1
|
Kiran K, Patil KN. Expression and Characterization of the Staphylococcus aureus RecA protein: A mapping of canonical functions. Protein Expr Purif 2021; 189:105967. [PMID: 34481085 DOI: 10.1016/j.pep.2021.105967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/27/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022]
Abstract
Recombinases are responsible for homologous recombination (HR), proper genome maintenance, and accurate deoxyribonucleic acid (DNA) duplication. Moreover, HR plays a determining role in DNA transaction processes such as DNA replication, repair, recombination, and transcription. Staphylococcus aureus, an opportunistic pathogen, usually causes respiratory infections such as sinusitis, skin infections, and food poisoning. To date, the role of the RecA gene product in S. aureus remains obscure. In this study, we attempted to map the functional properties of the RecA protein. S. aureus expresses the recA gene product in vivo upon exposure to the DNA-damaging agents, ultraviolet radiation, and methyl methanesulfonate. The recombinant purified S. aureus RecA protein displayed strong single-stranded DNA affinity compared to feeble binding to double-stranded DNA. Interestingly, the RecA protein is capable of invasion and formed displacement loops and readily performed strand-exchange activities with an oligonucleotide-based substrate. Notably, the S. aureus RecA protein hydrolyzed the DNA-dependent adenosine triphosphate and cleaved LexA, showing the conserved function of coprotease. This study provides the functional characterization of the S. aureus RecA protein and sheds light on the canonical processes of homologous recombination, which are conserved in the gram-positive foodborne pathogen S. aureus.
Collapse
Affiliation(s)
- Kajal Kiran
- Department of Protein Chemistry and Technology, Council of Scientific & Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, 570 020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - K Neelakanteshwar Patil
- Department of Protein Chemistry and Technology, Council of Scientific & Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, 570 020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
2
|
Reitz D, Chan YL, Bishop DK. How strand exchange protein function benefits from ATP hydrolysis. Curr Opin Genet Dev 2021; 71:120-128. [PMID: 34343922 PMCID: PMC8671154 DOI: 10.1016/j.gde.2021.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022]
Abstract
Members of the RecA family of strand exchange proteins carry out the central reaction in homologous recombination. These proteins are DNA-dependent ATPases, although their ATPase activity is not required for the key functions of homology search and strand exchange. We review the literature on the role of the intrinsic ATPase activity of strand exchange proteins. We also discuss the role of ATP-hydrolysis-dependent motor proteins that serve as strand exchange accessory factors, with an emphasis on the eukaryotic Rad54 family of double strand DNA-specific translocases. The energy from ATP allows recombination events to progress from the strand exchange stage to subsequent stages. ATP hydrolysis also functions to corrects DNA binding errors, including particularly detrimental binding to double strand DNA.
Collapse
Affiliation(s)
- Diedre Reitz
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Yuen-Ling Chan
- Department of Radiation and Cellular Oncology, University of Chicago, IL, USA
| | - Douglas K Bishop
- Department of Radiation and Cellular Oncology, University of Chicago, IL, USA; Department of Molecular Genetics and Cell Biology, University of Chicago, IL, USA.
| |
Collapse
|
3
|
Alekseev A, Serdakov M, Pobegalov G, Yakimov A, Bakhlanova I, Baitin D, Khodorkovskii M. Single-molecule analysis reveals two distinct states of the compressed RecA filament on single-stranded DNA. FEBS Lett 2020; 594:3464-3476. [PMID: 32880917 DOI: 10.1002/1873-3468.13922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 11/07/2022]
Abstract
The RecA protein plays a key role in bacterial homologous recombination (HR) and acts through assembly of long helical filaments around single-stranded DNA in the presence of ATP. Large-scale conformational changes induced by ATP hydrolysis result in transitions between stretched and compressed forms of the filament. Here, using a single-molecule approach, we show that compressed RecA nucleoprotein filaments can exist in two distinct interconvertible states depending on the presence of ADP in the monomer-monomer interface. Binding of ADP promotes cooperative conformational transitions and directly affects mechanical properties of the filament. Our findings reveal that RecA nucleoprotein filaments are able to continuously cycle between three mechanically distinct states that might have important implications for RecA-mediated processes of HR.
Collapse
Affiliation(s)
| | - Maksim Serdakov
- Peter the Great St Petersburg Polytechnic University, Russia
| | | | - Alexandr Yakimov
- Peter the Great St Petersburg Polytechnic University, Russia
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute (B.P. Konstantinov of National Research Centre 'Kurchatov Institute'), Gatchina, Russia
| | - Irina Bakhlanova
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute (B.P. Konstantinov of National Research Centre 'Kurchatov Institute'), Gatchina, Russia
| | - Dmitry Baitin
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute (B.P. Konstantinov of National Research Centre 'Kurchatov Institute'), Gatchina, Russia
| | - Mikhail Khodorkovskii
- Peter the Great St Petersburg Polytechnic University, Russia
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
4
|
Jing C, Yu F, Zhang N, Liu Y, Wang H. Quantitative assessments of adenosine triphosphatase hydrolytic activity by ultrafiltration-coupled ion-pair reversed-phase high-performance liquid chromatography. J Sep Sci 2020; 43:3840-3846. [PMID: 32776712 DOI: 10.1002/jssc.202000561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/05/2020] [Accepted: 08/04/2020] [Indexed: 01/01/2023]
Abstract
Adenosine triphosphate is a universal energy currency that can directly provide energy required for a multitude of biochemical reactions and biophysical actions through adenosine triphosphatase catalyzed hydrolysis. Adenosine triphosphatase activity is thus one important feature for the characterization of protein function and cell activity. Herein, we optimized ion-pair reversed-phase high-performance liquid chromatography technique for highly efficient separation of adenosine triphosphate, adenosine diphosphate, and adenosine monophosphate, and the method demonstrated good linearity. Moreover, by coupling a protein-removable ultrafiltration, we developed a sensitive and robust approach for quantification of adenosine triphosphatase hydrolytic activity. By this assay, we demonstrated that RecA filaments-catalyzed adenosine triphosphate hydrolysis approached a second-order reaction, and its rate constant was estimated as 0.057 mM-1 min-1 . In addition, we explored the effects of DNA length on this reaction and revealed that the increase of the length of single-stranded DNA can promote the adenosine triphosphatase hydrolytic activity of RecA filaments. All these results confirm the feasibility of this new method in quantification of adenosine triphosphatase hydrolytic activity assays. Compared with previous complicated enzyme-coupled or homogeneous colorimetric measurements, the developed approach with high resolution separation allows a simple reaction system for adenosine triphosphatase assay and a sensitive detection free of interference from background noise.
Collapse
Affiliation(s)
- Changheng Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Fangzhi Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Ning Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P. R. China
| | - Yan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
5
|
A Comprehensive View of Translesion Synthesis in Escherichia coli. Microbiol Mol Biol Rev 2020; 84:84/3/e00002-20. [PMID: 32554755 DOI: 10.1128/mmbr.00002-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The lesion bypass pathway, translesion synthesis (TLS), exists in essentially all organisms and is considered a pathway for postreplicative gap repair and, at the same time, for lesion tolerance. As with the saying "a trip is not over until you get back home," studying TLS only at the site of the lesion is not enough to understand the whole process of TLS. Recently, a genetic study uncovered that polymerase V (Pol V), a poorly expressed Escherichia coli TLS polymerase, is not only involved in the TLS step per se but also participates in the gap-filling reaction over several hundred nucleotides. The same study revealed that in contrast, Pol IV, another highly expressed TLS polymerase, essentially stays away from the gap-filling reaction. These observations imply fundamentally different ways these polymerases are recruited to DNA in cells. While access of Pol IV appears to be governed by mass action, efficient recruitment of Pol V involves a chaperone-like action of the RecA filament. We present a model of Pol V activation: the 3' tip of the RecA filament initially stabilizes Pol V to allow stable complex formation with a sliding β-clamp, followed by the capture of the terminal RecA monomer by Pol V, thus forming a functional Pol V complex. This activation process likely determines higher accessibility of Pol V than of Pol IV to normal DNA. Finally, we discuss the biological significance of TLS polymerases during gap-filling reactions: error-prone gap-filling synthesis may contribute as a driving force for genetic diversity, adaptive mutation, and evolution.
Collapse
|
6
|
Knadler C, Rolfsmeier M, Vallejo A, Haseltine C. Characterization of an archaeal recombinase paralog that exhibits novel anti-recombinase activity. Mutat Res 2020; 821:111703. [PMID: 32416400 DOI: 10.1016/j.mrfmmm.2020.111703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/01/2020] [Indexed: 01/31/2023]
Abstract
The process of homologous recombination is heavily dependent on the RecA family of recombinases for repair of DNA double-strand breaks. These recombinases are responsible for identifying homologies and forming heteroduplex DNA between substrate ssDNA and dsDNA templates, activities that are modified by various accessory factors. In this work we describe the biochemical functions of the SsoRal2 recombinase paralog from the crenarchaeon Sulfolobus solfataricus. We found that the SsoRal2 protein is a DNA-independent ATPase that, unlike the other S. solfataricus paralogs, does not bind either ss- or dsDNA. Instead, SsoRal2 alters the ssDNA binding activity of the SsoRadA recombinase in conjunction with another paralog, SsoRal1. In the presence of SsoRal1, SsoRal2 has a modest effect on strand invasion but effectively abrogates strand exchange activity. Taken together, these results indicate that SsoRal2 assists in nucleoprotein filament modulation and control of strand exchange in S. solfataricus.
