing in the jawbone and systemic disease: is prediction and tailored treatments in the horizon? EPMA J 2015; 6:10. [PMID: 25987906 PMCID: PMC4435812 DOI: 10.1186/s13167-015-0032-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/25/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND This research elucidates the question of whether common and widespread dental procedures (DP) like root filling (RF) and the removal of wisdom teeth (WT) contribute to chronic inflammation in the jawbone. Dentists, in carrying out these DP, can set off defective wound healing in the jawbone in ignorance of its connection to inflammatory mediators and the possibility of it being a hidden cause of chronic systemic diseases (SYD). MATERIALS AND METHODS We examined samples of the jawbone for seven cytokines by multiplex analysis in three groups of jawbone areas. In order to clarify systemic interrelations, specimens from 16 patients were analyzed in areas of former surgery in the retromolar wisdom tooth area; specimens from 16 patients were analyzed in the jawbone, apically of teeth with RF; and specimens from 19 patients were of the healthy jawbone. Each of the retromolar and the apical jawbone samples showed clinically fatty degenerated and osteonecrotic medullary changes. RESULTS All fatty necrotic and osteolytic jawbone (FDOJ) samples showed regulated on activation, normal T-cell expressed and secreted (RANTES) and fibroblast growth factor (FGF)-2 as the only extremely overexpressed cytokines. FDOJ cohorts showed a 30-fold mean overexpression of RANTES and a 20-fold overexpressed level of FGF-2 when compared to healthy controls. CONCLUSIONS As RANTES is discussed in the literature as a possible contributor to inflammatory diseases, and though it might have oncogenic effects, we hypothesize that FDOJ in areas of improper and incomplete wound healing in the jawbone might act as hyperactivated signaling pathways, while serving as an unknown source of "silent inflammation". Because of the wide range of RANTES in immune diseases, treating FDOJ can cover many potential prediction or prognosis of individual outcomes.
Collapse
Affiliation(s)
- Johann Lechner
- Clinic for Integrative Dentistry, Gruenwalder Str. 10A, 81547 Munich, Germany
| | - Volker von Baehr
- Compartment of Immunology and Allergology, Institute for Medical Diagnostics, MVZ GbR, Nicolaistrasse 22, 12247 Berlin, Germany
| |
Collapse
|
13
|
Impellizzeri D, Esposito E, Di Paola R, Ahmad A, Campolo M, Peli A, Morittu VM, Britti D, Cuzzocrea S. Palmitoylethanolamide and luteolin ameliorate development of arthritis caused by injection of collagen type II in mice. Arthritis Res Ther 2014; 15:R192. [PMID: 24246048 PMCID: PMC3978572 DOI: 10.1186/ar4382] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/04/2013] [Indexed: 01/19/2023] Open
Abstract
Introduction N-palmitoylethanolamine (PEA) is an endogenous fatty acid amide belonging to the family of the N-acylethanolamines (NAEs). Recently, several studies demonstrated that PEA is an important analgesic, antiinflammatory, and neuroprotective mediator. The aim of this study was to investigate the effect of co-ultramicronized PEA + luteolin formulation on the modulation of the inflammatory response in mice subjected to collagen-induced arthritis (CIA). Methods CIA was induced by an intradermally injection of 100 μl of the emulsion (containing 100 μg of bovine type II collagen (CII)) and complete Freund adjuvant (CFA) at the base of the tail. On day 21, a second injection of CII in CFA was administered. Mice subjected to CIA were administered PEA (10 mg/kg 10% ethanol, intraperitoneally (i.p.)) or co-ultramicronized PEA + luteolin (1 mg/kg, i.p.) every 24 hours, starting from day 25 to 35. Results Mice developed erosive hind-paw arthritis when immunized with CII in CFA. Macroscopic clinical evidence of CIA first appeared as periarticular erythema and edema in the hindpaws. The incidence of CIA was 100% by day 28 in the CII-challenged mice, and the severity of CIA progressed over a 35-day period with a resorption of bone. The histopathology of CIA included erosion of the cartilage at the joint. Treatment with PEA or PEA + luteolin ameliorated the clinical signs at days 26 to 35 and improved histologic status in the joint and paw. The degree of oxidative and nitrosative damage was significantly reduced in PEA + luteolin-treated mice, as indicated by nitrotyrosine and malondialdehyde (MDA) levels. Plasma levels of the proinflammatory cytokines and chemokines were significantly reduced by PEA + luteolin treatment. Conclusions We demonstrated that PEA co-ultramicronized with luteolin exerts an antiinflammatory effect during chronic inflammation and ameliorates CIA.
Collapse
|
14
|
Leukocyte population dynamics and detection of IL-9 as a major cytokine at the mouse fetal-maternal interface. PLoS One 2014; 9:e107267. [PMID: 25259859 PMCID: PMC4178026 DOI: 10.1371/journal.pone.0107267] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 08/14/2014] [Indexed: 12/24/2022] Open
Abstract
Despite much interest in the mechanisms regulating fetal-maternal interactions, information on leukocyte populations and major cytokines present in uterus and placenta remains fragmentary. This report presents a detailed and quantitative study of leukocyte populations at the mouse fetal-maternal interface, including a comparison between pregnancies from syngeneic and allogeneic crosses. Our results provide evidence for drastic differences not only in the composition of leukocyte populations in the uterus during pregnancy, but also between uterine and placental tissues. Interestingly, we have observed a significant decrease in the number of myeloid Gr1+ cells including monocytes, and myeloid CD11c+ cells including DCs in placenta from an allogeneic pregnancy. In addition, we have compared the expression levels of a panel of cytokines in non-pregnant (NP) or pregnant mouse uterus, in placenta, or in their isolated resident leukocytes. Qualitative and quantitative differences have emerged between NP, pregnant uterus and placenta. Unexpectedly, IL-9 was the major cytokine in NP uterus, and was maintained at high levels during pregnancy both in uterus and placenta. Moreover, we have found that pregnancy is associated with an increase in uterine IL-1a and a significant decrease in uterine G-CSF and GM-CSF. Comparing allogeneic versus syngeneic pregnancy, less allogeneic placental pro-inflammatory cytokines CCL2 (MCP-1), CXCL10 (IP-10) and more IL1-α in whole uterus was reproducibly observed. To our knowledge, this is the first report showing a detailed overview of the leukocyte and cytokine repertoire in the uterus of virgin females and at the fetal-maternal interface, including a comparison between syngeneic and allogeneic pregnancy. This is also the first evidence for the presence of IL-9 in NP uterus and at the maternal-fetal interface, suggesting a major role in the regulation of local inflammatory or immune responses potentially detrimental to the conceptus.
Collapse
|
15
|
Lennard Richard ML, Sato S, Suzuki E, Williams S, Nowling TK, Zhang XK. The Fli-1 transcription factor regulates the expression of CCL5/RANTES. THE JOURNAL OF IMMUNOLOGY 2014; 193:2661-8. [PMID: 25098295 DOI: 10.4049/jimmunol.1302779] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The friend leukemia insertion site 1 (Fli-1) transcription factor, an Ets family member, is implicated in the pathogenesis of systemic lupus erythematosus in human patients and murine models of lupus. Lupus-prone mice with reduced Fli-1 expression have significantly less nephritis, prolonged survival, and decreased infiltrating inflammatory cells into the kidney. Inflammatory chemokines, including CCL5, are critical for attracting inflammatory cells. In this study, decreased CCL5 mRNA expression was observed in kidneys of lupus-prone NZM2410 mice with reduced Fli-1 expression. CCL5 protein expression was significantly decreased in endothelial cells transfected with Fli-1-specific small interfering RNA compared with controls. Fli-1 binds to endogenous Ets binding sites in the distal region of the CCL5 promoter. Transient transfection assays demonstrate that Fli-1 drives transcription from the CCL5 promoter in a dose-dependent manner. Both Ets1, another Ets family member, and Fli-1 drive transcription from the CCL5 promoter, although Fli-1 transactivation was significantly stronger. Ets1 acts as a dominant-negative transcription factor for Fli-1, indicating that they may have at least one DNA binding site in common. Systematic deletion of DNA binding sites demonstrates the importance of the sites located within a 225-bp region of the promoter. Mutation of the Fli-1 DNA binding domain significantly reduces transactivation of the CCL5 promoter by Fli-1. We identified a novel regulator of transcription for CCL5. These results suggest that Fli-1 is a novel and critical regulator of proinflammatory chemokines and affects the pathogenesis of disease through the regulation of factors that recruit inflammatory cells to sites of inflammation.
Collapse
Affiliation(s)
- Mara L Lennard Richard
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425; and
| | - Shuzo Sato
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425; and
| | - Eiji Suzuki
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425; and
| | - Sarah Williams
- Medical Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403
| | - Tamara K Nowling
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425; and Medical Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403
| | - Xian K Zhang
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425; and Medical Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403
| |
Collapse
|
16
|
Nielsen N, Pascal V, Fasth AER, Sundström Y, Galsgaard ED, Ahern D, Andersen M, Baslund B, Bartels EM, Bliddal H, Feldmann M, Malmström V, Berg L, Spee P, Söderström K. Balance between activating NKG2D, DNAM-1, NKp44 and NKp46 and inhibitory CD94/NKG2A receptors determine natural killer degranulation towards rheumatoid arthritis synovial fibroblasts. Immunology 2014; 142:581-93. [PMID: 24673109 PMCID: PMC4107668 DOI: 10.1111/imm.12271] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 01/30/2014] [Accepted: 02/03/2014] [Indexed: 12/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation and synovial hyperplasia leading to progressive joint destruction. Fibroblast-like synoviocytes (FLS) are central components of the aggressive, tumour-like synovial structure termed pannus, which invades the joint space and cartilage. A distinct natural killer (NK) cell subset expressing the inhibitory CD94/NKG2A receptor is present in RA synovial fluid. Little is known about possible cellular interactions between RA-FLS and NK cells. We used cultured RA-FLS and the human NK cell line Nishi, of which the latter expresses an NK receptor repertoire similar to that of NK cells in RA synovial fluid, as an in vitro model system of RA-FLS/NK cell cross-talk. We show that RA-FLS express numerous ligands for both activating and inhibitory NK cell receptors, and stimulate degranulation of Nishi cells. We found that NKG2D, DNAM-1, NKp46 and NKp44 are the key activating receptors involved in Nishi cell degranulation towards RA-FLS. Moreover, blockade of the interaction between CD94/NKG2A and its ligand HLA-E expressed on RA-FLS further enhanced Nishi cell degranulation in co-culture with RA-FLS. Using cultured RA-FLS and the human NK cell line Nishi as an in vitro model system of RA-FLS/NK cell cross-talk, our results suggest that cell-mediated cytotoxicity of RA-FLS may be one mechanism by which NK cells influence local joint inflammation in RA.
Collapse
MESH Headings
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Cell Degranulation/immunology
- Cell Line
- Female
- Fibroblasts/immunology
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Histocompatibility Antigens Class I/biosynthesis
- Histocompatibility Antigens Class I/immunology
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/pathology
- Male
- NK Cell Lectin-Like Receptor Subfamily C/immunology
- NK Cell Lectin-Like Receptor Subfamily C/metabolism
- NK Cell Lectin-Like Receptor Subfamily D/immunology
- NK Cell Lectin-Like Receptor Subfamily D/metabolism
- NK Cell Lectin-Like Receptor Subfamily K/immunology
- NK Cell Lectin-Like Receptor Subfamily K/metabolism
- Natural Cytotoxicity Triggering Receptor 1/immunology
- Natural Cytotoxicity Triggering Receptor 1/metabolism
- Natural Cytotoxicity Triggering Receptor 2/immunology
- Natural Cytotoxicity Triggering Receptor 2/metabolism
- Synovial Membrane/immunology
- Synovial Membrane/metabolism
- Synovial Membrane/pathology
- Up-Regulation/immunology
- HLA-E Antigens
Collapse
Affiliation(s)
- Natasja Nielsen
- Department of Translational Immunology, Novo Nordisk A/SMåløv, Denmark
| | - Veronique Pascal
- Department of Translational Immunology, Novo Nordisk A/SMåløv, Denmark
| | - Andreas E R Fasth
- Rheumatology Unit, Department of Medicine, Karolinska University HospitalStockholm, Sweden
| | - Yvonne Sundström
- Rheumatology Unit, Department of Medicine, Karolinska University HospitalStockholm, Sweden
| | | | - David Ahern
- Kennedy Institute of Rheumatology, University of OxfordLondon, UK
| | - Martin Andersen
- Department of Translational Immunology, Novo Nordisk A/SMåløv, Denmark
- The Parker Institute, Department of Rheumatology, Copenhagen University HospitalFrederiksberg, Denmark
| | - Bo Baslund
- Department of Rheumatology, Rigshospitalet, Copenhagen University HospitalCopenhagen, Denmark
| | - Else M Bartels
- The Parker Institute, Department of Rheumatology, Copenhagen University HospitalFrederiksberg, Denmark
| | - Henning Bliddal
- The Parker Institute, Department of Rheumatology, Copenhagen University HospitalFrederiksberg, Denmark
- Faculty of Health Sciences, University of CopenhagenCopenhagen, Denmark
| | - Marc Feldmann
- Kennedy Institute of Rheumatology, University of OxfordLondon, UK
| | - Vivianne Malmström
- Rheumatology Unit, Department of Medicine, Karolinska University HospitalStockholm, Sweden
| | - Louise Berg
- Rheumatology Unit, Department of Medicine, Karolinska University HospitalStockholm, Sweden
| | - Pieter Spee
- Department of Translational Immunology, Novo Nordisk A/SMåløv, Denmark
| | - Kalle Söderström
- Department of Translational Immunology, Novo Nordisk A/SMåløv, Denmark
- Kennedy Institute of Rheumatology, University of OxfordLondon, UK
| |
Collapse
|
17
|
Regulation of chemokine CCL5 synthesis in human peritoneal fibroblasts: a key role of IFN-γ. Mediators Inflamm 2014; 2014:590654. [PMID: 24523572 PMCID: PMC3913084 DOI: 10.1155/2014/590654] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/08/2013] [Accepted: 12/12/2013] [Indexed: 01/11/2023] Open
Abstract
Peritonitis is characterized by a coordinated influx of various leukocyte subpopulations. The pattern of leukocyte recruitment is controlled by chemokines secreted primarily by peritoneal mesothelial cells and macrophages. We have previously demonstrated that some chemokines may be also produced by human peritoneal fibroblasts (HPFB). Aim of our study was to assess the potential of HPFB in culture to release CCL5, a potent chemoattractant for mononuclear leukocytes. Quiescent HPFB released constitutively no or trace amounts of CCL5. Stimulation of HPFB with IL-1β and TNF-α resulted in a time- (up to 96 h) and dose-dependent increase in CCL5 expression and release. IFN-γ alone did not induce CCL5 secretion over a wide range of concentrations (0.01–100 U/mL). However, it synergistically amplified the effects of TNF-α and IL-1β through upregulation of CCL5 mRNA. Moreover, pretreatment of cells with IFN-γ upregulated CD40 receptor, which enabled HPFB to respond to a recombinant ligand of CD40 (CD40L). Exposure of IFN-γ-treated HPFB, but not of control cells, to CD40L resulted in a dose-dependent induction of CCL5. These data demonstrate that HPFB synthesise CCL5 in response to inflammatory mediators present in the inflamed peritoneal cavity. HPFB-derived CCL5 may thus contribute to the intraperitoneal recruitment of mononuclear leukocytes during peritonitis.
Collapse
|
18
|
Balasubramanian PK, Balupuri A, Kothandan G, Cho SJ. In silico study of 1-(4-Phenylpiperazin-1-yl)-2-(1H-pyrazol-1-yl) ethanones derivatives as CCR1 antagonist: homology modeling, docking and 3D-QSAR approach. Bioorg Med Chem Lett 2013; 24:928-33. [PMID: 24424131 DOI: 10.1016/j.bmcl.2013.12.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 12/04/2013] [Accepted: 12/17/2013] [Indexed: 11/30/2022]
Abstract
C-C chemokine receptor type 1 (CCR1) is a chemokine receptor with seven transmembrane helices and it belongs to the G-Protein Coupled receptor (GPCR) family. It plays an important role in rheumatoid arthritis, organ transplant rejection, Alzheimer's disease and also causes inflammation. Because of its role in disease processes, CCR1 is considered to be an important drug target. In the present study, we have performed three dimensional Quantitative Structure activity relationship (3D-QSAR) studies on a series of 1-(4-Phenylpiperazin-1-yl)-2-(1H-pyrazol-1-yl) ethanone derivatives targeting CCR1. Homology modeling of CCR1 was performed based on a template structure (4EA3) which has a high sequence identity and resolution. The highest active molecule was docked into this model. Ligand-based and Receptor-based quantitative structure-activity relationship (QSAR) study was performed and CoMFA models with reasonable statistics was developed for both ligand-based (q(2)=0.606; r(2)=0.968) and receptor-guided (q(2)=0.640; r(2)=0.932) alignment methods. Contour map analyses identified favorable regions for high affinity binding. The docking results highlighted the important active site residues. Tyr113 was found to interact with the ligand through hydrogen bonding. This residue has been considered responsible for anchoring ligands inside the active site. Our results could also be helpful to understand the inhibitory mechanism of 1-(4-Phenylpiperazin-1-yl)-2-(1H-pyrazol-1-yl) ethanone derivatives thereby to design more effective ligands in the future.