Collapse
Affiliation(s)
- Corey Knadler
- Washington State University, Biotech/LifeSciences Rm 137, Pullman, 99164, United States
| | - Michael Rolfsmeier
- Washington State University, Biotech/LifeSciences Rm 137, Pullman, 99164, United States
| | - Antonia Vallejo
- Washington State University, Biotech/LifeSciences Rm 137, Pullman, 99164, United States
| | - Cynthia Haseltine
- Washington State University, Biotech/LifeSciences Rm 137, Pullman, 99164, United States.
| |
Collapse
|
7
|
Boyer B, Danilowicz C, Prentiss M, Prévost C. Weaving DNA strands: structural insight on ATP hydrolysis in RecA-induced homologous recombination. Nucleic Acids Res 2019; 47:7798-7808. [PMID: 31372639 PMCID: PMC6735932 DOI: 10.1093/nar/gkz667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/12/2019] [Accepted: 07/19/2019] [Indexed: 01/01/2023] Open
Abstract
Homologous recombination is a fundamental process in all living organisms that allows the faithful repair of DNA double strand breaks, through the exchange of DNA strands between homologous regions of the genome. Results of three decades of investigation and recent fruitful observations have unveiled key elements of the reaction mechanism, which proceeds along nucleofilaments of recombinase proteins of the RecA family. Yet, one essential aspect of homologous recombination has largely been overlooked when deciphering the mechanism: while ATP is hydrolyzed in large quantity during the process, how exactly hydrolysis influences the DNA strand exchange reaction at the structural level remains to be elucidated. In this study, we build on a previous geometrical approach that studied the RecA filament variability without bound DNA to examine the putative implication of ATP hydrolysis on the structure, position, and interactions of up to three DNA strands within the RecA nucleofilament. Simulation results on modeled intermediates in the ATP cycle bring important clues about how local distortions in the DNA strand geometries resulting from ATP hydrolysis can aid sequence recognition by promoting local melting of already formed DNA heteroduplex and transient reverse strand exchange in a weaving type of mechanism.
Collapse
Affiliation(s)
- Benjamin Boyer
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005 Paris, France.,Presently in Laboratoire Génomique Bioinformatique et Applications, EA4627, Conservatoire National des Arts et Métiers, 292 rue Saint Martin, 75003 Paris, France
| | | | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Chantal Prévost
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005 Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| |
Collapse
|
8
|
Leite WC, Penteado RF, Gomes F, Iulek J, Etto RM, Saab SC, Steffens MBR, Galvão CW. MAW point mutation impairs H. Seropedicae RecA ATP hydrolysis and DNA repair without inducing large conformational changes in its structure. PLoS One 2019; 14:e0214601. [PMID: 30998678 PMCID: PMC6472873 DOI: 10.1371/journal.pone.0214601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/17/2019] [Indexed: 11/18/2022] Open
Abstract
RecA is a multifunctional protein that plays a central role in DNA repair in bacteria. The structural Make ATP Work motif (MAW) is proposed to control the ATPase activity of RecA. In the present work, we report the biochemical activity and structural effects of the L53Q mutation at the MAW motif of the RecA protein from H. seropedicae (HsRecA L53Q). In vitro studies showed that HsRecA L53Q can bind ADP, ATP, and ssDNA, as does wild-type RecA. However, the ATPase and DNA-strand exchange activities were completely lost. In vivo studies showed that the expression of HsRecA L53Q in E. coli recA1 does not change its phenotype when cells were challenged with MMS and UV. Molecular dynamics simulations showed the L53Q point mutation did not cause large conformational changes in the HsRecA structure. However, there is a difference on dynamical cross-correlation movements of the residues involved in contacts within the ATP binding site and regions that hold the DNA binding sites. Additionally, a new hydrogen bond, formed between Q53 and T49, was hypothesized to allow an independent motion of the MAW motif from the hydrophobic core, what could explain the observed loss of activity of HsRecA L53Q.
Collapse
Affiliation(s)
- Wellington C. Leite
- Department of Physics, State University of Ponta Grossa (UEPG), Ponta Grossa,Paraná, Brazil
- * E-mail: (WCL); .(CWG)
| | - Renato F. Penteado
- Department of Chemistry, State University of Ponta Grossa (UEPG), Ponta Grossa, Paraná, Brazil
| | - Fernando Gomes
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Jorge Iulek
- Department of Chemistry, State University of Ponta Grossa (UEPG), Ponta Grossa, Paraná, Brazil
| | - Rafael M. Etto
- Department of Chemistry, State University of Ponta Grossa (UEPG), Ponta Grossa, Paraná, Brazil
| | - Sérgio C. Saab
- Department of Physics, State University of Ponta Grossa (UEPG), Ponta Grossa,Paraná, Brazil
| | - Maria B. R. Steffens
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Carolina W. Galvão
- Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa (UEPG), Ponta Grossa, Paraná, Brazil
- * E-mail: (WCL); .(CWG)
| |
Collapse
|
9
|
Gataulin DV, Carey JN, Li J, Shah P, Grubb JT, Bishop DK. The ATPase activity of E. coli RecA prevents accumulation of toxic complexes formed by erroneous binding to undamaged double stranded DNA. Nucleic Acids Res 2018; 46:9510-9523. [PMID: 30137528 PMCID: PMC6182174 DOI: 10.1093/nar/gky748] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 01/01/2023] Open
Abstract
The Escherichia coli RecA protein catalyzes the central step of homologous recombination using its homology search and strand exchange activity. RecA is a DNA-dependent ATPase, but its homology search and strand exchange activities are largely independent of its ATPase activity. ATP hydrolysis converts a high affinity DNA binding form, RecA-ATP, to a low affinity form RecA-ADP, thereby supporting an ATP hydrolysis-dependent dynamic cycle of DNA binding and dissociation. We provide evidence for a novel function of RecA's dynamic behavior; RecA's ATPase activity prevents accumulation of toxic complexes caused by direct binding of RecA to undamaged regions of dsDNA. We show that a mutant form of RecA, RecA-K250N, previously shown to be toxic to E. coli, is a loss-of-function ATPase-defective mutant. We use a new method for detecting RecA complexes involving nucleoid surface spreading and immunostaining. The method allows detection of damage-induced RecA foci; STED microscopy revealed these to typically be between 50 and 200 nm in length. RecA-K250N, and other toxic variants of RecA, form spontaneous DNA-bound complexes that are independent of replication and of accessory proteins required to load RecA onto tracts of ssDNA in vivo, supporting the hypothesis that RecA's expenditure of ATP serves an error correction function.
Collapse
Affiliation(s)
- Daniil V Gataulin
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60615, USA
- Department of Molecular Genetics and Cell Biology, University of Chicago, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60615, USA
| | - Jeffrey N Carey
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60615, USA
| | - Junya Li
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60615, USA
| | - Parisha Shah
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60615, USA
- Department of Molecular Genetics and Cell Biology, University of Chicago, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60615, USA
| | - Jennifer T Grubb
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60615, USA
| | - Douglas K Bishop
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60615, USA
- Department of Molecular Genetics and Cell Biology, University of Chicago, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60615, USA
| |
Collapse
|
10
|
TIRF-Based Single-Molecule Detection of the RecA Presynaptic Filament Dynamics. Methods Enzymol 2018; 600:233-253. [PMID: 29458760 DOI: 10.1016/bs.mie.2017.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
RecA is a key protein in homologous DNA repair process. On a single-stranded (ss) DNA, which appears as an intermediate structure at a double-strand break site, RecA forms a kilobase-long presynaptic filament that mediates homology search and strand exchange reaction. RecA requires adenosine triphosphate as a cofactor that confers dynamic features to the filament such as nucleation, end-dependent growth and disassembly, scaffold shift along the ssDNA, and conformational change. Due to the complexity of the dynamics, detailed molecular mechanisms of functioning presynaptic filament have been characterized only recently after the advent of single-molecule techniques that allowed real-time observation of each kinetic process. In this chapter, single-molecule fluorescence resonance energy transfer assays, which revealed detailed molecular pictures of the presynaptic filament dynamics, will be discussed.
Collapse
|
11
|
Danilowicz C, Hermans L, Coljee V, Prévost C, Prentiss M. ATP hydrolysis provides functions that promote rejection of pairings between different copies of long repeated sequences. Nucleic Acids Res 2017; 45:8448-8462. [PMID: 28854739 PMCID: PMC5737215 DOI: 10.1093/nar/gkx582] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/05/2017] [Indexed: 01/30/2023] Open
Abstract
During DNA recombination and repair, RecA family proteins must promote rapid joining of homologous DNA. Repeated sequences with >100 base pair lengths occupy more than 1% of bacterial genomes; however, commitment to strand exchange was believed to occur after testing ∼20-30 bp. If that were true, pairings between different copies of long repeated sequences would usually become irreversible. Our experiments reveal that in the presence of ATP hydrolysis even 75 bp sequence-matched strand exchange products remain quite reversible. Experiments also indicate that when ATP hydrolysis is present, flanking heterologous dsDNA regions increase the reversibility of sequence matched strand exchange products with lengths up to ∼75 bp. Results of molecular dynamics simulations provide insight into how ATP hydrolysis destabilizes strand exchange products. These results inspired a model that shows how pairings between long repeated sequences could be efficiently rejected even though most homologous pairings form irreversible products.
Collapse
Affiliation(s)
| | - Laura Hermans
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Vincent Coljee
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Chantal Prévost
- Laboratoire de Biochimie Théorique, CNRS UMR 9080, IBPC, Paris, France
| | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
12
|
Wang Y, van Merwyk L, Tönsing K, Walhorn V, Anselmetti D, Fernàndez-Busquets X. Biophysical characterization of the association of histones with single-stranded DNA. Biochim Biophys Acta Gen Subj 2017; 1861:2739-2749. [PMID: 28756274 DOI: 10.1016/j.bbagen.2017.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Despite the profound current knowledge of the architecture and dynamics of nucleosomes, little is known about the structures generated by the interaction of histones with single-stranded DNA (ssDNA), which is widely present during replication and transcription. METHODS Non-denaturing gel electrophoresis, transmission electron microscopy, atomic force microscopy, magnetic tweezers. RESULTS Histones have a high affinity for ssDNA in 0.15M NaCl ionic strength, with an apparent binding constant similar to that calculated for their association with double-stranded DNA (dsDNA). The length of DNA (number of nucleotides in ssDNA or base pairs in dsDNA) associated with a fixed core histone mass is the same for both ssDNA and dsDNA. Although histone-ssDNA complexes show a high tendency to aggregate, nucleosome-like structures are formed at physiological salt concentrations. Core histones are able to protect ssDNA from digestion by micrococcal nuclease, and a shortening of ssDNA occurs upon its interaction with histones. The purified (+) strand of a cloned DNA fragment of nucleosomal origin has a higher affinity for histones than the purified complementary (-) strand. CONCLUSIONS At physiological ionic strength histones have high affinity for ssDNA, possibly associating with it into nucleosome-like structures. GENERAL SIGNIFICANCE In the cell nucleus histones may spontaneously interact with ssDNA to facilitate their participation in the replication and transcription of chromatin.