Collapse
Affiliation(s)
- Pavithra K Balasubramanian
- Department of Bio-New Drug Development, College of Medicine, Chosun University, Gwangju 501-759, Republic of Korea
| | - Anand Balupuri
- Department of Bio-New Drug Development, College of Medicine, Chosun University, Gwangju 501-759, Republic of Korea
| | - Gugan Kothandan
- Department of Bio-New Drug Development, College of Medicine, Chosun University, Gwangju 501-759, Republic of Korea
| | - Seung Joo Cho
- Department of Bio-New Drug Development, College of Medicine, Chosun University, Gwangju 501-759, Republic of Korea; Department of Cellular Molecular Medicine, College of Medicine, Chosun University, 375 Seosuk-dong, Dong-gu, Gwangju 501-759, Republic of Korea.
| |
Collapse
|
19
|
Duncan FJ, Silva KA, Johnson C, King B, Szatkiewicz JP, Kamdar S, Ong DE, Napoli JL, Wang J, King LE, Whiting DA, McElwee KJ, Sundberg JP, Everts HB. Endogenous retinoids in the pathogenesis of alopecia areata. J Invest Dermatol 2013; 133:334-43. [PMID: 23014334 PMCID: PMC3546144 DOI: 10.1038/jid.2012.344] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Alopecia areata (AA) is an autoimmune disease that attacks anagen hair follicles. Gene array in graft-induced C3H/HeJ mice revealed that genes involved in retinoic acid (RA) synthesis were increased, whereas RA degradation genes were decreased in AA compared with sham controls. This was confirmed by immunohistochemistry in biopsies from patients with AA and both mouse and rat AA models. RA levels were also increased in C3H/HeJ mice with AA. C3H/HeJ mice were fed a purified diet containing one of the four levels of dietary vitamin A or an unpurified diet 2 weeks before grafting and disease progression followed. High vitamin A accelerated AA, whereas mice that were not fed vitamin A had more severe disease by the end of the study. More hair follicles were in anagen in mice fed high vitamin A. Both the number and localization of granzyme B-positive cells were altered by vitamin A. IFNγ was also the lowest and IL13 highest in mice fed high vitamin A. Other cytokines were reduced and chemokines increased as the disease progressed, but no additional effects of vitamin A were seen. Combined, these results suggest that vitamin A regulates both the hair cycle and immune response to alter the progression of AA.
Collapse
Affiliation(s)
- F. Jason Duncan
- Department of Nutrition, The Ohio State University, Columbus, OH
| | | | - Charles Johnson
- Department of Nutrition, The Ohio State University, Columbus, OH
| | | | | | | | - David E. Ong
- Vanderbilt University Medical Center, Nashville, TN
| | | | | | | | | | | | - John P. Sundberg
- The Jackson Laboratory, Bar Harbor, ME
- Vanderbilt University Medical Center, Nashville, TN
| | - Helen B. Everts
- Department of Nutrition, The Ohio State University, Columbus, OH
| |
Collapse
|
20
|
White GE, Iqbal AJ, Greaves DR. CC chemokine receptors and chronic inflammation--therapeutic opportunities and pharmacological challenges. Pharmacol Rev 2013; 65:47-89. [PMID: 23300131 DOI: 10.1124/pr.111.005074] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chemokines are a family of low molecular weight proteins with an essential role in leukocyte trafficking during both homeostasis and inflammation. The CC class of chemokines consists of at least 28 members (CCL1-28) that signal through 10 known chemokine receptors (CCR1-10). CC chemokine receptors are expressed predominantly by T cells and monocyte-macrophages, cell types associated predominantly with chronic inflammation occurring over weeks or years. Chronic inflammatory diseases including rheumatoid arthritis, atherosclerosis, and metabolic syndrome are characterized by continued leukocyte infiltration into the inflammatory site, driven in large part by excessive chemokine production. Over years or decades, persistent inflammation may lead to loss of tissue architecture and function, causing severe disability or, in the case of atherosclerosis, fatal outcomes such as myocardial infarction or stroke. Despite the existence of several clinical strategies for targeting chronic inflammation, these diseases remain significant causes of morbidity and mortality globally, with a concomitant economic impact. Thus, the development of novel therapeutic agents for the treatment of chronic inflammatory disease continues to be a priority. In this review we introduce CC chemokine receptors as critical mediators of chronic inflammatory responses and explore their potential role as pharmacological targets. We discuss functions of individual CC chemokine receptors based on in vitro pharmacological data as well as transgenic animal studies. Focusing on three key forms of chronic inflammation--rheumatoid arthritis, atherosclerosis, and metabolic syndrome--we describe the pathologic function of CC chemokine receptors and their possible relevance as therapeutic targets.
Collapse
Affiliation(s)
- Gemma E White
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
21
|
|
22
|
Chao PZ, Hsieh MS, Cheng CW, Lin YF, Chen CH. Regulation of MMP-3 expression and secretion by the chemokine eotaxin-1 in human chondrocytes. J Biomed Sci 2011; 18:86. [PMID: 22114952 PMCID: PMC3262051 DOI: 10.1186/1423-0127-18-86] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 11/25/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is characterized by the degradation of articular cartilage, marked by the breakdown of matrix proteins. Studies demonstrated the involvement of chemokines in this process, and some may potentially serve as diagnostic markers and therapeutic targets; however, the underlying signal transductions are not well understood. METHODS We investigated the effects of the CC chemokine eotaxin-1 (CCL11) on the matrix metalloproteinase (MMP) expression and secretion in the human chondrocyte cell line SW1353 and primary chondrocytes. RESULTS Eotaxin-1 significantly induced MMP-3 mRNA expression in a dose-dependent manner. Inhibitors of extracellular signal-regulated kinase (ERK) and p38 kinase were able to repress eotaxin-1-induced MMP-3 expression. On the contrary, Rp-adenosine-3',5'-cyclic monophosphorothioate (Rp-cAMPs), a competitive cAMP antagonist for cAMP receptors, and H-89, a protein kinase A (PKA) inhibitor, markedly enhanced eotaxin-1-induced MMP-3 expression. These results suggest that MMP-3 expression is specifically mediated by the G protein-coupled eotaxin-1 receptor activities. Interestingly, little amount of MMP-3 protein was detected in the cell lysates of eotaxin-1-treated SW1353 cells, and most of MMP-3 protein was in the culture media. Furthermore we found that the eotaxin-1-dependent MMP-3 protein secretion was regulated by phospholipase C (PLC)-protein kinase C (PKC) cascade and c-Jun N-terminal kinase (JNK)/mitogen-activated protein (MAP) kinase pathways. These data indicate a specific regulation of MMP-3 secretion also by eotaxin-1 receptor activities. CONCLUSIONS Eotaxin-1 not only induces MMP-3 gene expression but also promotes MMP-3 protein secretion through G protein-coupled eotaxin-1 receptor activities. Chemokines, such as eotaxin-1, could be a potential candidate in the diagnosis and treatment of arthritis.
Collapse
Affiliation(s)
- Pin-Zhir Chao
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
23
|
Anti-CXCL5 therapy ameliorates IL-17-induced arthritis by decreasing joint vascularization. Angiogenesis 2011; 14:443-55. [PMID: 21779896 DOI: 10.1007/s10456-011-9227-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 07/09/2011] [Indexed: 12/23/2022]
Abstract
IL-17-induced joint inflammation is associated with increased angiogenesis. However, the mechanism by which IL-17 mediates angiogenesis is undefined. Therefore, the pathologic role of CXCL1 and CXCL5 was investigated in arthritis mediated by local expression of IL-17, employing a neutralizing antibody to each chemokine. Next, endothelial chemotaxis was utilized to examine whether endothelial migration was differentially mediated by CXCL1 and CXCL5. Our results demonstrate that IL-17-mediated disease activity was not affected by anti-CXCL1 treatment alone. In contrast, mice receiving anti-CXCL5 demonstrated significantly reduced clinical signs of arthritis, compared to the mice treated with IgG control. Consistently, while inflammation, synovial lining thickness, bone erosion and vascularization were markedly reduced in both the anti-CXCL5 and combination anti-CXCL1 and 5 treatment groups, mice receiving anti-CXCL1 antibody had clinical scores similar to the control group. In contrast to joint FGF2 and VEGF levels, TNF-α was significantly reduced in mice receiving anti-CXCL5 or combination of anti-CXCL1 and 5 therapies compared to the control group. We found that, like IL-17, CXCL1-induced endothelial migration is mediated through activation of PI3K. In contrast, activation of NF-κB pathway was essential for endothelial chemotaxis induced by CXCL5. Although CXCL1 and CXCL5 can differentially mediate endothelial trafficking, blockade of CXCR2 can inhibit endothelial chemotaxis mediated by either of these chemokines. These results suggest that blockade of CXCL5 can modulate IL-17-induced inflammation in part by reducing joint blood vessel formation through a non-overlapping IL-17 mechanism.
Collapse
|
24
|
RANTES deficiency attenuates autoantibody-induced glomerulonephritis. J Clin Immunol 2010; 31:128-35. [PMID: 20886281 DOI: 10.1007/s10875-010-9470-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 09/14/2010] [Indexed: 10/19/2022]
Abstract
Experimental autoimmune nephritis in mice and spontaneous lupus nephritis are both associated with elevated expression of several chemokines in the kidneys. Nevertheless, the role that different chemokines play in mediating renal inflammation is far from complete. This study focuses on elucidating the functional role of RANTES, a chemokine that has been noted to be hyper-expressed within the kidneys, both in experimental renal disease as well as in spontaneous lupus nephritis. To elucidate if RANTES was essential for immune-mediated glomerulonephritis, DBA/1 mice that are highly sensitive to nephrotoxic serum nephritis were rendered RANTES-deficient and then tested for disease susceptibility. Nephritis-sensitive DBA/1 mice expressed more RANTES within the diseased kidneys. Compared to wild-type DBA/1 mice, RANTES-deficient DBA/1 mice developed significantly less proteinuria, azotemia, and renal inflammation, with reduced crescent formation and tubulo-interstitial nephritis. These findings indicate that RANTES ablation attenuates immune-mediated nephritis and suggest that this chemokine could be a potential therapeutic target in these diseases.
Collapse
|
25
|
Lechner J, Mayer W. Immune messengers in Neuralgia Inducing Cavitational Osteonecrosis (NICO) in jaw bone and systemic interference. Eur J Integr Med 2010. [DOI: 10.1016/j.eujim.2010.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Abstract
Dendritic cells (DCs) are key regulators of the immune system. They act as professional antigen-presenting cells and are capable of activating naive T cells and stimulating the growth and differentiation of B cells. According to their molecular expression, DCs can be divided into several subsets with different functions. We focus on DC subsets expressing langerin, a C-type lectin. Langerin expression is predominant in skin DCs, but langerin-expressing DCs also exist in mucosal tissue and can be induced by immunization and sometimes by nutrient deficiency. Topical transcutaneous immunization induces langerin(+)CD8 alpha(-) DCs in mesenteric lymph nodes (MLNs), which mediate the production of antigen-specific immunoglobulin A antibody in the intestine. Yet, in one recent study, langerin(+) DCs were generated in gut-associated lymphoid tissue and contributed to the suppressive intestinal immune environment in the absence of retinoic acid. In this review, we focus on the phenotypic and functional characteristics of langerin(+) DCs in the mucosal tissues, especially MLNs.
Collapse
Affiliation(s)
- Sun-Young Chang
- Mucosal Immunology Section, Laboratory Science Division, International Vaccine Institute, Seoul, Korea
| | | |
Collapse
|
27
|
Kuan WP, Tam LS, Wong CK, Ko FWS, Li T, Zhu T, Li EK. CXCL 9 and CXCL 10 as Sensitive markers of disease activity in patients with rheumatoid arthritis. J Rheumatol 2009; 37:257-64. [PMID: 20032101 DOI: 10.3899/jrheum.090769] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To assess whether serum levels of CC and CXC chemokines correlate with disease activity in patients with rheumatoid arthritis (RA), and to determine whether these effects predict clinical response. METHODS Serum levels of the chemokines CC (CCL2, CCL5) and CXC (CXCL8, CXCL9, CXCL10) were quantified at baseline and after 12 weeks of treatment with disease-modifying antirheumatic drugs or biologic agents in 28 patients using flow cytometry. Serum from 40 healthy individuals was collected for comparison at baseline. Response to treatment was classified according to the European League Against Rheumatism (EULAR) response criteria. Remission of disease was defined as a Disease Activity Score < 2.6. RESULTS The baseline serum concentrations of CC and CXC chemokines were significantly elevated in patients with active RA compared to healthy controls (p < 0.05) except for CCL2. Significant improvement in all disease activity measurements was observed after 12 weeks of treatment. Seventeen (60.7%) patients achieved good to moderate response based on the EULAR response criteria, and 5 (17.9%) patients achieved remission. The improvement in clinical activity in patients with RA was accompanied by a significant reduction in the serum concentration of CXCL9 and CXCL10 (p < 0.001). A significant reduction in the serum level of CXCL10 was also observed in the group that achieved EULAR response. Serum concentration of CCL5 remained significantly elevated in patients with RA (n = 5) who achieved remission compared to the healthy controls (p < 0.05). CONCLUSION Serum concentration of CXCL9 and CXCL10 may serve as sensitive biomarkers for disease activity in patients with RA.
Collapse
Affiliation(s)
- Woon Pang Kuan
- Department of Rheumatology, Hospital Selayang, Selangor, Malaysia
| | | | | | | | | | | | | |
Collapse
|
28
|
Portalès P, Fabre S, Vincent T, Desmetz C, Réant B, Noël D, Clot J, Jorgensen C, Corbeau P. Peripheral blood T4 cell surface CCR5 density as a marker of activity in rheumatoid arthritis treated with anti-CD20 monoclonal antibody. Immunology 2009; 128:e738-45. [PMID: 19740335 DOI: 10.1111/j.1365-2567.2009.03076.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The chemokine (C-C motif) receptor CCR5 and its ligand CCL5 play key roles in the intra-articular recruitment of peripheral blood mononuclear cells (PBMC) in rheumatoid arthritis (RA). Therefore, using quantitative cytofluorometry, we followed T4 cell surface CCR5 density in 27 subjects with RA before and after treatment with the anti-CD20 monoclonal antibody rituximab. We observed low T4 cell surface CCR5 densities before treatment, which correlated positively with disease activity, as determined using a disease activity score evaluated on 28 joints (DAS 28), and negatively with CCL5 mRNA concentrations in PBMC, contrasting with a high proportion of intracellular CCR5 molecules, a pattern compatible with ligand-induced CCR5 internalization. At 3 months post-treatment, CCL5 mRNA expression in PBMC declined, whereas T4 cell surface CCR5 densities increased proportionally to the decrease in DAS 28. Thus, peripheral blood T4 cell surface CCR5 density is a good surrogate marker of RA activity and of the efficiency of anti-CD20 therapy.
Collapse
Affiliation(s)
- Pierre Portalès
- Laboratoire d'Immunologie de l'Hôpital Saint Eloi, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
This article reviews the main lines of thinking and exploration that have led to our current conception of the role of IFN-gamma in immune defense and autoimmunity. In 1965 the first report appeared describing production of an interferon-like virus inhibitor in cultured human leukocytes following exposure to the mitogen phytohemagglutinin. In the early 1970s the active principle became recognized as being distinct from classical virus-induced interferons, leading to its designation as immune interferon or Type II interferon, and eventually IFN-gamma. Up to that point interest in the factor had come almost exclusively from virologists, in particular those among them who were believers in interferon. Evidence first coming forward in the 1980s that IFN-gamma is indistinguishable from macrophage-activating factor (MAF), then a prototype lymphokine, was the signal for immunologists at large to become interested. Today IFN-gamma ranks among the most important endogenous regulators of immune responses.