Collapse
Affiliation(s)
- Ying Wang
- Experimental Biophysics and Applied Nanoscience, Faculty of Physics, Bielefeld University, Bielefeld 33615, Germany
| | - Luis van Merwyk
- Experimental Biophysics and Applied Nanoscience, Faculty of Physics, Bielefeld University, Bielefeld 33615, Germany
| | - Katja Tönsing
- Experimental Biophysics and Applied Nanoscience, Faculty of Physics, Bielefeld University, Bielefeld 33615, Germany
| | - Volker Walhorn
- Experimental Biophysics and Applied Nanoscience, Faculty of Physics, Bielefeld University, Bielefeld 33615, Germany
| | - Dario Anselmetti
- Experimental Biophysics and Applied Nanoscience, Faculty of Physics, Bielefeld University, Bielefeld 33615, Germany
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain; Barcelona Institute for Global Health (ISGlobal), Barcelona Center for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, Barcelona 08036, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, Barcelona 08028, Spain.
| |
Collapse
|
13
|
Bellio P, Di Pietro L, Mancini A, Piovano M, Nicoletti M, Brisdelli F, Tondi D, Cendron L, Franceschini N, Amicosante G, Perilli M, Celenza G. SOS response in bacteria: Inhibitory activity of lichen secondary metabolites against Escherichia coli RecA protein. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 29:11-18. [PMID: 28515022 DOI: 10.1016/j.phymed.2017.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/08/2017] [Accepted: 04/04/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND RecA is a bacterial multifunctional protein essential to genetic recombination, error-prone replicative bypass of DNA damages and regulation of SOS response. The activation of bacterial SOS response is directly related to the development of intrinsic and/or acquired resistance to antimicrobials. Although recent studies directed towards RecA inactivation via ATP binding inhibition described a variety of micromolar affinity ligands, inhibitors of the DNA binding site are still unknown. PURPOSE Twenty-seven secondary metabolites classified as anthraquinones, depsides, depsidones, dibenzofurans, diphenyl-butenolides, paraconic acids, pseudo-depsidones, triterpenes and xanthones, were investigated for their ability to inhibit RecA from Escherichia coli. They were isolated in various Chilean regions from 14 families and 19 genera of lichens. METHODS The ATP hydrolytic activity of RecA was quantified detecting the generation of free phosphate in solution. The percentage of inhibition was calculated fixing at 100µM the concentration of the compounds. Deeper investigations were reserved to those compounds showing an inhibition higher than 80%. To clarify the mechanism of inhibition, the semi-log plot of the percentage of inhibition vs. ATP and vs. ssDNA, was evaluated. RESULTS Only nine compounds showed a percentage of RecA inhibition higher than 80% (divaricatic, perlatolic, alpha-collatolic, lobaric, lichesterinic, protolichesterinic, epiphorellic acids, sphaerophorin and tumidulin). The half-inhibitory concentrations (IC50) calculated for these compounds were ranging from 14.2µM for protolichesterinic acid to 42.6µM for sphaerophorin. Investigations on the mechanism of inhibition showed that all compounds behaved as uncompetitive inhibitors for ATP binding site, with the exception of epiphorellic acid which clearly acted as non-competitive inhibitor of the ATP site. Further investigations demonstrated that epiphorellic acid competitively binds the ssDNA binding site. Kinetic data were confirmed by molecular modelling binding predictions which shows that epiphorellic acid is expected to bind the ssDNA site into the L2 loop of RecA protein. CONCLUSION In this paper the first RecA ssDNA binding site ligand is described. Our study sets epiphorellic acid as a promising hit for the development of more effective RecA inhibitors. In our drug discovery approach, natural products in general and lichen in particular, represent a successful source of active ligands and structural diversity.
Collapse
Affiliation(s)
- Pierangelo Bellio
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Letizia Di Pietro
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Alisia Mancini
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Marisa Piovano
- Department of Chemistry, Universidad Técnica Federico Santa María, Casilla 110 V, Valparaíso, 6, Chile
| | - Marcello Nicoletti
- Department of Environmental Biology, University Sapienza, P.le A. Moro, 00185, Rome, Italy
| | - Fabrizia Brisdelli
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Donatella Tondi
- Department of Life Sciences, University of Modena e Reggio Emilia, Via Campi 103, 41100, Modena, Italy
| | - Laura Cendron
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131, Padova, Italy
| | - Nicola Franceschini
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Gianfranco Amicosante
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Mariagrazia Perilli
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Giuseppe Celenza
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy.
| |
Collapse
|
14
|
Leite WC, Galvão CW, Saab SC, Iulek J, Etto RM, Steffens MBR, Chitteni-Pattu S, Stanage T, Keck JL, Cox MM. Structural and Functional Studies of H. seropedicae RecA Protein - Insights into the Polymerization of RecA Protein as Nucleoprotein Filament. PLoS One 2016; 11:e0159871. [PMID: 27447485 PMCID: PMC4957752 DOI: 10.1371/journal.pone.0159871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/08/2016] [Indexed: 11/18/2022] Open
Abstract
The bacterial RecA protein plays a role in the complex system of DNA damage repair. Here, we report the functional and structural characterization of the Herbaspirillum seropedicae RecA protein (HsRecA). HsRecA protein is more efficient at displacing SSB protein from ssDNA than Escherichia coli RecA protein. HsRecA also promotes DNA strand exchange more efficiently. The three dimensional structure of HsRecA-ADP/ATP complex has been solved to 1.7 Å resolution. HsRecA protein contains a small N-terminal domain, a central core ATPase domain and a large C-terminal domain, that are similar to homologous bacterial RecA proteins. Comparative structural analysis showed that the N-terminal polymerization motif of archaeal and eukaryotic RecA family proteins are also present in bacterial RecAs. Reconstruction of electrostatic potential from the hexameric structure of HsRecA-ADP/ATP revealed a high positive charge along the inner side, where ssDNA is bound inside the filament. The properties of this surface may explain the greater capacity of HsRecA protein to bind ssDNA, forming a contiguous nucleoprotein filament, displace SSB and promote DNA exchange relative to EcRecA. Our functional and structural analyses provide insight into the molecular mechanisms of polymerization of bacterial RecA as a helical nucleoprotein filament.
Collapse
Affiliation(s)
- Wellington C. Leite
- Department of Physics, Ponta Grossa State University (UEPG), Av. Carlos Cavalcanti, 4748, CEP. 84.030–900, Ponta Grossa, PR, Brazil
- * E-mail: (MC); (WL)
| | - Carolina W. Galvão
- Department of Structural and Molecular Biology and Genetics, Ponta Grossa State University (UEPG), CEP 84030–900, Ponta Grossa, PR, Brazil
| | - Sérgio C. Saab
- Department of Physics, Ponta Grossa State University (UEPG), Av. Carlos Cavalcanti, 4748, CEP. 84.030–900, Ponta Grossa, PR, Brazil
| | - Jorge Iulek
- Department of Chemistry, Ponta Grossa State University (UEPG), CEP 84030–900, Ponta Grossa, PR, Brazil
| | - Rafael M. Etto
- Department of Chemistry, Ponta Grossa State University (UEPG), CEP 84030–900, Ponta Grossa, PR, Brazil
| | - Maria B. R. Steffens
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CEP 81531–980 Curitiba, Brazil
| | - Sindhu Chitteni-Pattu
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, 53706–1544, United States of America
| | - Tyler Stanage
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, 53706–1544, United States of America
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, United States of America
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, 53706–1544, United States of America
- * E-mail: (MC); (WL)
| |
Collapse
|
15
|
Kim T, Chitteni-Pattu S, Cox BL, Wood EA, Sandler SJ, Cox MM. Directed Evolution of RecA Variants with Enhanced Capacity for Conjugational Recombination. PLoS Genet 2015; 11:e1005278. [PMID: 26047498 PMCID: PMC4457935 DOI: 10.1371/journal.pgen.1005278] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 05/13/2015] [Indexed: 11/18/2022] Open
Abstract
The recombination activity of Escherichia coli (E. coli) RecA protein reflects an evolutionary balance between the positive and potentially deleterious effects of recombination. We have perturbed that balance, generating RecA variants exhibiting improved recombination functionality via random mutagenesis followed by directed evolution for enhanced function in conjugation. A recA gene segment encoding a 59 residue segment of the protein (Val79-Ala137), encompassing an extensive subunit-subunit interface region, was subjected to degenerate oligonucleotide-mediated mutagenesis. An iterative selection process generated at least 18 recA gene variants capable of producing a higher yield of transconjugants. Three of the variant proteins, RecA I102L, RecA V79L and RecA E86G/C90G were characterized based on their prominence. Relative to wild type RecA, the selected RecA variants exhibited faster rates of ATP hydrolysis, more rapid displacement of SSB, decreased inhibition by the RecX regulator protein, and in general displayed a greater persistence on DNA. The enhancement in conjugational function comes at the price of a measurable RecA-mediated cellular growth deficiency. Persistent DNA binding represents a barrier to other processes of DNA metabolism in vivo. The growth deficiency is alleviated by expression of the functionally robust RecX protein from Neisseria gonorrhoeae. RecA filaments can be a barrier to processes like replication and transcription. RecA regulation by RecX protein is important in maintaining an optimal balance between recombination and other aspects of DNA metabolism. The genetic recombination systems of bacteria have not evolved for optimal enzymatic function. As recombination and recombination systems can have deleterious effects, these systems have evolved sufficient function to repair a level of DNA double strand breaks typically encountered during replication and cell division. However, maintenance of genome stability requires a proper balance between all aspects of DNA metabolism. A substantial increase in recombinase function is possible, but it comes with a cellular cost. Here, we use a kind of directed evolution to generate variants of the Escherichia coli RecA protein with an enhanced capacity to promote conjugational recombination. The mutations all occur within a targeted 59 amino acid segment of the protein, encompassing a significant part of the subunit-subunit interface. The RecA variants exhibit a range of altered activities. In general, the mutations appear to increase RecA protein persistence as filaments formed on DNA creating barriers to DNA replication and/or transcription. The barriers can be eliminated via expression of more robust forms of a RecA regulator, the RecX protein. The results elucidate an evolutionary compromise between the beneficial and deleterious effects of recombination.