Collapse
Affiliation(s)
- Alfons Billiau
- Rega Institute, University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | | |
Collapse
|
30
|
Boost KA, Sadik CD, Bachmann M, Zwissler B, Pfeilschifter J, Mühl H. IFN-gamma impairs release of IL-8 by IL-1beta-stimulated A549 lung carcinoma cells. BMC Cancer 2008; 8:265. [PMID: 18801189 PMCID: PMC2556346 DOI: 10.1186/1471-2407-8-265] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 09/18/2008] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Production of interferon (IFN)-gamma is key to efficient anti-tumor immunity. The present study was set out to investigate effects of IFNgamma on the release of the potent pro-angiogenic mediator IL-8 by human A549 lung carcinoma cells. METHODS A549 cells were cultured and stimulated with interleukin (IL)-1beta alone or in combination with IFNgamma. IL-8 production by these cells was analyzed with enzyme linked immuno sorbent assay (ELISA). mRNA-expression was analyzed by real-time PCR and RNase protection assay (RPA), respectively. Expression of inhibitor-kappa Balpha, cellular IL-8, and cyclooxygenase-2 was analyzed by Western blot analysis. RESULTS Here we demonstrate that IFNgamma efficiently reduced IL-8 secretion under the influence of IL-1beta. Surprisingly, real-time PCR analysis and RPA revealed that the inhibitory effect of IFNgamma on IL-8 was not associated with significant changes in mRNA levels. These observations concurred with lack of a modulatory activity of IFNgamma on IL-1beta-induced NF-kappaB activation as assessed by cellular IkappaB levels. Moreover, analysis of intracellular IL-8 suggests that IFNgamma modulated IL-8 secretion by action on the posttranslational level. In contrast to IL-8, IL-1beta-induced cyclooxygenase-2 expression and release of IL-6 were not affected by IFNgamma indicating that modulation of IL-1beta action by this cytokine displays specificity. CONCLUSION Data presented herein agree with an angiostatic role of IFNgamma as seen in rodent models of solid tumors and suggest that increasing T helper type 1 (Th1)-like functions in lung cancer patients e.g. by local delivery of IFNgamma may mediate therapeutic benefit via mechanisms that potentially include modulation of pro-angiogenic IL-8.
Collapse
Affiliation(s)
- Kim A Boost
- Klinik für Anaesthesiologie, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377 Munich, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Shahrara S, Proudfoot AEI, Park CC, Volin MV, Haines GK, Woods JM, Aikens CH, Handel TM, Pope RM. Inhibition of monocyte chemoattractant protein-1 ameliorates rat adjuvant-induced arthritis. THE JOURNAL OF IMMUNOLOGY 2008; 180:3447-56. [PMID: 18292571 DOI: 10.4049/jimmunol.180.5.3447] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chemokines, including RANTES/CCL5 and MCP-1/CCL2, are highly expressed in the joints of patients with rheumatoid arthritis, and they promote leukocyte migration into the synovial tissue. This study was conducted to determine whether the inhibition of RANTES and MCP-1 therapeutically was capable of ameliorating rat of adjuvant-induced arthritis (AIA). Postonset treatment of AIA using a novel inhibitor for endogenous MCP-1 (P8A-MCP-1) improved clinical signs of arthritis and histological scores measuring joint destruction, synovial lining, macrophage infiltration, and bone erosion. Using immunohistochemistry, ELISA, real-time RT-PCR, and Western blot analysis, we defined joint inflammation, bony erosion, monocyte migration, proinflammatory cytokines, and bone markers, and p-p38 levels were reduced in rat AIA treated with P8A-MCP-1. In contrast, neither the dominant-negative inhibitor for endogenous RANTES (44AANA47-RANTES) nor the CCR1/CCR5 receptor antagonist, methionylated-RANTES, had an effect on clinical signs of arthritis when administered after disease onset. Additionally, therapy with the combination of 44AANA47-RANTES plus P8A-MCP-1 did not ameliorate AIA beyond the effect observed using P8A-MCP-1 alone. Treatment with P8A-MCP-1 reduced joint TNF-alpha, IL-1beta, and vascular endothelial growth factor levels. P8A-MCP-1 also decreased p38 MAPK activation in the joint. Our results indicate that inhibition of MCP-1 with P8A-MCP-1 after the onset of clinically detectable disease ameliorates AIA and decreases macrophage accumulation, cytokine expression, and p38 MAPK activation within the joint.
Collapse
Affiliation(s)
- Shiva Shahrara
- Department of Medicine, Division of Rheumatology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ospelt C, Gay S. The role of resident synovial cells in destructive arthritis. Best Pract Res Clin Rheumatol 2008; 22:239-52. [PMID: 18455682 DOI: 10.1016/j.berh.2008.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Infiltration by inflammatory cells, thickening of the lining layer, and destructive invasion into cartilage and bone are pathognomic features of the synovium in rheumatoid arthritis (RA). However, the most common cell types at the sites of invasion are resident cells of the joint, in particular synovial fibroblasts. These cells differ from healthy synovial fibroblasts in their morphology, their expression of proto-oncogenes and antiapoptotic molecules, and in their lack of certain tumor suppressor genes. Through their production of proinflammatory cytokines and chemokines mediated by signaling via Toll-like receptors, they are not only effector cells but also active parts of the innate immune system attracting inflammatory immune cells to the synovium. Most importantly, by producing matrix-degrading molecules they contribute strongly to the destructive mechanisms operative in RA.
Collapse
Affiliation(s)
- Caroline Ospelt
- Center of Experimental Rheumatology, University Hospital Zurich and Zurich Center of Integrative Human Physiology, Gloriastrasse 23, CH-8091 Zürich, Switzerland
| | | |
Collapse
|
33
|
Iwamoto T, Okamoto H, Toyama Y, Momohara S. Molecular aspects of rheumatoid arthritis: chemokines in the joints of patients. FEBS J 2008; 275:4448-55. [DOI: 10.1111/j.1742-4658.2008.06580.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
|
35
|
Bakshi S, Zhang X, Godoy-Tundidor S, Cheng RYS, Sartor MA, Medvedovic M, Ho SM. Transcriptome analyses in normal prostate epithelial cells exposed to low-dose cadmium: oncogenic and immunomodulations involving the action of tumor necrosis factor. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:769-76. [PMID: 18560533 PMCID: PMC2430233 DOI: 10.1289/ehp.11215] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 03/03/2008] [Indexed: 05/26/2023]
Abstract
BACKGROUND Cadmium is implicated in prostate carcinogenesis, but its oncogenic action remains unclear. OBJECTIVES In this study we aimed to decipher changes in cell growth and the transcriptome in an immortalized human normal prostate epithelial cell line (NPrEC) following exposure to low-dose Cd. METHODS Synchronized NPrEC cells were exposed to different doses of Cd and assayed for cell viability and cell-cycle progression. We investigated changes in transcriptome by global profiling and used Ingenuity Pathways Analysis software to develop propositions about functional connections among differentially expressed genes. A neutralizing antibody was used to negate the effect of Cd-induced up-regulation of tumor necrosis factor (TNF) in NPrEC cells. RESULTS Exposure of NPrEC to 2.5 microM Cd enhanced cell viability and accelerated cell-cycle progression. Global expression profiling identified 48 genes that exhibited >or= 1.5-fold changes in expression after 4, 8, 16, and 32 hr of Cd treatment. Pathway analyses inferred a functional connection among 35 of these genes in one major network, with TNF as the most prominent node. Fourteen of the 35 genes are related to TNF, and 11 exhibited an average of >2-fold changes in gene expression. Real-time reverse transcriptase-polymerase chain reaction confirmed the up-regulation of 7 of the 11 genes (ADAM8, EDN1, IL8, IL24, IL13RA2, COX2/PTGS2, and SERPINB2) and uncovered a 28-fold transient increase in TNF expression in Cd-treated NPrEC cells. A TNF-neutralizing antibody effectively blocked Cd-induced elevations in the expression of these genes. CONCLUSIONS Noncytotoxic, low-dose Cd has growth-promoting effects on NPrEC cells and induces transient overexpression of TNF, leading to up-regulation of genes with oncogenic and immunomodulation functions.
Collapse
Affiliation(s)
- Shlomo Bakshi
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, and
| | - Xiang Zhang
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, and
- Cancer Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sonia Godoy-Tundidor
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, and
| | - Robert Yuk Sing Cheng
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, and
| | - Maureen A. Sartor
- Center for Environmental Genetics, and
- Division of Biostatistics and Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mario Medvedovic
- Center for Environmental Genetics, and
- Division of Biostatistics and Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Shuk-Mei Ho
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, and
- Cancer Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Environmental Genetics, and
| |
Collapse
|
36
|
Horuk R, Peiper SC. Review Biologicals & Immunologicals; The Chemokine Receptor Family. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.5.11.1185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Ye XJ, Tang B, Ma Z, Zhou J, Myers LK, Kang AH, Cremer MA. The effects of interleukin-18 on rat articular chondrocytes: a study of mRNA expression and protein synthesis of proinflammatory substances. Clin Exp Immunol 2007; 149:553-60. [PMID: 17623049 PMCID: PMC2219335 DOI: 10.1111/j.1365-2249.2007.03447.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Interleukin (IL)-18 is a potent stimulator of immunity and augments the severity of type II collagen-induced arthritis (CIA) in rats and mice by enhancing T helper 1 (Th1) cell activation, which increases the production of proinflammatory cytokines and arthritogenic antibodies. In this study, we show that recombinant IL-18 (rIL-18) also has a direct effect on normal rat chondrocytes maintained in vitro inducing them to produce proinflammatory factors including IL-6, regulated upon activation normal T cell expressed and secreted (RANTES), prostaglandin E(2) (PGE(2)) and prostaglandin F(2alpha) (PGF(2alpha)) in a dose- and time-dependent manner. The production of matrix metalloproteinase (MMP)-13, nitric oxide (NO), tumour necrosis factor (TNF)-alpha and IL-1beta were also enhanced, although less intensely. Neutralizing polyclonal anti-rIL-18 antibodies effectively blocked the production of IL-6, PGE(2) and RANTES, as well as mRNA expression for the same products in addition to IL-18 and TNF-alpha. In contrast, neutralizing antibodies to IL-1beta, TNF-alpha and IL-6 were ineffective in suppressing any of these products. Together, these findings suggest that IL-18 may play an important, possibly direct, role in mediating cartilage injury, which might not be amenable to treatment with currently utilized anti-cytokine agents. These findings suggest further that IL-18 antagonists might prove beneficial as anti-inflammatory and chondroprotective agents in the treatment of arthritis, and that the development of such agents for human use is worth consideration.
Collapse
Affiliation(s)
- X J Ye
- Department of Medicine, University of Tennessee Health Science Centers, Memphis, TN, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Desmetz C, Lin YL, Mettling C, Portalès P, Noël D, Clot J, Jorgensen C, Corbeau P. Cell surface CCR5 density determines the intensity of T cell migration towards rheumatoid arthritis synoviocytes. Clin Immunol 2007; 123:148-54. [PMID: 17363330 DOI: 10.1016/j.clim.2007.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 12/21/2006] [Accepted: 01/10/2007] [Indexed: 11/19/2022]
Abstract
As we have recently shown that the number of CCR5 molecules at the cell surface determines the efficiency of its function as a chemokine receptor, we tested the hypothesis that cell surface CCR5 density could influence the intensity of T lymphocyte recruitment into the rheumatoid joint. For this purpose, we established two Jurkat cell line-derived clones that differed only by their cell surface CCR5 densities. We studied their chemotaxis towards TNF-alpha-transduced rheumatoid synoviocytes supernatant. The Jurkat cell subline that expressed the higher cell surface CCR5 density migrated more intensively towards the supernatant of TNF-alpha-transduced synoviocytes than the Jurkat cell subline that expressed a lower surface CCR5 density. Moreover, this migration was blocked by an anti-CCR5 mAb. The CCR5 density on T cell surface, which is constant over time for a given individual, but varies drastically from one individual to another, might thus be a factor determining the intensity of joint inflammation in the course of RA.
Collapse
MESH Headings
- Antibodies, Monoclonal/pharmacology
- Arthritis, Rheumatoid/pathology
- Cell Movement/drug effects
- Cell Movement/physiology
- Cells, Cultured
- Chemokine CCL5
- Chemokine CXCL12
- Chemokines, CC/genetics
- Chemokines, CC/immunology
- Chemokines, CC/metabolism
- Chemokines, CXC/pharmacology
- Chemotaxis/drug effects
- Chemotaxis/immunology
- Culture Media, Conditioned/pharmacology
- Flow Cytometry
- Humans
- Jurkat Cells
- Receptors, CCR5/genetics
- Receptors, CCR5/immunology
- Receptors, CCR5/metabolism
- Receptors, CXCR4/genetics
- Receptors, CXCR4/immunology
- Receptors, CXCR4/metabolism
- Synovial Membrane/pathology
- T-Lymphocytes/cytology
- Transfection
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Caroline Desmetz
- Institut de Génétique Humaine du CNRS UPR1142, Montpellier, F-34000, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Hsu YH, Li HH, Hsieh MY, Liu MF, Huang KY, Chin LS, Chen PC, Cheng HH, Chang MS. Function of interleukin-20 as a proinflammatory molecule in rheumatoid and experimental arthritis. ACTA ACUST UNITED AC 2006; 54:2722-33. [PMID: 16947773 DOI: 10.1002/art.22039] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The pathogenesis of rheumatoid arthritis (RA) reflects an ongoing imbalance between proinflammatory and antiinflammatory cytokines. Interleukin-20 (IL-20) has proinflammatory properties for keratinocytes. In this study, we sought to determine whether IL-20 is involved in RA. METHODS We analyzed IL-20 levels in synovial fluid from RA patients. IL-20 and its receptors were detected in RA synovial fibroblasts (RASFs), using immunohistochemical staining. The effect of IL-20 on endothelial cells, neutrophils, and RASFs was investigated using MTT and migration assays. The expression of IL-20 and its receptors in healthy rats and in rats with collagen-induced arthritis (CIA) was also analyzed. Soluble IL-20 receptor type I (sIL-20RI) or sIL-20RII was administered to rats with CIA by intramuscular electroporation, and the severity of arthritis was monitored. RESULTS RA patients expressed significantly higher levels of synovial fluid IL-20 than did the rheumatic disease controls. IL-20 and its receptors were expressed in the synovial membranes and RASFs. IL-20 induced RASFs to secrete monocyte chemoattractant protein 1, IL-6, and IL-8, and it promoted neutrophil chemotaxis, RASF migration, and endothelial cell proliferation. Both IL-20 and IL-20RI were up-regulated in the rat CIA model. In vivo, electroporated sIL-20RI plasmid DNA decreased the severity of arthritis in the rats with CIA. CONCLUSION IL-20 was up-regulated in the synovial fluid of RA patients and acted as a chemokine that attracted the migration of neutrophils and RASFs in vitro. The rat CIA model demonstrated that IL-20 was involved in the pathogenesis of arthritis, because sIL-20RI significantly reduced arthritis in rats with CIA. Thus, IL-20 may modulate the incidence and severity of arthritis and play important roles at local sites of inflammation.
Collapse
|
40
|
Yao TC, Kuo ML, See LC, Ou LS, Lee WI, Chan CK, Huang JL. RANTES and monocyte chemoattractant protein 1 as sensitive markers of disease activity in patients with juvenile rheumatoid arthritis: a six-year longitudinal study. ACTA ACUST UNITED AC 2006; 54:2585-93. [PMID: 16868981 DOI: 10.1002/art.21962] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To longitudinally investigate serum and synovial fluid (SF) levels of RANTES and monocyte chemoattractant protein 1 (MCP-1) as well as in vitro migration of mononuclear cells toward SF in patients with juvenile rheumatoid arthritis (JRA). METHODS Serum and SF levels of RANTES and MCP-1 were determined by enzyme-linked immunosorbent assay. Chemotaxis was performed using the modified Boyden chamber method. RESULTS Serum RANTES levels were significantly increased in all onset types of JRA, with the highest levels present in systemic-onset JRA. Serum MCP-1 levels were significantly elevated in patients with systemic-onset JRA and were associated with current systemic features. Although serum levels of RANTES and MCP-1 decreased significantly after treatment, RANTES and MCP-1 levels during disease remission were still significantly higher in JRA patients than in controls. A relationship was found between serum RANTES levels during remission and the duration of clinical remission, with low levels being associated with prolonged clinical remission and high levels with shorter clinical remission. Serum RANTES levels correlated with C-reactive protein concentrations, hemoglobin values, white blood cell (WBC) counts, and platelet counts, whereas serum MCP-1 levels correlated with WBC counts and serum ferritin levels. Levels of RANTES and MCP-1 in SF were elevated as compared with levels in serum. SF chemotactic activity for mononuclear leukocytes was significantly inhibited by either anti-RANTES or anti-MCP-1 antibody. CONCLUSION RANTES is a key molecule in the pathogenesis of all onset groups of JRA, whereas MCP-1 is particularly important in systemic-onset JRA. Serum levels of these CC chemokines represent more highly sensitive markers of disease activity than conventional markers of inflammation.