Collapse
Affiliation(s)
- Taejin Kim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sindhu Chitteni-Pattu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Benjamin L. Cox
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Elizabeth A. Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Steven J. Sandler
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, Massachusetts, United States of America
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
16
|
Warfel JD, LiCata VJ. Enhanced DNA binding affinity of RecA protein from Deinococcus radiodurans. DNA Repair (Amst) 2015; 31:91-6. [PMID: 26021744 DOI: 10.1016/j.dnarep.2015.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/03/2015] [Accepted: 05/04/2015] [Indexed: 11/19/2022]
Abstract
Deinococcus radiodurans (Dr) has a significantly more robust DNA repair response than Escherichia coli (Ec), which helps it survive extremely high doses of ionizing radiation and prolonged periods of desiccation. DrRecA protein plays an essential part in this DNA repair capability. In this study we directly compare the binding of DrRecA and EcRecA to the same set of short, defined single (ss) and double stranded (ds) DNA oligomers. In the absence of cofactors (ATPγS or ADP), DrRecA binds to dsDNA oligomers more than 20 fold tighter than EcRecA, and binds ssDNA up to 9 fold tighter. Binding to dsDNA oligomers in the absence of cofactor presumably predominantly monitors DNA end binding, and thus suggests a significantly higher affinity of DrRecA for ds breaks. Upon addition of ATPγS, this species-specific affinity difference is nearly abolished, as ATPγS significantly decreases the affinity of DrRecA for DNA. Other findings include that: (1) both proteins exhibit a dependence of binding affinity on the length of the ssDNA oligomer, but not the dsDNA oligomer; (2) the salt dependence of binding is modest for both species of RecA, and (3) in the absence of DNA, DrRecA produces significantly shorter and/or fewer free-filaments in solution than does EcRecA. The results suggest intrinsic biothermodynamic properties of DrRecA contribute directly to the more robust DNA repair capabilities of D. radiodurans.
Collapse
Affiliation(s)
- Jaycob D Warfel
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Vince J LiCata
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
17
|
Piechura JR, Tseng TL, Hsu HF, Byrne RT, Windgassen TA, Chitteni-Pattu S, Battista JR, Li HW, Cox MM. Biochemical characterization of RecA variants that contribute to extreme resistance to ionizing radiation. DNA Repair (Amst) 2014; 26:30-43. [PMID: 25559557 DOI: 10.1016/j.dnarep.2014.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 02/01/2023]
Abstract
Among strains of Escherichia coli that have evolved to survive extreme exposure to ionizing radiation, mutations in the recA gene are prominent and contribute substantially to the acquired phenotype. Changes at amino acid residue 276, D276A and D276N, occur repeatedly and in separate evolved populations. RecA D276A and RecA D276N exhibit unique adaptations to an environment that can require the repair of hundreds of double strand breaks. These two RecA protein variants (a) exhibit a faster rate of filament nucleation on DNA, as well as a slower extension under at least some conditions, leading potentially to a distribution of the protein among a higher number of shorter filaments, (b) promote DNA strand exchange more efficiently in the context of a shorter filament, and (c) are markedly less inhibited by ADP. These adaptations potentially allow RecA protein to address larger numbers of double strand DNA breaks in an environment where ADP concentrations are higher due to a compromised cellular metabolism.
Collapse
Affiliation(s)
- Joseph R Piechura
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, United States
| | - Tzu-Ling Tseng
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Hsin-Fang Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Rose T Byrne
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, United States
| | - Tricia A Windgassen
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Sindhu Chitteni-Pattu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, United States
| | - John R Battista
- Department of Biological Sciences, Louisiana State University and A & M College, Baton Rouge, LA 70803, United States
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, United States.
| |
Collapse
|
18
|
Kim SH, Ragunathan K, Park J, Joo C, Kim D, Ha T. Cooperative conformational transitions keep RecA filament active during ATPase cycle. J Am Chem Soc 2014; 136:14796-800. [PMID: 25252114 PMCID: PMC4210115 DOI: 10.1021/ja506363y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The active, stretched conformation of the RecA filament bound to single-stranded DNA is required for homologous recombination. During this process, the RecA filament mediates the homology search and base pair exchange with a complementary sequence. Subsequently, the RecA filament dissociates from DNA upon reaction completion. ATP binding and hydrolysis is critical throughout these processes. Little is known about the timescale, order of conversion between different cofactor bound forms during ATP hydrolysis, and the associated changes in filament conformation. We used single-molecule fluorescence techniques to investigate how ATP hydrolysis is coupled with filament dynamics. For the first time, we observed real-time cooperative structural changes within the RecA filament. This cooperativity between neighboring monomers provides a time window for nucleotide cofactor exchange, which keeps the filament in the active conformation amidst continuous cycles of ATP hydrolysis.
Collapse
Affiliation(s)
- Sung Hyun Kim
- Department of Physics and Interdisciplinary Program of Integrated Biotechnology, Sogang University , Seoul 121-742, Korea
| | | | | | | | | | | |
Collapse
|
19
|
Pattanayek R, Xu Y, Lamichhane A, Johnson CH, Egli M. An arginine tetrad as mediator of input-dependent and input-independent ATPases in the clock protein KaiC. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1375-90. [PMID: 24816106 PMCID: PMC4722857 DOI: 10.1107/s1399004714003228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/12/2014] [Indexed: 11/10/2022]
Abstract
A post-translational oscillator (PTO) composed of the proteins KaiA, KaiB and KaiC is at the heart of the cyanobacterial circadian clock. KaiC interacts with KaiA and KaiB over the daily cycle, and CII domains undergo rhythmic phosphorylation/dephosphorylation with a 24 h period. Both the N-terminal (CI) and C-terminal (CII) rings of KaiC exhibit ATPase activity. The CI ATPase proceeds in an input-independent fashion, but the CII ATPase is subject to metabolic input signals. The crystal structure of KaiC from Thermosynechococcus elongatus allows insight into the different anatomies of the CI and CII ATPases. Four consecutive arginines in CI (Arg linker) that connect the P-loop, CI subunits and CI and CII at the ring interface are primary candidates for the coordination of the CI and CII activities. The mutation of linker residues alters the period or triggers arhythmic behavior. Comparison between the CI and CII structures also reveals differences in loop regions that are key to KaiA and KaiB binding and activation of CII ATPase and kinase. Common packing features in KaiC crystals shed light on the KaiB-KaiC interaction.
Collapse
Affiliation(s)
- Rekha Pattanayek
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Yao Xu
- Department of Biological Sciences, College of Arts and Science, Vanderbilt University, Nashville, TN 35235, USA
| | - Aashish Lamichhane
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Carl H. Johnson
- Department of Biological Sciences, College of Arts and Science, Vanderbilt University, Nashville, TN 35235, USA
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
20
|
Ngo KV, Molzberger ET, Chitteni-Pattu S, Cox MM. Regulation of Deinococcus radiodurans RecA protein function via modulation of active and inactive nucleoprotein filament states. J Biol Chem 2013; 288:21351-21366. [PMID: 23729671 DOI: 10.1074/jbc.m113.459230] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The RecA protein of Deinococcus radiodurans (DrRecA) has a central role in genome reconstitution after exposure to extreme levels of ionizing radiation. When bound to DNA, filaments of DrRecA protein exhibit active and inactive states that are readily interconverted in response to several sets of stimuli and conditions. At 30 °C, the optimal growth temperature, and at physiological pH 7.5, DrRecA protein binds to double-stranded DNA (dsDNA) and forms extended helical filaments in the presence of ATP. However, the ATP is not hydrolyzed. ATP hydrolysis of the DrRecA-dsDNA filament is activated by addition of single-stranded DNA, with or without the single-stranded DNA-binding protein. The ATPase function of DrRecA nucleoprotein filaments thus exists in an inactive default state under some conditions. ATPase activity is thus not a reliable indicator of DNA binding for all bacterial RecA proteins. Activation is effected by situations in which the DNA substrates needed to initiate recombinational DNA repair are present. The inactive state can also be activated by decreasing the pH (protonation of multiple ionizable groups is required) or by addition of volume exclusion agents. Single-stranded DNA-binding protein plays a much more central role in DNA pairing and strand exchange catalyzed by DrRecA than is the case for the cognate proteins in Escherichia coli. The data suggest a mechanism to enhance the efficiency of recombinational DNA repair in the context of severe genomic degradation in D. radiodurans.
Collapse
Affiliation(s)
- Khanh V Ngo
- From the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Eileen T Molzberger
- From the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Sindhu Chitteni-Pattu
- From the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Michael M Cox
- From the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706.
| |
Collapse
|
21
|
Fu H, Le S, Chen H, Muniyappa K, Yan J. Force and ATP hydrolysis dependent regulation of RecA nucleoprotein filament by single-stranded DNA binding protein. Nucleic Acids Res 2012; 41:924-32. [PMID: 23221642 PMCID: PMC3553936 DOI: 10.1093/nar/gks1162] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In Escherichia coli, the filament of RecA formed on single-stranded DNA (ssDNA) is essential for recombinational DNA repair. Although ssDNA-binding protein (SSB) plays a complicated role in RecA reactions in vivo, much of our understanding of the mechanism is based on RecA binding directly to ssDNA. Here we investigate the role of SSB in the regulation of RecA polymerization on ssDNA, based on the differential force responses of a single 576-nucleotide-long ssDNA associated with RecA and SSB. We find that SSB outcompetes higher concentrations of RecA, resulting in inhibition of RecA nucleation. In addition, we find that pre-formed RecA filaments de-polymerize at low force in an ATP hydrolysis- and SSB-dependent manner. At higher forces, re-polymerization takes place, which displaces SSB from ssDNA. These findings provide a physical picture of the competition between RecA and SSB under tension on the scale of the entire nucleoprotein SSB array, which have broad biological implications particularly with regard to competitive molecular binding.
Collapse
Affiliation(s)
- Hongxia Fu
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | | | | | | | | |
Collapse
|
22
|
Sharma D, Say AF, Ledford LL, Hughes AJ, Sehorn HA, Dwyer DS, Sehorn MG. Role of the conserved lysine within the Walker A motif of human DMC1. DNA Repair (Amst) 2012. [PMID: 23182424 DOI: 10.1016/j.dnarep.2012.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
During meiosis, the RAD51 recombinase and its meiosis-specific homolog DMC1 mediate DNA strand exchange between homologous chromosomes. The proteins form a right-handed nucleoprotein complex on ssDNA called the presynaptic filament. In an ATP-dependent manner, the presynaptic filament searches for homology to form a physical connection with the homologous chromosome. We constructed two variants of hDMC1 altering the conserved lysine residue of the Walker A motif to arginine (hDMC1(K132R)) or alanine (hDMC1(K132A)). The hDMC1 variants were expressed in Escherichia coli and purified to near homogeneity. Both hDMC1(K132R) and hDMC1(K132A) variants were devoid of ATP hydrolysis. The hDMC1(K132R) variant was attenuated for ATP binding that was partially restored by the addition of either ssDNA or calcium. The hDMC1(K132R) variant was partially capable of homologous DNA pairing and strand exchange in the presence of calcium and protecting DNA from a nuclease, while the hDMC1(K132A) variant was inactive. These results suggest that the conserved lysine of the Walker A motif in hDMC1 plays a key role in ATP binding. Furthermore, the binding of calcium and ssDNA promotes a conformational change in the ATP binding pocket of hDMC1 that promotes ATP binding. Our results provide evidence that the conserved lysine in the Walker A motif of hDMC1 is critical for ATP binding which is required for presynaptic filament formation.
Collapse
Affiliation(s)
- Deepti Sharma
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Glatt S, Létoquart J, Faux C, Taylor NMI, Séraphin B, Müller CW. The Elongator subcomplex Elp456 is a hexameric RecA-like ATPase. Nat Struct Mol Biol 2012; 19:314-20. [PMID: 22343726 DOI: 10.1038/nsmb.2234] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 12/22/2011] [Indexed: 12/23/2022]
Abstract
Elongator was initially described as an RNA polymerase II-associated factor but has since been associated with a broad range of cellular activities. It has also attracted clinical attention because of its role in certain neurodegenerative diseases. Here we describe the crystal structure of the Saccharomyces cerevisiae subcomplex of Elongator proteins 4, 5 and 6 (Elp456). The subunits each show almost identical RecA folds that form a heterohexameric ring-like structure resembling hexameric RecA-like ATPases. This structural finding is supported by different complementary in vitro and in vivo approaches, including the specific binding of the hexameric Elp456 subcomplex to tRNAs in a manner regulated by ATP. Our results support a role of Elongator in tRNA modification, explain the importance of each of the Elp4, Elp5 and Elp6 subunits for complex integrity and suggest a model for the overall architecture of the holo-Elongator complex.
Collapse
Affiliation(s)
- Sebastian Glatt
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Liu J, Ehmsen KT, Heyer WD, Morrical SW. Presynaptic filament dynamics in homologous recombination and DNA repair. Crit Rev Biochem Mol Biol 2011; 46:240-70. [PMID: 21599536 DOI: 10.3109/10409238.2011.576007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Homologous recombination (HR) is an essential genome stability mechanism used for high-fidelity repair of DNA double-strand breaks and for the recovery of stalled or collapsed DNA replication forks. The crucial homology search and DNA strand exchange steps of HR are catalyzed by presynaptic filaments-helical filaments of a recombinase enzyme bound to single-stranded DNA (ssDNA). Presynaptic filaments are fundamentally dynamic structures, the assembly, catalytic turnover, and disassembly of which must be closely coordinated with other elements of the DNA recombination, repair, and replication machinery in order for genome maintenance functions to be effective. Here, we reviewed the major dynamic elements controlling the assembly, activity, and disassembly of presynaptic filaments; some intrinsic such as recombinase ATP-binding and hydrolytic activities, others extrinsic such as ssDNA-binding proteins, mediator proteins, and DNA motor proteins. We examined dynamic behavior on multiple levels, including atomic- and filament-level structural changes associated with ATP binding and hydrolysis as evidenced in crystal structures, as well as subunit binding and dissociation events driven by intrinsic and extrinsic factors. We examined the biochemical properties of recombination proteins from four model systems (T4 phage, Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens), demonstrating how their properties are tailored for the context-specific requirements in these diverse species. We proposed that the presynaptic filament has evolved to rely on multiple external factors for increased multilevel regulation of HR processes in genomes with greater structural and sequence complexity.
Collapse
Affiliation(s)
- Jie Liu
- Departments of Microbiology and of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | | | | | | |
Collapse
|
25
|
Gou N, Gu AZ. A new Transcriptional Effect Level Index (TELI) for toxicogenomics-based toxicity assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:5410-5417. [PMID: 21612275 DOI: 10.1021/es200455p] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This study proposes and demonstrates the potential application of a new Transcriptional Effect Level Index (TELI) to convert the information-rich toxicogenomic data into integrated and quantitative endpoints. A library of transcriptional fusions of green fluorescent protein (GFP) that includes different promoters for 91 stress-related genes in E. coli K12, MG1655 is employed to evaluate the gene expression alteration induced by exposure to four nanomaterials (NMs), nano silver (nAg), nano titanium dioxide anatase (nTiO₂_a), nano titanium dioxide rutile (nTiO₂_r), and fullerene soot. TELI is determined for each toxicogenomic assay, and it incorporates the number and identity of genes that had altered expression, the magnitude of alteration, and the temporal pattern of gene expression change in response to toxicant exposure. TELI values exhibit a characteristic "sigmoid" shaped toxicity dose-response curve, based on which TELI(MAX) (the maximal value of TELI), TELI50 (concentration that yields half of TELI(MAX)), NOTEL(TELI) (TELI-based no observed transcriptional effect level), and Slope(TELI) (the slope of TELI-dose response curve) are obtained. TELI-based endpoints are compared to currently used endpoints such as EC50 and no observed transcriptional effect level (NOTEL). The agreement of NOTEL(TELI) and NOTEL values validates the concept and application of TELI. Multiple endpoints derived from TELI can describe the dose response behavior and characteristics more completely and holistically than single points such as NOTEL alone. TELI values determined for genes in each stress response category (e.g., oxidative stress, DNA repair) indicate mode of action (MOA)-related comparative transcriptional level toxicity among compounds, and it reveals detailed information of toxic response pathways such as different DNA damage and repair mechanisms among the NMs. This study presents a methodology for converting the rich toxicogenomic information into a readily usable and transferable format that can be potentially linked to regulation endpoints and incorporated into a decision-making framework.
Collapse
Affiliation(s)
- Na Gou
- Department of Civil & Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
26
|
Abstract
Anti-Brownian electrokinetic traps have been used to trap and study the free-solution dynamics of large protein complexes and long chains of DNA. Small molecules in solution have thus far proved too mobile to trap by any means. Here we explore the ultimate limits on trapping single molecules. We developed a feedback-based anti-Brownian electrokinetic trap in which classical thermal noise is compensated to the maximal extent allowed by quantum measurement noise. We trapped single fluorophores with a molecular weight of < 1 kDa and a hydrodynamic radius of 6.7 Å for longer than one second, in aqueous buffer at room temperature. This achievement represents an 800-fold decrease in the mass of objects trapped in solution, and opens the possibility to trap and manipulate any soluble molecule that can be fluorescently labeled. To illustrate the use of this trap, we studied the binding of unlabeled RecA to fluorescently labeled single-stranded DNA. Binding of RecA induced changes in the DNA diffusion coefficient, electrophoretic mobility, and brightness, all of which were measured simultaneously and on a molecule-by-molecule basis. This device greatly extends the size range of molecules that can be studied by room temperature feedback trapping, and opens the door to further studies of the binding of unmodified proteins to DNA in free solution.
Collapse
|
27
|
Britt RL, Chitteni-Pattu S, Page AN, Cox MM. RecA K72R filament formation defects reveal an oligomeric RecA species involved in filament extension. J Biol Chem 2011; 286:7830-7840. [PMID: 21193798 PMCID: PMC3048670 DOI: 10.1074/jbc.m110.194407] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/21/2010] [Indexed: 11/06/2022] Open
Abstract
Using an ensemble approach, we demonstrate that an oligomeric RecA species is required for the extension phase of RecA filament formation. The RecA K72R mutant protein can bind but not hydrolyze ATP or dATP. When mixed with other RecA variants, RecA K72R causes a drop in the rate of ATP hydrolysis and has been used to study disassembly of hydrolysis-proficient RecA protein filaments. RecA K72R filaments do not form in the presence of ATP but do so when dATP is provided. We demonstrate that in the presence of ATP, RecA K72R is defective for extension of RecA filaments on DNA. This defect is partially rescued when the mutant protein is mixed with sufficient levels of wild type RecA protein. Functional extension complexes form most readily when wild type RecA is in excess of RecA K72R. Thus, RecA K72R inhibits hydrolysis-proficient RecA proteins by interacting with them in solution and preventing the extension phase of filament assembly.