Collapse
Affiliation(s)
- Tsung-Chieh Yao
- Chang Gung Children's Hospital and Chang Gung University, Taoyuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
41
|
Oyamada H, Kamada Y, Saito N, Tsuda A, Urayama O, Yamada H, Hirasawa H, Yamaguchi K, Ueki S, Chihara J. RANTES production from mononuclear cells in response to the specific allergen in asthma patients. Allergol Int 2006; 55:253-9. [PMID: 17075265 DOI: 10.2332/allergolint.55.253] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 01/20/2006] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Eosinophils are considered to be the major inflammatory cells in asthma. Since regulated on activation, normal T expressed and secreted (RANTES) is a potent chemoattractant for various important inflammatory cells such as eosinophils as well as memory T cells potentially recruiting these cells to an inflamed focus, RANTES has been considered to play a key role in various allergic disorders such as asthma. METHODS To extend our understanding of the participation of eosinophils and T cells in relation to the production of RANTES in response to the specific allergen in asthma, we examined the production of RANTES from peripheral blood mononuclear cells cultured with specific allergen in atopic asthma patients by a sandwich enzyme-linked immunosorbent assay. RESULTS It was revealed that mononuclear cells produced RANTES but not eotaxin in response to the specific allergen in asthma. RANTES production from mononuclear cells of asthma patients with eosinophilia was greater than that of asthma patients without eosinophilia. Moreover, in this study, no differences in RANTES production between CD4 negative cells and CD8 negative cells were observed. CONCLUSIONS Taken together, these findings may suggest that mononuclear cells play a crucial role in the pathogenesis, particular in eosinophil and T lymphocyte recruitment into the inflamed focus of asthma through RANTES production in response to the specific allergen.
Collapse
Affiliation(s)
- Hajime Oyamada
- Department of Clinical and Laboratory Medicine, Akita University School of Medicine, Akita, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wei CC, Hsu YH, Li HH, Wang YC, Hsieh MY, Chen WY, Hsing CH, Chang MS. IL-20: biological functions and clinical implications. J Biomed Sci 2006; 13:601-12. [PMID: 16703417 DOI: 10.1007/s11373-006-9087-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 04/07/2006] [Indexed: 10/24/2022] Open
Abstract
IL-20 belongs to the IL-10 family and plays a role in skin inflammation and the development of hematopoietic cells. Little is known about its other biological functions and clinical implications, however. Updated information about IL-20, such as its identification, expression, receptors, signaling, biological activities, and potential clinical implications, is illustrated in this review based on our research and on data available in the literature. Our studies of IL-20 show that it is a pleiotropic cytokine with potent inflammatory, angiogenic, and chemoattractive characteristics. Inflammation and angiogenesis are essential for the pathogenesis of rheumatoid arthritis and atherosclerosis. Based on in vitro data and clinical samples, we demonstrated that IL-20 is involved in the diseases of rheumatoid arthritis and atherosclerosis. In addition, we found in our studies that IL-20 signaled through different molecules in several cells. The present review presents the clinical implications of IL-20 in rheumatoid arthritis and atherosclerosis. It may provide new therapeutic options in the future.
Collapse
Affiliation(s)
- Chi-Chen Wei
- Institute of Basic Medical Sciences, Medical College, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Kelley DS, Rasooly R, Jacob RA, Kader AA, Mackey BE. Consumption of Bing sweet cherries lowers circulating concentrations of inflammation markers in healthy men and women. J Nutr 2006; 136:981-6. [PMID: 16549461 DOI: 10.1093/jn/136.4.981] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The purpose of this study was to determine the effects of consuming sweet cherries on plasma lipids and markers of inflammation in healthy humans. Healthy men and women (n = 18) supplemented their diets with Bing sweet cherries (280 g/d) for 28 d. After a 12-h fast, blood samples were taken before the start of cherry consumption (study d 0 and 7), 14 and 28 d after the start of cherry supplementation (study d 21 and 35), and 28 d after the discontinuation (study d 64) of cherry consumption. After cherries were consumed for 28 d, circulating concentrations of C-reactive protein (CRP), regulated upon activation, normal T-cell expressed, and secreted (RANTES), and NO decreased by 25 (P < 0.05), 21 (P < 0.05), and 18% (P = 0.07) respectively. After the discontinuation of cherry consumption for 28 d (d 64), concentrations of RANTES continued to decrease (P = 0.001), whereas those of CRP and NO did not differ from either d 7 (pre-cherries) or d 35 (post-cherries). Plasma concentrations of IL-6 and its soluble receptor, intercellular adhesion molecule-1, and tissue inhibitor of metalloproteinases-2 did not change during the study. Cherry consumption did not affect the plasma concentrations of total-, HDL-, LDL-, and VLDL- cholesterol, triglycerides, subfractions of HDL, LDL, VLDL, and their particle sizes and numbers. It also did not affect fasting blood glucose or insulin concentrations or a number of other chemical and hematological variables. Results of the present study suggest a selective modulatory effect of sweet cherries on CRP, NO, and RANTES. Such anti-inflammatory effects may be beneficial for the management and prevention of inflammatory diseases.
Collapse
Affiliation(s)
- Darshan S Kelley
- U.S. Department of Agriculture/ARS, Western Regional Research Center, Department of Nutrition, University of California, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
45
|
Fleury S, Li J, Simeoni E, Fiorini E, von Segesser LK, Kappenberger L, Vassalli G. Gene transfer of RANTES and MCP-1 chemokine antagonists prolongs cardiac allograft survival. Gene Ther 2006; 13:1104-9. [PMID: 16541117 DOI: 10.1038/sj.gt.3302765] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vascularized organ allografts are rapidly destroyed by host immune cells that are recruited along chemokine gradients. Among chemokines, Regulated on Activation, Normal T-cell Expressed and Secreted (RANTES) CC chemokine ligand (CCL5) and monocyte chemoattractant protein (MCP)-1 (CCL2) are upregulated in rejecting cardiac allografts. To antagonize these chemokines, we constructed adenoviral vectors expressing NH(2)-terminal deletion (8ND) mutants of the respective genes. Using the F344-to-LEW rat model, intragraft gene transfer of chemokine analogs prolonged cardiac allograft survival from 10.1+/-0.7 and 10.4+/-0.7 days using non-coding adenovirus and vehicle alone, respectively, to 17.0+/-0.7 days for 8ND-RANTES (P<0.001) and 14.2+/-0.8 days for 8ND-MCP-1 (P<0.01). 8ND-RANTES reduced graft infiltration by monocytes/macrophages, cluster of differentiation (CD) 8alpha(+) and T-cell receptor alphabeta(+) cells, while 8ND-MCP-1 reduced monocytes/macrophages. In mixed leukocyte reactions in vitro, proliferation of host lymphocytes from regional lymph nodes in response to donor splenocytes was unaffected by 8ND-RANTES gene transfer. Using a two-gene approach, the contribution of 8ND-MCP-1 was negligible, consistent with available evidence that 8ND-RANTES inhibits both RANTES and MCP-1 activities. 8ND-RANTES gene transfer and a short course of low-dose cyclosporine A synergistically prolonged graft survival to 37.8+/-5.5 vs 15.4+/-0.5 days with cyclosporine alone (P<0.001). These results suggest a role for anti-chemokine gene therapy as an adjuvant therapy in heart transplantation.