Collapse
Affiliation(s)
- Rachel L Britt
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Sindhu Chitteni-Pattu
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Asher N Page
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Michael M Cox
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706.
| |
Collapse
|
28
|
Purification and characterization of the RecA protein from Neisseria gonorrhoeae. PLoS One 2011; 6:e17101. [PMID: 21359151 PMCID: PMC3040777 DOI: 10.1371/journal.pone.0017101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 01/21/2011] [Indexed: 02/02/2023] Open
Abstract
The strict human pathogen Neisseria gonorrhoeae is the only causative agent of the sexually transmitted infection gonorrhea. The recA gene from N. gonorrhoeae is essential for DNA repair, natural DNA transformation, and pilin antigenic variation, all processes that are important for the pathogenesis and persistence of N. gonorrhoeae in the human population. To understand the biochemical features of N. gonorrhoeae RecA (RecANg), we overexpressed and purified the RecANg and SSBNg proteins and compared their activities to those of the well-characterized E. coli RecA and SSB proteins in vitro. We observed that RecANg promoted more strand exchange at early time points than RecAEc through DNA homologous substrates, and exhibited the highest ATPase activity of any RecA protein characterized to date. Further analysis of this robust ATPase activity revealed that RecANg is more efficient at displacing SSB from ssDNA and that RecANg shows higher ATPase activity during strand exchange than RecAEc. Using substrates created to mimic the cellular processes of DNA transformation and pilin antigenic variation we observed that RecAEc catalyzed more strand exchange through a 100 bp heterologous insert, but that RecANg catalyzed more strand exchange through regions of microheterology. Together, these data suggest that the processes of ATP hydrolysis and DNA strand exchange may be coupled differently in RecANg than in RecAEc. This difference may explain the unusually high ATPase activity observed for RecANg with the strand exchange activity between RecANg and RecAEc being more similar.
Collapse
|
29
|
Gruenig MC, Lu D, Won SJ, Dulberger CL, Manlick AJ, Keck JL, Cox MM. Creating directed double-strand breaks with the Ref protein: a novel RecA-dependent nuclease from bacteriophage P1. J Biol Chem 2010; 286:8240-8251. [PMID: 21193392 DOI: 10.1074/jbc.m110.205088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacteriophage P1-encoded Ref protein enhances RecA-dependent recombination in vivo by an unknown mechanism. We demonstrate that Ref is a new type of enzyme; that is, a RecA-dependent nuclease. Ref binds to ss- and dsDNA but does not cleave any DNA substrate until RecA protein and ATP are added to form RecA nucleoprotein filaments. Ref cleaves only where RecA protein is bound. RecA functions as a co-nuclease in the Ref/RecA system. Ref nuclease activity can be limited to the targeted strands of short RecA-containing D-loops. The result is a uniquely programmable endonuclease activity, producing targeted double-strand breaks at any chosen DNA sequence in an oligonucleotide-directed fashion. We present evidence indicating that cleavage occurs in the RecA filament groove. The structure of the Ref protein has been determined to 1.4 Å resolution. The core structure, consisting of residues 77-186, consists of a central 2-stranded β-hairpin that is sandwiched between several α-helical and extended loop elements. The N-terminal 76 amino acid residues are disordered; this flexible region is required for optimal activity. The overall structure of Ref, including several putative active site histidine residues, defines a new subclass of HNH-family nucleases. We propose that enhancement of recombination by Ref reflects the introduction of directed, recombinogenic double-strand breaks.
Collapse
Affiliation(s)
| | - Duo Lu
- the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Sang Joon Won
- From the Department of Biochemistry, University of Wisconsin and
| | | | - Angela J Manlick
- From the Department of Biochemistry, University of Wisconsin and
| | - James L Keck
- the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Michael M Cox
- From the Department of Biochemistry, University of Wisconsin and.
| |
Collapse
|
30
|
Gruenig MC, Stohl EA, Chitteni-Pattu S, Seifert HS, Cox MM. Less is more: Neisseria gonorrhoeae RecX protein stimulates recombination by inhibiting RecA. J Biol Chem 2010; 285:37188-97. [PMID: 20851893 PMCID: PMC2988325 DOI: 10.1074/jbc.m110.171967] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/12/2010] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli RecX (RecX(Ec)) is a negative regulator of RecA activities both in the bacterial cell and in vitro. In contrast, the Neisseria gonorrhoeae RecX protein (RecX(Ng)) enhances all RecA-related processes in N. gonorrhoeae. Surprisingly, the RecX(Ng) protein is not a RecA protein activator in vitro. Instead, RecX(Ng) is a much more potent inhibitor of all RecA(Ng) and RecA(Ec) activities than is the E. coli RecX ortholog. A series of RecX(Ng) mutant proteins representing a gradient of functional deficiencies provide a direct correlation between RecA(Ng) inhibition in vitro and the enhancement of RecA(Ng) function in N. gonorrhoeae. Unlike RecX(Ec), RecX(Ng) does not simply cap the growing ends of RecA filaments, but it directly facilitates a more rapid RecA filament disassembly. Thus, in N. gonorrhoeae, recombinational processes are facilitated by RecX(Ng) protein-mediated limitations on RecA(Ng) filament presence and/or length to achieve maximal function.
Collapse
Affiliation(s)
- Marielle C Gruenig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
31
|
Ristic D, Kanaar R, Wyman C. Visualizing RAD51-mediated joint molecules: implications for recombination mechanism and the effect of sequence heterology. Nucleic Acids Res 2010; 39:155-67. [PMID: 20817928 PMCID: PMC3017611 DOI: 10.1093/nar/gkq766] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The defining event in homologous recombination is the exchange of base-paired partners between a single-stranded (ss) DNA and a homologous duplex driven by recombinase proteins, such as human RAD51. To understand the mechanism of this essential genome maintenance event, we analyzed the structure of RAD51–DNA complexes representing strand exchange intermediates at nanometer resolution by scanning force microscopy. Joint molecules were formed between substrates with a defined ssDNA segment and homologous region on a double-stranded (ds) partner. We discovered and quantified several notable architectural features of RAD51 joint molecules. Each end of the RAD51-bound joints had a distinct structure. Using linear substrates, a 10-nt region of mispaired bases blocked extension of joint molecules in all examples observed, whereas 4 nt of heterology only partially blocked joint molecule extension. Joint molecules, including 10 nt of heterology, had paired DNA on either side of the heterologous substitution, indicating that pairing could initiate from the free 3′end of ssDNA or from a region adjacent to the ss–ds junction. RAD51 filaments covering joint ss–dsDNA regions were more stable to disassembly than filaments covering dsDNA. We discuss how distinct structural features of RAD51-bound DNA joints can play important roles as recognition sites for proteins that facilitate and control strand exchange.
Collapse
Affiliation(s)
- D Ristic
- Department of Cell Biology and Genetics, Cancer Genomics Center, Erasmus MC, CA Rotterdam, The Netherlands
| | | | | |
Collapse
|
32
|
Kim JI. Rapid propagational interactions of slow binding inhibitor with RecA protein occur on the longer nucleoprotein filaments. J Microbiol 2010; 48:71-6. [PMID: 20221732 DOI: 10.1007/s12275-009-0306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 12/22/2009] [Indexed: 11/29/2022]
Abstract
RecA protein is a DNA-dependent ATPase. RecA protein-mediated ATP hydrolysis occurs throughout the filamentous nucleoprotein complexes of RecA and DNA. Nucleotide analog ATP[gammaS] may not act simply as a competitive inhibitor, leading to inhibition kinetic patterns that are informative. When a mixture of ATP and ATP[gammaS] is present at the beginning of reaction, a transient phase lasting several minutes is observed in which the system approaches the state characteristic of the new ATP/ATP[gammaS] ratio. This phase consists of a burst or lag in ATP hydrolysis, depending on whether ATP or ATP[gammaS] respectively, is added first. The transition phase reflects a slow conformational change in a RecA monomer or a general adjustment in the structure of RecA filaments. The RecA filaments formed on longer DNA cofactor were more sensitive, and respond more rapidly to ATP[gammaS] than on shorter DNA cofactors.
Collapse
Affiliation(s)
- Jong-Il Kim
- Department of Food and Microbial Technology, Seoul Women's University, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Britt RL, Haruta N, Lusetti SL, Chitteni-Pattu S, Inman RB, Cox MM. Disassembly of Escherichia coli RecA E38K/DeltaC17 nucleoprotein filaments is required to complete DNA strand exchange. J Biol Chem 2009; 285:3211-26. [PMID: 19910465 DOI: 10.1074/jbc.m109.028951] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Disassembly of RecA protein subunits from a RecA filament has long been known to occur during DNA strand exchange, although its importance to this process has been controversial. An Escherichia coli RecA E38K/DeltaC17 double mutant protein displays a unique and pH-dependent mutational separation of DNA pairing and extended DNA strand exchange. Single strand DNA-dependent ATP hydrolysis is catalyzed by this mutant protein nearly normally from pH 6 to 8.5. It will also form filaments on DNA and promote DNA pairing. However, below pH 7.3, ATP hydrolysis is completely uncoupled from extended DNA strand exchange. The products of extended DNA strand exchange do not form. At the lower pH values, disassembly of RecA E38K/DeltaC17 filaments is strongly suppressed, even when homologous DNAs are paired and available for extended DNA strand exchange. Disassembly of RecA E38K/DeltaC17 filaments improves at pH 8.5, whereas complete DNA strand exchange is also restored. Under these sets of conditions, a tight correlation between filament disassembly and completion of DNA strand exchange is observed. This correlation provides evidence that RecA filament disassembly plays a major role in, and may be required for, DNA strand exchange. A requirement for RecA filament disassembly in DNA strand exchange has a variety of ramifications for the current models linking ATP hydrolysis to DNA strand exchange.
Collapse
Affiliation(s)
- Rachel L Britt
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
34
|
van Loenhout MTJ, van der Heijden T, Kanaar R, Wyman C, Dekker C. Dynamics of RecA filaments on single-stranded DNA. Nucleic Acids Res 2009; 37:4089-99. [PMID: 19429893 PMCID: PMC2709578 DOI: 10.1093/nar/gkp326] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RecA, the key protein in homologous recombination, performs its actions as a helical filament on single-stranded DNA (ssDNA). ATP hydrolysis makes the RecA-ssDNA filament dynamic and is essential for successful recombination. RecA has been studied extensively by single-molecule techniques on double-stranded DNA (dsDNA). Here we directly probe the structure and kinetics of RecA interaction with its biologically most relevant substrate, long ssDNA molecules. We find that RecA ATPase activity is required for the formation of long continuous filaments on ssDNA. These filaments both nucleate and extend with a multimeric unit as indicated by the Hill coefficient of 5.4 for filament nucleation. Disassembly rates of RecA from ssDNA decrease with applied stretching force, corresponding to a mechanism where protein-induced stretching of the ssDNA aids in the disassembly. Finally, we show that RecA-ssDNA filaments can reversibly interconvert between an extended, ATP-bound, and a compressed, ADP-bound state. Taken together, our results demonstrate that ATP hydrolysis has a major influence on the structure and state of RecA filaments on ssDNA.
Collapse
Affiliation(s)
- Marijn T J van Loenhout
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | | | | | | | | |
Collapse
|
35
|
van Mameren J, Modesti M, Kanaar R, Wyman C, Peterman EJG, Wuite GJL. Counting RAD51 proteins disassembling from nucleoprotein filaments under tension. Nature 2008; 457:745-8. [PMID: 19060884 PMCID: PMC3871861 DOI: 10.1038/nature07581] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 10/24/2008] [Indexed: 11/09/2022]
Abstract
The central catalyst in eukaryotic ATP-dependent homologous recombination consists of RAD51 proteins, polymerized around single-stranded DNA. This nucleoprotein filament recognizes a homologous duplex DNA segment and invades it1,2. After strand exchange, the nucleoprotein filament should disassemble in order for the recombination process to complete3. The molecular mechanism of RAD51 filament disassembly is poorly understood. Here, we have combined optical tweezers with single-molecule fluorescence microscopy and microfluidics4,5 to reveal that disassembly results from the interplay between ATP hydrolysis and release of the tension stored in the nucleoprotein filament. Applying external tension to the DNA, we found that disassembly slows down and can even be stalled. We quantified the fluorescence of RAD51 patches and found that disassembly occurs in bursts interspersed by long pauses. Upon relaxation of a stalled complex, pauses were suppressed resulting in a large burst. These results imply that tension-dependent disassembly takes place only from filament ends, after tension-independent ATP hydrolysis. This integrative single-molecule approach allowed us to dissect the mechanism of this key homologous recombination reaction step, which in turn clarifies how disassembly can be influenced by accessory proteins.
Collapse
Affiliation(s)
- Joost van Mameren
- Laser Centre and Department of Physics and Astronomy, VU University, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Cox JM, Li H, Wood EA, Chitteni-Pattu S, Inman RB, Cox MM. Defective dissociation of a "slow" RecA mutant protein imparts an Escherichia coli growth defect. J Biol Chem 2008; 283:24909-21. [PMID: 18603529 PMCID: PMC2529011 DOI: 10.1074/jbc.m803934200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/03/2008] [Indexed: 11/06/2022] Open
Abstract
The RecA and some related proteins possess a simple motif, called (KR)X(KR), that (in RecA) consists of two lysine residues at positions 248 and 250 at the subunit-subunit interface. This study and previous work implicate this RecA motif in the following: (a) catalyzing ATP hydrolysis in trans,(b) coordinating the ATP hydrolytic cycles of adjacent subunits, (c) governing the rate of ATP hydrolysis, and (d) coupling the ATP hydrolysis to work (in this case DNA strand exchange). The conservative K250R mutation leaves RecA nucleoprotein filament formation largely intact. However, ATP hydrolysis is slowed to less than 15% of the wild-type rate. DNA strand exchange is also slowed commensurate with the rate of ATP hydrolysis. The results reinforce the idea of a tight coupling between ATP hydrolysis and DNA strand exchange. When a plasmid-borne RecA K250R protein is expressed in a cell otherwise lacking RecA protein, the growth of the cells is severely curtailed. The slow growth defect is alleviated in cells lacking RecFOR function, suggesting that the defect reflects loading of RecA at stalled replication forks. Suppressors occur as recA gene alterations, and their properties indicate that limited dissociation by RecA K250R confers the slow growth phenotype. Overall, the results suggest that recombinational DNA repair is a common occurrence in cells. RecA protein plays a sufficiently intimate role in the bacterial cell cycle that its properties can limit the growth rate of a bacterial culture.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin
53706-1544
| |
Collapse
|
38
|
Gruenig MC, Renzette N, Long E, Chitteni-Pattu S, Inman RB, Cox MM, Sandler SJ. RecA-mediated SOS induction requires an extended filament conformation but no ATP hydrolysis. Mol Microbiol 2008; 69:1165-79. [PMID: 18627467 DOI: 10.1111/j.1365-2958.2008.06341.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Escherichia coli SOS response to DNA damage is modulated by the RecA protein, a recombinase that forms an extended filament on single-stranded DNA and hydrolyzes ATP. The RecA K72R (recA2201) mutation eliminates the ATPase activity of RecA protein. The mutation also limits the capacity of RecA to form long filaments in the presence of ATP. Strains with this mutation do not undergo SOS induction in vivo. We have combined the K72R variant of RecA with another mutation, RecA E38K (recA730). In vitro, the double mutant RecA E38K/K72R (recA730,2201) mimics the K72R mutant protein in that it has no ATPase activity. The double mutant protein will form long extended filaments on ssDNA and facilitate LexA cleavage almost as well as wild-type, and do so in the presence of ATP. Unlike recA K72R, the recA E38K/K72R double mutant promotes SOS induction in vivo after UV treatment. Thus, SOS induction does not require ATP hydrolysis by the RecA protein, but does require formation of extended RecA filaments. The RecA E38K/K72R protein represents an improved reagent for studies of the function of ATP hydrolysis by RecA in vivo and in vitro.
Collapse
Affiliation(s)
- Marielle C Gruenig
- Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
ATPase activity and its temperature compensation of the cyanobacterial clock protein KaiC. Genes Cells 2008; 13:387-95. [DOI: 10.1111/j.1365-2443.2008.01174.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Singleton SF, Roca AI, Lee AM, Xiao J. Probing the structure of RecA-DNA filaments. Advantages of a fluorescent guanine analog. Tetrahedron 2007; 63:3553-3566. [PMID: 17955055 PMCID: PMC2031864 DOI: 10.1016/j.tet.2006.10.092] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The RecA protein of Escherichia coli plays a crucial roles in DNA recombination and repair, as well as various aspects of bacterial pathogenicity. The formation of a RecA-ATP-ssDNA complex initiates all RecA activities and yet a complete structural and mechanistic description of this filament has remained elusive. An analysis of RecA-DNA interactions was performed using fluorescently labeled oligonucleotides. A direct comparison was made between fluorescein and several fluorescent nucleosides. The fluorescent guanine analog 6-methylisoxanthopterin (6MI) demonstrated significant advantages over the other fluorophores and represents an important new tool for characterizing RecA-DNA interactions.
Collapse
Affiliation(s)
- Scott F. Singleton
- Division of Medicinal Chemistry & Natural Products, School of Pharmacy, The University of North Carolina at Chapel Hill, CB 7360, Chapel Hill, NC 27599-7360, USA
| | | | | | | |
Collapse
|
41
|
Abstract
The recombinases of the RecA family are often viewed only as DNA-pairing proteins - they bind to one DNA segment, align it with homologous sequences in another DNA segment, promote an exchange of DNA strands and then dissociate. To a first approximation, this description seems to fit the eukaryotic (Rad51 and Dmc1) and archaeal (RadA) RecA homologues. However, the bacterial RecA protein does much more, coupling ATP hydrolysis with DNA-strand exchange in a manner that greatly expands its repertoire of activities. This article explores the protein activities and experimental results that have identified RecA as a motor protein.
Collapse
Affiliation(s)
- Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706-1544, USA.
| |
Collapse
|
42
|
The bacterial RecA protein: structure, function, and regulation. MOLECULAR GENETICS OF RECOMBINATION 2007. [DOI: 10.1007/978-3-540-71021-9_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Joo C, McKinney SA, Nakamura M, Rasnik I, Myong S, Ha T. Real-time observation of RecA filament dynamics with single monomer resolution. Cell 2006; 126:515-27. [PMID: 16901785 DOI: 10.1016/j.cell.2006.06.042] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 05/16/2006] [Accepted: 06/20/2006] [Indexed: 11/27/2022]
Abstract
RecA and its homologs help maintain genomic integrity through recombination. Using single-molecule fluorescence assays and hidden Markov modeling, we show the most direct evidence that a RecA filament grows and shrinks primarily one monomer at a time and only at the extremities. Both ends grow and shrink, contrary to expectation, but a higher binding rate at one end is responsible for directional filament growth. Quantitative rate determination also provides insights into how RecA might control DNA accessibility in vivo. We find that about five monomers are sufficient for filament nucleation. Although ordinarily single-stranded DNA binding protein (SSB) prevents filament nucleation, single RecA monomers can easily be added to an existing filament and displace SSB from DNA at the rate of filament extension. This supports the proposal for a passive role of RecA-loading machineries in SSB removal.