Collapse
Affiliation(s)
- S Fleury
- Department of Cardiology, University Hospital, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
46
|
Cho ML, Min SY, Chang SH, Kim KW, Heo SB, Lee SH, Park SH, Cho CS, Kim HY. Transforming growth factor beta 1(TGF-beta1) down-regulates TNFalpha-induced RANTES production in rheumatoid synovial fibroblasts through NF-kappaB-mediated transcriptional repression. Immunol Lett 2006; 105:159-66. [PMID: 16564576 DOI: 10.1016/j.imlet.2006.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 02/07/2006] [Accepted: 02/11/2006] [Indexed: 10/24/2022]
Abstract
Transforming growth factor (TGF)-beta1 is a pleiotropic cytokine with many functions, including those related to growth modulation, immunosuppression, and pro-inflammation, in a wide variety of cell types. In this study, we investigated the ability of TGF-beta1 to regulate RANTES production by activated rheumatoid synovial fibroblasts. Fibroblast-like synoviocytes (FLS) were cultured in the presence of TGF-beta1 and IL-1beta, IL-15, TNFalpha, or IL-17, and the secretion of RANTES into culture supernatants was measured by enzyme-linked immunosorbent assay (ELISA). Expression of RANTES encoded mRNA was determined by reverse transcription-polymerase chain reaction (RT-PCR), and NF-kappaB binding activity for RANTES transcription was determined by electrophoretic mobility shift assay (EMSA). We found that the concentrations of RANTES in synovial fluid (SF) from rheumatoid arthritis (RA) patients were lower than in SF from osteoarthritis (OA) patients, whereas the concentrations of TGF-beta1 were higher in RA SF than in OA SF. TGF-beta1 dose-dependently inhibited TNFalpha-induced production of RANTES protein and mRNA from RA FLS. Addition of RA SF with high-level TGF-beta1 mimicked the effect of TGF-beta1 on TNFalpha-induced RANTES production, which was inhibited by treatment with anti-TGF-beta1 neutralizing antibody. TGF-beta1 blocked the degradation of cytosolic IkappaB-alpha and the translocation of activated NF-kappaB to the nucleus. EMSA showed that the inhibitory effect of TGF-beta1 was associated with decreased binding of NF-kappaB to the RANTES promoter. These results suggest that elevated TGF-beta1 in rheumatoid synovial tissue may suppress joint inflammation by inhibiting RANTES secretion from synovial fibroblasts, thus blocking the infiltration of immune cells. These findings may provide an explanation for the mechanism by which TGF-beta1 regulates immune function in RA.
Collapse
Affiliation(s)
- Mi-La Cho
- Department of Internal Medicine, Division of Rheumatology, The Center for Rheumatic Diseases, Kang-Nam St. Mary's Hospital, Catholic University of Korea, School of Medicine, 505 Banpo-Dong, Seocho-Ku, Seoul 137-701, South Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Brennan FM, Foey AD, Feldmann M. The importance of T cell interactions with macrophages in rheumatoid cytokine production. Curr Top Microbiol Immunol 2006; 305:177-94. [PMID: 16724806 DOI: 10.1007/3-540-29714-6_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The analysis of suppression of cytokines in rheumatoid synovial tissue and fluid pioneered the studies of human cytokines in diseased tissue due to the relative ease of staining samples, even at the height of the inflammatory process. These studies led to the study of synovial cytokine regulation, and the identification of TNF as a therapeutic target, which has been amply validated in clinical trials and now routine therapy. The next key question was how is TNF disregulated in synovium. Are there differences between the mechanisms of synovial TNF production compared to the production of protective TNF during an immune response? Are there differences between the induction of the pro-inflammatory TNF and the anti inflammatory IL-10? The analysis of the interaction of the two most abundant synovial cells, T lymphocytes and macrophages has provided interesting clues to new therapeutic approaches based on disrupting T-macrophage interaction.
Collapse
Affiliation(s)
- F M Brennan
- Imperial College of Science, Technology and Medicine, Kennedy Institute of Rheumatology Division, Faculty of Medicine, London, UK.
| | | | | |
Collapse
|
48
|
Gouwy M, Struyf S, Proost P, Van Damme J. Synergy in cytokine and chemokine networks amplifies the inflammatory response. Cytokine Growth Factor Rev 2005; 16:561-80. [PMID: 16023396 DOI: 10.1016/j.cytogfr.2005.03.005] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Accepted: 03/04/2005] [Indexed: 11/20/2022]
Abstract
The inflammatory response is a highly co-ordinated process involving multiple factors acting in a complex network as stimulators or inhibitors. Upon infection, the sequential release of exogenous agents (e.g. bacterial and viral products) and induction of endogenous mediators (e.g. cytokines and chemokines) contribute to the recruitment of circulating leukocytes to the inflamed tissue. Microbial products trigger multiple cell types to release cytokines, which in turn are potent inducers of chemokines. Primary cytokines act as endogenous activators of the immune response, whereas inducible chemokines act as secondary mediators to attract leukocytes. Interaction between exogenous and endogenous mediators thus enhances the inflammatory response. In this review, the synergistic interaction between cytokines to induce chemokine production and the molecular mechanisms of the cooperation amongst co-induced chemokines to further increase leukocyte recruitment to the site of inflammation are discussed.
Collapse
Affiliation(s)
- Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
49
|
Tao Y, Nishikawa S, Nomura M, Kitabatake N, Tani F. Biotinylation of heat shock protein 70 induces RANTES production in HEK293 cells in a CD40-independent pathway. Biochem Biophys Res Commun 2005; 338:700-9. [PMID: 16246299 DOI: 10.1016/j.bbrc.2005.09.194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2005] [Accepted: 09/27/2005] [Indexed: 11/28/2022]
Abstract
Biotinylated proteins and peptides have been used as popular ligands for characterization of cell surface receptors by a variety of methods including flow cytometry. The number and the location of biotin moieties incorporated could alter the structural and physicochemical properties of ligands, although biotin is thought to be such a small molecule (244Da) that it is capable of being conjugated to most proteins without affecting their activity. Here, we demonstrate that the biotinylated HSP70 molecule via primary amines bound to epithelium-like HEK 293 cells in a saturable manner whereas the unlabeled counterparts of HSP70 other than mouse Hsp72 do not. This binding was not competed by either HSP70 or the biotin entity itself. Interestingly, the biotinylated HSP70 also elicited the production of CC-chemokine RANTES independent of CD40 signaling. This response occurred regardless of sequence diversity of HSP70 derived from different species, and neither the biotinylated ovalbumin nor the unlabeled HSP70 cross-linked with a biotinylated protein stimulated a significant level of RANTES production which was induced by biotinylated HSP70 itself. Our findings suggest that modification of HSP70 such as biotinylation may function as a biological alarm signal in the innate immune system.
Collapse
Affiliation(s)
- Yufeng Tao
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Goka-sho, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
50
|
Gutiérrez-Cañas I, Juarranz Y, Santiago B, Arranz A, Martinez C, Galindo M, Payá M, Gomariz RP, Pablos JL. VIP down-regulates TLR4 expression and TLR4-mediated chemokine production in human rheumatoid synovial fibroblasts. Rheumatology (Oxford) 2005; 45:527-32. [PMID: 16319097 DOI: 10.1093/rheumatology/kei219] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Vasoactive intestinal peptide (VIP) has demonstrated therapeutic effects in arthritis by inhibiting both innate and acquired immune responses. We investigated the potential effects of VIP in the regulation of Toll-like receptor (TLR) expression and function in synovial fibroblasts from patients with rheumatoid arthritis (RA) and osteoarthritis (OA). METHODS Cultured fibroblast-like synoviocytes (FLS) were obtained from patients with RA and OA. The effects of VIP on basal or TNF-alpha or lipopolysaccharide (LPS)-induced TLR2, TLR4 and MyD88 expression and its effects on TLR4-mediated CCL2 and CXCL8 chemokine production were studied by reverse transcription-polymerase chain reaction, western blotting and enzyme-linked immunosorbent assay. RESULTS TLR2, TLR4 and MyD88 mRNA expression was increased in RA FLS compared with OA FLS. The largest increase was observed for TLR4 and there was also overexpression at the protein level in RA FLS. TLR4 and MyD88 mRNA and proteins were induced by LPS and TNF-alpha in RA FLS. VIP down-regulated the induced but not the constitutive expression of TLR4 and MyD88 in RA FLS. VIP treatment decreased CCL2 and CXCL8 chemokine production in response to TLR4 activation with LPS in RA FLS. CONCLUSIONS We demonstrate that VIP down-regulates LPS and TNF-alpha activation of TLR4 expression and the TLR4 functional response in terms of proinflammatory chemokine production. These studies suggest that the pleiotropic anti-inflammatory actions of VIP involve inhibitory effects on TLR4 expression and signalling.
Collapse
Affiliation(s)
- I Gutiérrez-Cañas
- Servicio de Reumatología, Hospital 12 de Octubre, Avda. de Córdoba s/n 28041, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|