Collapse
Affiliation(s)
- Chirlmin Joo
- Howard Hughes Medical Institute and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
44
|
Petalcorin MIR, Sandall J, Wigley DB, Boulton SJ. CeBRC-2 stimulates D-loop formation by RAD-51 and promotes DNA single-strand annealing. J Mol Biol 2006; 361:231-42. [PMID: 16843491 DOI: 10.1016/j.jmb.2006.06.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 06/09/2006] [Accepted: 06/12/2006] [Indexed: 01/09/2023]
Abstract
The BRCA2 tumour suppressor regulates the RAD-51 recombinase during double-strand break (DSB) repair by homologous recombination (HR) but how BRCA2 executes its functions is not well understood. We previously described a functional homologue of BRCA2 in Caenorhabditis elegans (CeBRC-2) that binds preferentially to single-stranded DNA via an OB-fold domain and associates directly with RAD-51 via a single BRC domain. Consistent with a direct role in HR, Cebrc-2 mutants are defective for repair of meiotic and radiation-induced DSBs due to an inability to regulate RAD-51. Here, we explore the function of CeBRC-2 in HR processes using purified proteins. We show that CeBRC-2 stimulates RAD-51-mediated D-loop formation and reduces the rate of ATP hydrolysis catalysed by RAD-51. These functions of CeBRC-2 are dependent upon direct association with RAD-51 via its BRC motif and on its DNA-binding activity, as point mutations in the BRC domain that abolish RAD-51 binding or the BRC domain of CeBRC-2 alone, lacking the DNA-binding domain, fail to stimulate RAD-51-mediated D-loop formation and do not reduce the rate of ATP hydrolysis by RAD-51. Phenotypic comparison of Cebrc-2 and rad-51 mutants also revealed a role for CeBRC-2 in an error-prone DSB repair pathway independent of rad-51 and non-homologous end joining, raising the possibility that CeBRC-2 may have replaced the role of vertebrate Rad52 in DNA single-strand annealing (SSA), which is missing from C. elegans. Indeed, we show here that CeBRC-2 mediates SSA of RPA-oligonucleotide complexes similar to Rad52. These results reveal RAD-51-dependent and -independent functions of CeBRC-2 that provide an explanation for the difference in DNA repair defects observed in Cebrc-2 and rad-51 mutants, and define mechanistic roles for CeBRC-2 in HR and in the SSA pathway for DSB repair.
Collapse
Affiliation(s)
- Mark I R Petalcorin
- Molecular Enzymology Laboratory, Cancer Research UK, The London Research Institute, Clare Hall Laboratories, South Mimms, EN6 3LD, UK
| | | | | | | |
Collapse
|
45
|
Schlacher K, Pham P, Cox MM, Goodman MF. Roles of DNA polymerase V and RecA protein in SOS damage-induced mutation. Chem Rev 2006; 106:406-19. [PMID: 16464012 DOI: 10.1021/cr0404951] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Katharina Schlacher
- Department of Biological Sciences, University of Southern California, Los Angeles, 90089-1340, USA
| | | | | | | |
Collapse
|
46
|
Cox JM, Tsodikov OV, Cox MM. Organized unidirectional waves of ATP hydrolysis within a RecA filament. PLoS Biol 2005; 3:e52. [PMID: 15719060 PMCID: PMC546331 DOI: 10.1371/journal.pbio.0030052] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 12/07/2004] [Indexed: 11/19/2022] Open
Abstract
The RecA protein forms nucleoprotein filaments on DNA, and individual monomers within the filaments hydrolyze ATP. Assembly and disassembly of filaments are both unidirectional, occurring on opposite filament ends, with disassembly requiring ATP hydrolysis. When filaments form on duplex DNA, RecA protein exhibits a functional state comparable to the state observed during active DNA strand exchange. RecA filament state was monitored with a coupled spectrophotometric assay for ATP hydrolysis, with changes fit to a mathematical model for filament disassembly. At 37 degrees C, monomers within the RecA-double-stranded DNA (dsDNA) filaments hydrolyze ATP with an observed k(cat) of 20.8 +/- 1.5 min(-1). Under the same conditions, the rate of end-dependent filament disassembly (k(off)) is 123 +/- 16 monomers per minute per filament end. This rate of disassembly requires a tight coupling of the ATP hydrolytic cycles of adjacent RecA monomers. The relationship of k(cat) to k(off) infers a filament state in which waves of ATP hydrolysis move unidirectionally through RecA filaments on dsDNA, with successive waves occurring at intervals of approximately six monomers. The waves move nearly synchronously, each one transiting from one monomer to the next every 0.5 s. The results reflect an organization of the ATPase activity that is unique in filamentous systems, and could be linked to a RecA motor function.
Collapse
Affiliation(s)
- Julia M Cox
- 1Department of Biochemistry, University of WisconsinMadison, WisconsinUnited States of America
| | - Oleg V Tsodikov
- 1Department of Biochemistry, University of WisconsinMadison, WisconsinUnited States of America
| | - Michael M Cox
- 1Department of Biochemistry, University of WisconsinMadison, WisconsinUnited States of America
| |
Collapse
|
47
|
Abstract
The bacterial RecA protein plays a central role in the repair of stalled replication forks, double-strand break repair, general recombination, induction of the SOS response, and SOS mutagenesis. The major activity of RecA in DNA metabolism is the promotion of DNA strand exchange reactions. RecA is the prototype for a ubiquitous family of proteins but exhibits a few activities that some of its eukaryotic, archaeal, and viral homologs appear to lack. In particular, the bacterial RecA protein possesses an apparent motor function that is not evident in the reactions promoted by the eukaryotic Rad51 protein. This motor may be needed only in a subset of the DNA metabolism contexts in which RecA protein functions. Models for the coupling of DNA strand exchange to ATP hydrolysis are examined.
Collapse
Affiliation(s)
- Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1544, USA.
| |
Collapse
|
48
|
Morimatsu K, Kowalczykowski SC. RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol Cell 2003; 11:1337-47. [PMID: 12769856 DOI: 10.1016/s1097-2765(03)00188-6] [Citation(s) in RCA: 321] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Genetic evidence suggests that the RecF, RecO, and RecR (RecFOR) proteins participate in a common step of DNA recombination and repair, yet the biochemical event requiring collaboration of all three proteins is unknown. Here, we show that the concerted action of the RecFOR complex directs the loading of RecA protein specifically onto gapped DNA that is coated with single-stranded DNA binding (SSB) protein, thereby accelerating DNA strand exchange. The RecFOR complex recognizes the junction between the ssDNA and dsDNA regions and requires a base-paired 5' terminus at the junction. Thus, the RecFOR complex is a structure-specific mediator that targets recombinational repair to ssDNA-dsDNA junctions. This reaction reconstitutes the initial steps of recombinational gapped DNA repair and uncovers an event also common to the repair of ssDNA-tailed intermediates of dsDNA-break repair. We propose that the behavior of the RecFOR proteins is mimicked by functional counterparts that exist in all organisms.
Collapse
Affiliation(s)
- Katsumi Morimatsu
- Section of Microbiology, Center for Genetics and Development, University of California, Davis, 95616, USA
| | | |
Collapse
|
49
|
Defais M, Phez E, Johnson NP. Kinetic mechanism for the formation of the presynaptic complex of the bacterial recombinase RecA. J Biol Chem 2003; 278:3545-51. [PMID: 12456687 DOI: 10.1074/jbc.m204341200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RecA protein from Escherichia coli catalyzes DNA strand exchange during homologous recombination in a reaction that requires nucleoside triphosphate cofactor. In the first step of this reaction RecA protein polymerizes on single-stranded DNA to form a filament with a stoichiometry of three nucleotides/RecA monomer called the presynaptic complex. We have used fluorescence anisotropy of a fluorescein-labeled oligonucleotide to investigate presynaptic complex formation. RecA-ATPgammaS bound to oligonucleotide by a two-step process. Kinetic studies revealed an intermediate in the polymerization reaction that had greater mobility than the final product filament. The intermediate was transformed into the final product by a process that was independent of filament concentration and temperature, k = 0.3 +/- 0.1 min(-1). This process had the same rate as that reported for a step in the isomerization of presynaptic complex by ATPgammaS (Paulus, B. F., and Bryant, F. R. (1997) Biochemistry 36, 7832-7838). Judging from anisotropy measurements, the intermediate had hydrodynamic properties similar to a mixed filament containing RecA monomers with and without ATPgammaS. These results show that the presynaptic complex can assume conformations with different segmental mobilities that could play a role in homologous recombination.
Collapse
Affiliation(s)
- Martine Defais
- Institut de Pharmacologie et de Biologie Structurale UMR 5089, CNRS 205, route de Narbonne, 31077 Toulouse Cedex, France
| | | | | |
Collapse
|
50
|
Abstract
The primary function of bacterial recombination systems is the nonmutagenic repair of stalled or collapsed replication forks. The RecA protein plays a central role in these repair pathways, and its biochemistry must be considered in this context. RecA protein promotes DNA strand exchange, a reaction that contributes to fork regression and DNA end invasion steps. RecA protein activities, especially formation and disassembly of its filaments, affect many additional steps. So far, Escherichia coli RecA appears to be unique among its nearly ubiquitous family of homologous proteins in that it possesses a motorlike activity that can couple the branch movement in DNA strand exchange to ATP hydrolysis. RecA is also a multifunctional protein, serving in different biochemical roles for recombinational processes, SOS induction, and mutagenic lesion bypass. New biochemical and structural information highlights both the similarities and distinctions between RecA and its homologs. Increasingly, those differences can be rationalized in terms of biological function.
Collapse
Affiliation(s)
- Shelley L Lusetti
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706-1544, USA. ;
| | | |
Collapse
|